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Information-Theoretic Asymptotics 
of Bayes Methods 

BERTRAND s. CLARKE AND ANDREW R. BARRON, MEMBER, IEEE 

Abstract -In the absence of knowledge of the true density function, 
Bayesian models take the joint density function for a sequence of n 
random variables to be an average of densities with respect to a prior. 
We examine the relative entropy distance D,, between the true density 
and the Bayesian density and show that the asymptotic distance is 
( d / 2 X l o g n ) +  c, where d is the dimension of the parameter vector. 
Therefore, the relative entropy rate D,,/n converges to zero at rate 
( logn) /n .  The constant c, which we explicitly identify, depends only on 
the prior density function and the Fisher information matrix evaluated 
at the true parameter value. Consequences are given for density estima- 
tion, universal data compression, composite hypothesis testing, and 
stock-market portfolio selection. 

1. INTRODUCTION 

HE RELATIVE entropy is a mathematical expres- T sion that admits several different interpretations in 
information theory and statistics. These include the re- 
dundancy in source coding problems, the risk in statistical 
estimation, and the error exponents in hypothesis testing, 
among others. The general form of the relative entropy is 
an expectation of the logarithm of a density ratio that 
assesses how different the two densities are. Here, we will 
examine a particular form of the relative entropy, which 
arises in a Bayesian setting; we have a parametric family 
of random variables, and the parameter vector is assigned 
a prior distribution. We then ask how closely the Bayesian 
distribution for the data, which is also called the mixture 
of the distributions, approximates a member of the family 
we take as being true. 

We characterize the asymptotic behavior of the relative 
entropy between the n-fold product of a given member of 
a parametrized family of distributions, say Pi:], and a 
mixture of products of such distributions, which we de- 
note by M,,. For smoothly parameterized families and for 
priors that assign positive mass to neighborhoods of Bo,  
we show that the relative entropy increases in proportion 
to the logarithm of the sample size plus a constant, which 
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we identify. We note that if the mixture excludes a 
neighborhood of the true density, then the behavior of 
the relative entropy is, asymptotically, of the order of the 
sample size; in addition, if the prior is discrete and assigns 
positive mass at e,, the relative entropy then asymptoti- 
cally tends to a constant. 

The relative entropy rate between the true distribution 
and the mixture of distributions has been examined by 
Barron [4]. It is shown that if the prior assigns positive 
mass to the relative entropy neighborhoods {e: D(Pe,,llPo) 
< E } ,  E > 0, then 

where D denotes the relative entropy. Thus, for large 
sample sizes, the Bayesian distribution M,, which we 
know, is not far from the true distribution Pi:,, which is 
unknown. In [5],  the condition on relative entropy neigh- 
borhoods is seen to be applicable even in some infinite 
dimensional settings. In the present paper, we use 
smoothness assumptions in the finite dimensional setting 
to assess the rate of convergence. To motivate the division 
by n in the relative entropy rate, note that for any two 
distinct product measures ( 1 / i l ) D ( P ~ ~ ~ l ~ P ~ ’ 1  = D(P,,,llP,,) 
remains fixed away from zero, which is in contrast to the 
behavior exhibited in (1.1). 

Formally, we consider a parametrized family of distri- 
butions {Po:  8 E 0)  on a measurable space with 0 c R“, 
and assume that X , ,  . . ., X,, are independent and identi- 
cally distributed random variables with respect to the 
distribution Po,,, where Bo is a point in the interior of 0. 
The probability measures Po are assumed to have proba- 
bility density functions p , ( x ) ,  with respect to a fixed 
sigma-finite measure A(&). We denote the outcomes of 
X, ,  by x,, and a sequence of n random variables is 
denoted A’” with outcomes x ” .  

Let w ( 0 )  be the prior density for 0 with respect to 
Lebesgue measure. The Bayesian marginal density func- 
tion for X ”  with respect to A” is the mixture of the 
conditional densities p”(x”(0) = n:‘-, p ( x , ( O )  obtained by 
integrating with respect to the prior, i.e., 

m,,( x ” )  = 1 w( O ) p ” (  x’ll0) de. ( 1.2) 
(-) 

We denote the mixture distribution itself by M,, and use 
the notations p J x )  and p ( x / O )  interchangeably. We omit 
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n as a superscript or superscript on the joint densities p” 
or m,, when the meaning is clear from the context, as it is 
in the expressions p(x”lI9) and r n ( x ” ) .  Note that although 
X ”  is a sample of n independent and identically dis- 
tributed random variables under P:, under M,,, they are, 
in general, no longer independent. 

The relative entropy, also called the Kullback-Leibler 
distance or informational divergence, is defined to be 

should be 

log ( ( 2 ~ )  -‘”* det (n l (  0(1 ) )”2 /  w( @(,)I. 
Pulling the factor n outside of the determinant, it is seen 
that the ( d / 2 ) l o g n  behavior is captured by this approxi- 
mation. 

The second term on the right side of (1.5) is the 
expected value of the n:gative of the log-likelihood ratio 
test statistic log p( X”lO)/p( X”lO,,), which by the theory 
of Wilks [59], Wald [56],  and Chernoff [15] is known to 
have the asymptotic distribution of one-half a chi-square 
random variable with d degrees of freedom under suit- 

respect to A (see [371). Except where specifically indicated that the expected value in the second term of (1.5) con- 
verges to - d / 2 .  Combining the two terms leads to the otherwise, we let log denote the natural logarithm. Equiv- 

alently, the relative entropy can be denoted by D ( p ( J q ) .  approximation We refer to D as a distance between probability densities 
even though it is not a metric. Similar measures of diver- 

for Probability ‘, Q having densities P ,  4 with able technical Thus, it is natural to conjecture 

1 d n 1  
-log- + -logdetl(O,)+log- 

gence have been proposed and studied (see Csiszhr [201); 2 277-e 2 w ( 0 , )  . 
however, for the applications discussed here, D is the 
appropriate one. The focus of our interest is the relative 
entropy between Pi:, and M,,: 

To rigorously show that this expression is a valid approxi- 
mation to D, requires, by the previous method, that 
additional conditions be imposed to ensure the consis- 

(1.3) 

We identify the asymptotic behavior of the relative 
entropy. Sufficient conditions are given such that 

d n 1  
D(P(l\\A4n) = -log- + -1ogdet Z(I9 , )  

2 2n-e 2 

1 + log- + o ( l )  (1.4) 
w(e,> 

where I(@,) is the Fisher information matrix. Therefore, 
the divergence of the Bayesian and frequentist distribu- 
tions is precisely characterized. Although D(P;,llMn) 
tends to infinity, the divergence pe r  sample 
(1/n)D(P(,1\Mn) tends to zero at rate O((log n>/n>.  

The form of the result (1.4) may be conjectured from 
the asymptotic normality of the posterior density. Indeed, 
we can motivate the result by writing the decomposition 

where ê  is the maximum-likelihood estimator, and exam- 
ining its terms. 

The first term on the right side of (1.5) is the dominant 
term. I t  is the expected logarithm of a quantity related to 
the posterior d5nsity fu?ction for I9 given X ”  evaluated at 
19, which 1s w(19)p(X”10)/rn(Xn).  With high probability, 
then postyior density can be well approximated by a 
N ( 0 ,  (nI(O>>- I )  density under suitable technical condi- 
tions (see Walker [%I, Le Cam [41], Bickel and Yahav 
[11], and Hartigan [25]). Since we want to approximate the 
expected value in (1.5) and not just show convergence in 
probability, new difficulties are introduced. Nevertheless, 
evaluation of the normal density suggests that the approx- 
imation to the first term on the right side of (1.5) 

tency of the maximum-likelihood estimator and to ensure 
that the limits can be taken in expectation as well as in 
probability. This can be done as in [19]. The method we 
give below is similar but avoids the use of the maximum- 
likelihood estimator to reduce the set of assumptions. 

We renprk that similar pointwise approximations to 
l o g p ( X “ ( O ) / m ( X ” )  are obtained by Leonard [43] as a 
consequence of theory in De Groot [23], by Tierney and 
Kadane [52],  [53] as an application of Laplace’s method of 
integration, by Rissanen [47] in the context of his stochas- 
tic complexity criterion, and by Schwarz [491 and Haughton 
[26] for parametric families of the general exponential 
or Koopman-Darmois form. An approximation to 
D(P;:,IIM,) of order (d/2)log I I  is obtained in the context 
of universal source coding by Krichevsky and Trofimov 
[36] for the special case of Dirichlet mixtures of finite 
alphabet distributions. Rissanen [46] shows that for 
smooth families { P o }  and for any distribution Q,, (not just 
those that are obtained as mixtures), D(P,”IIQ,,) cannot be 
of smaller order than (d/2)(1- o(1))log n except for 0 in 
a set of Lebesgue measure zero. 

A different interpretation of (1.1) in the context of 
information and ergodic theory comes from the work of 
Kieffer [34], [35], who shows that the relative entropy rate 
between two stationary processes lim(l/ n)D(Px,,llQx,q) 
exists when the second measure Q is independent identi- 
cally distributed (i.i.d.) or Markov, but by counterexam- 
ple, the limit need not exist for certain non-Markov Q. 
The measures M that we examine provide examples of 
non-Markov measures (in fact exchangeable measures) 
for which the relative entropy rate does exist. 

The proof of a key lemma in Section IV uses a tech- 
nique for approximating integrals first introduced by 
Laplace in 1774 (published in Laplace [39] and translated 
by Stigler [50]). In the case first considered by Laplace, 
the integral J p , ( x ” ) w ( 0 )  d0 was approximated where p H  is 
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the Bernoulli (0)  model and w(0) is the uniform prior on 
[O, I]. Laplace’s approximation for integrals is now a stan- 
dard technique in analysis. Walker [%I, and Tierney and 
Kadane [521, [531 provide two examples, and some general 
theory is presented by De Bruijn [22]. 

A byproduct of the analysis is the following asymptotics 
for the logarithm of the density ratio 

P(x’ll0,) d n 1 1 
= -log- + -1ogdet I ( 0 , )  +log- 

w( e,> log rn (X’ I )  2 2iT 2 

where o(I)-+O in L ’ ( P )  as well as in probability as 
n +so. Here, S,, = ( l / f i ) V  log p(X”I0 , )  is the stan- 
dardized score function for which ES,,S,F= /(e,) and 
ES;f ( I (O ,>) - ’S , z  = d. Moreover, it is seen that 

converges, in distribution, to 1/2(x; - d )  where x: has a 
chi-square distribution with d degrees of freedom. 

In proving the main results, we assume that the poste- 
rior distribution concentrates on neighborhoods of the 
true value of the parameter at a fast enough rate. To 
permit easy verification of this hypothesis, we have found 
sufficient conditions that are natural in finite-dimensional 
families based on the work of Schwartz [48]. We do this 
by introducing a property that we call the soundness of 
the parametrization. By definition, a parametrization is 
sound if the convergence of a sequence of parameter 
values in the Euclidean norm is equivalent to the weak 
convergence of the distributions they index. It is shown 
that for smooth families, soundness implies convergence 
of the posterior distribution at the required rate. 

In Section 11, we state our main results and consider 
some examples. We discuss applications of the main re- 
sult in Section 111. It is seen that D(P,”JIM,,) is a) the 
cumulative risk of Bayes’ estimators of the density func- 
tion, b) the redundancy of a source code based on M,,,  c) 
the exponent of error probability for Bayes’ tests of a 
simple versus composite hypothesis, and d) a bound on 
the financial loss in a stock-market portfolio selection 
problem. In Section IV, we formally prove our result. 
There are two key hypotheses: One is that the second 
derivative of the log likelihood is locally dominated by a 
function with finite expected square, and the other is that 
the posterior distribution concentrates on neighborhoods 
of the true value of the parameter at a fast enough rate. 
In a concluding section, we prove the consistency of the 
posterior distribution for soundly parametrized families. 

11. STATEMENT OF RESULTS 

In the approximations we seek, the only quantities that 
appear are the information matrix and the prior density at 
the true value. This suggests that ideally, the only condi- 

tions that should be introduced are those that will control 
these quantities. 

The behavior of the Fisher information can be con- 
trolled, for present purposes, by assuming that in a neigh- 
borhood of the true parameter value, the second deriva- 
tive of the logarithm of the density exists, is dominated by 
a function with finite expected square, and that the sec- 
ond derivative is continuous at the true parameter value. 

Condition I :  The density p J x >  is twice continuously 
differentiable at 0, for almost every x, and there exists a 
6 > 0 so that for each j and k from 1 to d 

I l 2  

and 

We adopt the convention that, except where noted 
otherwise, E denotes expectation with respect to the true 
probability density p .  For now, this density p = pH,, is 
assumed to be a member of the given family. In exten- 
sions of the theory, as will be developed later, pH, ,  is the 
density in the family closest to p in the relative entropy 
sense. 

There are two information matrices that typically coin- 
cide and have a basic role in the analysis. These are the 
Fisher information 

and the second derivative matrix for the informational 
divergence 

where in each case the derivatives are evaluated at 0 = e,,. 
When convenient, we also use the subscript notation Io,2 
and JH,,, respectively. 

Since the desired expression involves the logarithm of a 
determinant of an information matrix and the logarithm 
of the prior density, it is natural to require positivity of 
the information matrix and the prior. 

Condition 2: D( p11 pH) is twice continuously differen- 
tiable at e,, with J(6,) positive definite, and the prior 
w(0) is continuous and positive at 0[]. 

To see the relationship between the two information 
matrices, we note that when Condition 1 is satisfied, the 
relative entropy in (2.3) is twice continuously differen- 
tiable, and J(f3, ,)  is seen to equal the matrix with entries 
- Ea’(log p(X(0 , , ) ) /aO,dO, .  This is the same as the Fisher 
information I(I!?(,) when the true density is equal to pH,,, 
provided that derivatives with respect to 0 of the equation 
/ p & x )  = 1 can be brought inside the integral to yleld 
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/d2po, , (x) /d0 ,  80, = 0 (see, e.g., Lemma 2.6.1 in Lehmann 

Note that both Condition 1 and Condition 2 are local 
assumptions depending only on the behavior of the family 
for 0 near 0 , .  A third condition is also required on the 
consistency of the posterior distribution. As is shown in 
Theorem 2.2, this posterior consistency is satisfied when 
the only Pn's near Pn,, are those for which I3 is near Bo. 

Condition 3: The posterior distribution of I3 given X "  
asymptotically concentrates on neighborhoods of e,, ex- 
cept for X "  in a set of probability of order o(l/logn), 
i.e., P"{W(N"IX")  > 6} = o(l/log n )  for every open set N 
containing 8, and every 6 > 0, where W(. IX" )  is the 
posterior distribution of 8 given X " .  

The main result is the following theorem. It is proved 
in Section IV. 

Theorem 2.1: Suppose the parametric family { p a )  and 
the prior w ( 0 )  satisfy the smoothness Conditions 1 and 2 
and the posterior consistency Condition 3 for 0, in the 
interior of 0. Then 

t421). 
they index, i.e., 

e + e(, po + pH,,. 

Soundness is an identifiability condition that makes it  
impossible for a family to fold back on itself: no 0 far 
from e, corresponds to a Po close to Po,,. When a parame- 
terization is one to one (i.e., 13 # e,, implies Po # P,,,) and 
continuous (i.e., 0 -+ 8 ,  implies Pn -j Pn,,), then soundness 
is automatically satisfied on each compact subset of the 
parameter space (because one-to-one and continuous 
mappings on a compact set have a continuous inverse). 
Therefore, for one-to-one and continuous parameteriza- 
tions, to check for soundness in noncompact cases, it is 
enough to check that for sequences 0 that diverge from 
the parameter set, the measures Pn do not converge to a 
member of the family. Continuity of the parameterization 
at Bo is seen to be a consequence of continuity of 
D(Pn,,llPn), which is assumed in Condition 2. 

The following result, which is proved in Section VI, 
shows that soundness in conjunction with a local smooth- 
ness assumption is sufficient for the consistency of the 
posterior distribution. 

Theorem 2.2: If a parametric family of distributions on 
1 1  1 a separable metric space is sound and if the smoothness 

Condition 2 is satisfied at O,, then the posterior consis- 
tency Condition 3 is satisfied. Moreover, for every neigh- 
borhood N of eo, there exists r > 0 such that 

= log- + -logdet J ( 1 3 ( ) )  - -tr(zo,!&') 2 (2.4) 

and moreover, the following limit holds in L ' ( P )  and 

40,) 2 

hence in probability 1 1  \ 

+ ,s,'J,s,'s, - -1og- 
2 2rr 

1 1  
= log- + -1ogdet J (  0,) (2.5) 

4 6 , )  2 

where S, = (l/&)V log p(X"lI3,). If I(I3,) = J(0,)  as well, 
we have convergence of the expectation as in (1.4), con- 
vergence in L ' ( P )  as in (1.6), and convergence in distribu- 
tion as in (1.7). If Conditions 1 and 2, but not the 
posterior consistency, are satisfied, (2.4) and (2.5) are 
upper bounds on the limit superior of the respective 
sequences. 

Next, we examine the consistency of the posterior dis- 
tribution as required in Condition 3. The assumption of 
posterior consistency is more natural for the analysis of 
Bayesian methods than is the assumption of the consis- 
tency of the maximum-likelihood estimator, as was used 
in [19]. Moreover, in Theorem 2.2, we see that when 
Condition 2 is satisfied, Bayes' consistency holds under a 
hypothesis that is much weaker than the conditions for 
the consistency of the maximum-likelihood estimator due 
to Wald [57]. 

For the following definition, it is assumed that the 
Bore1 space X on which the probability distributions PH 
reside is a separable metric space. 

Definition: A parametric family of distributions is sound 
if the convergence of a sequence of parameter values is 
equivalent to the weak convergence of the distributions 

P"( W (  N " ( X " )  > e-"'} 5 0 - . (2.6) 

To provide a class of examples, we indicate that finite- 
dimensional exponential families satisfy the hypotheses of 
Theorems 2.1 and 2.2. Consider families of probability 
densities of the exponential form e-n'4b'~')g(x)/c(13) with 
the natural parameter space 0 =.{e E R": c(0) < m}, where 
c(f3) = /e-' b'")g(x)A(du) is the normalizing constant. The 
function g(x) and the dominating measure M d x )  are 
arbitrary. We assume that the vector-valued function 4(x) 
is such that 0 7 4 ( x >  is a nonconstant function, unless 
0 = 0; therefore, the dimension of the family cannot be 
reduced. To verify Conditions 1 and 2, note that the 
derivatives 

LJ 

a2(iogp(xle))/ae,ae, = -a2(iogc(o))/ao,ae,  

are independent of x, and logc(8) is twice continuously 
differentiable and strictly convex (so the second derivative 
matrix is positive definite) at points in the interior of 0, 
as is shown, for instance, in Brown [13]. The posterior 
consistency condition also holds: Berk [lo] showed that 
P " { W ( N ' ( X " )  > 6) converges at an exponential rate. In  
addition, the soundness condition can be verified as in 
Section VI. Indeed, a type of degeneracy occurs for any 
sequence of 0's that diverges from the family. In Clarke 
[18], the approximation to D(PiI,llM,,) is worked out in 
detail for several specific examples. 

Returning to the general context, the next theorem 
uses a more elaborate argument to obtain the limit supe- 
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rior half of the result in Theorem 2.1 under weaker 
conditions. I t  is enough that Condition 2 be satisfied and 
that log p J X )  be mean-square differentiable at 8<,. In 
addition, Condition 2 alone is enough for the limit supe- 
rior of (D(P~~ , l lM, , ) - (d /2 ) log  n )  to be bounded by a 
constant, but the constant is somewhat larger than identi- 
fied in Theorem 2.1. 

We also obtain an extension of the upper bounds to the 
case that the true density p is not necessarily in the family 
( p H } .  and D ( p ( ( p , )  is assumed to be minimized at  a point 
Bo E int(O). In this case, D(P"IIM,,) typically grows at 
rate n. 

We continue to assume that Condition 2 is satisfied. 
Note that the twice continuous differentiability of 
D(p l lp , )  and the minimization of it at 8, implies that the 
gradient is zero, and the second derivative matrix J(8,) is 
nonnegative definite at Bo.  Positive definiteness ensures 
that Bo is an isolated minimum, i.e., there are no other 
minima in a neighborhood of 8,. 

In place of Condition 1, we use the following weaker 
hypothesis. 

Condition 4: log pH( X )  is mean-square differentiable at 
B o ,  that is, there exists a vector-valued function i , , {X)  
with ElliH,{X)l12 <cc such that 

2 1/2 
( E ( h  Po( X)/P,<,( X) - ( 8  - 8,) Tio , (  X I )  j 

= 4 118 - e,lo. (2.7) 

The expectation is taken with respect to the true 
density p .  

The mean-square derivative i e < ( X )  is called the score 
function, and the Fisher information matrix Io,, is defined 
in this more general context as 

Io,, = E(io,,( X I  io,,( X) (2.8) 

Mean-square differentiability is weaker than (in partic- 
ular, it is implied by) the assumption of pointwise differ- 
entiability with the norm square of the derivative that is 
locally dominated by a function of finite expectation. 

For an example of a family satisfying the mean-square 
differentiability but not the pointwise differentiability, 
consider the two-sided exponential p ( x l 8 )  = (1/2)e-I"-'l 
like that in Pollard [44]. Take the true density to be in this 
family with, for convenience, 8, = 0. The pointwise 
derivative of logp(xl8) does not exist at 8 = x. Conse- 
quently, the differentiability at 8 in a neighborhood of 
zero (required for Condition 1) does not hold for x near 
zero. Nevertheless, log p ( x l 8 )  is mean-square differen- 
tiable with i o < { x )  = -sgn(x - 8,) and Io,,= 1; in addition, 
D(pllp,  = ,-Ie1 + 181- 1, which has the second-order ex- 
pansion (1/2)02 + o(O2); therefore, D ( p J ( p , )  is twice con- 
tinuously differentiable with Jo,,= 1, and Conditions 2 and 
4 are verified. 

We note that although the information matrices Io,, and 
Jo<, are typically the same when the true density p is in the 
family (see the remark after the statement of Condition 

2), they are generally not the same for p outside the 
family. 

The relative entropy has the decomposition 

The following theorem provides a bound on the second 
term of order log n. When p = p,,, is in the family, 

E 1% Po,,( x " ) / m (  X") 
is the same as D(I'~~,/IM,,) ,  and the following provides 
weaker assumptions for asymptotic upper bounds of the 
sequences in Theorem 2.1. 

Theorem 2.3: If Condition 2 is satisfied, then 

1 1 

- < log- + Llogdet(J,,,). (2.10) 
w ( 8 , )  2 

If log p J X )  is also mean-square differentiable at Bo 
(Condition 4) then 

P S ( X " )  d n 
log - - -log - 

m(X' l )  2 2Tf 
1 1 1 

- < log- + -1ogdet (.Ie,,) - zS,'J"slS,, + o( 1) 
w(e,> 2 

(2.11) 

where o(1) tends to zero in L 1 ( P )  as n +q and conse- 
que n t ly 

n - + m  

1 1  1 
2 

<log- + -logdet(J,,,)- -tr(Io,.I;,I). (2.12) - 
w(8,) 2 

Here S, = (l /f i)Xy= l i o , { X j )  is the standardized score 
function, which by the central limit theorem, is asymptoti- 
cally distributed as N(0 ,  Io(,). 

Note that the posterior consistency condition is not 
needed for the upper bounds in Theorems 2.1 and 2.3. 
This is because the mixture m ( X " )  = / , ,p(Xn(0)w(8)d6'  is 
reduced to m,(X")  = /N8p(X"18)w(8)  d e  when obtaining 
these bounds, where N8 is a neighborhood of 8,. How- 
ever, if the posterior distribution is not consistent, 
E log r n , ( X " ) / m ( X " ) ,  which is the expected logarithm of 
the posterior probability of the neighborhood of 8,, does 
not tend to zero for some 6 > 0, and a nonzero gap exists 
in the limit of the difference E log p , , { X " ) / m , ( X " ) -  
E log p , ! X " ) / m ( X " ) .  In this way, it is seen that poste- 
rior consistency is necessary for the limit in Theorem 2.1. 

Our final conclusion gives a strengthened form of the 
Bayesian central limit theorem on the asymptotic normal- 
ity of the posterior distribution, which is shown to be 
equivalent to our L1 convergence result in Theorem 2.1. 
Let T = f i ( O -  13~))  for 8 distributed according to w ,  



which has the posterior density function 

and let d, , ( f )  be the normal density with mean J,’S,,  and 
covariance J H ,  I .  

Theorem 2.4: Assume that Conditions 2 and 4 are sat- 
isfied. The convergence given in (2.5) is then equivalent to 
the following. For every t in R d ,  the difference in the 
logarithms of the posterior density and the normal density 
converges to zero in L ’ ( P ) ,  i.e. 

lim E (  log w,.( f I  X”) -log 4,,( t ) I = 0. (2.14) 
n + x  

induces convex neighborhoods; it satisfies Pythagorean 
relations even though it is not a metric; it satisfies a chain 
rule expansion for densities of jointly distributed random 
variables; in smooth parametric families, it locally approx- 
imates squared error loss; it is nonnegative and it equals 
zero only when its arguments are equal. 

Suppose we are in the case described earlier. In partic- 
ular, we are given a parametric family indexed by O and 
that O,, is the true value of the parameter. However, 
suppose that it  is not the parameter per se that interests 
us. Rather, we are using the parametric family to identify 
the true density, which is pH,,. One natural estimator of 
p(x l0 , )  at any given x is the mixture of the densities with 
respect to the posterior distribution 

(3.1) 

In particular, this convergence (2.14) is implied by Condi- 
tions 1-3. that is, the posterior mean of the density. Observe that 

this estimator is the predictive density 
This shows that the posterior distribution of 0 is ap- 

proximately normal with mean 8 = 8, +(I/fi>J<,’S,, and 
covariance I .  Related results, showing convergence 
in probability rather than convergence of the logarithm in 
L1 are given on p. 111 of Hartigan [25] and on p. 456 of 
Lehmann [42]. 

In the applications we develop below, it is the infor- 
mation-theoretic asymptotics, i.e., the asymptotics of 
D(P$:lI(M,,), that we use most directly, rather than the 
asymptotic normality of the posterior. 

Further extensions of the theory, showing that the 
approximation to D(P,”llM,,) in Theorem 2.1 holds uni- 
formly on compact subsets of the interior of 0 and giving 
conditions such that the approximation can be averaged 
with respect to the prior to yield an approximation to 
j,w(O)D(P$’I(IM,,) do, are obtained in Clarke [18] (in the 
case that I ,  = J , )  and will be developed in a subsequent 
paper by the authors. As shown in [18], a consequence of 
these extensions is that the prior dS), which is propor- 
tional to det(l,)”2, leads to a minimax value of the 
relative entropy. 

111. APPLICATIONS 

We consider implications of the asymptotics of 
D(Pi:,llM,,) for density estimation, universal data com- 
pression, tests of composite hypotheses, and stock-market 
portfolio selection. 

For simplicity in these applications, we focus on the 
case that the true density is in the given parametric family 
and that the two information matrices coincide. Conse- 
quences may also be formulated in the more general 
context. 

A. Implications for Density Estimation 

F J X )  = m(X, ,+ ,  = X I X ” )  

where m( X,, + \ X n )  is the conditional density of X,, + 

given X “  according to the Bayesian model. 
We use the relative entropy as the loss function for 

parametric density estimation and examine the behavior 
of the cumulative risk. Let 6, for k = 0; . ., n - 1 be a 
sequence of density estimators. Each 6, estimates the 
density of X k + ’ ,  given the data X h .  Here, 6,) is a fixed 
density function not dependent on the data. When BO is 
true, the risk associated with 6, = 6 , ( X A )  is 

( Po,, It 6,) . 
We denote the cumulative risk of n uses of an estimator 
6, for k = 0;. ’ , n  - 1 by C(n,8,,,6). It is the sum of the 
individual risks: 

n - l  

C ( n , O 0 , 6 )  = c EH,,D(PB,,lI6,). 
k = 0 

The sum of the (relative entropy) risks plays an important 
role in the other applications as well (see, e.g., case D 
forthcoming). It is natural to expect that the individual 
risks E,,,D(p,<,((G,) could be made to be of order l / k ,  
and hence, the cumulative risk would be of order logn. 
We obtain an order log n result for the cumulative risk of 
the Bayes’ estimator. 

Just as the posterior mean of 0 is the Bayes’ estimator 
under squared-error loss, it turns out that the posterior 
mean of p(xlO) is the Bayes’ estimator under relative 
entropy loss. We have the following result. 

Proposition 3.A: For each n ,  the estimator fi,, defined 
as in (3.1) is the Bayes’ estimator of the density function. 
Moreover, the cumulative risk of this sequence of estima- 
tors is 

The relative entropy has several mathematical proper- 
ties that make it a natural choice as a loss function in a 
decision-theoretic framework for the estimation of a den- 
sity function. Chief amongst these are the following: It 

tI ~ I 

c ( ~ ~ ~ ~ l ~ F , i )  = c ~,<,~(PO,,Itf ik)  = D(P”:, t t~,J  
I,  = 0 

under the convention that b,,(x) = m , ( x ,  ). Consequently, 



under the conditions of Theorem 2.1, the cumulative risk 
is approximated by (d/2)(log n ) +  c ,  and the average risk 
( l / ~ z ) ~ ~ , , , D ( p ~ , , l l $ ~ )  converges to zero at rate (log n ) / n .  

f rooj  The information inequality, D ( p ) J q )  2 0, with 
equality if and only if p = q, implies that a,, is the Bayes' 
estimator because for any other density q, the posterior 
average of the  risk is seen to equal 

p( Pe1I4)w(e1Xf1) de 

=jl,n(P,lI~,,)w(Hlx")ds+ D($,,IlS). 

We see that the minimum is achieved when the second 
term is zero, i.e., when q = bfI. (A similar characterization 
of the posterier mean density cfI is given irl Aitchison [l].) 

By Bayes' rule, Ff,  equals the predictive density, which 
is 

By the chain rule for the relative entropy, we have that 
n - l  

wy,IlM,J = x- ~ q f o , , l l 4 j  ( 3 . 2 )  
k = 0 

where each summand is the risk in estimating the density 
using the Bayes estimate based on k observations. 0 

We remark that under the conditips of Theorem 2.1, 
the individual risk terms ED(P,,,/JP,,) also converge to 
zero as n + =. This follows from noting that 

EB,,D( Pe,,ll 6,) = D( Pe':,ll M,,) - D( pi:,- I I1 Mf, - I ) 
and applying Theorem 2.1 to each term on the right side. 
Thus, the predictive density is a consistent estimator of 
the true density in expected r-lative entropy. 

We note that on p. 434 of Cencov [14], the author gives 
conditions such that for the maximum-likelihood density 
Pi ,  the risk ED(P,,,JJfi) is of order d / ( 2 n ) + O ( l / n ) " '  
(moreover, he  demonstrates the optimality of this rate). 
Summing these individual risks also yields a cumulative 
risk of order (d/2)log n .  

Parameter estimation can be regarded as a special case 
of density estimation in which the estim?tor of the density 
is restricted to be of the form p(x l0 ) .  In the density 
estimation context that we consider, the estimated density 
is not restricted to be in the family. By enlarging the class 
of estimators in this way, the statistical risk can be re- 
duced. In particular, the Bayes' risk in parametric density 
estimation lower bounds the Bayes' risk in parameter 
estimation, i.e., for every prior 

i n f lE ,D(e Ip ' )w(e )  2 inflE,D(fo118)w(e) de 
6' 6 

(3.3) 

where the infimum on the left side is over parameter 
estimators 6' with loss function D(OJl8') = D(P,IJf,.), and 
the infimum on the right side is over density estimators 6. 

B. Applications to Universal Source Coding 

Suppose that X is a discrete random variable whose 
distribution is in the parametric family {f,,: 0 E O}, and 
we want to encode a block of data for transmission. I t  is 
known that a lower bound on the expected codeword 
length is the entropy of the distribution. Moreover, this 
entropy bound can be achieved, within one bit, when the 
distribution is known. Universal codes have expected 
length near the entropy no matter which member of the 
parametric family is true. The redundancy of a code is 
defined to be the difference between its expected length 
and the entropy. 

Universal noiseless source coding for parametric fami- 
lies of distributions was introduced by Davisson [21]. 
Variable-length binary codes are assigned to blocks of 
data X" = ( X , ; - . , X , , ) .  Let (0, I ) *  denote the set of 
finite-length binary strings. Recall that by the Kraft- 
McMillan theorem (see, e.g., p. 50 of Blahut [12]) if 

4 :  X "  - {0,1}* 

is a uniquely decodable code, and I ( 4 ( X f 1 ) )  is the length 
of the codewords, then 

Q,,( XU)  = 2-/'"X'',, 

defines a subprobability mass function on X". Moreover, 
for any subprobability mass function Q , , ( X f f )  for which 
-log Q,,(X")  takes integer values, a uniquely decodable 
code exists with those lengths. The redundancy is the 
difference between the expected value of the length of 
the codewords 4 ( X " ) ,  and the expected value of the 
idealized length log l/f,,$X"), that is 

= D(f'i:,llQff) (3.4) 

where the logarithm is taken base 2. Thus, the redun- 
dancy is the relative entropy. We want to choose the 
lengths to make the redundancy small for each f, with- 
out advance knowledge of the true distribution in the 
family. Among all subprobability mass functions Q, the 
one that minimizes the average of D(P$'llQ,,) with respect 
to a prior 4 0 )  is the mixture M,l. Thus, D(fi; , l /M,,)  is 
referred to as the redundancy of the Bayes' code. The 
idealized lengths log l/M,,(X") may violate the constraint 
of being integer valued. Nevertheless, for Shannon code 
based on M,,,  i.e., the code with lengths 

the redundancy is within one bit of D(fi , 'JMfI) .  
The concepts of noiseless source coding of discrete 

data may also be applied to the case of continuous ran- 
dom variables that are arbitrarily finely quantized. In the 
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sense made clear by the following proposition, the relative 
entropy remains the redundancy for nondiscrete sources. 
If a noiseless code is specified for every finite quantiza- 
tion of a nondiscrete source, we define the redundancy of 
that source to be the supremum of the redundancies over 
all such quantizations. In the case that the random vari- 
ables are discrete, this reduces to the usual definition of 
redundancy. 

Proposition 3.B: For any source, the redundancy of the 
Shannon code based on M,, is D(Pi:,llM,,) to within one 
bit. Thus, the redundancy of the Bayes code is given 
asymptotically by 

d n 1  
-log-- + -logdetI(8,)-logw(8,,) 
2 257e 2 

under the conditions of Theorem 2.1. 

Proofi For any finite partition II of X “ ,  we can 
specify a code 4=4,1,r1, by use of the Shannon code 
based on the probability measure restricted to TI. For the 
Shannon code, we have an explicit formula for the length 
of the codewords 

r 

and the redundancy is 

Now l(4n.n(,4)) is within one bit of logl/Q,,(A>. There- 
fore, for each partition, the redundancy Rn,n(4,  Po,,) is 
within one bit of the discrete divergence 

t nPH”( A )  log pH”( A 1 /e,,( A ) .  

Taking the supremum over all possible partitions gives 
D(P,“JJQ,,), by using a well-known theorem (see pp. 6-7 of 
Kullback et al., [38]). If Q,, is replaced by M,,, we then get 
the Bayes code, and the result is the asymptotic least 

0 

In Rissanen [46], it is shown that for any code, ( d / 2 ) .  , 
log n - d o g  n >  is an asymptotic lower bound on the re- 
dundancy for (Lebesgue) almost every 8 in the family 
(assuming that the maximum-likelihood estimator is con- 
sistent and asymptotically normal). In addition, Rissanen 
[45] showed that for particular codes based on his mini- 
mum description length criterion, a redundancy of order 
(d/2)logn + co is achieved, although he did not attempt 
to optimize the constant. For a discussion of the best 
constants in Rissanen’s framework of two-stage codes, see 
[8]. The optimum code according to the criteria of mini- 
maxity or minimum average redundancy is not a two-stage 
code of the type considered in [45] or [8], rather it is a 
one-stage code based on a mixture M,,, where the choice 
of prior in the mixture is determined by the criterion. 

upper bound on the redundancy. 

formly in X ” ,  provided the empirical Fisher information 
and the logarithm of the prior density evaluated at the 
maximum-likelihood estimator remain uniformly bounded. 
Previous results of this type, with the empirical Fisher 
information and the logarithm of the prior density incor- 
porated in an almost-sure approximation, are given in 
Theorems 4.3 and 4.4 in [3], together with the coding 
interpretations. 

C. A n  Application to Hypothesis Testing 

I t  is well-known that the likelihood ratio test statistic 
converges in distribution to 1/2 times a chi-square ran- 
dom variable with d degrees of freedom, i.e., 

p ( x r 7 i @  1 
logp(  xi7le,> + -x,/ 2 

in law, where x: is a chi-square random variable with 
d degrees of freedom (see Wilks t.591, Wald 1.561, and 
Chernoff [lS]). It has been proved that the asymptotic 
expected value of the likelihood-ratio statistic is essen- 
tially d /2  (see [19]). An analogous result requiring 
fewer hypotheses can be proved for the statistic 
log m ( X ” ) / p (  X”l8,,). We consider a centered version of 
this statistic obtained by subtracting its mean under the 
distribution Pi,’,. As stated in (1.7) 

in distribution. Conditions for the validity of this asymp- 
totic distribution are given in Theorem 2.1. 

We use this convergence to identify the critical value 
and the average power of a test for composite hypotheses. 
Consider testing H :  Po,, versus K :  Po, 8 # 8,.  We con- 
strain the probability of a type-I error to be less than 
a ,  E (0,1) and examine the performance of tests in terms 
of the probability of a type-I1 error averaged with respect 
to a prior density w(O> over the class of alternatives K .  
Let c ( a )  be the 1 - a quantile of a centered chi-square 
random variable with d degrees of freedom, i.e., P(xj - 
Ex: > c )  = cy. The Bayes’ optimal test is defined to mini- 
mize the average probability of error. By a familiar argu- 
ment, the problem is seen to reduce to a simple versus 
simple test for Pi:, versus M,,; therefore, the optimal test 
compares the test statistic log m( X ” ) / p (  X”J6,) to a criti- 
cal value t = t , ,(al). The following proposition shows us 
how to select the critical value in practice. Specifically, 
Theorem 2.1 gives a convenient approximation to it. 
Moreover, the average power of the test is shown to be 
related to D(P$:,llM,,). 

Proposition 3.C: Fix cyI in (0,l). Under the assumptions 
of Theorem 2.1, the Bayes’ test with critical value t = 

D(Pi:,l/A4,1)- 1/2c(a , )  has asymptotic level aI, and the 
optimal average probability of a type-I1 error is, to within 
a constant factor dependent only on a ,  

Rissanen [47] also considers codes based on mixtures and 
shows that pointwise, the codnelength - logm(X“)  is ap- 
proximated by -log p ( X f 7 I O ) + ( d / 2 ) l o g  n +0(1) uni- 

n -‘/I2 ( 2  r e )  ‘ / ”w(  8,,) 
a2  A e - m G : , l l M , r )  

4 m  
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Indeed, there exists a finite interval [L(a , ) ,U(a , ) l  such 
that every test with a type-I error less than or equal to aI 
satisfies 

liminf[loga, + D(P;; ,JM,,)]  2 ~ ( a , ) .  ( 3 . 5 )  

There also exists a test with a type-I error aI for which 
the following upper bound holds: 

lirn sup [log a2 + D(  Pi:)lM,,)] _< U (  a I  ) .  (3 .6 )  

The functions L and U can be expressed in terms of c(a) .  
Remark: This extends Stein's lemma (see [161, [2], or 

[12]) for simple versus simple hypotheses, say P,,, versus 
fn with 8 # B o ,  which asserts that to first order in the 
exponent 

r i  + x  

n - r  

A e-LX%:,llPl). 

Proof -We first prove the lower boun_d statement 
(3.5). Let C, be any critical region with P,,$C,) I a , ,  and 
let A,, be the "typical set" 

where a > a l .  Observe that 

lirn P;,( A , , )  = a .  
n-== 

Then, the average probability of a type-I1 error satisfies 

lim [ fi;,(C;i) - Pi:,( A ; , ) ]  = a - a ,  > 0 
I I  -== 

we take logarithms to obtain 

where a E ( a l ,  1). Note that c is strictly decreasing in a 
and ranges from - EX: to m, and log(a - a , )  is strictly 
increasing. It is possible to get an implicit algebraic rela- 
tion that must be satisfied by the a that maximizes the 
right side, or we may choose a = ( a ,  + 1)/2 to get a lower 
bound of the form (3.5). 

Now we prove the upper bound (3.6). The Bayes' 
optimal test is of the following form: Reject H if and only 
if ( X I , .  . ., X,,)  E C,,, where C,, is the critical set 

c,, = X I i  : log- i m ( x f 7 )  x'71eiJ - < l 
Choosing 

we have that 

-2  [ log '( x ' i ' 8 ' J )  -- D( Pi,'llM,,)] 
m( X " )  

converges weakly to a chi-square random variable with d 
degrees of freedom. Therefore, the limiting probability of 
a type-I error is 

lim Po,( C,,) = a l .  

By Markov's inequality, the average probability of a type-I1 
error satisfies 

I1 + x 

a2 = MI,( C:;) 5 e-' = ~ - ~ ( P ; ~ ~ I ~ M , , ) + ( I / ~ ) C ( ~ Y I ) ,  

Taking logarithms and rearranging gives 
1 

limsup [logs, + ~ ( ~ < , I I M , , ) ]  5 :"("I' 
n-== 

so that c ( a , ) /2  is an upper bound on the limit superior of 
U the left side. Thus, (3.6) is proved. 

D. Application to Portfolio Selection The0 y 

Let X I ,  X , ,  . . ., X , ,  . ' . be a sequence of independent 
stock-market return vectors, where the coordinates X I ,  
denote the multiplicative factor by which dollars invested 
in stock j ,  j = 1; . ., k are increased during the ith invest- 
ment period. At the beginning of each investment period, 
stocks are bought or sold to result in a portfolio of stock 
proportions b = (b,;  * ., bk) ,  b, 2 0, Cf, Ib, = 1. Beginning 
with one unit of wealth, the wealth at the end of n 
investment periods is S, = n:=,b:X,, where b , ,  b, ,  . . * is 
the sequence of portfolio vectors. If the true distribution 
Pn, were known, the portfolio b* = b(P,,,) would then be 
chosen to achieve 

W *  = maxE log b T x  

in order to achieve maximum possible exponential growth 
rate of wealth (see Kelly [32]). Not knowing ;he true 
distribution, we may base our portfolio b, b,( P, - ,) for 
the nth investment period on an estimate P, of the true 
distribution. In [7], it is shown that the resulting decre- 
ment in the exponential growth of wealth is bounded by 

- C ED(Pn(,II&i). 

In particular, if we use the predictive density estimator 
j j , ,<x)  = m ( X , + ,  = x l X , ; .  ., X , ) ,  the bound on the decre- 
ment is then precisely ( l / n )D(P;JJM, ) ,  which is the very 
quantity approximated by our theorem. The Bayes' se- 
quential investment strategy, which uses the predictive 
density to select the portfolio, is optimal with respect to 
M,. If P,,, were known, the resulting optimal wealth is 

b 

1 "  

r = l  

s* = e r i ( W * + o ( l ) )  
If 

where o t l )  + 0 in probability. We can lower bound the 
wealth of the Bayes' strategy in terms of the optimal 
wealth. 
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Proposition 3.0: The Bayes’ strategy, investing based on where 
M,,, achieves wealth at least 

J c = J * (  e )  = - [ ( 1 / , I  )a‘( log I?( x”(0)) , I (1 w(O,,) 

Jdet I (  O,,) is the empirical information matrix. In addition, let 
I ,  - 

where the last expression holds asymptotically under the 

any r > 0 
conditions of Theorem 2.1. Indeed, for any a E (0 , l )  and C,,(6) = ( / ~ , ( 8 ~ , ) ~ - J ~ ~ ’ ~ ~ , ( e [ ] )  5 8 2 )  (4.3) 

S,, 2 S,Te -D(  f‘h)M,,)-( I / 2 ) C ( a  )-T where we have denoted the average score function by 

except on a set with probability asymptotically less than or 
equal to cy + e-’, as n +*, where c ( a )  is the same as in 
the last proposition. 

Proof: By Markov’s inequality, the wealth satisfies A closely related quantity is the standardized score SI, = 

The set A,, contains those points XI’ for which the 
posterior probability of the neighborhood N is at least 
l / ( l + ~ ) ;  the set B, allows us to bound an empirical 
estimate of the Fisher information by its true value; the 
set C,, is the set where a norm of the average score is 
near zero. We bound the behavior of the prior by the 
modulus of continuity of its logarithm on a neighborhood 
of the true value: 

m( X“) ( i / , h ) v  log p(xrr ie,).  
s, 2 SI? 

P (  xn14J 
except on a set of probability 

s,; m ( X ” )  s,T m( X’ , )  ’“1) - < e-’Ee<]- 

s,; 
5 e-TE,,,z- 

p ( x “ l e ~ ~ )  

SI, 
- < e P T  

p(6,8,)  = sup log- 
0 E Nh 1 :“(‘?) 1 ’ where the inequality E,,,S,T/S,, I 1 follows from the con- 

ditions for the optimality of s,, for the distribution M,, 
(see [71). The result then follows as it does in the proof of 
the proposition on hypothesis testing from the fact that 
twice log m(x’I ) /pB, !x ’~)  + D(P;,IIM,~) ,  asymptotically, 
has a centered chi-square distribution with d degrees of 
freedom. 

In the motivation for the result outlined in Section I we 
used the maximum-likelihood estimator. We find that 
weaker hypotheses can be stated if a different estimator is 
used. In what follows, we will use an analog toA the 
maximum-likelihood estimator, which we denote by 8. Its 

IV. PROOF OF THE MAIN THEOREM definition is 

To prove Theorem 2.1, we will use a lemma that gives 
upper and lower bounds on the integrand of D(Pi:ll(Mn) 
on certain sets that have high probability. 

We introduce the following notation. Let 
N~ = { e :  le - eo\ 5 6) 

where, for convenience, the  norm of vectors in R d  is 
taken to be 151 = 151J, defined by 

For 0 < E < 1 and 6 > 0, define the events 

I5 I ?,,,> = 5 ‘Je,,S. 

It amounts to a stochastic perturbatiy about the true 
value of the parameter. Note that 8 is not really an 
enstimator since it depends on the estimand. The quantity 
0 is used on p. l l i  of Hartigan [25] and on p. 456 of 
Lehmann [42], in proofs of the asymptotic normality of 
the posterior density. 

We next state and prove tight upper and lower bounds 
on the density ratio. In accordance with Laplace’s method, 
the proof will use a second-order Taylor expansion about 
0<, to lead to an approximation by a normal integral. 

Lemma 4.1: Suppose Condition 2 is satisfied so that 
w(0)  is continuous and positive at Bo, and .IB,, is positive 
definite. On the set A,,  n B,,, we have the upper bound 

for all 6, 6~ N 6 )  (4.2) .det(n( l -E)dHI,)-”*.  (4.4) 
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On B,, n C,,, we have the lower bound 

. (  1-2"/2e- '~" '~2/X)det(n(  ~ + E ) J H , , ) - ' / ~ .  (4.5) 

Proof of Lemma 4.1: In both cases we apply Laplace 
integration to the mixture density. For the upper bound 
(4.4), we have, by restriction to A, ,  and then to B,,, that 

m( x") 

. ( 2 ~ )  ''/' det ( n( 1 - E )  .lo,,) - 

where we have used a second-order Taylor expansion 
(with 6, a point in N, that depends on 8 and x"), U = 8, + 
(1/(1- - eo), and we have used the following iden- 
tity, which may be verified by completing the square 

1 
( 0  - % ) T ~ ; l ( % )  - $1 - € > ( e  - %)T.l,<p - e,,) 

- - e l l ( H - H , , ) ' / ~ , ( H , ~ ) - ~ ~ / 2 ( H - H , ~ ) J ~ (  '-',>)w( 0 )  d8 Li 
where 6, E N'. Again, we use the identity previously stated 
(4.61, but we now jreplace (1-c)  with ( 1 + ~ )  and let 
U = 8,) + ( l / ( l +  €))(e - e,,). Because of the restriction to 

E S  
2 (1 - a)S  = ~ 

( 1 + E ) .  

Consequently, in the second integral of (4.7), the inte- 
grand is not greater than 

Therefore, expanding the domain of integration in the 
second integral of (4.7) and rearranging, we have the 
lower bound (4.5). This completes the proof of Lemma 
4.1. 0 

We now have some control over the logarithm of the 
mixture density over the true density. The integrand of 
the relative entropy approximated by the theorem uses 
the reciprocal of that density ratio. Thus, when obtaining 
upper bounds on it, we will be concerned with the proba- 
bility of B,, n C,, and when obtaining lower bounds, the 
probability of A ,  n B, will be important. It will be 
demonstrated that the probability of the complements of 
those sets converges at a fast enough rate to suit our 
needs. The expected supremum Condition 1 is used to 
control the probability of B,: and of C,C. The posterior 
consistency Condition 3 is used to control the probability 
of A , .  

Proof of Theorem 2.1: Denote the error in the ap- 
proximation we seek by 

e-nt '62/4(1 + e ) .  + ~ ) n l O - - r r l ~ / 4  

1 
2 

+ -1ogdet ( J e , , )  - 

where SI, = f i l , ' , (OU) .  Our task is to show that lim E(R,,) 
= 0 and, moreover, that lim E(R,,I = 0. This we do by 
upper bounding RI ,  by a positive quantity, which tends to 



zero in L ' ,  and lower bounding it by a negative quantity, 
which also tends to zero in L' .  

Next we obtain the upper bound. We use Lemma 4.1, 
as before, to get 

First, we obtain the lower bound. From Lemma 4.1 and n 1 
the positivity of S ~ J ~ , ' S , , ,  we have R <- + P(6,8,,) 

d 1 
STJL, is,, + -log ~ 

2 ( I - € )  

(4.12) 

(4.10) 

Since each term is negative, this also provides a bound on 
the negative part of R,,, denoted = max(0, - R,). 
First, we examine the term in (4.9). Define the event 
G,, = ( A ,  n B,,)' n { m ( X " )  2 p,,{X")} and note that 
lim P($G,) = 0 if the probabilities of A: and B i  tend to 
zero. The expected value of this term is bounded by use 
of the concavity of the logarithm and Jensen's inequality 
to obtain 

(4.13) 

Now, (4.12) and (4.13) are the terms that are examined by 
methods different from those used in the lower bound. 

For (4.13), note that by the central limit theorem, SI, 
converges in distribution to Z - Normal(0, I ; ' ) .  There- 
fore, SiI<,'Sll is uniformly integrable since it converges in 
distribution (to the distribution of the random variable 
ZTJi , 'Z)  and it has convergent, indeed constant, expected 
absolute value (see p. 100 of Chung [17]). By uniform 
integrability, lim E(STJ<,lS,,l(B,,n D , ! ) c )  = 0 if the probabil- 
ity of B,', and C; tend to zero. 

Now, for the term (4.12), an adequate upper bound 
may be obtained by restricting the integral in the defini- 
tion of m,, to a neighborhood of 0, and using a first-order 

+ S,7 Jc 'St, 1 ( R,, n c,, )< . 

/. P O P " )  \ -  _ _  /. m(X.1 \ Taylor expansion to get 

from which we have 

which tends to zero as P,"(G,,) + 0. 

(4.14) 

Adding and subtracting the expected value of the supre- 
mum from each term in the sum and then using the 
Cauchy-Schwarz inequality yields 

Next, we note that the expected value of (4.10) tends to 

the event that the posterior probability of N8 is less than 
1/(1+ E ) ,  and so, HAY,) = o(l/log n )  by Condition 3. It 
will be seen by an application of Chebyshev's inequality 
that Condition 1 implies P(B;)= O( l /n> .  

For the first term in (4.8), we use E(STJ<,'S,,)= 
f r ( J < , ' E S , S ~ )  = f r (J i , ' I ,< , ) .  Therefore, collecting these 
bounds, we have that for every 0 < E < 1 and 6 > 0 

d 1 

zero if P ( A ; , )  and P(B,;) are both o(l/log n) .  Now A;, is + P (  ( B,, n c,, ) I 1% w 4)  1 ,  

SUP ( e  - O T V  logP(Xll@ E 1 ( ~ , ,  nc,,)' 

- < nP((  B,, n c , , ) ' ) E  sup ( 0  - O,,)'V logp(  X I S )  
tr(J$,<,) + -log- 6 . 8 ~  N,, 

2 (1-E) 

+ ( P ( (  4, n C,,)' 

. nvar sup (0--0, , ) 'v logp(~16)  

n - x  

+ log( 1 + E )  + P (  690, )  . 

Letting E and 6 tend to zero shows that liminf E(R, , )  2 0. ( (, ,$EN,, 

In the same way it is seen that, moreover, lim E(R, , ) -  = 0. (4.15) 



Now, sufficiently small 6, the expected suprema are finite 
by application of Condition 1. (Condition 1 assumes that 
the second-order derivatives are locally dominated by 
square integrable functions; then, by application of Tay- 
lor's expansion, lower order derivatives are also locally 
dominated.) Consequently, these upper bounds tend to 
zero as n + 0, provided P ( B i )  and P(C,:) are o ( l / n ) .  

I n  this case, incorporating these bounds in (4.12) and 
(4.13), we obtain lim sup E ( R , , )  I 0 and, moreover, 
lim E(R, , )+ = 0. We remark that a different proof of the 
same upper bound on the limit superior, by a somewhat 
fancier argument, is given in Section V. 

Combining with the limit inferior result, we have estab- 
lished our main result (2.41, which is equivalent to the 
convergence to zero of the expected value of R,,. More- 
over, as a byproduct of the analysis, we also have conver- 
gence in L ' ,  that is, lim EIR,,I = 0. 

The probabilities of B,, and C,, must still be examined. 
Bounds on P ( B i )  are needed for both the limit inferior 
and the limit superior in this proof. Bounds on P(C,:) are 
used for the limit superior. 

In controlling the probability of B,,, we will use the 
fact, based on Chebyshev's inequality, that for the sample 
average of i.i.d. outcomes of a random variable Y with 
finite variance 

1 
ne2 

= -c (n ,E)  

where c (n ,  E )  = En(Y - EY)21,,,p,,, > tends to zero as 
n --)E for any fixed E > 0. To see that c(n ,  E )  + 0, note 
that n(Y - EY 1' is uniformly integrable since it con- 
verges in distribution and has convergent indeed constant, 
expected absolute value. 

From Chebyshev's inequality, we will obtain bounds of 
the form 

(4.16) 

where the function c I  tends to zero as n increases for any 
fixed 6 and E .  By Markov's inequality, we will show that 
we have 

(4.17) 

where c2 tends to zero as n increases for any fixed 6. We 
proceed with proving that c I  and c2 exist as we want. 

To show the existence of c l ,  it is enough to examine the 
probability of sets of the form 

respectively. This is suggested by noting that B J 6 ,  E )  can 
be written as 

where 5 = 8 - Bo. By the Cauchy-Schwarz inequality, the 
quotient in this set is not greater than the square root of 
the-sum of the squares of the entries in the matrix 
I * ( @ ) -  J(O, ) ,  which, in turn, is less than d times the 
maximum absolute value. Then, by the union of events 
bound, setting E ' =  c / d  

For each of the finitely many terms in this sum, the 
probability is upper-bounded by adding and subtracting 
J,*h(e,> to get 

By Chebyshev, the second term in (4.18) is upper bounded 
by 

(4.19) 

For the first term in (4.18), we choose 6 so small that 

E' 
< -  

4 
and set up another application of Chebyshev's inequality. 
Let 

I 

Now, the first term in (4.18) is upper-bounded by 

P S , ( l Y -  EYI > ~ ' / 4 )  

Adding the bounds (4.19) and (4.20) for the terms of 
(4.18), we see that we have an expression for c I  of the 
form desired for (4.16). 

Similarly from Markov's inequality, we can identify an 
expression for c2  for use in (4.17): 

1 
Pe,( c:, I 2 ~ l c ; ~ n [ : , (  o0 ) 'J;] I[;,( o0)  

1 

n6 
= -E 1, ;,S,;Ji, IS,, . where J, and J,*A denote the entries of the information 

matrix J(8,,) and the empirical information matrix J (81, 
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Again, the expectation goes to zero as IZ +ZZ by the 
uniform integrability of S,:J<,'S,,. Thus, P(B;, )  and P(C;,) 
are of order o(l/n).  This completes the proof of Theo- 
rem 2.1. 0 

where the d / K  term follows from the use of Chebyshev's 
inequality to bound the normal(O,,,(nJ,,~)- I) probability of 
the event that le - Of,I > a,,. From (5.2) and (5.3), we have 

V. UPPER BOUNDS UNDER WEAKER CONDITIONS lim sup 
AND ASYMPTOTIC NORMALITY 

In this section, we prove Theorems 2.3 and 2.4. Condi- 
tion 2 on the twice continuous differentiability of the 
relative entropy and Condition 4 on the mean square 

1 1 
- < log- +-logdetJ,,,-log 

w(e,> 2 
differentiability of the logarithm of the density are the 
two key assumptions used here. 

Proof of Theorem 2.3: First, we show that Condition 2 
is enough for lim sup ( E  log p , ( X " ) / m ( X " )  - 
(d,,2)logn)Ic but with a constant ; somewhat larger 
than identified in Theorem 2.1. 

Fix K > d,  set 6, = {m, and let the norm (0 - Bo-( = 

18 - OOIJg  be taken with respect to J,,, as in Section IV. 
We start by reexamining log (w(O,)p, ( X ' z > / m ( X ' 7 ) > ,  

Let K -+cc to complete the proof of inequality (2.10) in 
Theorem 2.3. 

Next, we use mean-square differentiability (Condition 
4 )  as well as Condition 2 in a refinement of the previous 
proof to obtain a bound on the limit superior, which is the 
Same as in 

= 

m7 and 

2.1. 
Here, given > d,  let G6,,= {e: l e  - e l  I 8,~) where 

restricting the integral to a sequence of "neighborhoods 
of the form N8,, = {e: 18 - Bo( I an}, multiplying and 
dividing by a truncated normal density 4,,(81N8> = 

and applying Jensen's inequality as follows: 

log m( X I , )  

(1/c-)e-(?7/2)~0 - ~ ' 1  where c,, = / e-("/2)I@-8,,1' de 
(0 E. Nr,) Nr, 

W(%>Po,,( X f l )  

Let &(8) = (l/c,l)e-(, ' /2)lo-~1~1(, rj,, be the truncated 
normal centered at ê  instead of 8,. The normalizing 
constant c,, is the same as previously sLated. Note that for 
8 in i8, we have 18 - Bel I 10 - 8(+  10 - 001 I 2 J K / n  = 

26,,. Then, by the same reasoning as in (5.11, we have 

where p(26,,, e,,), obtained from the modulus of continuity 
of log w(8) at e,, tends to zeroAas a,, + 0. Now expanding 
the square, we have for 8 in N6,, 

Po,,( X " )  * 
logy - --(e - e,12 -log-- 

I / N A , , (  P e ( X  ) 2 

Then, taking an expected value inside the integral, which 
is valid by an application of Fubini's theorem, and 1 
using the second-order  Taylor approximation 

positivity and continuity of w(8) at Bo, which are valid 

- [fi(% - U S , ,  + p,I1$,, j1{.y:J<;5,,> K )  

E log p , , { X ) / p & X )  = (1/2)-(0 - O0l2 + o(l6 - e,-('> and the 
1 

under Condition 2, we obtain 2 5- (e -8[ , - (2+f i ( e , , - e )Ts , ,  + 2 s ~ ~ < l ~ , ,  

( 5 . 5 )  7 - 1  
+ J o , ,  ~ , 1 1 ( \ ! J $ , , >  K ) '  

By comparison with a multivariate normal integral, we 
bound c,, = 1 e-("/2)1"-HJ2 dB as follows The last inequality follows frcm observing that in the 

event { S i J i , ' S , ,  > K ) ,  we have 8 = Bo, and by the Caucky- 
(1-  d / K ) ( 2 5 ~ ) " / ~ n - ' / / ~  det Schwarz  inequal i ty  f i - ( (O<&- -  O)'S,,I I 6 1 8  - 

B I ( S ~ J ; ' S , , ) 1 / 2 ,  which for 0 in N6,,, is not greater than 
K i/2(SLJ<!'S,l)'/2 I STJ<,"s,,. Incorporating (5.5) into 

Nk, 

< c,, < ( 2 ~ ) " " n - " / ~  det I<,'/' (5.3) 
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-fi(e,, - e)Ts,, - "e,, - el* 
2 

(5.4), we have Now, given any E > 0, (5.10) is bounded by 

lim E (  R , ~ )  + = 0. . (5.9) n - r  

(5 .6 )  

We now show that the integral in the second line of 
(5.6) tends to zero in L ' ( P ) .  Toward this end, we bound 
its absolute value by 

for all 0 near 0,, by the mean-square differentiability of 
l o g p , ( X )  at Bo. Here, we have used the fact that the 
expected square in (5.12) is the variance of the sum of 
independent CO ies of the random variables logp,,{X)/ 
p , ( X ) - ( O ,  - Ofi,{X). (Note that S, = ( l / f i ) E , { X , )  
has mean zero since as a consequence of the mean-square 
differentiability, Ei,<{X) must be the gradient of 
E log po,( X ) / p H (  X) at B o ,  which is zero under Condition 
2.) 

In addition, from the second-order Taylor expansion of 
E log p e , ( X ) / p o ( X ) ,  which is valid under Condition 2, 
the expression in (5.11) is bounded by ncl0, - 012 for all 0 
near 8,. Together with (5.13), this shows that the expecta- 
tion in (5.9) is bounded for all large n,  by (4n8: + 
2 6 8 , ) ~  5 ( 4 K  + 2 f i ) ~ ,  uniformly for 0 in N28,z. 

We can now finish the proof of Theorem 2.3. Denote 
the error in the approximation we seek as 

which follows from the b y n d s  on c,, as in (5.3) and from W(0,)P", , (X")  d n 
the inequality ( n  /2)p - el2&> ( n  /2))0 - $cl/' - 2 K from 0 Rn = log - -1og- 

m(X.1 2 2rr 

1 1 

2 

in N,,,. Thus, t,he density 4,7(0), which is centered at the 
random point 0, is bounded in terms of the density 4,T(8) 

Taking the expected value of the integral in (5.7), we 

- -log det (.In,,) - 2 S!>il'S, . 

Using (5.6), collecting the bounds on the terms from (5.3) 
and (5 .8) ,  and setting E = we have that for all 

centered at the nonrandom Bo.  

obtain 

n 
2 

- -18, - 01' d0 (5.8) 

where the exchange of integral and expectation is valid by 3 
+ - E S ~ ~ ~ , ' S l I 1 ( S , : I ~ ~ ' S , , >  2 K ) '  (5.14) the Fubini-Tonelli theorem for nonnegative functions. 

tion converges to zero, uniformly for e E 

Thus, it is enough to show that the following expecta- Now S,~.I;,'lsll is uniformly integrable; therefore, we may 
let n +m, and then K --)cc in (5.14) to conclude that 

This we bound by 

E Proof of Theorem 2.4: Here, we show that if Condi- 
tions 2 and 4 are satisfied, then the result of Theorem 2.1, 

(5.10) (2.5) is equivalent to the L' convergence of the difference 
of the logarithms of the posterior density of T = 

(5.11) G ( 0  - e , ) ,  d e n o t e d  w T ( t ( X " ) ,  a n d  t h e  
Normal(J;~'S,,, J;,') density, denoted 4,,(r). 



For t = 0 ,  we evaluate logw, ( t lX”) - log~ , , ( t )  and 
see that it is 

log (( /fi)‘‘w( ‘0) p (  X ”  le,) / m( X ”  )) 

- log ( ( 2 n- ) - “’’ det I;,,’’ + ( 1 /2) S , ; J ,  IS,, , 

which tends to zero in L ’ ( P )  if and only if (2.5) holds. 
For any fixed t # 0, we have that log w(0, + 

r / 6 ) / w ( B c , )  tends to zero by the continuity and positiv- 
ity of the prior at Bo. Note that log(4,1(t)/4,1(0)) = tTS,, - 
(1 /2)t NOW, log ( p(  X ”  I Bo + t / v‘G)/p( X ”  16,)) - t ‘S,, 
+(1 /2 ) r rJ0 , ;  converges to zero in L ’ ( P ) ,  as is shown for 
(5.91, assuming Conditions 2 and 4. In this case, 
lim Ellogw,(tlX”)-log 4,,(t)l = 0 if and only if this limit 
obtains at t = 0, which is equivalent to (2.5). This com- 

0 pletes the proof of Theorem 2.4. 

VI. POSTERIOR CONSISTENCY 

The posterior distribution is consistent if it converges to 
a degenerate distribution at the true parameter value. 
Posterior consistency is traditionally used as a key step in 
showing the convergence of Bayes’ estimators. The study 
of asymptotics for the posterior distribution began with 
Laplace and has been subsequently examined by many 
including Le Cam [40], [41], Schwartz [48], Von Mises [ S I ,  
Walker [%I, Berk 191, [lo], Johnson 1301, [311, Bickel and 
Yahav [ 1 I], lbragimov and Hasminskii [29], and Hartigan 
[25]. We use here the techniques of Schwartz [48], based 
on the existence of uniformly consistent tests of hypothe- 
ses, to derive the sufficiency of the soundness condition 
for posterior consistency at a given rate. 

Formally, by posterior consistency, we mean that when 
Bo is taken to be true, then for every neighborhood N of 
Bo, the posterior probability W ( N I X ” )  converges to one 
in probability, i.e., for every cy > 0 

lim PO,,(W( N I X ” )  > a }  = 0. 

By posterior consistency at rate O ( f ( n ) )  we mean that for 
each neighborhood N and a > 0, there exists c such that 

ri ’ 3 ;  

PH,,w(NI’w>4 < c f ( n )  

where f ( n )  + 0 as n +E. Posterior consistency with rate 
o ( f ( n ) )  is defined similarly. 

As is defined in Section 11, the main condition we use is 
the soundness of the parametric family. Other conditions 
may be used for posterior consistency. For instance, the 
conditions of Wald [57] are sufficient. In particular, the 
conclusion of Wolfowitz [60] readily yields a uniformly 
consistent test (see also Strasser [Sl] and Le Cam [40]). In 
some cases, however, Wald’s conditions (especially the 
condition that Eo,, sup,o, > , log p ( X l 6 )  < m for some r > 0) 
are not satisfied or they are hard to verify. We find the 
soundness condition to be more fundamental and in some 
cases easier to verify. 

A test of composite hypotheses is said to be uniformly 
exponentially consistent (UEC) if the type-I and type-I1 

error are uniformly upper bounded by e-”‘  for some 
positive r (see 161). 

The next three propositions amount to a proof of 
Theorem 2.2. Proposition 6.1 shows that analogs of the 
soundness condition for certain metrics on probability 
measures imply the existence of UEC tests. Proposition 
6.2 shows that metrics with the desired consistency prop- 
erty exist. In Proposition 6.3, we use the existence of a 
UEC test to guarantee the consistency of the posterior 
distribution at the desired rate. 

Consider metrics d ( P , Q )  on the space of probability 
measures on X with the property that for any E > 0, there 
exists r > 0 such that 

~ ~ ~ ( d ( t , , ,  P )  > E }  I e-”’ (6.1) 
uniformly over all probability measures P ,  where p,l is 
the empirical distribution. Examples of metrics that sat- 
isfy (6.1) include the Kolmogorov-Smirnov distance, as is 
shown by Kiefer and Wolfowitz [33], the distances of 
Vapnik and Chervonenkis [54], and as shown below in 
Proposition 6.2, certain metrics constructed to imply weak 
convergence. The idea for the following proposition is 
from Hoeffding and Wolfowitz [28]. 

Proposition 6.1: Suppose d is a metric satisfying (6.1) 
and 

d(  P,, Po,,) + 0 implies 6 + Oc,.  (6.2) 

Then, for any 6 > 0, there exists a UEC hypothesis test of 
0 = eo versus (0: 10 - 6oI > 8).  

Proof: From (6.2), given 6 > 0, there exists an E ’ >  0 
such that 10 - 13,) > 6 implies d( Po, Po,,) > E’. If we have a 
UEC test of 

H :  P = P,,, versus K :  P E  {Q: d ( ~ ,  P, ) > E ’ )  

H:O=B,versus K : B ~ { O ’ : l 6 ‘ - 6 , l > 6 } .  
The identification of a UEC testAfor the nonparametric 

class of alternatives remains. Let P,, denote the empirical 
distribution, choose E = ~ ‘ / 2 ,  and let 

then we have a UEC test of 

c,, = { x)’ : d(  F,, , P,) > E} 

be the critical region. By (6.1), we have that the probabil- 
ity of a type-I error satisfies 

PO,(C‘,,) I e-”” 

and for any choice Q in the set of alternatives, we want to 
show that the probability of a type-I1 error 

Q(c:,> = Q{d(P,,,P,> S E }  

is uniformly exponentially small. From the triangle in- 
equality, we have that for X ”  in C,‘, 

2~ I d(  Po,,, Q )  I d(  pH,,, p,!) + d(F,!? Q )  
- < E  + d(F,, ,Q).  

Therefore, again by (6.1) 

Q(C:,> 5 Q ( d ( k Q >  2 E )  

- < e-’”’ 
uniformly for Q in K .  0 
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For the following proposition, the probability measures 
are assumed to be defined on the Bore1 subsets of a 
separable metric space X .  

Proposition 6.2: For probability measures on a separa- 
ble metric space, there exists a metric d,(P,Q) that 
satisfies (6.1) and such that convergence in d, implies 
weak convergence of the measures. Therefore, in particu- 
lar, for measures in a parametric family 

d,( P ~ ,  P,,,) + 0 implies P, + P,,,. 

Consequently, if the parametric family is soundly parame- 
terized, there exists a UEC test of 8 =  Bo versus {e :  

Proof: Let G = { F , ,  F2, . . . } be the countable field of 
sets generated by balls of the form { x :  d,(x,s,) I l / k }  
for j ,  k = 1,2; . ., where here, d, denotes the metric for 
the space X ,  and s I ,  s2,  . . . is a countable dense sequence 
of points in X .  Define 

1 0  - e,1> 6). 

m 

d, ( f ' ,Q> = C 2 p ' 1 P ( F l ) - Q ( F , ) l .  

Here, d, is a metric on the space of probability measures 
with the property that if dc(P,,,P,)-+O, then P,, con- 
verges weakly to Po (see pp. 251-253 of Gray [24]). 

r = l  

Now, for any E > 0 
k cc 

d G ( P , , > P J <  c 2 - q P n ( F o - P 0 ( c ) l +  c 2-' 
r = k + l  r = I  

for k 2 1 + l o g 2 / ~ .  Then 

d, ( I;,, 7 ) 2 €1 < ~ o (  1 p n  ( F, - ( I > E 12) 
I s i s k  

I C Po{ I P n (  ~r 
- 

~i I > E/'} 
r s k  

< 2kep2n('/2? 

- - 2ke-ntz/2 
- 

by Hoeffding's inequality [27]. This verifies (6.1) and com- 

The third proposition uses the conclusion of the pre- 
ceding proposition as its hypothesis and obtains a poste- 
rior consistency result as is required for Theorem 2.2. 

Proposition 6.3: Suppose that Condition 2 is satisfied by 
the family, that is, D(Po,,llP,) is twice continuously differ- 
entiable at 8 = Bo,  with J(0 , )  positive definite, and the 
prior w ( 0 )  is continuous and positive at 8,. For any 
neighborhood N of Bo, if there exists a UEC test of 8 = 8, 
versus 8 E N ' ,  then there is an r > 0 such that 

pletes the proof. U 

P,,,( k ( s ) p ( x ' i l s )  de <ell' 

= O ( i )  

and consequently 

Proof: To make use of the existence of a UEC test, 
we will first want to show that for any given r '>  0, the 
probability of the event 

I 

q; = ( lN:(e)p( xn le )  de < e-'''>( xnle,)  

q; = ( / N w ( e ) p ( x ) p )  de < e-'l~>(x'~le,) 

is O ( l / n ) .  Set N, = ( e :  l8-8,l <a), where the norm is 
taken with respect to J,,, as in Section IV. Since N, is 
contained in N for all small 6, it is enough to show that 
the following event has probability of the desired rate 

This set may be rewritten as 

where rn(x"lN,) = /N8w(8)p(x"18)dO/ W(N,) is the mix- 
ture of distributions with respect to the prior conditioned 
on 8 E N,, and 

1 
n 

ri = r'-  -log W( N , ) .  

By Condition 2 and the second-order Taylor expansion 
of D(Po0lP,),  we see that for all small 6 > 0, the points in 
the set N, satisfy D(PoollP,) I S2, and w ( 8 )  2 w(8,)/2. 
Then, by evaluation of the volume of the ellipsoid N, and 
setting 6 = 1 / 6 ,  we have for all large n 

W (  N, )  = 1 w ( e >  de 
N,5 

where cd is the volume of the unit ball in Rd. Conse- 
quently, ( l / n ) ( l o g  W(N,)I = O((log n ) / n ) ,  which tends to 
zero; therefore, r; converges to r', and hence, r; 2 r ' / 2  
for all large n.  

Now by Markov's inequality, we note that 

where we have used the fact that the negative part of the 
integrand in the relative entropy is always bounded below 
by e- '  since x log x 2 - e - ' .  It is enough to bound the 
relative entropy in (6.3). Noting that M,(.IN,) is an 
average of measures PH)I for 8 in N,, we have, by convex- 
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ity and the choice of 6 = 1 / 6 ,  that 

D (  pi:,\ Mri( . I ~6 ) 5 / n o (  P ~ ~ , , I I P ~ , , )  ‘0 
N ,  

- < n S 2 = 1 .  

Consequently, for all large n 

2 
Pfi,{U,F) 1 7 ( 1 + 2 e - ~ )  

nr 

which is clearly O ( l / n ) .  
At last, we use the hypothesis on the existence of a 

UEC test. By an argument due to Schwartz [48], in the 
proof of Theorem 6.1, the existence of a UEC test implies 
the existence of rcl, r l  > 0 so that 

p,,(p( xrlle,) e ~ r ~ ~ / N ~ w ( s ) p ( ~ n l e )  de I e-,,‘’. (6.6) 1 
We can now obtain a bound on the probability of con- 
cern. Let r E (0, r,) and set r’ = r0 - r .  Then, by use of U,, 
to set up (6.5) and (6.6), we have that 

which gives the desired result. 0 

These previous two propositions use mild hypotheses to 
guarantee posterior consistency at a good rate. Here, the 
key assumption was soundness. We conclude this section 
with a brief demonstration of soundness of exponential 
families. 

Soundness of Exponential Families: As in Section 11, 
consider familjes of probability densities of the exponen- 
tial form e-’ 4‘”)g(x) /c (8)  with the natural parameter 
space 0 = (0 E R“: 4 0 )  <w), where c(0) is the normaliz- 
ing constant. Setting z = 4 ( x )  and choosing the appropri- 
ate dominating measure v(dz) ,  the family is expressed in 
standard exponential form as p ( z l 0 )  = e-”‘z-d’(o), for 
0 E 0, with $(e )  = log c(0) and c ( 0 )  = /e-”‘v(dz). The 
assumption that eT4(x> is nonconstant, unless 8 = 0, 
means that in the terminology of Brown 1131, the standard 
exponential family is minimal. 

Let e,, be a point in the interior of 0. Bv direct 

family is seen to equal D(p,<,(lp,)= $ (e ) -  $(8,)+(6’-  
O,,)’E,,jZ and V$(H,,)= - E,,Z. From the continuity and 
convexity of $, i t  follows that U (  pH(,II p H )  + 0 if and only if 
0 + Bo. Now, D(p,,,llp,,) + 0 implies Po --j Po,,. It remains 
to be shown that in exponential families, the reverse 
implication is also true. 

Here, we assume that E,,,Z is in the interior of the 
support of Z,  as is the case, in particular, if this support is 
convex. (In general, EooZ is in the interior of the convex 
hull of the support of Z ,  see Theorem 3.6 of Brown [13].) 
To prove soundness, we show that given any sequence of 
0’s that stays bounded away from e,, the sequence P, 
does not converge to P,,,. Given such a sequence of 8’s, 
fix an orthant occupied infinitely often by 0 - B o ,  and let 
A be the event that Z -  E,,,Z is in that orthant. Then, 
restricting to the subsequence in the orthant, we have that 
(0 - 8,IT(z - Eo,,Z) is positive for z in A ,  from which it 
follows that p(z l0)  I p(z18,)e-D(PHoll”H) for z in A .  Con- 
sequently, P&A) I POt{A)e-”(Pdp~) .  Since Poc{A) is posi- 
tive, it follows that if 8 does not converge to 8,, then Po 
cannot converge weakly to Po,,. This demonstrates the 
soundness condition. 

We note also that since D(p,,,llp,) is a strictly convex 
function of 0, which is minimized at O,, the sets {e :  
D(p,,,llp?) < r }  are compact. Therefore, if I3 diverges from 
the family 0, i.e., if the sequence of 8’s is eventually 
outside any compact subset of 0, then D(p,,,Ilp,) tends 
to infinity. By this reasoning, the weak limits of such 
sequences must assign zero measure to the set { Z  - E,Z 
E A }  for some orthant A ,  whereas the P,,, measure of 
the set is nonzero. As mentioned in Section 11, this 
degeneracy of divergent sequences provides another 
demonstration of the soundness condition. 

evaluation, the relative entropy between densities in the [I11 
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