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Abstract— Recently sparse superposition codes with iterative
term selection have been developed which are mathematically
proven to be fast and reliable at any rate below the capacity for
the additive white Gaussian noise channel with power control.
We improve the performance using a soft decision decoder with
Bayes optimal statistics at each iteration, followed by thresholding
only at the final step. This presentation includes formulation of
the statistics, proof of their distributions, numerical simulations
of the performance improvement, and useful identities relating
a squared error risk to a posterior probability of error.

I. INTRODUCTION

Sparse superposition codes use a dictionary X consisting of

vectors X1, X2, . . . , XN , each of n coordinates. The codeword

vectors Xβ are superpositions β1X1 + β2X2 + . . . + βNXN .

The entries of X are independent N(0, 1). The codeword is

conveyed through the choice of which L of the coefficients are

non-zero, where L matches n to within a log factor, yet L is

a small fraction of the dictionary size N . For a channel with

additive white Gaussian noise (AWGN), with superposition

coding, what is received is Y = Xβ + ε, a vector of length

n, where ε is the noise vector with distribution N(0, σ2I).

The coefficient vector is split into L sections each of size

M = N/L, with one non-zero entry in each section. There are

ML codewords. With M a power of 2, the encoding from an

input bit-string u1, u2, . . . , uK , with K = L log M , consists

of partitioning the string into L substrings of length log M
which index the terms chosen to be included in the codeword.

Denote these indices {j1, j2, . . . , jL}. The non-zero coefficient

from section � takes value βj�
=
√

P�, with
∑

� P� = P to

control the codeword power.

The rate of the code is R = (L log M)/n and the capacity

of the AWGN channel is C = (1/2) log(1+snr) where snr =
P/σ2 is the signal-to-noise ratio.

These sparse superposition codes with an adaptive succes-

sive decoder are computationally fast codes for the Gaussian

noise channel with any fixed rate below capacity, with error

probability proven to be exponentially small. See [1], [2], [3]

for this conclusion and the relationship to other literature on

compressive sensing, signal recovery, and coding for the Gaus-

sian channel. The adaptive successive decoder uses iteratively

obtained test statistics related to inner products of the Xj with

residuals of the previous fits. There, for each fit update, the

decoder accepts those terms j for which the statistic is above

a threshold, chosen high enough to avoid false alarms.

The conditional distribution of such statistics is approxi-

mated as a normal random variable shifted, for the true terms

compared to the others, by an amount inversely related to

the squared distance between the current fit and the true

coefficient vector. Accordingly, we seek improved estimates

of the coefficients, using the squared error loss, to increase

the separation between the distributions of the statistics and

thereby improve the reliability of the final decision.

We use the Bayes optimal coefficient estimates based on the

distribution of iteratively obtained statistics, with a uniform

prior on the choice of the j� sent from each section. These

estimates use computed posterior weights of terms in each

section. These weights provide a soft decision decoding, rather

than the {0, 1} valued weights associated with thresholding.

We formulate the statistics, quantify their distribution, and

give identities that relate the expected sum of squared distance

(Bayes risk) of the estimate to an expected posterior probabil-

ity of error. Taking 1 minus it quantifies the rate of success.

A function g(x) gives the expected success rate on a step if

the previous success rate was x. Numerical evaluations show it

is higher than the corresponding function from the threshold-

based decisions. Indeed, g(x) stays above x for a longer extent

of the interval [0, 1] than previously obtained, leading to a

smaller fraction of mistakes. As before, this remaining fraction

of mistakes are corrected by an optional outer code.

To get rates approaching capacity, a variable power alloca-

tion is used, with P� proportional to e−2 C �/L.

For R < C, theoretically optimal codes have exponentially

small error probability with exponent of order (C−R)2 n. So

far, fast sparse superposition codes in [1], [2], [3] achieve

comparable exponents of order (C−R)2 L, within a logarithmic

factor of the optimal form. More specifically, the bounds on

the error probability have the exponents (CM−R)2 in place

of (C−R)2, where CM slowly approaches the capacity C, and

the bounds are applicable only for R < CM . This motivates

additional effort, initiated here, to improve the rate and reli-

able tradeoff of sparse superposition codes by improving the

adaptive successive decoder.

II. RESULTS

A. Iterative Decoding Statistics and their Distribution
In the process of estimating which terms were sent, the

decoder develops a sequence of estimates β̂k of the true

coefficient vector β, and corresponding fits Fk =Xβ̂k of the

codeword Xβ. Let J = {1,. . ., N} be the full set of indices.

The initial estimate uses stat0,j = Z0,j = XT
j Y/‖Y ‖ and

later estimates use similar inner products with residuals of fits

in place of Y . The distribution of stat0,j is approximately

a standard normal shifted by βj

√
n/(σ2 + P ). The σ2 + P

in the denominator is from the variance of the coordinates
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of Y . The idea of the steps is to use residuals of successive

fits to gradually reduce it to σ2. This increases the amount

by which the distribution is shifted, thereby improving the

distinguishability of the true terms from the others.
Define the shift factor α� =

√
P� n/(σ2+D). The shift in

section � takes the form α� 1{j=j�}. Initially D0 = P . For

subsequent steps, the role of D is played by ‖β̂k − β‖2 or its

expected value Dk = E‖β̂k − β‖2, which quantifies for the

statistics we develop the level of remaining interference in the

residuals due to inaccuracy of β̂k. The associated shift factor

is α�,k =
√

P� n/(σ2+Dk).
Let β̂k be any estimate constructed from statistics statk−1 =

(statk−1,j , j∈J) computed on the previous step. For instance

statk−1,j could be the inner products of residuals with the

columns of X . Initialize G0 =Y . For k≥1, let Fk =Xβ̂k and

let Gk be the part of the Fk orthogonal to G0, G1, . . . , Gk−1.

Assume the current fit Xβ̂k is not in the linear span of the

previous fits, so ‖Gk‖> 0. Let Zk,j = XT
j Gk/‖Gk‖ be the

normalized inner product of Xj and Gk.
The Zk = (Zk,j , j∈J) and ‖Gk‖ are used to update statk

and then β̂k+1. Require that statk and β̂k+1 be functions of

Fk = (Z0, ‖G0‖, . . . ,Zk, ‖Gk‖). Our first lemma provides

the conditional distribution of Zk and ‖Gk‖ given Fk−1. For

k = 0 there is no conditioning Fk−1.
For analysis purposes, let βe,β̂1,e,. . .,β̂k,e be the vectors

in RN+1 obtained by appending an extra coordinate to the

vectors β, β̂1, . . . , β̂k in RN . The value of the extra coordinate

for βe is σ and for the β̂1,e, . . . , β̂k,e it is 0. The subscript e
denotes that the vectors are thus extended.

Likewise Xe denotes an extended dictionary with an ad-

ditional column ε/σ. Armed with this extension we have

opportunity to use a standard linear model trick representing

Y = Xeβe. Then the G0, G1, . . . , Gk−1 are the successive

orthogonal components of Xeβe, Xeβ̂1,e, . . . , Xeβ̂k−1,e.
Parallel to the development of these vectors G in Rn,

let b0,e, b1,e, . . . , bk,e be defined as the vectors in RN+1

of successive orthonormalization of βe, β̂1,e, . . . , β̂k,e and let

b0,b1, . . . , bk, respectively, be the vectors formed from the

corresponding upper N coordinates.
Let Σk,e = I − (b0,eb

T
0,e + b1,eb

T
1,e + . . . + bk,eb

T
k,e) be

the R(N+1)×(N+1) matrix of projection onto the linear space

orthogonal to βe, β̂1,e, . . . , β̂k,e. The upper left N×N portion

of this matrix denoted Σk is the conditional covariance matrix

below. The suggestion to interpret Σk as a portion of a

projection matrix was made by our colleague Antony Joseph,

who credits [4],[5] for some analogous thinking.
Also let Projk be the matrix of projection onto the span

of the estimates β̂1, . . . , β̂k, and likewise Projk,e in which

0 is appended to each of these estimates. Σk,e differs from

I − Projk,e by accounting for orthogonality to βe.
Lemma 1, proved in the appendix, generalizes conclusions

from [3], [2] to handle the present generality.
Lemma 1: For k ≥ 0, the conditional distribution PZk|Fk−1

of Zk given Fk−1 is determined by the representation

Zk,j = bk,j
‖Gk‖
σk

+ Zk,j ,

where Zk = (Zk,j : j ∈ J) has conditional distribution

Normal(0, Σk). Here σ2
0 = σ2 + P and for k ≥ 1 it is

σ2
k = β̂T

k Σk−1β̂k. Moreover, ‖Gk‖2/σ2
k is distributed as a X 2

n−k

random variable independent of the Zk and the past Fk−1.

Related to the distribution PZk|Fk−1 is the distribution

QZk|Fk−1 which makes the Zk be Normal(0, I − Projk).
The density ratio between PZk|Fk−1 and QZk|Fk−1 on RN

is uniformly bounded by the constant
√

1 + snr.

The Chi-square random variable divided by n is close to the

constant 1, except in events of exponentially small probability,

as long as the number of steps k is small compared to n. Thus

Zk is approximately
√

n bk + Zk, a normal shifted by
√

n bk.

The distribution is further cleaned by addition of an indepen-

dent normal of covariance Projk. This makes the cleaned Zk

be distributed N(0, I) with respect to Q. Moreover, as in [2],

the boundedness of the density ratio permits replacement of

the distribution P with the simplified distribution that arises

from Q, when determining events that have exponentially

small probability. Henceforth for this summary we presume

the cleaned shifted standard normal distribution for the Zk.

Consider Zcomb
k =

√
λk,0Z0 −

∑k
k′=1

√
λk,k′ Zk′ , where

the vector λk = (λk,k′ : 0 ≤ k′ ≤ k) satisfies
∑k

k′=0 λk,k′ =
1. These can be interpreted as shifts of the standard normals

Zcomb
k =

√
λk,0 Z0 −

∑k
k′=1

√
λk,k′ Zk′ , where the shift

arises from combinations of the
√

nbk′ . The task is to choose

the coefficients of combination to produce a statk with total

shift of the desired form.

Motivation comes from the statistics (Y − Xβ̂k,−j)T Xj ,

or scalings thereof, where β̂k,−j is the vector β̂k with the

contribution from the current j removed. It takes the form

(Y −Xβ̂k)T Xj + ‖Xj‖2β̂k,j . We also find motivation from

development of approximate Bayes optimality properties. The

statk take the following form, for some choice of vector λk

and some ck typically between σ2 and σ2 + P ,

statk = Zcomb
k +

√
n√
ck

β̂k

The combination should be such that these statistics have the

representation Zcomb
k +

√
n√
ck

β, with the desired shift
√

n√
ck

β.

Here are three related examples of such statistics. Idealized

case [B] has the desired form and case [C] approximately

so. Case [A] is similar, but has additional randomness from

weights based on ZT
k′ β̂k/

√
n rather than bT

k′ β̂k.

[A] Based on residuals: Let

statk =
XT (Y −Xβ̂k)√

n ck
+
√

n√
ck

β̂k,

with nck = ‖Y −Xβ̂k‖2, from λk proportional to(
(‖Y ‖ − ZT

0 β̂k)2, (ZT
1 β̂k)2, . . . , (ZT

k β̂k)2
)

.

[B] Idealized: Based on coefficients of orthogonal compo-

nents of the β̂k, with λk proportional to(
(σY − bT

0 β̂k)2, (bT
1 β̂k)2, . . . , (bT

k β̂k)2
)

and ck = σ2 + ‖β − β̂k‖2, producing the relationship
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statk = Zcomb
k +

√
n√
ck

β

for which, in each section �, the shift factor is of the

desired form α� with Dk = ‖β−β̂k‖2. It suffers from de-

pendence of the weights of combination on the unknown

β. The bT
k′ β̂k depend on βT β̂k′ , for k′ = 1, 2, . . . , k.

[C] Simplified: As in [B] but with each occurrence of βT β̂k′

replaced by its known expected value.

The βT β̂k is close to its expected value, indeed, within any

specified small positive η, except in an event of probability

exponentially small in Lη2. This is a consequence of Hoeffd-

ing’s inequality, interpreting βT β̂k as an average of L bounded

independent random variables. Likewise, the ‖β̂k − β‖2 is

close to its expectation, permitting the approximation to its

distribution as a shifted normal using Dk = E‖β̂k − β‖2 in

defining the shift factor α�,k as before.

B. Iteratively Optimal Coefficient Estimates
Consider the choice of the updated coefficient estimates

β̂k+1 as a function of statk. We arrange these to be the

Bayes optimal posterior mean of β given statk, as derived

here. Use the approximating distribution that the statk,j are

independent Normal
(
α�1{j=j�}, 1

)
, for j in any section �,

where α� = α�,k. Let φ(s) be the standard normal density

and note that φ(s − μ)/φ(s) is proportional to eμs. With the

term j� chosen according to a uniform distribution over the

M choices in section �, the posterior distribution of j� is

Prob{j� = j|statk} = wk,j = eα�statk,j /
∑

j∈sec�

eα�statk,j .

Restricted to section �, the βj =
√

P�1j�=j . Accordingly,

the posterior mean of βj provides the Bayes estimator,

E[βj |statk] =
∑

j�∈sec�
wk,j�

√
P�1{j=j�} which reduces to

β̂k+1,j =
√

P� wk,j .

This is the estimate appropriate to use each step.

At the final step, in each section, the decoded term ĵ� may

be taken to be the one the highest posterior weight wk,j . The

posterior probability of success in a section is the posterior

weight of the true term wk,j�
.

C. Relating Squared Error and Expected Posterior Success
The quantity β̂T

k+1β/P can be interpreted as a posterior suc-

cess rate
∑L

�=1(P�/P ) wk,j�
, with a power-weighted average

across the sections.

Lemma 2: The posterior success rate has the same ex-

pectation as the squared norm ‖β̂k+1‖2/P . Consequently,

the posterior error rate
∑L

�=1 P� (1 − wk,j�
) has the same

expectation as the squared distance ‖β̂k+1 − β‖2.

The proof of Lemma 2 is in the appendix.

D. Update Function and its Analysis
Analysis of the progression of the adaptive successive

decoder is considerably simplified if one finds a recursively

updated measure of success. The progress may be tracked

using either the expected squared distance Dk = E‖β̂k − β‖2
or the expected posterior success rate which we will denote xk.
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Fig. 1. Plot of g(x) and the sequence xk . It is computed for a grid of fifteen
x values by Monte Carlo simulation with replicate size 500.

The above results show that these two quantities are related

by Dk = (1− xk)P permitting their recursion as follows.

Consider, for any realization j1, j2, . . . , jL, the next step ex-

pected posterior success rate xk+1 =
∑L

�=1(P�/P ) E[wk,j�
].

This expected value is the same no matter which j1, j2, . . . , jL

was chosen, so assume here that the first term in each section

was sent. Accordingly, at α� = α�,k,

xk+1 = g(xk) =
L∑

�=1

(P�/P ) E

[
eα2

�+α�Z1

eα2
�+α�Z1 +

∑M
j=2 eα�Zj

]
,

where Z1, Z2, . . . , ZM are independent N(0, 1). What makes

this a recursive characterization of progress is that α�,k is a

function of the preceding xk via its relationship to the expected

squared distance. Indeed, α�,k = α�(xk) where α�(x) is√
P� n/(σ2 + (1− x)P ). Thus our update function is

g(x) =
L∑

�=1

(P�/P ) E [w1(α�(x))]

where w1(α) = (eα2+αZ1)/
[
eα2+αZ1 +

∑M
j=2 eαZj

]
. We ini-

tiate investigation of this g(x) and compare it to the corre-

sponding update function that arose from the {0, 1} valued

weights of the thresholding method. As in [1], [2], [3], it

is given by g{0,1}(x) =
∑L

�=1(P�/P )Φ(α�(x) − τa), where

τa =
√

2 log M + a is the threshold. In that scheme a > 0 is

needed to avoid false alarms.

For the algorithm to update properly, we need xk+1 > xk

where xk+1 = g(xk). Thus it is desired to have g(x) stay

above x (the 45 degree line). In [1], [2], [3], it is confirmed

that, for any fixed rate below the capacity, g{0,1}(x) stays

above x in an interval [0, x∗], where x∗ is near 1, though the

gap from 1 was of order 1/ log M . We evaluate g(x) to study

the performance of the soft decision decoder and to compare

it with the {0, 1} valued decoder. Of interest is whether the

crossing point x∗ is moved substantially closer to 1.

Fig. 1 shows our update function with rates at two different

fractions of capacity. Observe that, in both cases, the update

function is above x on the most of the interval [0, 1]. The step

function in the gap in Fig. 1 shows progression of the steps.

The gap between g(x) and x affects the number of steps to

arrive at a success rate near x∗. [Dan Spielman has suggested

there is similarity of our use of the function g(x), which is for

adaptive successive decoding of sparse superposition codes,

with the EXIT charts of [7], used in the study of iterative

decoders of turbo codes.]
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Fig. 2. Comparison of update functions. Red line refers to the g(x) which is
calculated by Monte Carlo simulation and the green line refers to a theoretical
lower bound of g(x). Blue and light blue lines indicates {0, 1} decision using
the threshold

√
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used Monte Carlo simulation with replicate size 10000. The horizontal axis
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of �. The vertical axis gives g�(x). This representation allows the area under
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vertical bar is x. One can see if g(x) is above x by comparing the two areas.

A simplified lower-bound on g(x) is obtained via Jensen’s

inequality by replacing the
∑M

j=2 eαZj in the denominator

above by its expectation (M−1)eα2/2.

Fig. 2 evaluates different update functions. The highest is

g(x) of the new procedure. It is much higher than g{0,1}(x)
at realistic thresholds (e.g. a = 1/2) and yet still higher than

g{0,1}(x) with the unrealistic idealized threshold a=0. In the

realistic case (a=1/2) the g{0,1}(x) fails to allow rates at 80%

of capacity (for M =29 and snr=7) because its curve drops

below x at a value far from 1. In [1], [2] good performance at

reasonable rates required a much larger section size, such as

M = 216. In contrast, the new decoder is successful at 80%

of capacity with the smaller section size.

The value δ = 1−x∗ bounds the likely fraction of mistakes

of the final step of the decoder. It controls the closeness to 1

of the rate of an outer Reed-Solomon code that corrects the

remain errors (as described in [1], [2]). Our goal in further

research is to establish whether the order of the error 1− x∗

is superior to the order 1/ log M established in [2], [3].

Fig. 3 considers the success rate g�(x) = E[wj�
(α�(x))] as

a function of the section index �. It shows an increasing wave

of closeness to 1 as x increases.

After a suitable number of steps, the decoder will succeed

if the weights wk,j�
are large enough. It is recommended on

the final step to decode the sections for which the maximal

wk,j is at least 1/2. In contrast, when maxj∈sec�
wk,j < 1/2,

the posterior probability of error is more likely than not. In

that case it is recommended to leave the section undecoded as

an erasure to be corrected by the outer R.S code.

APPENDIX

Proof of Lemma 1: Consider the representation of the collec-

tion of vectors Xj , for 1≤j≤N , augmented by one additional

vector XN+1 = ε/σ. The Zk′,j = XT
j Gk′/‖Gk′‖ for k′ < k

are the coefficients of the representation of Xj in the span

of the orthonormal G0/‖G0‖, . . . , Gk−1/‖Gk−1‖, with an or-

thogonal residual vector Vk,j , for j in Je = {1, . . . , N, N+1}.
Collecting these into a matrix decomposition, it takes the form

X =
G0

‖G0‖Z
T
0 +

G1

‖G1‖Z
T
1 + . . . +

Gk−1

‖Gk−1‖Z
T
k−1 + Vk,

where the vectors Zk′ = (Zk′,j : j ∈ J) extend to Zk′,e =
(Zk′,j : j ∈ Je) when representing Xe.

Using these G0, G1, . . . , Gk−1 and the columns of the iden-

tity, Gram-Schmidt fills out a basis of Rn with n orthornormal

vectors ξk,0, ξk,1, . . . , ξk,n−1, in which the residuals Vk,j have

representation
∑n−1

i=k Vk,j,iξk,i, using the last n − k of these

orthonormal vectors, with Vk,j,i = V T
k,jξk,i.

With the columns of Xe assumed to be independent

standard normal vectors, we solve for the evolution of the

conditional distributions of the Zk,e and ‖Gk‖, using the

above representation. The conditional distribution of the Zk,e

and ‖Gk‖ given Fk−1,e = (Z0,e, ‖G0‖, . . . ,Zk−1,e, ‖Gk−1‖)
has X 2

n−k = ‖Gk‖2/σ2
k distributed chi-square(n− k) and

Zk,e = bk,eXn−k +Zk,e with Zk,e distributed N(0, Σk,e). The

conclusion of the lemma then follows from noting for the Zk

that the conditional distribution given Fk−1,e only depends on

Fk−1, under the assumption that successively the estimates β̂k

are computed only from the information Fk−1 available to the

decoder (without knowledge of the noise).

Moreover, it is claimed that conditionally given Fk−1,e, the

coordinates Vk,j,i of the vectors Vk,j in the basis ξk,i, for

i = k, k + 1, . . . , n − 1, are conditionally mean-zero Normal

random variables, independent across i, and jointly across j ∈
Je, having covariance Σk−1,e [where for k = 0 the Σk−1,e is

replaced by the identity matrix].

The number of columns is arbitrary. Henceforth in the proof

there is no need to make a distinction between the cases with

and without the extension, so drop the subscript e.

Prove this claim inductively on k ≥ 0. Initially, V0,j = Xj

and the normality of the Xj provides for the validity of the

distributional claim for Vk,j for k = 0. For the induction,

assume the claim to be true at step k and derive from it that it

is true at the next step k + 1. Along the way, the conditional

distribution properties of the ‖Gk‖ and Zk in the lemma are

established as consequences.

Concerning Gk, note ‖G0‖2/σ2
0 is X 2

n distributed. For

k ≥ 1, the Gk as the part of Xβ̂k orthogonal to the previous

parts G0, . . . , Gk−1 is equal to Gk = Vkβ̂k =
∑

j β̂k,jVk,j

since Vk is the part of X with columns orthogonal to the

previous parts. Representing Gk in the basis ξk,0, . . . , ξk,n−1

it has coordinates Gk,i equal to 0 for 0 ≤ i ≤ k − 1 and

equal to
∑

j Vk,j,iβ̂k,j for k ≤ i ≤ n− 1. From the induction

hypothesis, these (Vk,j,i : j ∈ J) have conditional distribution

Normal(0, Σk−1). Accordingly, these Gk,i are independent
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Normal(0, σ2
k) where σ2

k = β̂T
k Σk−1β̂k, from which it follows

that ‖Gk‖2/σ2
k is X 2

n−k distributed, independent of Fk−1.

Next, for each j, seek bk,j as a regression coefficient based

on the joint distribution of the Vk,j and Gk (given Fk−1) to

obtain the representation of the vectors

Vk,j = bk,j
Gk

σk
+ Uk,j .

This is done in the basis ξk,k, . . . , ξk,n−1 where the co-

ordinates Vk,j,i and Gk,i are jointly normal (where across

i = k,. . ., n−1 they are independent and identically distributed,

conditionally given Fk−1, so they share the same regression

coefficient bk,j). The coordinates of Uk,j,i are conditionally

normal random variables, independent of the Gk,i, and in-

dependent for k ≤ i ≤ n− 1. For k = 0 the coefficient

bk,j = E[Vk,j,iGk,i/σk] simplifies to E[Xj,iYi/σY ] = βj/σY .

For k ≥ 1 the bk,j = E[Vk,j,iGk,i/σk] may be expressed as

E[Vk,j,i

∑
j′ Vk,j′,iβ̂j′ ] where the expectation is with respect

to the Normal(0, Σk−1) distribution for the (Vk,j,i : j ∈ J).
Accordingly, summarize the solution for these coefficients as

the vector bk = Σk−1β̂k/σk.

As for the parameters of the distribution of the (Uk,j,i :
j ∈ J), use the identity Uk,j,i = Vk,j,i − bk,jGk,i/σk and

the conditional distribution of the V and G coordinates to

conclude that it has mean 0 and conditional variance Σk−1 −
bkbT

k , in agreement with Σk.

Note that Zk,j = XT
j Gk/‖Gk‖ reduces to V T

k,jGk/‖Gk‖,
which by the above representation of Vk,j takes the form

Zk,j = bk,j
‖Gk‖
σk

+
UT

k,jGk

‖Gk‖ .

The latter term is what we call Zk,j . The inner product is

preserved by switching to the basis ξk,0, . . . , ξk,n−1. Thus

Zk,j =
∑n−1

i=0 αiUk,j,i, with αi = Gk,i/‖Gk‖, which is

0 for 0 ≤ i ≤ k − 1. The sum of squares of the αi is

equal to 1. Proceed conditionally on Fk−1. For any fixed α
with sum of squares equal to 1, the

∑n−1
i=k αiUk,j,i shares

the N(0, Σk) distribution, as a result of the independence

across i. Accordingly, with αi = Gk,i/‖Gk‖, the conditional

distribution of Zk given Gk is as indicated, and it does not

depend on Gk, so the Zk and Gk are independent given Fk−1.

Use Gk to update the orthonormal basis of R
n

by Gram-Schmidt, replacing ξk,k, ξk,k+1, . . . , ξk,n−1 with

Gk/‖Gk‖, ξk+1,k+1 , . . . , ξk+1,n−1.

The coefficients of Uk,j in this updated basis are

UT
k,jGk/‖Gk‖, UT

k,jξk+1,k+1, . . . , U
T
k,jξk+1,n−1, which are

denoted Uk+1,j,k = Zk,j and Uk+1,j,k+1, . . . , Uk+1,j,n−1,

respectively. Recalling the conditional distribution of the Uk,j ,

these coefficients (Uk+1,j,i : k ≤ i ≤ n−1, j ∈ J) are also

normally distributed, conditional on Fk−1 and Gk, indepen-

dent across i from k to n − 1; moreover, for each i from

k to n − 1, the (Uk+1,j,i : j ∈ J) inherit a joint N(0, Σk)
conditional distribution from the conditional distribution that

the (Uk,j,i : j ∈ J) have.

Specializing the conclusion, separating off the i = k case

where the Uk+1,j,i is Zk,j , the remaining (Uk+1,j,i : k+1≤

i≤ n, j ∈ J) have the specified conditional distribution and

are conditionally independent of Gk and Zk given Fk−1. It

follows that the conditional distribution of (Uk+1,j,i : k+1 ≤
i ≤ n−1, j ∈ J) given Fk = (Fk−1, ‖Gk‖, Zk) is identified.

Likewise, the vector Vk,j = bk,j Gk/σk + Uk,j has repre-

sentation in this updated basis with coefficient Zk,j in place of

Zk,j and with Vk+1,j,i = Uk+1,j,i for i from k+1 to n−1. So

these coefficients (Vk+1,j,i : j ∈ J) have the normal N(0, Σk)
distribution for each i, independently across i from k+1 to

n, conditionally given Fk. Thus the induction is established,

which completes the proof of Lemma 1.

Proof of Lemma 2: The random variables in question are

sums across the sections. We show equality of the expectations

in each section. Fix a section � and a step k and let stat =
(statk,j : j ∈ sec�) be the relevant part of the statistics, with

index set sec� regarded as {1, 2, . . . , M}.
The random variables in question have the same expected

value no matter which terms j� was sent. Accordingly, the

expectation taken conditionally on any particular realization

j� match what is obtained if alternatively one averages with

respect to the uniform prior on j�. Let Pj = Pstat|j�=j be the

conditional distributions and P = (1/M)
∑M

j=1 Pstat|j�=j be

the marginal distribution of stat in section �, and likewise let

Ej and E, respectively, denote corresponding expectations of

functions of stat. Now wj = wk,j is the posterior probability

P [j� = j|stat]. Show that wj�
and ‖w‖2 =

∑M
j=1 w2

j have

the same expectation.
The Pj and P have likelihood ratio Mwj . Set j = 1. Calcu-

late the expectation E1[w1] using the measure P rather than P1

by incorporating the factor Mw1. Thus E1[w1] = ME[w2
1]. By

symmetry, E[w2
j ] is same across all j and so ME[w2

1] equals

E[
∑M

j=1 w2
j ] = E[‖w‖2] which is (1/M)

∑M
j=1 Ej [‖w‖2].

Each term in this sum is the same so it is E1[‖w‖2] as claimed.

This completes the proof of Lemma 2.
Space does not permit full listing and discussion of the

relationship of sparse superposition codes to past work in

information theory, compressive sensing, and coding. For such

the reader is invited to see the discussion and reference lists

in [1], [2], [3], [6].
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