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Abstract

The chain rule of information theory establishes monotonicity of information con-
vergence and demonstrates that log densities form Cauchy sequences, convergent in L1,
proving information limits, Markov chain convergence to stationarity, and existence of
information projections for convex sets of functions.

1 SUMMARY

Information Theory illuminates limit theorems of Probability. In this presentation we give
a strengthened Markov Chain convergence theorem and show how it is a consequence of
an information-theoretic analysis of sequences of information divergence. Similar analysis
provides results for martingale convergence and for information projection.

Recall that for a pair of probability measures P and @ with densities p and ¢ (with re-
spect to a dominating measure) the information divergence is D(P||Q) = Ep log p(X)/q(X).
In like manner we define A(P||Q) = Ep|logp(X)/q(X)|, which is the expected absolute-
value of the log-density ratio and V (P, Q) = [ |p—¢| which is the variation distance between
P and Q. We use a Pinsker-type inequality (Barron 1985), A < D + /2D, deduced from
V < V2D. Thus, for a sequence of probability measures, if the divergence D tends to zero,
then so does A, that is, the log-densities converge in L.



In our examination of information limits, Markov chains, martingales, and existence of
information projections we use one proof technique. The chain rule of information the-
ory is used to deduce monotonicity of sequences of information divergence, to identify the
difference sequence as a related information divergence, to deduce that the difference se-
quence tends to zero, and whence, using the Pinsker-type inequality, to deduce that certain
log-densities form convergent Cauchy sequences in Lj, thereby ensuring the desired limit.

2 Markov Chains

Let X1, X5, ... be a Markov chain with stationary transitions, let P,, denote the distribution
after n steps, and suppose the chain has a unique stationary probability distribution P*.
Information theory in an analysis of the convergence of P, to to P* first arose in the
work of Renyi (1960) and Kendall (1994). A key property is the decrease of the information
divergence D(P,||P*) as n increases (cf. Cover and Thomas 1990). Of particular note is the
work of Fritz (1971) who used information inequalities to show (among other things) that, in
a general state space setting, if the Markov chain is reversible, then finiteness of the sequence
D(P,||P*), implies total variation convergence of P, to P*. [Reversibility means that if the
chain were started with the stationary probability distribution then the joint distribution of
X1, X5 is the same as if the order were reversed.] Here I obtain the following strengthened
Markov chain convergence result showing that the sequence D(P,||P*) converges to zero.

Theorem: If {X,} is a reversible Markov chain with a unique stationary probability
distribution P*, then

lim D(P,||P*) =0

if and only if the sequence D(P,||P*) is (eventually) finite.

Let D,, = D(P,||P*). The heart of the proof is as follows, for n > m the chain rule
identifies the difference D,, - D,, as a divergence (between conditional distributions for
X, given X,,), which is nonnegative, establishing the monotonicity and convergence of the
sequence {D,}, so that by the Cauchy sequence property D,, - D, tends to zero as n
and m tend to infinity, and thus establishing, in light of the Pinsker-type inequality, that
Apm = Ellogpm(Xm)/p*(Xm) — logpn(X,)/p*(X,)| tends to zero as n and m tends to
infinity, so that log p,(X,)/p*(X,) is a Cauchy sequence in L; and hence convergent in L;
(and in probability). By Fritz, for a reversible chain, we know that p*(X,,)/pn(X,,) converges
to one in probability. Thus log p,(X,)/p*(X,) which we have shown to be convergent in
L must have limit zero. Thus, lim D(P,||P*) = 0.



3 Decreasing Information

Let P and @ be two probability measures on a measurable space and let F,, be a decreasing
sequence of sigma-fields with limit (intersection) denoted Fo,. Let P, and @, respec-
tively, denote the restrictions of P and @) to F,,, and similarly let P, and (o, denote the
restrictions to Fio-

Theorem Limit of decreasing information: If the sequence D(P,||Q,) is eventually finite,
then

lim D(P,]|Qn) = D(Pool|Qc0)-

The idea of the proof is the same. Let D, = D(P,||Q,). For simplicity, suppose
D(P||Q) is finite. Let p, denote the probability density of P, with respect to @,. For
n > m we have the chain rule identity D,, — D, = [ pm 10g prm/pnd@Q which establishes the
monotonicity, convergence, and, thereby, the Cauchy sequence properties of {D,,}, so that,
via the Pinsker-type inequalities, both [ |p,, — pp|dQ and Ay, ,, = E|log py, — log py| tend
to zero as n and m tends to infinity. That is, p, is a Cauchy sequence in L1 (Q) and log p,
is a Cauchy sequence in L;(P). Hence p, is convergent in L;(Q) (we denote the limit as
Pso) and log py, is convegent in Li(P) with limit log ps. Finally, considering sets A in Fu,
they are in F,, for all n, and hence for such sets we have P(A) = [, p,d@ for all n, and
thus in view of the L;(Q) convergence P(A) = [, pood@ for A in F, that is, the limit
Po 18 identified as the density of the restrictions of P and @ to F. Then from the L;(P)
convergence of log p,, we deduce that lim D(P,||Qn) = D(Px]||Qx) as claimed.

We remark that the Markov Chain convergence theorem is a consequence of this limit
theorem for decreasing information. Indeed, let F,, be the o-field generated by X,,, Xp41,. . .,
let P be the distribution for the given random process {Xi,X»,...}, and let@Q be the
corresponding distribution in which the process is stationary. These processes share the
same conditional distributions for subsequent outcomes given X,,, so the divergence between
the processes restricted to F,,, addressed in the limit theorem for decreasing information, is
the same as the divergence between the distributions of just X,,, addressed in the Markov
Chain convergence theorem.

4 Increasing Information

One may also look at the case of an increasing sequence of sigma-fields F,, generating a limit
sigma-field F on which we have probability measures P and Q). Again let P,, (),, denote the
restrictions to F,. One may ask for the limit of D(P,||Qy). Identification of the limit as
D(P||Q) is fundamental to information theory. This is a classical result by Kolmogorov and
his colleagues, see Dobrushin (1959,1960) and Pinsker (1960) (who applies it to demonstrate
the connection between information divergence and certain limits of discrete divergences and



to identify information rates for Gaussian processes) and various proofs are also in the work
by Perez (1957), Moy (1961), and Barron (1985), who apply it to the identification of the
conditional entropy limit in the asymptotic equipartition property. All of these appeal to
martingale convergence theorems to obtain the conclusion.

Theorem Limit of increasing information:

lim D(P,||Qn) = D(P||Q)

Here we see that the conclusion follows more directly from the chain rule, without need
to appeal to a martingale convergence theorem or domination inequalities. The proof is
in essence the same as given above for the decreasing information case, with only slight
modification. First note that by the chain rule D, is increasing and never greater than
D(P||Q), so the conclusion is immediate if the sequence D,, is unbounded. If D, is a
bounded sequence, then since by monotonicity it is convergent, it is a Cauchy sequence
so that D,, — D,, tends to zero. The chain rule shows that this difference is equal to the
divergence [ p,logpn/pmdQ@ so by the Pinsker-type inequalities one obtains convergence
of p, in L1(Q) and logp, in Li(P). Let ps denote the L;(Q) limit of the p,. Then for
sets A in the union of the F,, one has P(A) = lim [, pp,dQ = [, pdQ. Thus P(A) and
J4 pd@ agree on a generating collection of sets and hence are the same measures. Thus
P << @ with density p and it follows that the Lqi(P) limit of log p, is log p. Consequently,

Martingale convergence is a consequence of the information-theoretic analysis. If Y, is a
nonnegative martingale with respect to a measure @, then letting p,, = Y,,/EY,, one obtains
a probability density function for which if [ p, log p,d@ is a bounded sequence, one finds
that p, converges in L;(Q), leading to a measure P with density p, with respect to @ and
log p,, converges in Li(P). Truncation techniques permit analogous martingale converges
results more generally for uniformly integrable martingales.

This proof of the increasing information limit, together with a demonstration of conse-
quences for martingale convergence, was presented by the author at the 1990 Information
Theory Symposium. The application of this technique to identify the information limit of
Markov chains and the limit of decreasing information is new.

5 Information Projection

It may come as a surprise that questions of information projection are fundamentally of the
same sort as discussed above.

Let C be a convex set of probability density functions ¢(z) and let p(X) be a given
density, possibly outside of p. Loosely stated, the problem is one of minimizing either



D(q||p) or D(pl||q) over choices of g in C. However, the issue arises that the class C' might
not admit a solution in C' and one needs to understand the nature and existence of a limit
q" obtained by taking a sequence of ¢, approaching the infimum of the divergence over
choices of ¢ in C. Let D(C||p) and D(p||C) denote the infimum of D(q||p) and of D(pl|q),
respectively, over choices of ¢ in C.

The D(C||p) case is thoroughly studied in Csiszar (1975,1984) and Topsoe (1979). Sup-
pose that D(C||p) is finite. A unique information projection Q* with density ¢* exists
(though not necessarily in C') characterized by the property that for any sequence ¢, in C
with D(qn||p) — D(C||p) we have D(q,||g*) — 0 (thus ¢* is also called the center of attrac-
tion of the convex set relative to p — Csiszar (1984) calls it a generalized information projec-
tion). It is also characterized by a Pythagorean-like inequality D(q||p) > D(q||¢*)+D(C||p).
The proof of existence of ¢* is based on a decomposition of the increment in divergence
D(gqy||p) with increasing n together with a resulting demonstration of a Cauchy sequence
property for the densities yielding the existence of the limit with the desired properties.

Distributions in C' with divergence from p close to the infimum must be close to ¢*. It
is this property that leads in Csiszar (1984) to the conditional limit theorem, that is, the
conclusion that the distribution @,, of i.i.d. random variables, conditioned on the event
that the empirical distribution is in the convex set C, must converge to Q* in the sense that
D(QullQ) — 0.

An interesting paradox of the theory is that though Q* is a limit of members of the
family @,, in information divergence (and hence in total variation), one cannot overcome
the difficulty of Q* outside of C simply by replacing C by its closure C. Indeed, as Csiszar
(1984) shows the distances D(C||P) and D(C||P) can be dramatically different.

Here we study information projection with the reversed order of arguments D(p||C).

Let C be a convex set of nonnegative functions ¢(z) of a random variable X (for
some applications it is not relevant whether the functions ¢ integrate to one). The prob-
lem is one of maximizing Flogq(X) over choices of ¢ in C (or, equivalently, minimizing
Elogp(X)/q(X)). The problem might not admit a solution in C' and one needs to un-
derstand the nature and existence of a limit ¢* obtained by taking a sequence of ¢, with
Elog g, (X) approaching the supremum of E logg(X) over choices of ¢ in C.

Examples to think of here are convex families of probability densities (e.g. all finite
mixtures of Gaussian densities) for which minimization of D(p||q) is of interest. For example,
this minimization is the theoretical counterpart of maximum likelihood estimation and, as
such, it arises in analysis of the M.L.E. In such cases the interest is to know what will be
the limit of such estimates when the true density p is not in the convex family. This is the
tactic taken in the thesis of Jonathan Li (1999) and the study of information projection
given here is joint with him.

The work of Bell and Cover (1980,1988) shows that maximization of Elogg(X) by a
function g* residing in C' is equivalent to Eg(X)/g*(X) < 1 for all g in C. They give



applications to growth rate optimal portfolio selection for convex combinations of a given
set of stocks, where compactness of the simplex of portfolio vectors ensures that a maximizer
exists. Later Algoet and Cover (1986) apply it to the asymptotic equipartition property
and a counterpart A.E.P. for wealth sequences in portfolio selection). Kieffer (1999) takes
the theory a step further. He presumes that the class of functions log g(X) is Ly closed
and uses a chain rule and Cauchy sequence argument to derive the existence of such a
maximizer ¢* in C' building on the work of Bell and Cover, and he gives application to
various extensions of ergodic theorems (including Kingman’s subadditive ergodic theorem
and asymptotic equipartition properties).

For general convex sets C of densities ¢ we see that a information projection ¢* exists
(possibly outside of C') satisfying a Pythagorean-like identity as well as the Cover-Bell
inequality. A function ¢* is called the information projection if for every ¢, with D(p||q,) —
D(p||C) we have log g, — log ¢* in Li(p).

Theorem: Let C' be a convex set of probability densities and suppose D(p||C) is finite.
Then the information projection ¢* exists, is unique, and satisfies the following properties.
First, D(p||¢*) = D(p||C); second, ¢ = Eq(X)/q*(X) <1 for all ¢ € C; and third, for each
¢ in C, defining a probability density r = (pq/q*)/cy, we have a Pythagorean-like inequality
D(plla) > D(plla*) + D(pllr).

Here D(p||r) is a disguised distance between ¢* and ¢q. As we will see it provides an
upper bound for E|log ¢*(X) — log q(X)]|.

We will not give the whole proof here, focusing instead of the part that is in common
with the information limit results presented above.

Consider a sequence ¢, in C such that D(p||lg,) — D(p||C) and assume D(pl|gy) is
finite for each n. Take the first n of these ¢1,qo,...,q, and let C, be their convex hull,
parameterized by the n—simplex, on which the divergence is a continuous function of the
parameters of convex combination, so there is a minimizer ¢,, which by Bell and Cover
satisfies Eq(X)/¢n(X) <1 for ¢ in C),.

Thus we have that D,, = D(p||Gn) is a decreasing sequence converging to D(p||C) and
cmmn = Eqm(X)/@(X) <1 for all n > m. Now with rp, , = (PGm/qn)/Cmn, we find that
the difference D,,, — D,, equals D(p||ry,n) + log1/cp, n where both of these terms are non-
negative. So by the Cauchy sequence property for D,, we deduce that both D(p||ry, ) and
log 1/¢pm, n, converge to zero as n and m tend to infinity. Consequently, ¢, ,, — 1 and by the
Pinsker-type inequality we have that F|log p(X)/ry, »(X)| tends to zero, which means that
E|log Gim(X)/log ¢,(X)| tends to zero. Thus logg,(X) is a Cauchy sequence in L (p), we
denote its limit as log ¢*(X), or, more to the point, logp(X)/¢,(X) is a Cauchy sequence
with limit log p(X)/q*(X) and D(p||¢*) = lim D(pl|¢n) = D(p||C).

Now one may expand C to C* = {ag+ (1 —a)q* : ¢ € C,0 < a < 1} which is a convex
set in which one finds that D(p||C*) = D(p||C) and ¢; = E(q(X)/q*(X) <1 for all ¢ in C.



With r = (pg/q*)/c, have the identity

D(pllg) = D(pllg") = D(pllr) +log 1/c,,

so with ¢, < 1 we have the claimed Pythagorean-like inequality. Moreover, for any sequence
of ¢’s if D(p||q) approaches D(p||C), then both D(p||r) and log1/c, approach zero. Conse-
quently, ¢, approaches 1 and, by the Pinsker-type inequality, E|log ¢(X) —log ¢*(X)| tends
to zero. Thus ¢* is the unique information projection.

Further properties of the information projection ¢* are that if C is a family of probability
densities then ¢* integrates to not more than one and if also for some ¢y in C' the family of
functions ¢/qp is bounded, then ¢* integrates to one.

In the case that C is a convex hull of a family ® of densities satisfying the bounded
ratio property, the information projection is shown in Li (1999) (c.f. Li and Barron (1999))
to be reached in the limit by an iterative sequence of optimizations of densities of the form
gk = (1 — a)gg_1 + ad, with error D(p||qr) — D(p||C) approaching zero at rate 1/k.
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