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Abstract—For Gaussian regression, we develop and analyze
methods for combining estimators from various models. For
squared-error loss, an unbiased estimator of the risk of the
mixture of general estimators is developed. Special attention is
given to the case that the component estimators are least-squares
projections into arbitrary linear subspaces, such as those spanned
by subsets of explanatory variables in a given design. We relate the
unbiased estimate of the risk of the mixture estimator to estimates
of the risks achieved by the components. This results in simple
and accurate bounds on the risk and its estimate, in the form
of sharp and exact oracle inequalities. That is, without advance
knowledge of which model is best, the resulting performance is
comparable to or perhaps even superior to what is achieved by
the best of the individual models. Furthermore, in the case that
the unknown parameter has a sparse representation, our mixture
estimator adapts to the underlying sparsity. Simulations show that
the performance of these mixture estimators is better than that of
a related model-selection estimator which picks a model with the
highest weight. Also, the connection between our mixtures with
Bayes procedures is discussed.

Index Terms—Bayes mixtures, combining least-squares regres-
sions, complexity, model adaptation, model selection target, oracle
inequalities, resolvability, sparsity, unbiased risk estimate.

I. INTRODUCTION

REGRESSION problems in statistics concern estimating
some functional relation between a response variable

and explanatory variables. Often there are multiple models
describing such a relation. It is common to employ a two-stage
practice which first examines the data and picks a best model
based on some model assessment criterion, and then uses an
appropriate regression estimator for that model. This is useful
when a parsimonious model for explaining the response is
desired. However, model selection procedures can be unstable,
as small changes in the data often lead to a significant change
in model choice. Moreover, the inference done with the esti-
mator for the chosen model can be overly optimistic as model
uncertainty from the selection procedure is often neglected.
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Combining estimators from different models is an alternative
to model selection-based estimation. We may take each compo-
nent model to be a linear subspace of the full model space and
the corresponding estimator to be the least-squares projection
of the observations into that subspace. The combined estimator
consists of a convex mixture of the component estimators with
weights that may depend on the data. In this paper, we study
properties of the statistical risk (mean-squared error) of the com-
bined estimator. An information-theoretic characterization of an
unbiased estimate of its risk is provided. Furthermore, the risk of
the resulting mixture is not much more than an idealized target
defined by the minimum of risks achieved by the various esti-
mators (one for each model considered). This is what Yang [1]
calls combining for adaptation and the risk target is termed the
model selection target by Tsybakov [2] since it lower-bounds
the risks of all model selection-based estimators. The general
sharp risk bounds, or oracle inequalities, shown in this paper are
obtained by choosing certain types of weights that adapt to the
data. Moreover, the resulting mixture estimator often performs
better in simulations than a related model-selection estimator,
which picks the estimate corresponding to the highest weight
model.

A primary motivation behind mixing estimators is that it
often improves the risk in regression estimation, as “betting”
on multiple models provides a type of insurance against a
singly selected model being poor. Another motivation comes
from consideration of Bayes procedures which are known to
possess desirable properties in any statistical decision problem.
Indeed, Bayes procedures minimize the average case risk with
respect to the prior. With squared-error loss, a Bayes estimator
is a convex combination of estimators weighted by the corre-
sponding models’ posterior probability (see Hoeting et al. [3]
and the references cited therein).

A key tool in our analysis is the unbiased estimate of risk by
Stein [4], [5]. We adapt it to provide risk assessment for mix-
tures of general estimators and to produce risk bounds for the
mixture of least-squares estimators in linear models. Mixtures
of shrinkage estimators, which are nonlinear, are analyzed in the
thesis [6].

A. Overview

In regression and function estimation problems with fixed de-
sign, one has observations of response values plus inde-
pendent Gaussian noise, for indices . These re-
sponse values may be equal to the values of an unknown
function where the given are vectors of explanatory
variables. We also have functional models available for our con-
sideration that may or may not approximate such a true well.
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In choosing a procedure for estimating the response values ,
we recognize that unobserved or hidden variables may also con-
tribute to the true . Thus, we adopt the general setting that

with in and errors distributed as ,
where for simplicity is known. Though the true is allowed
to be general, our estimators will be constructed from (usually
linear) functional models and combinations thereof. We shall
use squared-error loss and its expectation, the
mean-squared error, as the risk in assessing the performance of
our estimators.

If the estimate is not constrained to live in any of the models of
interest, the simple estimator can be obtained by maximizing
likelihood or by least-squares, and has a mean-squared error of

. Least-squares regression into a lower dimensional space
has risk that can potentially be much smaller, depending on how
close the true is to that space. Here we combine least-squares
regressions into various linear subspaces, and provide accurate
upper bounds for the risks of the mixtures which can be vastly
reduced from due to model adaptation. Again, our aim is to
have the risk of the combined estimator close to the minimum
of the risks of the individual estimators.

A linear regression model is a -dimensional linear sub-
space of in which the mean vector may reside. We con-
sider classes of linear models . Typically, each in
is spanned by subsets of columns of a design matrix of predic-
tors. For each model , there is a basis of columns denoted
by for which the mean is modeled as for some un-
known . Let be the least-squares pro-
jection of the observed for each model . Its risk can be de-
composed into squared bias and variance via the Pythagorean
identity

(1)

where is the Euclidean norm, is the projection of the
true mean into the subspace , and the expectation is taken
with respect to the sampling distribution of given . Thus,
if is close to the subspace with small compared to ,
then the projection estimator will have a small risk, perhaps
much smaller than .

We now propose a convex combination of these estimators

where the data-determined weights are chosen
to give emphasis to models assessed to be better. In particular,
for each model , let be an unbiased estimate of the risk of

given by

(2)

in accordance with Akaike [7], [8], Mallows [9], or Stein [4],
[5], which means that for each in .
Then we define the weights to be

(3)

normalized to have unit sum over . The tuning param-
eter adjusts the degree of concentration of the weights on the

models with small risk estimates. The two extremes are ,
which gives the uniform distribution on , and , which
assigns nonzero weights to only the models with minimal esti-
mated risk. Typical values are , which gives the weighted
mixture a Bayes interpretation, and , which leads to the
main risk bounds.

We will show that the -averaged risk estimate
is a crucial part of an unbiased risk estimate of the mixture .
In fact, for , it is an upper bound

with equality when . Let be a minimizer of risk esti-
mates satisfying . We will show that the average
risk estimate admits the representation

(4)

where is the entropy of the weights
. This identity shows how the interplay between the positive

and the negative terms characterizes how close
the -averaged risk estimate is to the minimal risk estimate .
In any case, is upper-bounded by where is the
cardinality of . In particular, when

(5)

Taking expectation, we show that the risk satisfies

(6)

We have used a risk target

(7)

which corresponds to a model with optimal bias and variance
tradeoff. This is the main term in the bound (6) for the risk of
the combined estimator. Indeed, the first term on the right-hand
side of (1), is a sum of terms,
so typically is much larger than the term in (6) (unless
one has the surprisingly good fortune that is close to one of
the subspaces considered with dimension lower than ).

It is sometimes useful to incorporate a deterministic factor
in the model weight to account for model complexity

or model preference, in a manner that facilitates desirable risk
properties. Suppose such factors are assigned, where ex-
pressing them in the form and requiring
that they sum to at most one endows model with an inter-
pretation of having descriptive complexity . Thus, low-com-
plexity models are favored. The new weights become

(3a)

where these combined weights are again normalized to have
unit sum. As before, the choice has a Bayes interpreta-
tion, and leads to the main risk bounds.

As in the case without , the -averaged risk estimate is an
upper bound for the unbiased risk estimate of this mixture ,
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formed with the new weights (3a), when , with equality
at .

Information theory also elucidates the risk analysis of mixing
with this more general form of weights. The average risk esti-
mate admits the following analogous representation:

(4a)

where now

is the model with the highest weight, and

is the information divergence between the weights and . The
terms in (4a) gauge how close the average

risk estimate is to the minimum risk estimate plus complexity
. When

(5a)

Moreover, the following risk bound is shown to hold:

(6a)

The right side, expressed via (1) as

is an index of resolvability of by the model class which
calibrates the mixture estimator by the best tradeoff in approxi-
mation, dimension, and complexity (corresponding to the three
terms, respectively) among the models in .

Note that the terms in (5) and (6) (excess beyond the
minimum) are now subsumed under the terms in (5a) and
(6a). Not surprisingly, the latter recovers the former when the
uniform model weights are used, but in this case,
we will show tighter bounds in Section IV due to a technical
refinement.

B. Background

Essential to the concept of Bayes mixtures are Bayesian in-
terpretations of individual least-squares regressions, which date
back to ideas of Bayes, Laplace, and Gauss. In particular, the
linear least-squares projections in Gaussian models arise as the
Bayes estimators with (improper) uniform prior on the coeffi-
cients of linear combinations. Each associated posterior weight
for such a model is proportional to ,
times a function of the model dimension . The heights of
the uniform priors (with infinite total mass) are arbitrary. These
heights do not affect the individual Bayes estimators, but they do
lead to ambiguous posterior weights. To resolve this ambiguity,
Hartigan [10] assigns these prior weights based on hypothesis
testing interpretations and arranged the posterior weights to be

(normalized to have unit sum), favoring the

models with lower risk assessment . See also Buckland et al.
[11] for numerical evaluations with these weights.

Demonstration of detailed risk properties of weighted regres-
sions has been challenging. Analogous information-theoretic
bounds for Bayes predictive density estimation (or Cesaro aver-
ages thereof) have been developed by Barron [12], [13], Catoni
[14], and Yang [15], [16]. We call attention to Yang [1, Sec.
2.6] where he gives an exponential form of weights (with ar-
bitrary ), which, when his theory is specialized to Gaussian
errors, produces the weights we use here.
Catoni [17] and Yang [1] give oracle inequalities similar to ours
for prediction mean-squared error via mixing arbitrary bounded
regression functions. However, their terms have coeffi-
cients depending on the assumptions of the problems, and are
larger than ours even in the simplest Gaussian setting. In most
of the work by Yang and Catoni, they also split the data into
two sets, one for setting the weights, and the other for forming
the estimates . In contrast, the analysis technique employed
in this paper allows use of all the data, and all at once in con-
structing both the weights and the estimates.

To achieve such bounds, we give an unbiased risk assessment
of the combined estimator with weights for
arbitrary . The choice produces Bayes procedures.
The best bounds via our technique occur with .

George [18], [19] also studied mixing estimators, with em-
phasis on Stein’s shrinkage estimators, which are nonlinear, and
provided an expression for the risk estimate of the mixture using
Stein’s result [5]. The form we give here has an explicit in-
terpretability that leads to risk bounds for the applications to
mixing least-squares estimators. Mixtures of shrinkage estima-
tors using similar techniques are also analyzed in [6].

II. UNBIASED RISK ASSESSMENT

As above, we have in and for each
model , we have an estimator . Typically,
each estimator is tied to various explanatory variables given in
a design matrix via a functional model. In Section II-A, we give
expressions for the risk estimates of general mixture estima-
tors composed of arbitrary estimators (not necessarily linear).
We propose a special form of weights that simplify the expres-
sion for the mixture risk estimate in Section II-B. Finally, we
will apply the general risk estimate results to the case of linear
models and least-squares in Section II-C.

An important realization is that, unlike Akaike’s information
criterion (AIC) [8] which gives an unbiased risk estimate only
for each model separately, Stein’s identity [4], [5] can be applied
more generally to provide an unbiased estimator of the risk of a
mixture estimator.

We shall use

for Sections II–VI for notational simplicity.

A. Risk Assessment for General Mixture

We use the notation for the inner product
of vectors and and for the gradient where .
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Suppose for each , the estimator is almost differentiable
in (that is, its coordinates can be represented by well-defined
integrals of its almost-everywhere derivatives , which is
implied by continuity together with piecewise differentiability)
and that have finite first moments. Then Stein [4], [5]
gives an unbiased estimate for the risk ,
i.e., for each .

Our goal is to give an unbiased risk estimate for the mixture

where the weights are nonnegative, sum to one, and al-
most differentiable. We further assume that are
finite. We also suppose is finite (though under mild condi-
tions, the conclusions can be extended for infinite ). The fol-
lowing theorem relates the unbiased assessment of the risk of

to unbiased assessments of the risks of the individual estima-
tors .

Theorem 1: With the above assumptions, an unbiased esti-
mate of the risk of the mixture
is given by

(8)

In addition, if

(9)

for almost differentiable and arbitrary constants
, then

(10)

This unbiased estimate of risk (8) has three terms. The prin-
cipal term, , is the weighted average of the individual
risk estimates. This average is a crude risk assessment, possibly
biased. However, with suitable design of the weights, we will
show that it becomes an upper bound for the unbiased risk as-
sessment for the mixture of least-squares regressions. Also,
an information-theoretic representation of this term yields the
conclusion that it is not much larger than .

The second term, , wonderfully illus-
trates an advantage of mixing estimators. If the estimates
vary with , then combining them reduces the unbiased risk
assessment by the weighted average of the squared distances of
the from their centroid . The unbiased risk estimate for
the mixture (8) intuitively reveals this reduction based on vari-
ability of estimates among a model class (as varies for a given
sample), rather than based on the variance of the estimators (as
the sample varies for a fixed model ), which is a motivation
for resampling-type estimators.

The third term, , quantifies the ef-
fect of the data sensitivity of the weights via their gradients with
respect to the data . Constant weights would make this term
zero, but would not permit means to adapt the fit to the models

that have smaller . Finally, the exponential form of weights
(9) gives a particularly clean mixture risk estimate (10) that de-
pends on the weights via the gradient of the exponents in the
relative weighting only and not the normalization.

If our weights focus on models assessed to be good, then our
intuition says that the third term quantifies the price one pays
for making the mixture estimator adaptive, so it should have a
positive expectation (otherwise, mixing offers a “free lunch”).
However, in the corollary in the next section, we will show how
to design weights such that this third term can be canceled with
the second.

Proof of Theorem 1: According to [4], [5], an unbiased
estimate of the risk of any estimator is given by

(11)

as long as each has finite absolute expectation, but our as-
sumptions are sufficient to ensure this. Now with a variance cal-
culation using the weights as a distribution on , summing
over each of the coordinates, we rewrite the first term above as

The second term can be expanded via differentiation under the
summation sign

and we recognize in these components the terms of

(12)

such that

after exchanging the order of summation over and . The last
term here is the same as

because (as the
weights sum to a constant). The above display equals

by exchanging the order of summation
again and the first claim (8) follows.

For the second claim, equals minus
a function (the gradient of ) which does not
depend on . Now since has -average being the null
vector , its inner product with a quantity not depending on
averages to under the weights , so that we are left with the

term. This proves (10).

Remark: One can adjust by adding any function of
that does not depend on without changing either the value of

or the validity of (10).
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Remark: The above risk estimate formulae hold coordinate-
wise. That is, putting in
(11) yields an unbiased risk estimate for

such that for each . Then an unbiased
risk estimate for the mixture is given by

With weights (9), we can further simplify this to

Given a collection of models and its corresponding estima-
tors, we can use Theorem 1 to design data-determined weights

that make the unbiased estimate of risk (8) for the mixture
small. The weights (9) offer a tractable start, and we can further
simplify (10) in certain cases laid out in Section II-B. Our risk
bounds developed later is one such application.

A second application of the theorem is evaluation of model
classes and their respective mixture estimators, as there can be
multiple model classes that meaningfully decompose a common
parameter space into various scientifically reasonable models
(linear and curved). Provided that we have the component esti-
mators in each model class and weight them appropriately, we
can evaluate how effectively each model class explains the data
using (8). One can go further with this for model class design.
For instance, a goal may be to heuristically choose a collection
of models rich enough to cover the considered parameter space,
and yet the models are different enough to provide enough vari-
ability in their corresponding estimates such that the second
term in the right-hand side of (8) offers a large reduction in the
unbiased risk estimate (while the third term is controlled).

B. Special Forms of Weights and a Bayesian Interpretation

A special form of weights (9) allows further simplification of
the mixture’s unbiased risk estimate.

Corollary 2: If the weight exponent has gradient
for all and some fixed , then

(13)

In addition, if , the risk estimate can be bounded by

with equality when .
Proof: From the stated assumption of the form of ,

we see that after adding a function not depending on ,
matches a multiple of so the first claim fol-

lows from (10) and the first remark in Section II-A. Choosing
or smaller eliminates the second term.

We turn our attention to Bayes procedures (strictly speaking,
posterior Bayes). Possibly improper prior measures for

in are said to produce proper posterior distributions if the
integral of the Gaussian likelihood

(14)

is finite for each and . In that case, expression (14) is
called the marginal density of (also known as Bayes factor
for ) and is denoted by ; and , proportional to

, is the posterior probability of model . More-
over, is the Bayes mixture of the
individual Bayes estimators .

Corollary 3: For a Bayes mixture, the unbiased risk estimate
(13) holds with . That is,

Proof: For each fixed , the (posterior) Bayes estimator
satisfies [20, Ch. 4, Theorem 3.2]

(15)

Indeed, having assumed that is finite for all , dif-
ferentiation of it under the integration sign (14) is justified
for the Gaussian likelihood (cf. [21, Ch. 2, Theorem 9] for
a more general result about exponential families) and this
permits us to rewrite the posterior expectation of as

, yielding the last equality in (15). Thus,
has gradient so that (13)

holds with by Corollary 2.

Alternatively, we can heuristically apply Theorem 1 to
weights emphasizing models with small risk estimates

(16)

where the positive constants are a mechanism for assigning
model preference. That is, we take in (9). The
parameter controls the relative importance of averaging across
models (small ) and picking out the one that is empirically
best (large ). The two extremes are , which ignores
the observations and weights the models by only, and

, which uses only the model(s) with minimal estimated
risk.

Intuitive appeal aside, an important motivation for these
weights is that, in the case of using least-squares estimators

for linear models (explored in the next subsection),
weights (16) yield further simplification of (10) via Corollary
2. In particular, linear least-squares coincide with (posterior)
Bayes estimators (15) when one chooses a prior uniform over
(and restricted to) the linear subspace for each model . In
this case, the posterior probability takes the form of (16) with

when prior densities for under (with respect to the
Lebesgue measure on ) have relative heights
and the prior probabilities for model are .

Remark: One can also think of the parameter as a tuning
coefficient for inflating the error variance . We will show
that mixing estimators with , a conservative approach
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regarding the noise to have twice its actual variance, achieves
the best risk bound.

Remark: Mixtures composed of positive-part James–Stein
shrinkage estimators using the heuristic weights (16) also prove
to have low risks, as shown in [6].

C. Linear Least-Squares

Now we specialize to the case that each model
is a linear subspace of . The estimator under such a
model is the least-squares projection of the observations into
the -dimensional linear space, the column space of a de-
sign matrix of a subset of explanatory variables. This can
be accomplished by Gram–Schmidt procedures, or explicitly
via the projection matrix such that

.
In essence, combining these least-squares projections pro-

duces a shrinkage estimator which draws the observations
toward the linear models in . The closer seems to be to a
certain model (as assessed by the unbiased estimates of risks
of the individual estimators), the more the shrinkage, since the
weight for the projection would be large, drawing the
mixture closer to .

Lemma 4: For each linear model , the expression assigned
to in (2)

is an unbiased risk estimate for . Moreover, has gradient

Proof: It is fruitful to consider an orthonormal basis for
for which the first elements of this basis spans . A

point in can be represented by a linear combination of
these basis elements, whose coefficients are obtained by inner
products with . In other words, there exists an orthonormal
matrix , a function of , whose first columns span .
Then has a representation , with coefficients obtained as

. Moreover, , with and

is the corresponding least-squares projection in the new coor-
dinate system which simply retains the first elements of .
Similarly, the projection of has the representation

in this system. Then, since the norm is preserved by orthonormal
transformations, the risk of is

(17)

With as the projection of into , the sum above equals

Thus, we have re-established the Pythagorean identity (1) for
the risk

(18)

The unbiased risk estimate is easily computed in the new
coordinate system. From (17), and the unbiasedness of
for for each , we deduce that the following is an unbiased
estimate for :

Since is a norm-preserving transformation, this shows the first
claim, and yields a simple expression for the gradient of

with respect to because

where if and otherwise. Since the ele-
ments of are exactly the derivatives , applying
the multivariate chain rule gives

and the second claim follows.

Remark: An alternative proof is to use Stein’s identity (12),
together with the fact that to show that is unbi-
ased. Then write

where the last equality follows from the fact that is
symmetric and also a projection (onto the orthogonal space of

). Then the gradient of (2) is .

Thus, for linear least-squares estimators, by choosing
proportional to , the condition for Corollary 2
is satisfied. With these weights at , the resulting expres-
sion in (10) is only the -average of the unbiased risk estimates

of the individual models.
This puts us in a setting where we can give simple infor-

mation-theoretic characterization of the risk assessment for the
mixture .

III. INFORMATION-THEORETIC CHARACTERIZATION OF

RISK ASSESSMENT

We analyze the average risk estimate in this sec-
tion. It is the primary term in the estimate for the risk of the
mixture ; and for , it is a tight upper bound of the un-
biased risk estimate as concluded by Corollary 2.
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Remark: When the unknown mean can be well-approxi-
mated by multiple models , the resulting risk of the mixture
at would not be very sensitive to the choice of around the
values of interest at (Bayes) and (clean bound). See Sec-
tion VI for numerical results.

Since the choice makes this average risk estimate un-
biased for the risk of , we will set it so in this section for a brisk
exposition. The generalization to any can be obtained by
replacing with , though the average risk estimate will no
longer be unbiased when . This will be explicitly done
in the next section where a tighter bound is proven for the case
with weights (3).

A. Sharp Bounds on Risk Estimate of Mixture

The following enunciates the relationship between the av-
erage risk estimate and the minimum. From now
on, let be the cardinality of .

Theorem 5: (a) For each , let

(19)

then with being any model achieving , the
unbiased risk estimate for satisfies

(20)

(21)

(b) More generally, for each , let

(22)

where and . Then here, with
being any model attaining the unbiased

risk estimate for satisfies

(23)

Proof: Part (a) is a special case of part (b) with .
For part (b), observe that

(24)

Thus, the equality follows by averaging over with
weights . The inequality results since and
(the logarithm of the latter is strictly negative).

Therefore, for the first form of weights (19), the average risk
estimate (20) is unbiased for the risk of the mixture , and can
be expressed as the minimum of the individual risk estimates
plus a price for mixing, a function of the mixing weights . If
the weights are concentrated on mostly one model , then

is close to zero and the combined risk estimate is very

close to the minimum . In any case, since is less than the
log cardinality of , the average risk estimate cannot exceed

by a relatively small amount . (This bound will be
improved in the next section.) Moreover, if there are several,
say , models of with nearly minimal risk estimates , then
accounting for those values in the sum on the right side of (24)
shows a further reduction of about from the bound (21)
for the average risk estimate , aptly revealing the advantage of
the mixing.

For mixing with general weights including , the average
risk estimate is the minimum of the complexity-inflated risk
estimate plus a reduction due to mixing, a function of and .
If the data-dependent weights differ little from the constant
weights , then the quantity would be close to
its upper bound . Moreover, if there are models of with
nearly minimal , then the bound (23) can be further
reduced by about again by examining (24).

Remark: The condition is of course
Kraft’s inequality [22] in base and the model complexity is
connected to the length of some codeword (in nats) that de-
scribes the model. However, our theory does not require such
an interpretation.

Characterizing the average risk estimate by the minimum is
useful as it leads directly to a risk bound.

B. Risk Bound for Mixing Least-Squares Regressions

Corollary 6: The risk of the mixture of
least-squares regressions with weights (19)
satisfies

where , taking value (18), is the risk of .
Mixing with weights (22) yields a risk that satisfies

where . Thus, the risk function is
upper-bounded by an index of resolvability

(25)

Proof: To show the second inequality, we take the expected
value of each side of (23). This recovers the risk by the unbi-
asedness of on the left. Applying

for the right-hand side yields the second statement, from which
the resolvability bound follows from (1). The proof for the first
statement is the same.

Note that the mixture , its risk estimate , and risk all
change with the weights , e.g., from (19) to (22). But the
risks for the individual models (18) and hence, the risk
target , depend only on and not the weights. So, the

in the first two displays of Corollary 6 are identical, whereas
the two are different.
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The index of resolvability (25) with which we have bounded
the risk expresses an idealized tradeoff among error of approx-
imation , dimension , and complexity of the
models considered. It provides a theoretical calibration of the
error the collection of models provides as varies over .
The approximation error term is a sum of squared errors of ap-
proximation for the means, and is typically the dominant term
among the three unless the unknown is in, or extraordinarily
close to, one of the linear spaces considered. Which of the re-
maining terms, and , is larger depends on the model that
yields the best overall tradeoff, which we will discuss at greater
length in Section VII.

IV. A REFINED BOUND

In this section, we bring to the fore the price of mixing es-
timators with weights (3) (with constant factors) using an
arbitrary . In short, we shall tighten our risk bounds by
replacing the before with a smaller quantity .

Definition 7: Let be a function in defined
by the solution to

Note that is increasing in . Also, for each

(26)

by considering separately whether or not. Then we
can also deduce that by taking
(treating as a special case).

Theorem 8: Given the values for a finite collection
and weights

(27)

with any , the weighted average satisfies

(28)

where is the cardinality of .
Proof: First, observe that

which, upon averaging with over , yields

(29)

where is a model achieving the minimum risk estimate
. Let . Then as

in the proof of Fano’s inequality [22], we have

where are the weights renormalized on
. Thus, (29) becomes

Hence, the bracketed terms on the right are upper-bounded by

which is concave in and equals

(30)

Setting to zero the first derivative of (30) with respect to ,
we see that the maximum of the bound occurs at
satisfying

Substituting the result back in (30) yields the bound, taking its
optimal value at the odds with

which is .

Thus, how much the risk estimates averaged with weights
(27) exceed the minimum risk estimate is related to the odds
ratio of not being the model achieving , where the odds
ratio is optimized over the weight .

The quantity is computed for a range of values of
as shown in Fig. 1 and the table below. It gives a noticeable
reduction in the risk bound compared to the use of even
for moderate . For large , one can approximate by

.
Now we are ready for the refined risk bound.

Corollary 9: If are least-squares regressions with risk
estimates in (2), then the unbiased estimate of risk for the
mixture estimator using weights (27) with a
fixed satisfies

Hence, with as the risks (18) of the individual estimators

Proof: Corollary 2 implies that the unbiased risk estimate
for is upper-bounded by the average risk estimate for this
range of , which in turn is bounded as in (28). This proves
the first claim. The second conclusion follows from taking the
expected value of each side of (28) and using

.

The best of these bounds again occurs at .
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Fig. 1. The term  (M) that quantifies the price of mixing M estimators with weights (3) without prior model preferences (� are constant).

We compare with (with the coefficient of for the
best risk bound) in the following table:

We see that the improved bound of order is twice as tight
as that of order for .

V. COMPLEXITY

In this section, we address the choice of the factors in the
weights. (These are analogous to prior probabilities of models
when .) Our bounds assume that and ac-
cordingly has an interpretation as a code
length, or descriptive complexity, for model . These factors

arise in our risk bounds with via the
resolvability .

In general, there may be a very large number of explanatory
variables, as may arise from various product basis expansions
such as multivariate polynomials. We will say a few words about
complexity assignments for such large dictionaries of candidate
terms in Section II-B. In what follows, we will focus on the
simpler setting of a fixed orthonormal basis of size matching the
sample size for analytical simplifications of the complexities
of the approximation errors, and hence of the resolvabilities (as
shall be discussed further in Section VII).

A. Fixed Orthonormal Basis

Here we discuss specific complexity assignments in the case
of subsets of a fixed sequence of explanatory variables, as
arises in the context of an orthonormal basis . The

leading term models are those spanned by
for some ; and the general subset models

are those spanned by arbitrary subsets of the basis, treating all
subsets of the same size equally.

Since there are fewer leading-term models, we are content to
assign them constant complexity, via (or any
constant not depending on ). This reduces the weights (3a) to
(3), and results in bounds such as (5), (6) derived in Section III or
Corollary 9 in Section IV, with terms of order . Numerical
results with leading-term models are given in the next section,
but we note here that flexibility in fitting leading-term models
to the observed response can be rather limited.

The situation with general subsets is dramatically different
with an exponentially large number of models since mixing
these with equal weights (3) would render the bound (6) very
loose with a term of order . Instead, we advocate using
weights (3a) with

(31)

This corresponds to a descriptive length of nats for the
subset size and a descriptive length of
nats to distinguish among the subsets of that size. Alternatively,
the probabilistic approach is to directly employ

to specify a uniform distribution on the cardinality of the subset
and a conditionally uniform distribution on the subsets of that
size. When is a small fraction of (desirably yielding a good
tradeoff in ), this complexity is roughly

, much smaller than . The information-theoretic
interpretation via Kraft’s inequality [22] is that for each subset
size , no competing code length can be shorter except for a
small fraction of such subsets.

Even though mixing all subset models might at first glance
seem computationally prohibitive, the Appendix provides a
computation shortcut in the orthonormal basis case.
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One may also combine the benefits of both arguments with
subsets with different structure. Thus, we may set

if is leading-term
otherwise

to produce a risk bound that is nearly as good as the best of the
two, paying a price of at most nats.

The dimension term in the resolvability

is negligible compared to the complexity when general sub-
sets are involved. However, when leading-term models have
small enough approximate error (that the best resolvability fa-
vors them) one sees that the complexity term (of order

) can be negligible compared to the dimension , and then
the resulting risk tradeoff is not encumbered with multiplicative

factors. Implications for this remark will be further dis-
cussed next.

B. Large Dictionaries

It can be quite natural for a very large number of candidate
basis functions to be available, potentially much larger than ,
especially in multivariate settings in which one is modeling non-
linear functions of several variables. For instance, suppose the
candidate basis functions of variables are formed as prod-
ucts based on a countable list of basic one-dimensional func-
tions. Using the first of such basis functions in each of the
variables produces candidate product basis functions. These
arise directly in polynomial and trigonometric expansions (and,
similarly, in neural net and multivariate wavelet models). So
for each , models consist of arbitrary subsets
of size of these product basis functions, for

. The associated dictionary of models has
a combinatorially large number of such subset models for
each and . We may assign complexity such as

for which is summable over models in-
dexed by and . Because our risk bound depends on the com-
binatorial term via the logarithm only, a useful risk bound results
as long as accurate subset models are available for the target,
with small compared to , even though the number of
candidate predictors may be much larger than . However,
whether there is a way to compute such provably accurate esti-
mators in subexponential time is doubtful.

VI. AN EXAMPLE WITH LEADING-TERM MODELS

We will show numerical results of the risks of our mixture
estimators in the fixed orthonormal basis case in this section.

Consider the nested leading-term models from an or-
thonormal design. Using as the coefficients
of the basis functions obtained by taking their inner products
with , we have the canonical setting in which is distributed

(as in the proof of Lemma 4). Each leading-term
model with dimension posits that for ,

where ranges from to . In this case, the least-squares es-
timators under these models are simply

(32)

Our discussion will proceed in this suitably transformed space
of , with emphasis on a moderate problem dimension .

Recalling that the variance in each dimension is , the
naïve maximum-likelihood estimator (for the full model) has a
risk of . The best risk upper bound is obtained with the mixture
estimator using , and is ( for )
beyond the risk target

(33)

Simulations with various and show that this margin from the
target always seems less than ( for ), so there
is room for improving our risk bounds.

Here we will illustrate a case where the true parameter in-
deed belongs to one of these leading-term models. In partic-
ular, only the first 10 elements of are nonzero. (If the ’s
are Fourier-type coefficients where has a frequency interpre-
tation, then , the signal to be estimated, is “ideal low-pass”
with a “bandwidth” of .) We vary (total signal-to-noise
ratio) while restricting the nonzero coefficients to have con-
stant magnitude. (By symmetry, all risk quantities of interests
depend on any coefficient via only.) Hence, the true pa-
rameter can be described by

or to be more precise. The risk target
(33) reduces to

In confirming this target, note that if , we are better off
leaving out all the terms (i.e., ), since the bias so incurred
is less than the variance of if we included them; whereas if

, then the best is seen to be .
Any mixture of these leading-term estimators (32) with

weights will have the form where the data-
driven coefficients

are between and and monotonically (strictly) decreasing in
(for strictly positive). We have examined both choices of

in our mixture estimator, as they correspond to the
estimator with the tightest risk upper bound and a Bayes pro-
cedure. In addition, we also examine the AIC model selection
estimator (mixture with ) for comparison. The perfor-
mance of the mixture estimator is not very sensitive to the choice
of between and .

Fig. 2 says that all three estimators have risks just over
worse than the target at small and large , but the mixtures
( ) even beat the target around . The
AIC model selection estimator is often worse than the mixtures.
In fact, the advantage of mixing over selection seems uniform
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Fig. 2. Risks and target with blockwise constant � / 1l .

(over the entire parameter space) in the Bayes case , and
almost uniform for the mixture (AIC is slightly better
at the origin ). The risks of all three estimators are similar
for large . This is expected since the true is in one of the
models considered (the one with ). Indeed, when the
signal-to-noise ratio is large, AIC picks the correct model
with high probability, while the adaptive weights in our mixture
give strong emphasis on the right model.

Note that the mixture with outperforms the Bayes
mixture for a large range of between and . Thus,
besides analytical convenience, using indeed provides
nontrivial risk advantage over Bayes in some cases.

VII. APPROXIMATION AND RESOLVABILITY

This section exhibits classes of behavior for the true coeffi-
cients that permit control of the approximation error arising
in our resolvability bound on the risk of the mixture estimator.
The point is to observe how the mixture simultaneously adapts
to multiple such classes, and to differentiate when certain types
of mixtures are suitable. For example, leading-term mixtures are
appropriate for cases with ellipsoidal controls on (in which the
axis widths decay), and general subset mixtures are appropriate
when measures of the sparsity of the coefficients are controlled
(regardless of their order).

To facilitate discussion of approximation and risk on a stan-
dardized scale, we shall use the average squared error
as the loss function, where (with division
by ). The risk of the least-squares esti-
mator for model is , and likewise, the
risk of the combined estimator is bounded
by the index of resolvability

(34)

trading off among approximation error, dimension relative to
sample size, and complexity relative to sample size.

Recall that our models are the linear subspaces spanned
by a subset of the orthonormal basis vectors with

for each (e.g., these may arise from evalua-
tion of a function at given input values ). For conve-
nience, we abuse notation by identifying with the set of all
indices such that is a basis vector for , i.e., .
Thus, the best approximation to in is

, keeping only the terms in . The resulting ap-
proximation error is

A. General Subsets and Adaptation to Sparsity

Let consist of all subsets of . Here we assign
for general subset models (31) a complexity which depends
on the subset only through its dimension .

When performing the minimization for each dimension ,
the smallest approximation error occurs when is the model
consisting of the largest magnitude coefficients. Thus, we de-
note by the coefficients sorted descendingly as such,

. Consequently, the index of re-
solvability takes the form

where we have rewritten (31), the complexity for a model
with dimension as

(35)

The mixture estimator is constructed without knowledge of the
subsets for which the true coefficients are largest. Nevertheless,
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it achieves risk

for all

To enunciate the relationship between sparsity and approxi-
mation of , we define a sparsity index

and (by taking the limit ) denote

as the number of the nonzero elements in . If is not large
for some , then general subset models permit control
of the approximation error as a function of the number of coef-
ficients . For example, if is such that for each

and some , then we can control its sparsity index for all
, whereas if there are few nonzero elements in , then

we can control its sparsity index all the way down to .

Lemma 10: With being the elements of reordered in
descending magnitude, we have

Proof: Since the sum to and are nonincreasing,
we have . Write

and use the inequality in the first factor
inside the sum to yield the bound.

Consider , for instance. This is the case that the un-
known , suitably scaled, is in the convex hull of . Then
the approximation error bound is . If is smaller,
e.g., , then one has a faster decay in for the error bound,

. For , the approximation error vanishes
when the model dimension exceeds the number of nonzero ele-
ments such that we may put , which with
yields the risk bound

Putting the ingredients together we have a result which says
that the mixture estimator, formulated without specification of
the sparsity index , estimates as well as if one knew in ad-
vance which index produces the best tradeoff in approximation
error and dimension plus complexity.

Theorem 11: The risk of the mixture of all subset models with
weights (3a) and complexity (35) satisfies

for each . Moreover

Proof: The first line is by Theorem 5(b) together with the
approximation bound from the previous lemma. For the second
line, use to show that the bracketed
bound holds for each , which for is immediate
from the comment above (with an inflation by a factor of ). For

, we optimize the right hand side of

over . In particular, putting

(rounded down to an integer) yields the bracketed bound. Now
the stated conclusion follows after minimization over .

Remark: For , the appropriate bound
is known to hold for when not only when

the are orthonormal but in fact for any basis functions with
, as shown in [23], [24]. It follows in this case that

the risk of the mixture over all subsets satisfies

This extends the results available for the risk of selection cri-
teria in this convex hull setting from [15], [25]–[28], [2] to the
mixture estimator. The results in these references are primarily
cast in multivariate settings where there is an exponentially large
dictionary of candidate basis functions and where training data
tends to be sparse so that risk bounds are perhaps better cast for
random designs (new inputs are independent from but identi-
cally distributed as training data). The recent work [29] takes a
step to develop analogous conclusions for the more challenging
case with sparsity indices for nonorthogonal candi-
date basis functions.

In the case of wavelet models with wavelet coefficients
on each translate and level , natural conditions on the coeffi-
cients, expressed via bounds on on each level , corre-
spond to certain Besov spaces. Similar risk bounds for model se-
lection procedures are given in [30]. Analogous conclusions are
possible for mixture estimators by our techniques here. For cer-
tain problems with piecewise-constant models, the logarithmic
factor in the risk is necessary [30].

If instead of having the nonzero elements of scattered
throughout the indices, it happens that the are bounded by a
decreasing function in , then mixtures of leading-term models
can avoid the logarithmic factor, as this is a generic phenom-
enon of certain ellipsoidal classes of functions (discussed next).

To summarize the story for general subsets of basis vectors
from a dictionary, we have, in this case, that the complexity, es-
sential to the risk bounds, is larger than the dimension of the
models. Small approximation error by models of moderate di-
mension requires adaptation of subsets, and one achieves these
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good approximations in optimal balance with complexity by
mixing estimators over these models.

B. Leading-Term Models and Adaptation to Ellipsoids

Next, we consider models in which the subsets of terms
arise in prescribed forms. Those models have complexity
smaller than dimension and are also important in theory and
applications. Among the simplest such models are those of
leading-term type such as polynomials (of adjustable degree)
and truncated Fourier series (of adjustable maximal frequency).
These linear models are indexed by with
dimension .

The model complexity can be set to either
with to slightly favor small
models, or which gives uniform weights.
We need not restrict the models to be nested. For instance,
polynomial splines on equal spaced knots provide a sequence
of models indexed by , where is the number of knots
and is the degree of the local polynomials, and we may set

.
In these cases, the complexity is seen to be of smaller order

than the dimension (which we allow to be large to improve
approximation error). Now when the complexity is negligibly
small compared to the dimension, the interpretation of the
resolvability simplifies to just the optimal tradeoff between
squared bias and variance among the linear models. This is
preferred for cases in which a good approximation is achieved
without taking all subsets of terms.

For example, suppose are orthonormal basis func-
tions and that the mean is in an ellipsoidal
(also called Sobolev) class which is the collection of points

in such that , where is an in-
creasing sequence. Now the leading-term model which stops at
dimension provides an approximation
for which the approximation error is
bounded by uniformly for points in . Adding the
variance term and minimizing over yields a risk min-
imum , which is known to be
the minimax rate over all possible estimators for each such el-
lipsoid (see, e.g., [30]).

For example, when (as arise in characterizing
Sobolev classes using Fourier series), we recover the rate

optimal with respect to and , as
laid out in Pinsker [31] (though our bound based on adaptive
mixing of least-squares projections reflects a possibly larger
constant than that with optimal Pinsker filtering). Note that in
the construction of the mixture there is no presumption of any
particular regularity sequence , smoothness index , or size
of ball . The mixture across model dimensions is adaptive in
that, in providing risk bounded by the risk of the best linear
model, for each , it will be simultaneously minimax rate-op-
timal for all ellipsoids (all and ). Beran and Dümbgen
[32] has another approach (see also the discussion in [33]).

C. Asymptotic Optimality and Improved Oracle Inequalities

The adaptation ability of our mixture estimator is quite gen-
eral: a sequence of linear models which are not necessarily
nested and not necessarily built from orthonormal terms. The

cleanness of the resolvability bound, with constant multiplier
of for the squared bias and dimension terms, provides an or-
acle inequality that exhibits already in finite samples the type
of optimality previously studied in asymptotic settings. For ex-
ample, Shibata [34], Li [35], and others have shown that estima-
tors based on certain model selection criteria are risk ratio-op-
timal. In particular, the ratio of risk relative to the minimum
of risks over all size models converges to as for
fixed sequences of means , provided the sequence is such that

as , and provided that the log-cardinality
of models of each dimension is of a lower order than . How-
ever, that convergence is not uniform in .

We provide a similar result here for out mixture of estima-
tors. For sample size (on which all risk quantities implicitly
depend), let the risk of the least-squares estimator for model
be . Then our combined estimator
achieves risk , which is in
turn less than , where
in the latter, we have restricted our attention to the models with
dimensions greater than a multiple of their complexities.
Thus, relative to the risk target

our mixture achieves a risk ratio

uniformly in for each , such that the ratio can be arbitrarily
close to one. To see this result in a setting similar to that of [34],
[35], suppose for a fixed sequence of , the models achieving the
target have dimensions that grow unboundedly,
yet the complexities of these models are of a smaller order than
their dimensions. Then converges to for each ,
and hence converges to as well.

In any case, the risk of the combined estimator is never worse
than the best risk among the models for which the complexity
is negligible compared to the dimension. More precisely, this
can be quantified using a multiplicative constant of for the
risk target plus a term for the complexity relative to as in
the resolvability bound (34). For a similar spirit of oracle in-
equalities but with larger multiplicative constants, see works by
Birgé, Massart, and Barron [30], [36], [37] for model selection
in least-square regressions; Donoho and Johnstone [38]–[41]
for shrinkage estimation in orthonormal basis; and Devroye
and Lugosi [42] for density estimation; Yang [1] for prediction;
Wegkamp [43] for risk in regression; and Juditsky et al. [28]
and Tsybakov [2] for function aggregation in regression.

D. Summary of Approximation Tradeoffs

Whether it is better to use all subset models or complete
models of various orders in regression depends on the nature
of the unknown target . If coefficients in a suitably trans-
formed representation are scattered throughout the indices, then
the target requires all subsets associated with sparse approxima-
tions, achieving good risk properties when mixed with weights
that account for appropriate model complexity. On the other
hand, if the magnitude of decays with , typical of those in
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ellipsoid classes, then mixtures of nested leading-term projec-
tions can achieve the best tradeoff in approximation and dimen-
sion, with a small model complexity penalty. If one does not
know in advance which of the two settings is more appropriate
for a case at hand, then they may be combined, adding only a

price to the complexity terms. The resulting estimator
achieves risk corresponding to the best tradeoff in approxima-
tion, dimension, and complexity.

APPENDIX

Given a fixed orthonormal basis of size with all subset
models, here we examine computation for the all-subset mix-
ture. At first, it might seem impractical to combine so many
components as the mixture involves calculating all associated
least-square fits and their respective weights. But we provide an
alternative route in obtaining this mixture with simplified com-
putation due to a Bayesian interpretation.

Let be the inner products of the data vector
with the orthonormal basis vectors , which pro-
vide the coefficients for the representation of in this full
basis. The least-squares estimator for any subset model simply
zeros out the coefficients for the variables outside the given
subset. Consequently, the coefficients in the representation
of the combined estimator are given by where

, between and , are weights aggregated
from the models which include term . As in (3a), is
proportional to . Here we provide, for certain
natural , more direct means to compute the filter coefficients

that does not require summing over the exponentially
many models including term .

Toward this end, we first note that the factor
equals a constant times the product , which
we may also write as

where with as ei-
ther or depending on whether includes (and, hence,

). Here, in provides a standard al-
ternative way to refer to subsets of . The nota-
tion arises from a probabilistic interpretation we shall
come to shortly. Denoting we may write

The point we want to make here is that if is express-
ible as a mixture distribution for over some hidden parameter
, as in then in calculating the nu-

merator and the denominator of the preceding expression, we
may exchange the order of the sums and the integrals. For in-
stance, the denominator above becomes

This is the case with the we recommended for all-subset
mixtures using complexity (31)

The product form and the bi-
nary nature of allows us to express the shrinkage coefficients
as , where

and

(36)

Note that is greater or less than according to
whether exceeds (an evidence that the true parameter
contains term ), and is near for large .

We evaluate the integrals and numerically. This
can be done by summing over a fine uniform grid on ,
with care taken to note that peaks around its maximizer
. In accordance with standard Laplace approximation of inte-

grals, the grid width should be narrower than order (order
based on uniformly spaced grid points suffices) so as to

ensure that we capture the peak. Also, for large , such Laplace
approximation shows that the shrinkage factors are numer-
ically close to . In essence, this is an adaptive shrinkage
factor in which the magnitudes of all elements of are used to
adapt to levels of that appear to give rise to the individual .

A probabilistic interpretation emerges when , giving
rise to a hierarchical model in which each variable, when condi-
tioned on its sole dependent variable, is independent of all other

Uniform

i.i.d. Bernoulli

i.i.d.
point mass at if
Uniform density if

i.i.d. Normal

Thus, where is the standard normal
density, and and

leading to . And the Bayes
shrinkage factor agrees with expression (36)
with the choice . See Hartigan [10] and the ref-
erences therein for Bayesian considerations of this model.

Even for , one can still interpret all the above quanti-
ties probabilistically, with the distribution scaled by
and the normal having variance instead of . For ex-
ample, our best bound occurs at , meaning that by being
twice as conservative about the error variance, we end up mixing
across models more indiscriminately. Occasionally, the risk ob-
tained this way is lower than that when (Section VI).

In summary, it is equivalent to consider our estimator either
as a mixture across all subsets specified by (with integrated
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out) or as a mixture across (with summed out). We have
found the former to be more conducive to our risk analysis and
the latter more conducive to computation.
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