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ABSTRACT

This paper introduces a convenient strategy for compres-

sion and prediction of sequences of independent, identi-

cally distributed random variables generated from a large

alphabet of size m. In particular, the size of the sample

is allowed to be variable. The employment of a Poisson

model and tilting method simplifies the implementation

and analysis through independence. The resulting strat-

egy is optimal within the class of distributions satisfying

a moment condition, and is close to optimal for a smaller

class – the class of distributions with an analogous condi-

tion on the counts. Moreover, the method can be used to

code and predict sequences in a subset with the tail counts

satisfying a given condition, and it can also be applied to

envelope classes.

1. INTRODUCTION

Large alphabet coding and prediction problems concern

understanding the probabilistic scheme of a huge number

of possible outcomes. In many cases the ordered prob-

abilities of individual outcomes display a quickly falling

shape. An example is language. The set of frequent words

that cover our everyday use is only a small portion of the

whole vocabulary. Here we consider an i.i.d model for

coding and predicting such alphabets. Despite the pos-

sible dependence among the outcomes in the alphabet as

in text coding/prediction problem, it serves as a starting

point and can be extended to models which take depen-

dence into account.

Theoretical analysis usually assumes the length of a

message is known in advance when it is coded. This is not

always true in practice. Serialization writers do not know

how many words a novel contains before he finishes the

last sentence. Nevertheless, given a limited time/space,

one could possibly guess how many words on average can

be accommodated.

Suppose a string of random variables X = (X1, ..., XN )
is generated independently from a discrete alphabet A of

size m. We allow the sequence length N to be variable.

A special case is when N is given as a fixed number, or it

can be random. In either case, X is a member of the set

X ∗ of all finite length sequences

X ∗ =
∞⋃

n=0

Xn

=

∞⋃
n=0

{xn = (x1, ..., xn) : xi ∈ A, i = 1, ..., n}.

Our goal is to code/predict the sequence X . Note that the

length N is determined by the string. There will be an

agreed upon distribution of the string length N , perhaps

Poisson or deterministic.

Now suppose given N , each random variable Xi is

generated independently according to a probability mass

function in a parametric family PΘ = {Pθ(x) : θ ∈ Θ ⊂
Rm} on A. Thus

Pθ(X1, ..., XN |N = n) =
n∏

i=1

Pθ(Xi)

for n = 1, 2, ... Here θ only parameterizes the distribution

of the sequence conditional on the length. Of particular

interest is the class of all distributions on the given al-

phabets with Pθ(j) = θj parameterized by the simplex

Θ = {θ : θj ≥ 0,
∑m

j=1
θj = 1}.

Let N = (N1, ..., Nm) denote the counts of symbols

1, ...,m that occur in the sequence X . The observed sam-

ple size N is the sum of the counts N =
∑m

j=1
Nj . Both

Pθ(X) and Pθ(X|N = n) have factorizations based on

the distribution of the counts.

Pθ(X|N = n) = P (X|N)Pθ(N |N = n)

and

Pθ(X) = P (X|N)Pθ(N).

The first factor of the two equations is the uniform distri-

bution on the set of strings with given counts, which does

not depend on θ. Hence, the vector of counts N forms a

sufficient statistic for θ. Modeling the distribution of the

counts is essential for forming codes and predictions.

The independent Poisson(λj), j = 1, ...,m family of

distributions on counts is sufficiently rich via conditioning

on the total counts to account for all i.i.d. distributions on
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the finite alphabet, with the relationship θj =
λj

λsum
where

λsum =
∑m

j=1
λj .

The task of coding a string is equivalent to providing

a probabilistic scheme. A coder Q for the string is also a

(sub)probability distribution on X ∗ which assigns prob-

abilities Q(X1, ..., XN ) to strings X1, ..., XN and pro-

duces a binary string of length log 1/Q(X) (we do not

worry about the integral constraint). Ideally the true prob-

ability distribution Pθ(X1, ..., XN ) could be used if θ were

known. So the regret induced by using Q instead of Pθ is

R(Q,Pθ, X) = log
1

Q(X)
− log

1

Pθ(X)
,

where log is logarithm base 2.

Here we can construct Q by choosing a probability

distribution for the counts and then use the uniform dis-

tribution for the distribution of strings given the counts,

written as Punif . That is

Q(X) = Punif (X|N)Q(N).

Then the regret becomes the log ratio of the counts prob-

ability.

R(Q,Pθ, X) = log
Pθ(N)

Q(N)
.

Given the family PΘ, consider the best candidate with

hindsight Pθ̂(X) which achieves the maximum value at

Pθ̂(X) = maxθ∈Θ Pθ(X) (also corresponding to minθ∈Θ

log(1/Pθ(X))), where θ̂ is the maximum likelihood esti-

mator of θ. The maximization is equivalent to maximiz-

ing θ for the count probability, as the uniform distribution

dose not depend on θ, i.e.

max
θ∈Θ

(Pθ(X)) = P (X|N)max
θ∈Θ

Pθ(N)

= P (X|N)Pθ̂(N).

Then the problem becomes: given a family of distri-

butions Pθ, how to choose Q to minimize the maximized

pointwise redundancy,

min
Q

max
X

R(Q,Pθ̂, X) = min
Q

max
N

log
Pθ̂(N)

Q(N)
.

The maximum can also be restricted to a set of counts

instead of the whole data space. A traditional choice is

Sm,n = {(N1, ..., Nm) :
∑m

j=1
Nj = n, Nj ≥ 0, j =

1, ...,m} associated with a given sample size n, in which

case the minimax pointwise redundancy is

min
Q

max
N∈Sm,n

log
Pθ̂(N)

Q(N)
,

As is familiar in universal coding [1], [2] the normal-

ized maximum likelihood (NML) distribution

Q∗(N) =
Pθ̂(N)

C(Sm,n)
,

is the unique pointwise minimax strategy when C(Sm,n)
=

∑
N∈Sm,n

Pθ̂(N) is finite, and logC(Sm,n) is the min-

imax value. When m is large, the NML distribution can

be unwieldy to compute for compression or prediction. In-

stead we will introduce a slightly suboptimal coding dis-

tribution that makes the counts independent and show that

it is nearly optimal for every Sm,n′ with n′ not too differ-

ent from a target n. Indeed we advocate that our simple

coding distribution is preferable to use computationally

when m is large even if the sample size n were known

in advance.

To produce our desired coding distribution we make

use of two basic principles. One is that the multinomial

family of distributions of counts matches the conditional

distribution of N1, ..., Nm given the sum N when uncon-

ditionally the counts are independent Poisson. Another

is the information theory principle [3][4][5] that the con-

ditional distribution given a sum (or average) of a large

number of independent random variables is approximately

a product of distributions, each of which is the one closest

in relative entropy to the unconditional distribution sub-

ject to an expectation constraint. This minimum relative

entropy distribution is an exponential tilting of the uncon-

ditional distribution.

Apply the maximum likelihood step to the indepen-

dent counts. This produces a maximized likelihood value

of M(Nj) = N
Nj

j e−Nj/Nj !, for each j ∈ {1, ...,m}.

Although this measure has an infinite sum by itself, it is

normalizable when tilted for every positive a. The tilted

distribution is

Pa(Nj) =
N

Nj

j e−Nj

Nj !

e−aNj

Ca
,

with the normalizer Ca =
∑∞

Nj=0
N

Nj

j e−(1+a)Nj/Nj !.
The coding distribution we propose and analyze is sim-

ply the product of those tilted one-dimensional maximized

Poisson likelihood distributions for a value of a we will

specify later,

Qa(N1, ..., Nm) = Pa(N1)...Pa(Nm).

By allowing description of all possible counts Nj ≥ 0,

j = 1, ...,m, our code length will be greater for some

sequences than code lengths designed for the case of a

given sum N = n. Nevertheless, with N distributed

Poisson(n), the probability of the outcome N = n is

approximately P (N = n) ≈ 1/
√
2πn. So the allowance

of description of N (not just N1, ..., Nm given N ) adds

log 1/P (N = n) which is approximately 1

2
log 2πn bits

to the description length beyond that which would have

been ideal log 1/Qa(N1, ..., Nm|N = n) if N = n were

known. This ideal code length constructed from the tilted

maximized Poisson, when conditioning on n, matches the

Shtarkov’s normalized maximum likelihood based on the

multinomial.

For small alphabet with m << n, the minimax redun-

dancy is about 1

2
log n bits per free parameter (i.e. a to-

tal of m−1

2
log n + constant); and for large alphabet when

m ∼ n and n = o(m), the minimax redundancy is about

O(n) and n log m
n respectively [1][2][6][7]. The addi-

tional 1

2
log n bits is a small price to pay for the sake of
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Figure 1. Relationship between a∗ and m/n.

gaining the coding simplification and additional flexibil-

ity.

If it is known that the total count is n, then the point-

wise redundancy is a simple function of n and the nor-

malizer Ca. The choice of the tilting parameter a∗ given

by the moment condition EQa

∑m
j=1

Nj = n minimizes

the pointwise redundancy over all positive a. This arises

by differentiation because ∂
∂a logCa is equal to the given

moment. Moreover, a∗ depends only on the ratio between

the size of the alphabet and the total counts m/n. Figure

1 displays a∗ as a function of m/n solved numerically.

Given an alphabet with m symbols and a string generated

from it of length n, one can check the plot and find the a∗

desired according to the m/n given, and then use the a∗

to code or predict the data.

If, however, the total count N is not given, then the

pointwise redundancy depends on N . We use a mixture

of a to account for the lack of knowledge in advance, and

details are contained in section 3.5.

Shtarkov studied the universal data compression prob-

lem and identified the exact pointwise minimax strategy

[1]. He showed the asymptotic minimax lower bound for

the regret is m−1

2
log n+O(1), in which the parameter set

Θ is the m−1 dimensional simplex of all probability vec-

tors on an alphabet of size m. However, this strategy can-

not be easily implemented for prediction or compression

[1], because the computational inconvenience of comput-

ing the normalizing constant. Shtarkov [8] also pointed

out that the typical sequence usually contains M << m
different symbols, and the regret depends mainly on M
instead of m. Xie and Barron [2][9] gave an asymptotic

minimax strategy for coding under both the expected and

pointwise regret for fixed size alphabet, which is formu-

lated by a modification of the mixture density using Jef-

fery’s prior. The asymptotic value of both the expected re-

gret and the pointwise regret are of the form m−1

2
log n+

Cm + o(1), where Cm is a constant depending on m. Or-

litsky and Santhanam [10] considered the problem in a

large alphabet setting in which the number of symbols m

is much larger than the sequence length n or even infinite.

They found the main terms in the pointwise minimax re-

dundancy for m = o(n), m ∼ n and n = o(m) cases

take the forms m−1

2
log n

m , O(m) and n log m
n respec-

tively. Szpankowski and Weinberger [7] provided more

precise asymptotics in these settings. They also calcu-

lated the minimax redundancy of a source model in which

some symbol probabilities are fixed. Boucheron, Garivier

and Gassiat [11] focused on countably infinite alphabets

with an envelope condition; they used an adapted strategy

and gave upper and lower bounds for pointwise minimax

regret. Later on Bontemps and Gassiat [12] worked on

exponentially decreasing envelope classes and provided a

minimax strategy and the corresponding regret.

In this paper, we introduce a straightforward and easy

to implement method for large alphabet coding and pre-

diction. The purpose is three-fold: first, by allowing the

sample size to be variable, we are considering a larger

class of distributions. This is a more realistic and less

restrictive assumption than presuming a particular length.

But the method can also be used for fixed sample size cod-

ing and prediction.

Second, it unveils an information geometry of three

key distributions or measures in the problem: the unnor-

malized maximum Poisson likelihood measure M of the

counts, the conditional distribution Mcond of M given the

total count equal to n, which matches Shtarkov’s normal-

ized maximum multinomial likelihood distribution, and a

tilted distribution Pa, with tilting parameter a. The tilted

distribution Pa is closest to the original distribution M in

Kullback-Leibler distance within the class C of distribu-

tions with the moment equal to the observed value. Hence

Pa is the information projection of M onto C. Moreover,

since Mcond is also in C, the Pythagorean-like equality

holds [13][3], i.e.

D(Mcond||M) = D(Mcond||Pa) +D(Pa||M).

The case of a tilted distribution (the information projec-

tion) as an approximating conditional distribution is in-

vestigated in [5] and [4]. A difference here is that our

unconditional measure M is not normalizable.

Thirdly, the strategy designed through an independent

Poisson model and tilting method is much easier to calcu-

late and implement as compared to the strategies based on

multinomial models. The convenience is gained through

independence.

The paper is organized in the following way. Section

II introduces the model, Section III provides general re-

sults and outlines the proof, and Section IV extends the

result to subsets of sequences satisfying a tail condition

and an envelope class. Details of proof are left in a jour-

nal version of this paper.

2. THE POISSON MODEL

A Poisson model fits well into this problem. We have for

each j = 1, ...,m,

Nj ∼ Poisson(λj),
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independently, and N also has a Poisson distribution

N ∼ Poisson(λsum),

Write λ = (λ1, ..., λm). We have

Pλ(X) = Punif (X|N)
m∏
j=1

Pλj
(Nj)

We know that the the MLE for each λj is λ̂j = Nj ,

and the first term is a uniform distribution which does not

depend on λ. So

Pλ̂(X) = Punif (X|N)
m∏
j=1

M(Nj).

where M(k) = kke−k/k!, k = 1, 2, ...(as given in the

introduction) is the unnormalized maximized likelihood

M(Nj) = maxλj
Pλj

(Nj).
If we use a distribution Q(N) to code the counts, then

the pointwise redundancy is

log
Pλ̂(X)

P (X|N)Q(N)
= log

∏m
j=1

M(Nj)

Q(N)
.

This method can also be applied to fixed total counts

scenario, which reduces to the multinomial coding and

prediction problem. Suppose N = n is given, the Pois-

son model when conditioned on N = n indeed reduces to

the i.i.d sampling model

Pλ(X1, ..., XN |N = n) = Pθ(X1, ..., Xn).

The right hand side is a discrete memoryless source

distribution (i.i.d. Pθ) with probability specified by Pθ(j) =
θj , for j = 1, ...,m. Note that a sequence X1, ..., XN with

counts N1, ..., Nm of total N = n satisfies

Pλ(X1, ..., XN |N = n)

=
Pλ(X1, ..., Xn)

Pλsum
(N = n)

=
Punif (X1, ..., Xn|N1, ..., Nm)Pλ(N1, ..., Nm)

Pλsum(N = n)
.

The question left is how to model the counts. The

maximized likelihood (the same target as used by Shtarkov)

is thus expressible as

Pλ̂(X1, ..., XN |N = n)

=
Punif (X1, ..., Xn|N1, ..., Nm)

∏m
j=1

M(Nj)

Pλ̂sum
(N = n)

.

Now again if we use Q(N1, ..., Nm) to code the counts,

then the pointwise redundancy is

log
Pλ̂(X1, ..., XN |N = n)

Punif (X1, ..., Xn|N1, ..., Nm)Q(N1, ..., Nm)

= log

∏m
j=1

M(Nj)

Pλ̂sum
(N = n)Q(N1, ..., Nm)

� 1

2
log 2πn+ log

∏m
j=1

M(Nj)

Q(N1, ..., Nm)
(1)

Here λ̂sum = n, hence the term 1

2
log 2πn is the Sterling’s

approximation of log(1/Pλ̂sum
(N = n)). The 1

2
log 2πn

arises because here Q includes description of the total N
while the more restrictive target regarded it as given.

3. RESULTS

3.1. Pointwise redundancy for a general string set

Let S be any set of strings. The maximized redundancy of

using Q as a coding strategy given a class P of distribu-

tions when the string is restricted to S is

R(Q,P, S) = max
X∈S

log
maxP∈P(X)

Q(X)
.

Theorem 1. Let Pa(k) = kke−(1+a)k/k!Ca be the distri-
bution for Nj specified in the introduction (Poisson maxi-
mized likelihood, tilted and normalized). Let PPoi

m be the
class of m independent Poisson distributions. The point-
wise redundancy of using a product of tilted distributions
Qa = ⊗m

j=1Pa for a given N = (N1, ..., Nm) is

R
(
Qa,PPoi

m , N
)
= aN log e+m logCa.

Let Sm,n be the set of counts with total count n be defined
as before, then for each N ∈ Sm,n,

R
(
Qa,PPoi

m , Sm,n

)
= an log e+m logCa. (2)

Let a∗ be the choice of a satisfying the following mo-
ment condition

EPa

m∑
j=1

Nj = mEPa
N1 = n. (3)

Then a∗ is the minimizer of the pointwise redundancy in
expression (2), written as Rm,n = mina R(Qa,PPoi

m , Sm,n).
When m = o(n), this Rm,n is near m

2
log ne

m in the
following sense.

−d1
m

2
log e ≤ Rm,n − m

2
log

ne

m

≤ m log(1 +

√
m

n
), (4)

where d1 = O
(
(mn )1/3

)
.

When n = o(m), the Rm,n is near n log m
ne is the

following sense.

m log
(
1 + (1− d2)

n

m

)
≤ Rm,n − n log

m

ne

≤ m log
(
1 +

n

m
+ d3

)
(5)

where d2 = O( n
m ), and d3 = 1

2
√
π

n2e2

m(m−ne) .

Outline of proof. The expression of the pointwise redun-

dancy is from the definition. The fact that a∗ is the mini-

mizer can be seen by taking partial derivative with respect

to a of expression (2). The bounds is derived by approxi-

mating a∗ by m/2n and log(m/ne) respectively
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Remark 1: This theorem shows the product of titled

distributions with the tilting parameter given by the mo-

ment condition minimizes pointwise redundancy over all

tilted distributions. The redundancy is close to the min-

imax level in either small or large alphabets. The main

terms in the last two approximations are the same as what

is given in [7] except the multiplier for log(n/m) here is

m/2 instead of (m− 1)/2 for the small m scenario.

Corollary 1. Let Pmul
m,n be a family of multinomial dis-

tributions with total counts n. Then the maximized re-
dundancy R(Qa,Pmul

m,n , Sm,n) has an upper bound within
1

2
log 2πn above the upper bounds in Theorem 1.

Proof. This can be easily seen by equation (1).

3.2. Subset of sequences with partitioned counts

One advantage of using independent tilted distributions

is the flexibility of choosing tilting parameters. As men-

tioned in the introduction, the ratio m/n uniquely deter-

mines the optimal tilting parameter. In fact, different tilt-

ing parameters can be used for symbols to adjust for their

relative importance in the alphabet. Here we consider

a situation in which the empirical distribution is highly

skewed.

The following theorem holds for constraints on a tail

sum of counts
∑

j>L Nj = nf . Small remainder occur

in the following redundancy bound when nf
m−L and L

n−nf
are small.

Theorem 2. Let Sm,n,f,L be a subset of sequences with
tail counts controlled by a given function 0 ≤ f ≤ 1, i.e.,
Sm,n,f,L = {N = (N1, ..., Nm) :

∑m
j=1

Nj = n,
∑

j>LNj

= nf}. Here L is a number between 1 and m. The point-
wise redundancy of using independent tilted distributions
for sequences in Sm,n,f,L given each L ∈ {1, ...,m} is
mainly

L

2
log

(n− nf)e

L
+ nf log

(m− L)

nfe
. (6)

The difference between the exact value and the main terms
are bounded below by r1 and above by r2, where

r1 = −d1
L

2
log e+(m−L) log

(
1 + (1− d2)

n

m− L

)
,

and

r2 = (m− L) log

(
1 +

nf

m− L
+ d3

)

+L log

(√
L

n− nf
+ 1

)
.

Here d1 is O

((
L

n−nf

)1/3
)

and d2 is O
(

nf
m−L

)
and

d3 = 1

2
√
π

(nfe)2

(m−L)((m−L)−nfe) .

Outline of proof. Consider the product distribution,

Qa,b(N) =
m∏
j=1

Pa,b(Nj)

=

m∏
j=1

N
Nj

j e−Nj

Nj !

e−aNje−bNj1{j>L}

Ca,b,j

where Ca,b,j = Ca if j ≤ L, and Ca,b,j = Ca,b is defined

as
∑∞

k=0
kke−(1+a+b)k/k! if j > L. The result can be de-

rived by applying Theorem 1 to R(Qa,PL, SL,n−nf ) and

R(Qa+b,Pm−L, Sm−L,nf ) respectively, where Pj denotes

the class of j independent Poisson distributions and Sj,k

is the set of j independent Poisson counts with sum equal

to k.

Remark 3: The problem here is treated as two sepa-

rate coding tasks, one for a small alphabet with L symbols

having a total count n − nf , and one for a large alpha-

bet with m − L symbols with total count nf . The two

main terms in expression (6) represent redundancy from

coding the two subsets of symbols, with one set contain-

ing L symbols having relatively large probabilities, and

each symbol induces 1

2
log n(1−f)e

L bits redundancy, and

the other containing the rest m − L symbols with small

probabilities and together requires nf log m
nfe extra bits.

3.3. Envelope class

Here we follow the definition of envelope class in [11],

suppose Pm,f is a class of distributions on 1, ...,m with

the symbol probability bounded above by an envelope func-

tion f , i.e.

Pm,f = {Pθ : θj ≤ f(j), j = 1, ...,m}.

Given the sequence length n, we know the count of each

symbol follows a Poisson distributions with mean λj =
nθj , j = 1, ...,m. This transfers an envelope condition

from the multinomial distribution to a Poisson distribu-

tion, of which the mean is restricted to the following set

Λm,f = {λ : λj ≤ nf(j), j = 1, ...,m}.

Theorem 3. The pointwise minimax redundancy of the
Poisson class Λm,f with envelope function f has the fol-
lowing upper bound

R(Qa,Λm,f , N)

≤ min
L∈{1,...m}

L

2
log

n(1− F̄ (L))

L
+ nF̄ (L) log e+ r3

where F̄ (L) =
∑

j>L f(j), and

r3 =
L

2(1− F̄ (L))
log e+L log

(
1 +

√
L

n(1− F̄ (L))

)
.

Proof. using a tilted distribution with a = L/2n(1 −
F̄ (L)) will give the result.
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Remark 5: Here in order for r3 to be small, the tail

sum F̄ (L) of the envelope function needs to be small, al-

though the upper bound holds for general envelope func-

tion f and L. This result is of the same order as the up-

per bound infL:L≤n

(
(L− 1)/2 logn+ nF̄ (L) log e

)
+2

given in [11].

Remark 6: The best choice of tilting parameters for

envelope class only dependents on the envelope function

and the number of symbols L constituting the ‘frequent’

subset. unlike the subset of sequences case discussed be-

fore, neither of the order of counts or which symbols are

those with largest counts matter, all we need is an enve-

lope function decays fast enough when the symbols are

arranged in decreasing order so that L and F̄ (L) is small

compared to n(1− F̄ (L)).

3.4. Arbitrary frequent subset

Section 3.2 and 3.3 discuss using independent tilted dis-

tributions to code skewed empirical distributions and en-

velope classes, both of which assume a structure in which

the symbols are partitioned in a way according to its counts

or probabilities of occurrence. This assumption is restric-

tive unless prior knowledge of an ‘important’ subset of

symbols exists. An easy fix is a mixture of the product

tilted distributions across all subsets containing L sym-

bols, for example, for a set Sarb
m,n,f,L with any subset of

m− L symbols having a total count equal to nf ,

{N = (N1, ..., Nm) :
m∑
j=1

Nj = n,
∑
j>L

N(j) = nf}.

Here N(j) is the jth largest count in N . It is easy to see

Sarb
m,n,f,L = ∪kS

k
m,n,f,L where each Sk

m,n,f,L is a permu-

tations of Sm,n,f,L.

For each given Sk
m,n,f,L, an optimal tilted distribution

QSk
m,n,f,L

can be used by choosing tilting parameters ac-

cording to the symbol and total count ratios. So given L
and f , a mixture of tilted distributions is

Q∗
L(N) =

1(
m
L

) ∑
j

QSk
m,n,f,L

The pointwise redundancy of using the mixture dis-

tribution Q∗
L for any string in Sarb

m,n,f,L is no larger than

log
(
m
L

)
above the minimum redundancy if the ‘important’

subset were known, i.e., for each N ∈ Sarb
m,n,f,L

R(Q∗
L,PPoi

m , N)

≤ min
k:N∈Sk

m,n,f,L

R(QSk
m,n,f,L

,PPoi
m , Sk

m,n,f,L)

+ log

(
m

L

)

This extra term is still acceptable as long as log
(
m
L

)
is small compared to n. And in fact this term also exists

in the pointwise minimax redundancy, because any N in

Sarb
m,n,f,L is a permuted version of an N in Sm,n,f,L, with

the same ordered statistic. Remember that the log of the

Shtarkov’s sum for m independent Poisson random vari-

ables with counts N in Sarb
m,n,f,L is

C(Sarb
m,n,f,L) = log

(
m

L

)
+ C(Sm,n,f,L)

Therefore the simple mixture of tilted distributions does

not add any extra redundancy.

3.5. Pointwise redundancy with total count unknown

When the total count is not known, we can use a mixture

of tilted distributions Q(N) to code the strings, where

Q(N) =

∫ m/2

0

Pa(N)
2

m
da

= M(N)
2

m

∫ m/2

0

e−aNC−m
a da.

For any k ∈ N, the integrand is maximized at a∗N ,

which is a solution to EPaN = k. And the integral can be

approximated by the Laplace method,

Q(N) ≈ M(N)
2

m
e−a∗

NNC−m
a∗
N

√
2π

c
,

where c = − ∂2

∂a ln
(
e−NaC−m

a

) |a=a∗
N

.

Hence the pointwise redundancy of Q(N) is

log
M(N)

Q(N)

≈ log ea
∗
NNCm

a∗
N

√
c

2π
+ log

m

2

≤ log ea
∗
NNCm

a∗
N
+

3

2
log

m

(2π)1/3
+ logCa∗

N

The redundancy of Q(N) above the optimal level is

approximately bounded by 3

2
log m

(2π)1/3
+ logCa∗

N
.

4. APPLICATION

Here we give an examples of using tilted distributions in

Section 3.2 to code Chinese literature. It is the existing

earliest collection of Chinese poetry dating from the 10th

to 7th centuries BC [14] translated as the Classic of Poetry.

The book is downloaded freely from http://wenku.
baidu.com/. Since many ancient words are rarely used

now, the encoding is in GB18030 [15], the largest Chinese

coded character set. It contains 70244 characters, among

which 2889 appear in the book with a total character count

39161. There are 792 characters appear once and 479 ap-

pear twice.

The alphabet is partitioned into two subsets – the fre-

quent ones and the infrequent ones. The tilting parame-

ter is chosen approximately according to the ratio of the

number of symbols in a group and their total counts. The

redundancy of assigning different number of symbols as

‘frequent’ (L) is shown in Figure 2. The smallest redun-

dancy happens at L = 2889 which is the total number of

characters that appear.
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Figure 2. Pointwise redundancy of Qa,b for L from 1 to

m.

5. DISCUSSION

We have considered using independent tilted distributions

as a coding or prediction strategy for independent random

variables generated from a memoryless source with a sam-

ple size also being random. The performance of the strat-

egy is close to the minimax level as shown above. Ac-

tually, the difference between the redundancy induced by

using independent tilted distributions and the minimax re-

dundancy is the probability assigned to the set with the

observed condition by the tilted distribution with the pa-

rameter given by the moment condition, i.e.

R(Qa∗ ,Pm, Sm,n) = C(Sm,n) + log 1/Qa∗(Sm,n).

The choice of a = a∗ minimizes the difference

logQa∗(Sm,n) among all possible choices of a. Our ini-

tial finding is this term decreases with n even if the tilting

parameter is adjusted for n, however, we do not have a

precise evaluation yet. Further exploration could be done

to characterize this term and understand the relationship

between the tilted distribution and the exact minimax dis-

tribution.
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