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INFORMATION THEORY AND SUPEREFFICIENCY 

BY ANDREW BARRON1 AND NICOLAS HENGARTNER 

Yale University 
The asymptotic risk of efficient estimators with Kullback-Leibler loss 

in smoothly parametrized statistical models is k/2n, where k is the 

parameter dimension and n is the sample size. Under fairly general 
conditions, we given a simple information-theoretic proof that the set of 

parameter values where any arbitrary estimator is superefficient is negli- 
gible. The proof is based on a result of Rissanen that codes have asymp- 
totic redundancy not smaller than (k/2)log n, except in a set of mea- 
sure 0. 

1. Introduction. In this paper we weave together two stories. One is 
from statistics concerning the negligibility of the set of superefficient estima- 
tion of a parameter originating in the work of Le Cam (1953). The other story 
is from information theory concerning the negligibility of a set of supereffi- 
cient data compression due to Rissanen (1984, 1986). The connection between 
these contexts is the use of the Kullback-Leibler informational divergence (or 
relative entropy) as the loss function between a parameter and its estimate. 
Armed with information-theoretic techniques of Rissanen's theory, we obtain 
a proof of the negligibility of the set of superefficiency for both parameter 
estimation and data compression. 

The object of interest in the present work is the expected Kullback-Leibler 
loss D(pll p) = fp(x)log(p(x)/p(x)) dx between a density p and its estimate 
p. In the context of parameter estimation, we consider the Kullback-Leibler 
loss induced through the plug-in estimators Pn = p^ of the density and 
denote it by D(O lOn) = D(p, llp ). A Taylor expansion suggests that D(OlIOn) 
is approximated by (1/2)(On - 0)tI(0)(On - 0), where 1(0) is the Fisher infor- 
mation matrix. Hence the anticipated behavior for maximum likelihood and 
Bayes estimators is 

(1) lim nEO[D(0 o)]j= 2 

where k is the parameter dimension. This motivates our definition of super- 
efficiency. 
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INFORMATION THEORY AND SUPEREFFICIENCY 

DEFINITION 1 (Superefficiency and efficiency under Kullback-Leibler risk). 
We say an estimator sequence { O} is superefficient at 0 with Kullback-Lei- 
bler risk if 

(2) lim sup nE0D(0110n) < 2 
nl ->o 

and is efficient if 

k 
(3) limsup nDEID(e0 I )< - for all 0 E 0. 

n -oo 

For more general sequences of loss functions {Ln(0, On)), Le Cam defined 
efficiency of an estimator On relative to the risk achieved by some choice of a 
standard estimator n* (typically the maximum likelihood estimator or a 
Bayes estimator with a suitable prior) to mean that 

limsup(E ,L,( o) 
- E,L(,O n*)) < 0 for all 0 E (, 

n -, oo 

and he defined the set of superefficiency of an estimator to be the set of 0 for 
which 

lim sup (Eo,L,(, O) - Eo,L,(, n)) < 0. 
n -, oo 

Le Cam restricted his considerations of superefficiency only to estimators 
that also were efficient. He gave regularity conditions on the family of 
distribution such that for bounded loss functions, the set of superefficiency 
has Lebesgue measures 0 in DRk. The heart of his proof combines Fatou's 
lemma and the admissibility of a Bayes estimator used as the standard. 

Historical motivation for work on superefficiency was the apparent conflict 
between the belief in the work of R. A. Fisher that for any statistic On for 
which fn( On - 0) is asymptotically Normal(0, E(0)), the variance satisfies 
I6(0) > I-1(0), and the counterexample due to Hodges of a superefficient 
estimator. Le Cam resolves this conflict by showing that for efficient estima- 
tors, superefficiency can only occur in a set of measure 0. An alternative proof 
is provided by Bahadur (1964) under Cramer-type conditions. Brown (1993) 
provides a proof that {0: (0) < I-1(0)} has measure 0 based on a 
Cramer-Rao-like inequality he develops for risk with a truncated squared 
error loss. 

Our main result is the following: If there exists a sequence of estimators on 

for which 6n - 0 is of order 1/ fn in probability, then k/2 is a lower bound 
for the asymptotic Kullback-Leibler risk of arbitrary estimator sequences, at 
least for almost every parameter value. The conclusion holds for arbitrary 
estimator sequences, not just efficient ones as in the theory of Le Cam. The 
information-theoretic tools we use to derive this lower bound are a variant of 
results of Rissanen that bounds the measure of the set of parameters for 
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which D(pI, lqn) < (1 - 0)(k/2)log n and the chain rule of information the- 
ory that reveals the relationship between estimation and data compression. 

In addition, we generalize these results in three directions. First, we want 
to consider parameter sets that are subsets of arbitrary metric spaces (X, d), 
possibly infinite dimensional. Second, we consider the effect of assuming 
tightness of the sequence (fJ - 0)/rn for rates r, other than n-1/2. Third, 
for nonparametric estimation problems, we identify the rate of convergence 
such that for any estimator sequence, the set of functions that are estimated 
at a faster rate is negligible. 

This level of generality is needed to study the following estimation prob- 
lem: Suppose that the collection of distributions ? = {Po: 0 E }0 is domi- 
nated by some measure v. We parametrize S by the probability densities 
fl = fp = dP/dv: P E } and view the latter by a subset of X, the metric 
space comprising all the densities of distributions dominated by v, endowed 
with the Hellinger metric h(p, q) = {f(/p(x) - )q(x) )2 dv(x)}1/2. If Q2 
has finite metric dimension, we will talk about parametric density estima- 
tion, and otherwise, of nonparametric density estimation. Parametric density 
estimation is more general than estimation of the parameter because we do 
not require the estimator pn(x) of po(x) to belong to Y. In either case, our 
theory quantifies the performance of estimators ^p(x) for po(x). For paramet- 
ric density estimation, we identify lower bounds for the risk; for nonparamet- 
ric density estimation, we identify lower bounds on the rate of convergence. 

The outline of the remainder of this paper is as follows: Section 2 presents 
the key ideas in the context of parameter estimation in smooth parametric 
families. Section 3 generalized Rissanen's theorem on the set of negligibility 
of superefficient data compression to give a result that applies to both 
parametric and nonparametric estimation. In Section 4, we apply the latter 
result to make conclusions about the negligibility of the set of superefficient 
estimation. Implications for nonparametric density estimation are presented 
in Section 5. Finally, a few useful technical lemmas are found in the Ap- 
pendix. 

2. Superefficient parameter estimation. The present work yields con- 
clusions for both parametric and nonparametric estimation. However, we will 
first study parameter estimation in smooth parametric families of probability 
densities {p0(x): 0 E 0} on a sample space X with a k-dimensional parameter 
vector 0 to expose the key ideas. We assume that the sample X = 

(XI, X2,..., Xn) consists of independent and identically P.-distributed ran- 
dom variables and the densities are with respect to a fixed sigma-finite 
measure v. 

We will give conditions for the set of superefficiency to have Lebesgue 
measure 0 for arbitrary estimators that are not necessarily assumed to be 
efficient. The information-theoretic proof technique will reveal k/2 as the 
asymptotic lower bound for almost every 0 E 0 without recourse to analysis 
of a standard estimator assumed or known to be efficient. Instead we only 
require the existence of an estimator that converges at the right rate. This 
tactic permits us to obtain the bound under the following general condition. 
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ASSUMPTION A (Estimability in {po(x): 0 E 01). For each bounded subset 
K of the parameter space 0 in R k, there exists a sequence of estimators 0, 
based on X1 for which the sequence F(0n - 0) is tight (i.e., bounded in 

probability, limc >supnPovFn ll ,n - 0 11 > c} = 0) for almost every 0 E K. Here 
II 1I is the Euclidean norm on R[. 

From modern statistical theory, Assumption A holds for i.i.d. sampl- 
ing from Po when there exists, for each compact set K, positive constants c 
and c such that the squared Hellinger distance h2(pO,pn) = f(/p( x) 
- V/pT( x) )2v(dx) is bounded by 

(4) _c 0 l2 2(p h ,p,) < cll0 _- 1 

for all 0, rq E K. Under this condition, Ibragimov and Hasminskii (1982), page 
54, show that suitable Bayes estimators converge at rate 1/ Fn. Alterna- 
tively, satisfaction of Assumption A can be deduced from the work of Le Cam, 
assuming that the mapping 0 --> po is one to one and that (4) holds locally; 
that is, for 0 E @, there is a neighborhood XA and constants 0 < co < cO such 
that c\llo - h1|l2 < h2(pe, p,) < c\ll\ - 71]\2 for all i] eA41. See Le Cam (1986), 
pages 580 and 608. 

To avoid degenerate situations, we make explicit a technical requirement 
on the Kullback-Leibler divergence. 

ASSUMPTION B (Finiteness). There exists an integer m and a distribution 
QJ with density qm on ym such that for every 0 e 0 there is a finite 
constant co such that D(p lIq m) < co. 

If for every 0 the Kullback-Leibler divergence D(0 II) is bounded for all ij 

in a neighborhood XA, which holds if D(0\llq) is continuous in its second 
argument, then the mixtures qj(x) = fpo(x)w(0) do for any positive proba- 
bility density w(0) on 0 satisfy Assumption B with m = 1. The details are 
spelled out in the Appendix. 

The information-theoretic tool we use to establish superefficiency is a 
variant of the results of Rissanen (1984, 1986). The object of interest is the 
Kullback-Leibler distance D(p' IIqn) between the distribution Pon of the 
sample (depending on 0) and an arbitrary distribution Qf (not depending on 
0) on the sample space Xn. This quantity arises as n times the per symbol 
redundancy of universal source codes (for arbitrarily fine quantization) of X' 
using Shannon's code based on Qn. It also arises as the cumulative risk of a 
sequence of estimators with Kullback-Leibler loss as discussed in Clarke and 
Barron (1990). As shown in Rissanen (1984), Clarke and Barron (1990) and 
Barron and Cover (1991), good choices for Qf yield data compression satisfy- 
ing 

D( pn lq) k 
(5) lim 

n--oo log n 2 

The corresponding per symbol redundancy is of order (k/2)(log n)/n. 
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DEFINITION 2 (Superefficient data compression). For any sequence of prob- 
ability measures Qf used to code X' distributed according to P^, the set of 
superefficient data compression is the set of 0 E e for which 

D(pnllqn) k 
limsup < -. 

n --oo log n 2 

A sequence of probability measure Qn on Xn is asymptotically efficient for 
data compression if 

D(pnjjqn) k 
limsup < - for all 0 = 0. 

7n oo log n 2 

Rissanen (1986) gives conditions on the family {P^: 0 E 0) for the set of 
superefficiency for data compression to have measure 0 for any choice of 
sequence {Qn}. A variant of his result and the implication for superefficiency 
of parameter estimation are combined in the following proposition. 

PROPOSITION 1. Suppose the family {P^n: 0 E 0) satisfies Assumption A. 
Then for every sequence of probability distributions Q n on X , the set 

Dpnll1qn) k 
{0 E : lim sup 

n---oo log n 2 

has Lebesgue measure 0 in 0. 
Moreover, if in addition to Assumption A, Assumption B holds, then for 

any sequence of density estimators pn(x) based on X", the set of parameters 0 

for which lim sup nE0D(po Ipjn) < k/2 has Lebesgue measure 0. In particu- 
lar, for sequences of estimators O, based on Xn, the set 

(0 : limsupnD(0I|O) < 
k 

n{-oo 2 

has Lebesgue measure 0. 

PROOF. To establish the negligibility of the set of parameter values for 
which lim sup ,,D(pDpllq n)/log n < k/2, we take E c X and bound the total 
Kullback-Leibler loss between Pon and any probability distribution Qn on X 
by 

((6)E) Pon (EC) (6) nt p ) 2 Po'(E)log Qn(E) + og Qn(EC) 

1 1 

(7) Pn (E) log Q n(E) 
+ Pon(E )log 

Qn(EC) 

+ POn(E)log Pon(E) + Pon(EC)log Pon(EC) 
1 
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Here (6) is a standard inequality between a total Kullback-Leibler loss and 
its restriction to a partition [this is a consequence of Theorem 4 in Kullback 
and Leibler (1951)] and inequality (8) is from the bound log 2 on the binary 
entropy function [see Cover and Thomas (1991), page 15]. With the sequence 
of estimators 6,n of Assumption A and an = log n/ Vni, define the sets 

{ n := {Xn e Xn: Ilon(xn) - ol < an,) 

which we use in inequality (8). Tightness of (fn(6n - 0) together with the 
dominated convergence theorem imply that, for each subset K of 0 with 
finite Lebesgue measure, the sequence of sets 

n = {( E K: Pn[Vnll n- 0il < log n] < 1- E 

has measure tending to 0 with n. To upper bound Qn(Xo n), we show that the 
set 

-Vn {0 E K: Qn( H,n) > aklog n} 

has Lebesgue measure tending to 0 with n. 
Let Mn be the maximal number of disjoint balls of radius an having center 

in n, and denote by n the associated collection of centers. The triangle 
inequality implies 

n C U {7 ? E e: 1lq - 11 < 2an}, 
^n 

and therefore 

(9) Volume(a) < V2(k)akM,, 

where V2(k) denotes the volume of a ball of radius 2 in Rk, and volume refers 
to Lebesgue measure. An upper bound for Mn is obtained by noting that the 
sets {t, n: 0 E Wn are disjoint, and thus 

(10) 12 E Q(n) 2Mnaklog n. 
0 E n 

Combining (9) and (10) shows that 

Volume(n) < V2(k) log n 

which tends to 0 with increasing n. For 0 E K - (n U n), the 
Kullback-Leibler loss is lower bounded by 

D(lQn) > P[,n] log Qn[ ) -log 2 

> (1 - ?) k log-- - log log n - log2 
log n / 

k 
> (1 - 2) -logn. 

2 
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Whence for every ? > 0, the sets 

(0 e K: D(PnQnI) < (1 - 2) -2 log n for all n > k} 

have Lebesgue measure 0 since their volume is bounded by the volume of 
?n U n for all n > k. The set 

0 E K: limsup < - 
n 12o logn 2 

has measure 0 since it is contained in the set 

( p (n 1 j - for all n 2 k ) 
j>l k>l log n 2 

f 

This holds for all finite measure sets K in 0, and so the first conclusion 
follows. 

The relationship between the superefficiency for estimation and coding is 
obtained by the chain rule of information theory. For any sequence of density 
estimators {Pl} that depend only on Xl, 1 = 1,..., n - 1, consider the proba- 
bility measure Qn on Xn having probability density 

qne xn) = qOm(xm) 
n 

P, (xl+1), 
I=m 

where qg(xm) satisfies Assumption B. The chain rule gives 

( n1 n E [lg(Xl, Xn) 
D(PIq1 = Epon log ] 

q (,X..., n) 

p(XmI\ 
n-1 r P(XM?il0) = E Iponlog I x + E E[ o log 1 [ q mq(Xm) l=m 

[ p(XmIO)) n-i 
a E EO log~ mm\IM + E E6D(poII I). 

An individual risk E ID(p II^$) of c/i + o(l/l) corresponds to a cumulative 
risk D(p4nllqn) of c log n + o(log n). Using this choice for the sequence 
{q n}, we see that the set of superefficiency, taken to be the set with 
lim supnnEOD(p,ljIpn) < k/2 is contained in the set of 0 with 
lim supD(pn I q n)/ log n < k/2, the latter having asymptotically Lebesgue 
measure 0. Finally, the conclusion for D( 11 0) follows by setting j3(x) = p4J(X). 

The original proof of Rissanen (1986) for superefficient data compression 
required that P[Jln 11 6l - 011 > log n] be summable in n uniformly in 0 for an 
application of the Borel-Cantelli lemma. Inspection of our proof reveals that 
we only need for each 0 the tightness of the sequence /nll0n - 0 II/yn for 
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some sequence y, 2 1 of smaller order than n8 for all 8 > 0, that is, log(yN) = 

o(log n). For example, limnP0[nllOn - 0\\ > log n] = 0 for each 0 suffices to 
obtain the stated conclusions. Our proof avoids use of the Borel-Cantelli 
lemma by considering the limit superior. 

Other choices of loss functions may be natural for investigation of super- 
efficiency. We find that the Kullback-Leibler loss is most natural for a proof 
that relates distance between estimates to total distance between joint distri- 
butions. Among a broad class of measure of divergence between probability 
distributions, discussed in Csiszar (1967) or Ali and Silvey (1966), 
Kullback-Leibler divergence is the unique choice satisfying the chain rule. 

As we now discuss, the argument of Le Cam (1953), originally developed 
for bounded loss functions, also works for unbounded loss functions such as 
squared error loss or Kullback-Leibler loss to show that the set of parameter 
values at which a sequence of efficient estimators is superefficient has mea- 
sure 0. Recall that a sequence of estimators {On) is said to be efficient under 
the Kullback-Leibler loss if it satisfies lim supn ,,nE D( 11 O) < k/2. 

Consider the truncated Kullback-Leibler loss Ln ,( il7r) = min{c, nD(0 11,)}, 
and denote by 0n', the Bayes estimate with respect to the prior distribution XT 

and loss function Ln,,(0, r). Under classical regularity conditions on the 
parametric family p0 and the prior distribution rT, the limit 
lim ,EL, ,(0, A) exists and equals E min{c, IlZ112/2} for Z - Normal(O, I). 
The latter approaches k/2 for large c, and hence, for any 8 > 0, there exists a 
c < oo such that E min{c, 1ZI112/2} > k/2 - 8. With this choice of c and ?, it 
follows for any sequence of efficient estimators 06 that 

(k \l ) 
0 < j4-2 - limsupE0D(0 On) 7T(dO) 

< i lim E,LL,n(0, ) + E - limsupE0L,(0, n )}T(d0) 

< limsupE,{Ln,c(0 , ,)-L) 
- 

L(0 i)}n7(do) + 8, 
n -, oo 

where the last inequality is an application of Fatou's lemma since the 
function L,^C(0O, 0,c) - L) C(07, 0) is bounded from below by -c. The estima- 
tor O,nc being Bayes implies that, for each n, 

fE0{L C(0, ATc) - L((0, )}(dO) < 0. 

Whence we have shown that, for arbitrary 8 > 0, 

0 < 2 - s lim supED(o0 n) 7r (dO) < . 

Letting 8 tend to 0, we conclude that 

2 - limsupEOD(01) n))7T(d0) = 0 
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and hence that the set of superefficiency has rT-measure 0. It is important to 
realize that the above argument only works for sequences of estimators 
assumed to be efficient whereas our Proposition 1 yields the same conclusion, 
but for arbitrary sequences of estimators. 

The constant k/2 is sharp. Cencov (1982) shows that, for efficient estima- 
tors in smooth parametric families, nED(nO ll0) converges to k/2 (this is the 
reverse order of estimator On and parameter 0 to the one we consider). 
Komaki (1994) shows that, in curved exponential families, Bayes predictive 
densities have Kullback-Leibler risk EOD(poll p) = k/2n + 0(1/n2). Harti- 
gan (1998) reveals the asymptotics beyond the leading k/2n term. He gives 
conditions such that for maximum likelihood and Bayes estimates, the trun- 
cated Kullback-Leibler risk satisfies EOD(pOIlp) A 8 = k/2n + C,/n2 + 
o(l/n2) for all 8 > 0. Furthermore, he identifies the constant Co and how it 
depends on the choice of the prior. 

Efficiency may also be addressed in the context of the exponential conver- 
gence rate (large deviation principle) for "P[ 11 O, - 011 > s] as n -> oo. Bahadur 
(1967, 1971) identifies this rate (also related to Kullback-Leibler divergence 
and to Fisher information in the limit of small 8) and shows that supereffi- 
ciency is not possible in his setting. For an algorithmic information-theoretic 
perspective on statistical efficiency, see Vovk (1991). 

Merhav and Feder (1995) provide additional insight into the information- 
theoretic nature of the lower bounds for the total Kullback-Leibler diver- 
gence (source coding redundancy). The fundamental quantity is the minimax 
value C, = min nD(p pnIqn) which is in agreement with the maximin value 
maxW minqnlD(pO lq n)W(d6), known in information theory as the informa- 
tion capacity. They show that for any (code) distribution Qn the set of 
parameter values for which DZ(p^| Iqn) < (1 - 8)Cn has probability, under an 

asymptotic least favorable (capacity-achieving) probability measure, that 
vanishes to 0 as n tends to oo. In particular, as they point out, in smooth 

parametric families, Jeffreys prior [proportional to Vdet(I(0)) ] is asymptot- 
ically least favorable [cf. Clarke and Barron (1990)] and Cn _ (k/2)log n, 
thereby establishing in a different manner the negligibility of superefficient 
data compression. 

Brown, Low and Zhao (1997) study the superefficiency phenomena in the 
context of nonparametric regression under squared error loss. They exhibit 
sequences of estimators whose mean squared error, when divided by the 
minimax rate of convergence, converges to 0 for each regression function in 
the considered class. That pointwise convergence to 0 cannot be uniformly at 
a faster rate. In a related nonparametric problem, we show in Section 5 that 
the set of functions, when reconvergence occurs at a faster than the minimax 
rate, is negligible in a sense that will be made precise. 

In this paper we focus on the case that X1,..., X, are modeled as 
independent and identically distributed. Nevertheless, the techniques permit 
general forms of dependence for Px1, ., x. The cumulative Kullback-Leibler 
divergence D(px1 ... xn 1qx 1..., X) is made to be of order (k/2)log n + 0(1) 
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by suitable mixtures Qx,,...,x1 as long as n lD(pxl,.., XnlO LiPx,...,xn7I) < 

c,\\0- ~1 12 for q7 in a neighborhood X. of 0 (cf. Lemma 12 in the Appendix). 
If Assumption A holds, then for any Qx,. x the set of 0 for which 
lim supnD(px,l...,xl l0qx1,...,xn)/log n < k/2 has Lebesgue measure 0. 

When X1,..., Xn are allowed to be dependent, the chain rule becomes 

n-1 

D(px,,... xlqx.iq..x = E EPD(PxIX JQxi+1x) 
1=0 

Correspondingly, the set of 0 for which 

lim supnEpnD(pXnl+lxn, ollQxn+l,xn) < k/2 
n -00o 

has measure 0. That is, the predictive distributions Pxn,+xn, 0 are estimated 
with Kullback-Leibler loss not less than k/2n except for a negligible set of 
parameters. 

3. Superefficiency in a metric space context. In this section we 
study the asymptotics for the Kullback-Leibler divergence between members 
of the family Pn and any distribution Qfn on Xn. For the lower bound, we 
examine the negligibility of the set of 0 with small total Kullback-Leibler 
loss D( p\ Ilqn) in the sense of having a small cardinality cover as we shall 
make precise. For the upper bound, we explicitly construct distributions Qn 
that, under additional assumptions, have total Kullback-Leibler loss of the 
same order as the lower bound. Both these theorems are stated for general 
metric spaces. 

Let K be a compact set in a metric space (X, d). For subsets A c K c.f, 
the packing number M(A, s) is the largest number of points in A that are at 
least distance e apart and the covering number of N(A, s) is the smallest 
number of balls of radius e with centers in A needed to cover the set A. The 
related metric entropy is 

H(A, ) - H(e) = log N(A, e). 

Both the packing and covering numbers (and associated metric entropy) 
provide an intrinsic measure of dimension as 8 tends to 0. For example, the 
covering number of open balls B on RFk is of order N(B, e) (1/8)k, where 
we use an - bn to indicate that an/bn -> 1. By analogy, sets with covering 
numbers of this order are said to have metric dimension k. If the covering 
number grows faster than (1/E)k for every k, the set A is said to be infinite 
dimensional. Implicitly, we will assume that the covering number N(?, 8) 
tends to oo as 8 goes to 0. 

For A c B c K, the relative size of A to the size of B can be measured by 
the ratio of the number of small balls needed to cover A and B, respectively. 
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DEFINITION 3. For sets A c B c K, the relative measure of A to B is 

N(A,7 ) 
v (A) = lim sup N( A, 

--o+ N(B,2) 

Moreover, the set A is said to be negligible in B if v*(A) = 0. 

In the Appendix we show for parameter sets 0 that have finite metric 
dimension, that if there exists a locally invariant measure on 0 assigning the 
same mass to small radius balls, then negligibility is equivalent to having 
measure 0. When d is the Euclidean distance, Lebesgue is the invariant 
measure; when d is the Hellinger metric, Jeffreys prior provides the local 
invariant measure [cf. Jeffreys (1946) and Hartigan (1983), page 49]. To 
handle more general contexts of interest, we reformulate the assumption and 
conclusion in terms of negligibility. 

ASSUMPTION C. Let 0 c., a metric space with metric d(-, ). For a 
sequence {r0} which tends to 0 as n -> oo and for each compact subset K c 0, 
there exists a sequence of estimator O, based on X1,..., X, (possibly depend- 
ing on K) and finite integer no, such that the sets 

'q= (= e K: sup P6[n[d(, 0) > Ir] > 
n>no 

have covering numbers satisfying 

lim lim sup - 0 
- 00 E---o- N(K,e) 

for every 71 > 0. 

In the setting of Assumption A, tightness of the sequence of d( 0n 0)/rn for 
almost every 0 implies Assumption C. 

We first exhibit the lower bound for the total Kullback-Leibler divergence. 

THEOREM 2. Suppose the sequence of families of distributions {Pn: 0 E O} 
on X" has a parameter set 0 contained in a compact set K in the metric space 
(X, d). Assume that the H(8) = log N(0, 8) increases to oo while 8 decreases 
to 0. If Assumption C holds, then for every sequence of probability distribu- 
tions {Qn= 1 on Xn and divergent sequence {a,} for which a,rn = o(l), the 
set 

0(e 0: lim sup ,H( r) 
( noo H(anrn) 

is negligible in 0 with respect to the metric d. 

REMARK. The conclusion of the theorem is easily extended to c0-compact 
parameter spaces. Given a countable collection of compact sets Km whose 
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union contains 0, we apply Theorem 2 to each of the sets 0 n Km. Take H to 
be the logarithm of the minimum of the covering numbers required to cover 
each individual intersection 0 n Km, m = 1,2,..., where 0 c Um Km pro- 
duces a lower bound for the total Kullback-Leibler divergence. 

PROOF OF THEOREM 2. As in Proposition 1, we consider the inequality 

D(pllq) > Pon(E)log - log 2, 

with sets of the form 

- xn E Xn:(0 d (xn), o < a gO, n =2) 
- 

2 

where 8, = 2anrn. We bound Q"n(^ n) by showing that the set 

f ) log N(@, 8N) \ 

is asymptotically negligible. Let Mn be the maximal number of disjoint balls 
of radius 6n/2 having center in sln and denote by n the collection of their 
centers. The triangle inequality implies N(O, 8n) < Mn. Since the sets {go n: 
0 E n} are disjoint, 

log N(O, 5n) 

0 E Wn N(O, en 

which implies that 

N(O, 8n) 
n< 

log N(0, 5)J 

The ratio of the covering numbers of V and 0 is thus bounded by 

(1i1 N(n, n) 1< 

N(O, bn,) N(, a,) - log N(O, an)' 

which goes to 0 as n tends to so since 'n = o(l). Whence the sets 

(= E : Qn( " ) > log 
N(, aSn) for all n > no 

are negligible for all no. 
We now turn to bounding P^o[ n1]. For this, define for q7 E (0, 1) the sets 

7= (0e 0: inf P[, ] < 1 - 17) 

and 

, = (0 @: infPon[d(6, 0) < lrn] < 1- 71). 
n 

1811 



A. BARRON AND N. HENGARTNER 

Since l' < 12 implies that 1 , ̂ q ,M7,, it follows that 7 cMl, for all 1. 

From Assumption C, we conclude that 

lim <N(, ) ' lim lim = 0. 
E-O+ N(0,e) l-e+Oo->O N(, e) 

For 0 e (GV, U )C, the relative entropy is lower bounded by 

D( pnllqn) > pOn[ to n]log n[ ]) - log2 

> (1- )(l-7 logN(O, 8 ) -log 2. ^ - ' N(og N O, 8n) 

Identifying H(8,) = log N(O, 8,), we conclude that the set 

(12) (0 E 0: D(P,nllqn) > (1 - 277)H(56) for all n > no} 

is negligible for all -7 e (0, 1) and no. 
We conclude that the set {0 e @: D(p4nllq") < H(8O)} is negligible in by 

noting that it is the limit in j of the increasing sequence of sets {0 E 0: 
D(p 4Illqn) < (1 - 2/j)H()}, each of which is negligible in 0. D 

In general, Theorem 2 identifies H(r,) as a lower bound for the conver- 
gence rate of D( pn llq n). The conclusion can be more precise in the case that 
0 has finite metric dimension. Indeed we show that the metric dimension k 
is a lower bound for D(pnIq)/log r,, except for a negligible set of 0. 

THEOREM 3. Let the parameter space 0 c^f have finite metric dimension 
k in a o-compact metric space (X, d). If Assumption C holds, then for any 
sequence of distributions Qn on X", the set 

0 E 0: limsup D( Iq < k 
n ,-oo logr r 

is negligible in &. 

REMARK. The conclusion of Theorem 3 remains unchanged when the rate 
r, is increased to rn(log(l/rn))1 for any 1 > 0 (as can be seen by inspecting 
the proof below). Whence Assumption C can be weakened to assuming 
negligibility of the set 

Gr= {0 E K: supPon[d({n 0) > Ilog > 7 

as I goes to oo. 

PROOF OF THEOREM 3. Without loss of generality, we assume that 0 is 
bounded. If not, write X = Uj Kj, where Kj are compact sets with nonempty 
interior, and apply the argument to each of the bounded sets 0 n Kj. Since 
the set 0 has finite metric entropy, the covering numbers N(?; e) are of 
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order (1/7)k. Now apply Theorem 2 with an = log(l/r,) to conclude that the 
set of parameters for which 

logl/r, oD(pf llg ) lim sup 1rX < k 
Poo log 1/rn - log log 1/rn log 1/rn 

is negligible. The conclusion follows by noting that 

log l/rn -> 1 with n -> oo. D 
log l/rn - log log 1/rn 

We now provide conditions for the existence of sequences of distributions 
Qn on Xn having Kullback-Leibler divergence D(pg q n) matching the lower 
bounds of Theorems 2 and 3 up to asymptotically negligible terms, and this 
for all 0 E (. In particular, in the finite metric dimension case, it reveals the 
efficient constant in terms of the metric dimension k. 

To construct such distributions Qn on Xn, let Wn be a sequence of discrete 
prior distributions on 0. Consider the sequence of distributions Qf with 
probability densities 

qn(xn) = fpn(xnlq)Wn(d7q) 

on Xn. This choice is motivated by the fact that, for each n, Qn minimizes the 
average total Kullback-Leibler loss fD(pnlljq)Wn(d6). When Wn are judi- 
ciously chosen, the mixture qn(xn) is a good candidate to achieve D(p llqn) 
of order H(rn) (with best constants in the finite metric dimension case). 

The following theorem gives an upper bound in terms of the covering 
numbers of the parameter set by e-balls of the Kullback-Leibler divergence 
n- D(p nII p,). In the i.i.d. case this divergence reduces to D(pl liP). A subset 
K of 0 has an e information cover of cardinality Nn(e) if there exists a set 
Cn = {71, 772 * * * 1Nn(?) Of points in 0 such that for every 0 E K there exists 

Wl E W for which n lD( pnllp) < 2. 

THEOREM 4. Suppose that parameter set 0 is represented as Uj Kj, where 
the subsets Kj are independent of n and have e information covering number 
bounded by N n() uniformly in j. Then for every sequence of positive numbers 
Fr, there exists a sequence of distributions Qn on Xn such that 

(13) D(pnglqn) < logN\(rn) + nrn + C(0) 

for some constant C(6) not depending on n or the sequence {Fr}. 

REMARK 1. The best such bounds are obtained by choosing rn to (ap- 
proximately) minimize log N (ri) + nF2. Combining this bound with its impli- 
cations for the existence of estimators satisfying Assumption C at rate 
rn = rF, as developed in Section IV, will reveal the optimality of our upper 
and lower bounds. 
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REMARK 2. The proof applies techniques from Clarke and Barron (1990), 
and uses Lemma 12 in the Appendix that is implicit in Barron (1987). 

PROOF OF THEOREM 4. Given F,, let N, = Nn(rn) and Fj = {77j, 1Ij,2 

... j N)} be the set of centers in Kj such that Kj c UI1{o: n-1D(pnjllp n,) < 
r2}. Define a prior Wn via the following two-stage process: First draw j an 

integer-valued random variable with probability mass function 7T(j) > 0. 
Given = j, draw a point uniformly from the finite collection j. We now 

apply Lemma 12 in the Appendix with Bn = {r] E 0: D(p llpp) < nrn}2 to 
conclude that 

(pn ? log Wn(dr) 
D(p, llqn) <log Wn(Bn) + IBnD( p Wn(B ) 

Wn(Bn) n 

1 

logW(B <logNn(Fn) -log 7(j). 

Thus the total Kullback-Leibler loss is bounded by 

D(pjnllq) < logNn(rF) + nr2 + C(0), 

where C(0) = mint-log 7r(j): Kj 9 0}. D 

The exhibited sequence of distributions Qn in Theorem 4 are not Kol- 
mogorov consistent since the prior Wn changes with n. One might expect the 
upper bound to be much larger when one requires the sequence Qn to be 
Kolmogorov consistent. This is not the case, as we now proceed to show. 

Consider the mixing distribution on 0: 

mc=1 m ? 1 

where W, are the mixing distributions used in Theorem 4 and E. 1l/(m(m 
+ 1)) = 1. The mixture using W achieves asymptotically the same upper 
bound as the one obtained from the sequence W,. Indeed, for Bn as in 
Theorem 4, we have that W(Bn) > (1/mn(mn + 1))W2mn(Bn), where m = 

[(log n)/21, and the bound on the total Kullback-Leibler loss 

D(p^ llqn) < logN(rn) + n2 + 3 loglog n + C(0) 
follows. In all the cases considered in this paper, the additional log log n term 
is of smaller order than log N(rF) + nrF2 for any choice of rn. 

The upper bound involves the covering number of the parameter set in 
Kullback-Leibler divergence whereas the lower bound from Theorem 2 uses 
covering numbers of the parameter sets using the metric d. These quantities 
are related in the i.i.d. case if the Kullback-Leibler divergence is locally 
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bounded by 

D(poll p,) < C, p(d2(d0, 7)) for all 7q in a neighborhood A of 0, 

where <p is a continuous, monotone increasing function with <p(0) = 0. It then 
follows that, for small rn, log N(rn) < H(p-l(rF2/C0)). The following theorem 
considers an important special case of the latter. 

THEOREM 5. Suppose that the parameter set 0 has finite metric dimension 
k in (X, d) and that for each 0 E 0 the Kullback-Leibler divergence is locally 
upper bounded by D(p ,l p) : C^d(O, _.)" for all 0 in a neighborhood A. If 
X1,..., Xn are i.i.d. P,, then there exists a sequence of distributions Qn such 
that the total Kullback-Leibler loss is bounded by 

k 
(14) D(pngiqn) < -log n + C(0) 

for some constant C(0) not depending on n. 
If the Kullback-Leibler divergence and the squared Hellinger distance are 

further locally lower bounded by D(pollpq) > h2(po, p) 2 cod(0, r])c for all 
r- EAV and co > 0, then, for all sequences of distributions Qn, 

k 
D(p llq ) 2 -log n 

for all but a negligible set of 0. 

We momentarily delay the proof of Theorem 5 to first exhibit sequences of 
estimators whose Kullback-Leibler risk converges at an appropriate rate. In 
Theorem 5, we use these estimators to show that Assumption C holds with a 
suitable rate to produce the desired conclusions. We note that efficient 
parameter estimation will be considered in the next section. 

LEMMA 6. Assume that the family of distributions {P,: 0 E 0} is domi- 
nated by v and that PJ^ makes X1,..., X, i.i.d. with density po. Then to any 
sequence of Kolmogorov-consistent distributions Qn, there is a related se- 
quence of density estimators Pn that satisfy 

E,D(P1p,1n) < -D(p^nllqn). 

PROOF. Let p^(x) = ql(x), and for n > 1 set 

qn+1(xn, x) 
Pn(X)= ; ) n+1 (xlXn) 

and define the Cesaro average density estimator 

1 n-l 
fPn(x) = - E P1(x). n =0 
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An application of Jensen's inequality produces 

r(po Pe(x) 
D(p011iPn) = Jlog ( p ) p ( x) v (dx) 

n 
Pl0p(x) 

1 n 
=- E D(pollpi(xlx1)). n 1=1 

Taking the expectation and applying the chain of information theory pro- 
duces 

1 n-i [ p0(X1)+l) 
E4[D(poIiPn)] < - E0 I log (X,1 n-0 [ q(Xi?+iIX) jj 

= -D(pljqn). D 

PROOF OF THEOREM 5. By Theorem 4, the total Kullback-Leibler loss is 
bounded by 

D(pnlq'n) < log N(rn) + ni2 + C(0). 

The bound on the Kullback-Leibler loss implies that 

{r: D(0h1) < 2} D 
( 

: d(0, ) - Co) 

and therefore logN(Fr) < log(aC/r,2)k/a, where (a/e)k is a bound on the 
metric entropy of 0 using metric d. Whence 

D aC k/a 
D(pnl) < log + nr + C(0) e F2 n 

2k 1 
<-log- + nr +C (0) 

oe rn 

for some constant C1(0). The latter is minimized by taking rFn = kn/oa 
which leads to the claimed upper bound 

k 
(15) D(PnIIQn) < -log n + C2(0). 

To prove the lower bound, we will show that Assumption C holds. For this, 
let K be a compact set. From the proof of the above upper bound, there exists 
a sequence of Kolmogorov-consistent distributions Qn for which 

k 
(16) D(pn lqn) < -log n + 3 loglog n + C(0) 
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for all distributions po with 0 E K. As in Lemma 6, po(x) = q'(x), define 
pj(x) = qn+l(xn, x)/qn(xn) with n > 1 and 

1 n-i 

n= - E p(X). n 1=0 

By Lemma 6 and (16), there exist density estimators jPn satisfying, for every 
0 E K, 

k log n 
E[D(P6Ii5Pn)] < - (1 + o(l)). a n 

Let On be any value of 0 E K minimizing h2(jp, p- ) (or within a factor of 2 
of the infimum if the minimum is not exactly attained). The assumed relation 
between d and h, the triangle inequality for the Hellinger distance and the 
bound h2 < D imply that 

E,c,d(O, On) < E,h 2(p, p6,p) < 4E,h2( p6, ,n) 

4k log n 
< 4E,[D(pOlin)] < (1 + o(l)). a n 

An application of Markov's inequality shows that Assumption C holds with 
r, = [(log n)/n]l/ a. The second conclusion therefore follows from Theorem 3. 

4. Superefficient parametric estimation. In this section we use the 
results of the previous section to establish the negligibility of the set of 
superefficiency for estimation in finite-dimensional parametric families. First, 
we state the conclusions for estimation in general metric spaces. Then we 
specialize the conclusion to express negligibility in terms of the Hellinger 
metric. 

THEOREM 7. Let X1, X2,..., Xn be an i.i.d. sample from Po E {Po: 0 E )}, 
a parametric family of distributions with parameter space e of finite metric 
dimension k, satisfying Assumptions B and C. Let y(n) be any nonnegative 
sequence satisfying 

1 Tn. 
(17) log- 

y(n) r+1 

in the sense that the ratio of the two sides converges to 1. Then for any 
sequence of estimators pn(x) = p^(x; Xn) of the density p,(x), the set of 0 for 
which 

lim sup y(n)EOD(poll^n) < k 
n -- oo 

is negligible in 0. In particular, for sequences of estimators ,n based on Xn, 
the set of parameter values of 0 for which lim sup_n oy(n)E0D(0|110) < k is 
negligible in 0. 
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REMARK 1. For r = n- 1/2, one can set y(n) = 2n in accordance with the 
conclusions derived in the Introduction. 

REMARK 2. The individual Kullback-Leibler risks are connected to a total 
Kullback-Leibler risk via the chain rule. By use of this chain rule, we give a 
lower bound on the individual risk for arbitrary estimators (for almost all 0). 

PROOF OF THEOREM 7. To show that the set 

if {0e e : limsupy(n)E0D(p0jlj) < k) 
n -oo 

is negligible, consider the sets 

s,=m =( f E 
: y(n)E,D(poi, ) < k(1 - - ) for all n > m. 

From the definition of lim sup, it follows that iv c U= I U= -is, m and the 
union bound implies v (if) G < Ev (0s,0 mm). By the monotonicity Vs m 
Cjs if+l) it suffices to show that v(sifs(v um) is 0 for all large 1. For this, we 
will apply the chain rule of information theory. 

Given s < 1, pick m = Imo large enough such that 

)< 1 + - )logr' for all j 2 m. 
rY(j) s rj+ i 

Define the probability distribution Qfn on X' via its probability density 

q(x ) = qO(x m)m(Xm+l)m^+l(xm+2) . P-l(X), 

where qm1(xm) is the i-fold product of the densities of the measure Qnmo from 
Assumption B. For 0 es, m and n > m, 

n-I 

D(pnllqn) = D(pmllqrm) + E EOD(p,llj,) 
j=m 

( 1 n-l 1 

<lD(pm0qmo) k( - -1) l E 

(18) < 1D(poqmo) + k(l- I- 

X E 1+ log- - (log- 
j=m s rj+ 1 r1 

< IDp 0 
ojiqm) + k( 1- 2 )log- -log- o 

s2 r r s n Tm 
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For n large enough, the latter implies that 

(19) 
0 

- k 
logl/rn ( 2s2) 

and the conclusion follows from Theorem 3. D 

We now specialize the previous results to the problem of parametric 
density estimation. To express negligibility, we parametrize the v-dominated 
family of distributions {P0: 0 E }0 by their probability densities {p = dP^/d v} 
and view the latter as a subset of X, the space of all densities dominated by v, 
endowed with the Hellinger metric h(p, q) = {f(Vp(x) - _\q(x) )2 dv(x)}l/2. 
We assume that X1, X2,..., Xn are i.i.d. with density in the family. 

THEOREM 8. Suppose that the parameter set of the family of distributions 
{Po: 0 E 01 has finite metric dimension k for some metric d, and suppose that 
there exists an a > 0 such that for each 0 E 0 there exist a constant C. > 0 
and an open neighborhood 41' such that the relative entropy is locally bounded 
by 

(20) D(p,oIp,) < Cod(0,q)a for all -y e . 

Then the set of densities for which 

(p e: lim supnEpD(pilp^n) < 
- 

is asymptotically negligible in ?9 with respect to the Hellinger metric. 

REMARK 1. The proof reveals that the upper bound on the Kullback- 
Leibler divergence implies Assumption C in the Hellinger metric with rn 
= /(log n)/n, and this regardless of the value of a. 

REMARK 2. Negligibility in fl with respect to the Hellinger distance does 
not imply negligibility in 0 with respect to d unless there is a suitable 
relationship between h and d. 

PROOF OF THEOREM 8. The Kullback-Leibler loss is bounded from below 
by the square of the Hellinger distance. Thus the upper bound on the 
Kullback-Leibler loss implies that locally 

h2(p, P) < D(p0lIp,) < C,d(0), r) 

Whence it follows that the covering numbers of every compact subset of '9 
by Hellinger balls of radius s are bounded by C?-2k/a, which implies that 
the Hellinger metric dimension of S is bounded by 2k/a, where k is 
the d-metric dimension of 0. The lower bound on the Kullback-Leibler loss 
also implies that Assumption C holds in the Hellinger metric with 
rn = /(log n)/n. The argument is the same as the one presented in Theo- 
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rem 5. Assumption B follows from the assumed local upper bound on the 
Kullback-Leibler loss, and the conclusion follows from Theorem 7 with 
y(n) = 2n. Indeed, this choice satisfies condition (17) since 

1 lg(log n)/n 
___ == log 
y(n) V(log(n + 1))/(n + 1) 

1 /1 
= 1- +0 - . D 

2n \n log n / 

5. An implication for nonparametric rates. We now present the 
implication of Theorem 2 for lower bounds on nonparametric rates of conver- 
gence in the Hellinger metric. As in the previous section, we view the 
v-dominated family of distributions . = {P0: 0 E 0} as being parametrized 
by the densities fl = (p = dP/dv: P fE }, and take the latter as a subset of 
the space e of all densities dominated by v endowed with the Hellinger 
metric. Our result identifies nonparametric rates of convergence, such that 
the set of densities that can be estimated at a faster rate is Hellinger 
negligible. Related results on minimax convergence rates are also found in 
Yang and Barron (1995) and Birge (1986). 

THEOREM 9. Let . be a dominated collection of distributions and assume 
that H(e), the Hellinger metric entropy of the associated set of densities, is 
such that, for every c > 0, limsup->_H(ce)/H(e) is finite. Further assume 
that for each P E . there exist a Hellinger ball Ap and a positive constant Cp 
such that D(pllq) < Cph2(p, q) for all Q exp n3. Choose rn such that 

H(r) < nr,2 

and lim supn <,r, /rn = 1. Then for any estimator sequence {(P, the set of 
densities which can be estimated in Kullback distance at rate faster than r2 is 
Hellinger negligible. That is, for any sequence cn decreasing to 0 such that 
lim supN , cn/rn = 0, the set 

(p 6E: lim sup EpD(pllj,)/cj < 1) 
n ---x 

is Hellinger negligible. 

REMARK. From the assumed equivalence between h2 and D, it follows 
that the set 

(p e3g': limsuph(p,jn) < cn) 

is also Hellinger negligible. In infinite-dimensional spaces, we no longer can 
identify best constants, but we can still reveal the best rate. 
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PROOF OF THEOREM 9. Combining the upper bound on the Kullback- 
Leibler loss and Theorem 4 shows that Assumption B holds with m = 1. We 
now parallel the argument of Theorem 7 to show that Assumption C holds 
with rate rn. Indeed, the sequence of density estimators Pn considered in 
Lemma 6, satisfies, for all p E SD, 

E[h2, p fn)I < 
D( pnlqn) 

log N(rn) + nr2 

n 

H(rn) + nr2 

n 

< 2r2. 

Assumption C follows from Markov's inequality. 
As in Theorem 7, the conclusion will follow if the set 

(21) p D(pnlqn) 
(21) \P^ \n ?2 

< 

is Hellinger negligible. By the definition of rn, 

H(rn+1) 
- 

H(rn) = (n + 1) rn+ - nr2 

= nrl (l+ n- l)2 -1 
n I 

= r2(1 + 0(1)) 

and whence the sum EJ=l 2 telescopes into H(r n+)(l + o(l)). By assump- 
tion, E> 1c2 = o(E =rf2), so that, by the monotonicity of H(e), the definition 
of rn and the assumption that lim sup, ,,H(ce)/H(e) < oo for all c > 0, there 
exists a sequence Il increasing to co such that 

n 

E cj = H(lnrn). 
j=1 

The conclusion follows from Theorem 2. D 

EXAMPLE. Let +i(x) = }p(x) and denote by _ a,, c the set of densities 
supported on [0, 1] satisfying: 

(i) fJJi(k)(x)2 dx < C for k = 1, 2,..., s; 
(ii) fl(Rq(s)(x) - /q(s)(x + h))2 dx < Ch?a, 0 < a < 1; 

(iii) |log qf(x)l < C. 

In this example, we consider the problem of estimating p E sa, c. Following 
Lorentz (1966), we know that the Hellinger metric entropy of C a c is of 
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order H(e) = (1/)1/=, where ,3 = s + a. Whence the solution to H(r) = nr2 
is rn = (1/n) (1 2). In Theorem 9, we show that there exists a sequence of 

density estimators pn(x) for which the sequence n (1+2 Ph(p, P^) is tight. By 
Theorem 9, we conclude that the set of densities in p,a,,c which can be 
estimated at a rate faster than n -23P/(1l+ 2,) in Kullback distance is asymptot- 
ically Hellinger negligible. This gives another sense, other than minimax, in 
which the rate n- /(1+23) is optimal to estimate densities in a,^ . 

APPENDIX A: TECHNICAL LEMMAS 

DEFINITION 4. Let (X, d) be a metric space and denote by W(x, r) = {y: 
d(y, x) < r}, the open ball of radius r and center x. A measure ,u on (X., d) is 
said to be invariant if, for each r, ,L assigns the same mass to _(x, r) for all 
x em; that is, for each r, 

(<X(X,r))- X( y,r)) for all y E . 

It is said to be locally invariant if 

4(B(x, r)) 
lim =1 
r -o 0 (B(y, r)) 

for all pairs x, y e X. 

We remark that, when X is a linear space, the invariant measures 
are translation invariant. When (X, d) is a space of densities with Hellin- 
ger metric, the locally invariant measure gives small Hellinger balls the 
same measure, an idea due to Jeffreys (1946). In particular, if h2(p0,, p ) 
4-1(0 - 7)tI(O)(0 - r) as 1 -> 0 in RI, then the locally invariant measure 
has density on the parameter set proportional to (det I(0))1/2. That is, our 
results naturally allow superefficiency on the subset of the parameter space 
where det(I(O)) = 0. 

LEMMA 10. Let (0, d) be a sigma-compact metric space with finite metric 
dimension. Assume there exists a locally invariant measure ,u which assigns 
finite mass to every open ball M. Then a set A is negligible in 0 with respect to 
the metric d(, * ) if and only if it has outer ,u-measure 0. 

REMARK. In R k, sets with zero outer ,A-measure have Lebesgue mea- 
sure 0. 

PROOF OF LEMMA 10. We can assume that 0 is compact. If not, there 
exists a countable collection of compact sets with nonempty interior Kj, such 
that 0 c UcJ=1( n Kj), and the proof is done on each set (0 n Kj) sepa- 
rately. 

Denote by eW(x, r) the open ball of radius r centered at x. Since the 
measure tL is locally invariant, there exist functions m(e) and M(e) such 
that m(e) < ,u(B(x, ?)) < M(E) for all x E K and such that M(W)/m(s) -* 1 
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as e -> 0. It then follows from the definition of outer A-measure [see Halmos 
(1988), Chapter 1.10] that the outer measure of any set A c K is bounded by 

AI*(A) <N( A, e)M( ). 
The minimum number of balls of radius e covering A is less than the 
maximum number of balls of radius e/2 packing the set A8/2 = {y: 
inf{d(x, y): x E A} < s/2). By the definition of inner measure and the local 
invariance of AL, this packing number is less than ,* (A7/2)/m(e/2). Thus 

1(A) < N(A, ) < (A/2) 

M(e) -m(e/2)) 
so that 

m(?/2) U*(A) N(A, e) M(e) A*(A,/2) 

M(8) p(0) N(0, ) m(e/2) A(O) 
Since 0 has finite metric dimension and ,L is locally invariant, M(E)/m(e/2) 
converges to a strictly positive and finite constant as 8 converges to 0. The 
conclusion follows by noting that L * (A,/2) ?< ju(A7/2) and by the continuity 
of the outer measure as 8 goes to 0. El 

LEMMA 11. Let the parameter space 0 have finite metric dimension k and 
a locally invariant measure uL on 0. If for ,u-a.e. 0 the sequence of random 
variables r-ld(O, 0n) is tight under P7, then Assumption C is satisfied. 

PROOF. Let K be a compact set in 0. Fix 0 < r] < 1, and consider the set 

-W = (0 E 0 n K: supPo[d(0n, 0) > lrn] > T) 
n 

From Lemma 10, there exists a constant C such that 

(22) lim N(iq', <) 
(2 o+ N(@ n K, s) 1(? n K) 

Tightness of d(on, 0)/rn implies that the sets _W are decreasing to a set of 
measure 0 as I goes to oo. The dominated convergence theorem thus implies 
that the right-hand side of (22) converges to 0 with I -> oo. D 

LEMMA 12. Let {PO: 0 c 0) be a dominated family of distributions and 
assume that 0 is a measurable space. With a prior probability distribution W 
on 0, define the mixture Q(') = fP,(')W(dr7). Then for any measurable B c 0 
the Kullback-Leibler loss is bounded by 

D(pIq) < log + 1 D(P11P W(drB) 

W(B) ? fD(p0IIp, ) W(B) 

< logW(B + D(0llB), 
W(here, for any subset B c B) = BD 

where, for any subset B c 0, D(0\\B) = sup71e BD(p lpl). 
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PROOF. Denote by q(x) = fp(xlr)W(dq) the density of the mixture Q 
with respect to the dominating measure of the family of distributions {P,: 
0 E }1. Integrating only over the set B bounds 

W(drB) q(x) 2 t p(xr)W(dr = W(B)flp ( x1) W(B) 

where W(B) = fBW(drq). Applying this and Jensen's inequality, the Kull- 
back-Leibler loss is bounded by 

D(p,olq) = flog ( x)) p(xl)v(dx) 

1 g P( IO) I) W(x0q) 
W(B) + | P ( px\0) W W(B) 

1 W(dqn) 
log + D(pIIPW)W 

By the definition of D(Ol B), the latter is further bounded by 

D(p,llq) < log (B) D(0\\B), 

proving the claims. D 
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