
438 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 59, NO. 1, JANUARY 2013
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Abstract—We discuss the properties of Jeffreys mixture for a
Markov model. First, we show that a modified Jeffreys mixture
asymptotically achieves the minimax coding regret for universal
data compression, where we do not put any restriction on data
sequences. Moreover, we give an approximation formula for the
prediction probability of Jeffreys mixture for a Markov model. By
this formula, it is revealed that the prediction probability by Jef-
freys mixture for the Markov model with alphabet is not of
the form , where is the number of oc-
currences of the symbol following the context and

. Moreover, we propose a method to compute our
minimax strategy, which is a combination of aMonte Carlomethod
and the approximation formula, where the former is used for ear-
lier stages in the data, while the latter is used for later stages.

Index Terms—Bayes code, Jeffreys prior, minimax regret, sto-
chastic complexity, universal source coding.

I. INTRODUCTION

W E discuss the properties of Jeffreys mixture for a
Markov model (a class of fixed ordered Markov

chains) in the problem of sequential prediction and universal
coding. We employ logarithmic regret (which has other names,
e.g., coding regret and pointwise redundancy) as a performance
measure and show that a modified Jeffreys mixture asymptot-
ically achieves the minimax regret up to constant order. This
provides a sense in which the modified Jeffreys mixture is one
of the best prediction strategies. Moreover, it implies that the
modified Jeffreys mixture achieves the stochastic complexity
[17] for the class of Markov models, which has various statis-
tical interpretations.
The primary motivation for this investigation is to provide

a stochastic model that achieves the universal coding and pre-
dictive objectives, including the determination of a sequence of
priors for which the corresponding mixtures (for coding) and
posterior (for prediction) achieve the approximate minimax re-
gret. This improves understanding of the exact minimax regret
procedure (normalized maximum likelihood) as identified by
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Shtar’kov[18], which seemingly lacks such interpretation. The
normalized maximum likelihood distribution and our asymp-
totically minimax regret mixture distribution are close to each
other in total relative entropy. We are extending a line of work
in [6], [7], [27] and [28] which were for i.i.d. models, the work
in [21] which was for exponential families, and the work in [1]
which investigated the regret of Jeffreys mixture for Markov
sources for sequences for which the maximum likelihood esti-
mates (MLEs) (the relative frequencies of transition) are located
away from zero. This study extends these conclusions to obtain
results for regret that are uniformly valid over all sequences.
Although in the i.i.d. case, the Jeffreys mixture corre-

sponds to the Dirichlet prior which pro-
duces a Laplace-like Jeffreys prediction rule (also called the
Krichevsky–Trofimov estimator), in the Markov case the
Jeffreys prior does not correspond to independent Dirichlet
priors on the transition probabilities for each context, so the
corresponding rule is more complex.
The secondary motivation of our investigation is the calcula-

tion of the predictive probabilities needed for sequential pre-
diction and universal coding algorithms. We propose an ap-
proximation formula in the form of a corrected Laplace esti-
mator. The error of the correction is of order , where
is the number of past occurrences of the current context (state)
. Moreover, we propose a method to compute approximately
our minimax strategy, which is a combination of a Monte Carlo
method and the approximation formula, where the former is
used as long as is not large for earlier stages in the data, while
the latter is used once becomes large.
Coding regret is defined as the difference of the loss incurred

and the loss of an ideal coding or prediction strategy for each
sequence. A coding scheme for sequences of length is equiv-
alent to a probability mass function on (the -fold
direct product of an alphabet ). We can use also for pre-
diction, i.e., its conditionals provide a distribution
for the coding or prediction of the next symbol given the past.
The minimax regret with respect to a family of probability mass
functions is defined as

where is the MLE of given . Restriction to a subset
is used in some developments. Our main results are for the

case that the maximum is taken over all strings , i.e., .
Here, the regret in the

data compression context is also called the pointwise re-
dundancy: the difference between the codelength based
on and the minimum of the codelength
achieved by distributions in the family. Also,
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is the sum of the incremental regrets of pre-
diction . For our
Markov setting, the regret is defined conditionally on an initial
state.
When is the class of discrete memoryless sources, Xie

and Barron [28] proved that the minimax regret asymptotically
equals

where equals the size of the alphabet minus 1 and is
the Fisher information matrix with respect to . This evaluation
is not for a subset of sequences but for the whole set of
sequences. To obtain this asymptotically minimax regret, they
use sequences of Bayes mixtures with prior distributions that
weakly converge to the Jeffreys prior. The reasonwhy one needs
such variants of the Jeffreys prior is as follows: if we use the
Jeffreys prior, the risk is asymptotically higher than theminimax
value, for such that is near the boundary of . They use
priors which have higher density near the boundaries than the
Jeffreys prior, to give more prior attention to these boundary
regions and thereby pull the risk down to the asymptotically
minimax level.
In this paper, we generalize the results of [28] to the case

where is a class of the -order Markov chains with alphabet
size . In particular, we give an upper bound on the minimax
regret, using variants of the Jeffreys mixture, as

(1)

Note that equals the number of the parameters of
the class . In [21], we showed that similar mixtures are min-
imax for (i.i.d.) exponential families and certain near exponen-
tial families that permit dependence, but in general those bounds
are for the restricted set of sequences for which the MLE lo-
cates in a compact set interior to the parameter space. Our re-
sult is a generalization of [28] to Markov models and that of
[21] to the set of all sequences. (Strictly speaking, the first-order
Markov chain with alphabet size 2 is treated in [26]). Con-
cerningMarkovmodels, Atteson [1] obtained both pointwise re-
gret and expected redundancy bound for Jeffreys mixtures with
parameter values away from the boundary. Also, Gotoh et al.
[8] gave an asymptotic upper bound on the regret, which holds
almost surely.
It should be noted that the normalized maximum likelihood

, proposed by Shtar’kov [18], provides
the precise minimax procedure for pointwise regret. In [18],
Shtar’kov introduced the pointwise regret and gave upper
bounds on the codelength of normalized maximum likelihood
for classes of discrete memoryless sources and finite state
machines (FSMX model [24], which is an extension of Markov
chains). His bound for the FSMX model yields a bound for
Markov chain as , where is a con-
stant depending only on and . More recently, Jacquet and
Szpankowski [11] evaluated it more precisely and determined
the constant term of the minimax regret for the Markov chains.

Modified to condition on the initial state (or initial string
), their evaluation coincides with the form (1) in

terms of Fisher information as explained in [20].
Rissanen’s stochastic complexity [17] is the codelength

having the minimax coding regret. It is used as the main part
of model selection criteria by the minimum description length
principle. A consequence of this study is that this criterion is
approximately a Bayes criterion with modified Jeffreys prior.
To summarize, 1) we show that our modified Jeffreys mix-

ture is asymptotically minimax; 2) consequently, the divergence
between this mixture and the normalized maximum likelihood
tends to 0 as goes to infinity; 3) it provides the expression for
the stochastic complexity exhibiting the role of the Fisher in-
formation; and moreover 4) the expression (1) for the minimax
regret holds, even though we do not put any restriction on the
sequences.
The Jeffreys mixture for the Bernoulli model induces the

Laplace-like estimator where is the data
size and is the number of occurrences of the symbol 1. While
the Laplace estimator is in a very simple form, the Jeffreys
mixture for a Markov model is not, even when the model is
the first-order Markov chain. Hence, we give an approximation
formula for the prediction probability of Jeffreys mixture for
Markov models. This is an extension of the approximation for-
mulas of the Bayes estimator for (i.i.d.) exponential families,
shown in [19]. We can see the behavior of Jeffreys mixture by
this formula. In particular, the prediction probability by Jeffreys
mixture for the first-order Markov chain with alphabet
is not of the Laplace-like form.

II. PRELIMINARIES

Define an alphabet as , and let denote
. In this paper, we employ the class of -order

Markov chains on the alphabet as a parametric model. Let
denote and let . Listing the elements of by

dictionary order, denote (e.g.,
). We refer to as a context. For each context ,

let denote the probability that occurs after . So
it is assumed that and . Let denote
the vector and the vector ,
where . Here, denotes the transposition of a
vector . Define the range of as

Likewise, the range of is . Let denote a
sequence ( ) and a sequence . Note
that .
Assume that we have an initial context in ad-

vance. Let denote the number of occurrences of as a di-
rect successor of the context in the sequence given , and

define . Denote the probability mass function
for the sequence , determined by , by . Let de-

note the family of probability mass functions
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. We usually omit from and
simply denote it . Then, we have

(2)

where we let “ ” denote the natural logarithm and denote

the context function (the last symbols of
) for . Let denote the

MLE of given . We have

Here, we introduce the minimax and maximin regret in the
Markov setting, where we fix the initial state . Let

denote the set of all conditional probability mass
functions on given .
The conditional maximum regret given of

with respect to a family of conditional probability mass func-
tions and is defined
as

The conditional minimax regret given with respect to a
family of probability mass functions and a set of the se-
quences is defined as

The conditional maximin regret given for a set of se-
quences is defined as

where we let denote the conditional expectation with
respect to given . As the consequence of the
definitions, holds. For logarithmic
regret, it can be shown that holds in
the same manner as in [18] and [28].
Now we introduce the Fisher information and empirical

Fisher information. Empirical Fisher information is the Hessian
of . We denote its component with respect
to and ( ), by .
Then, one can derive from (2) that

(3)

where we let and let and be
Kronecker’s delta. The Fisher information is defined as

(4)

where denotes the stationary probability of the state
determined by , and the symbol the expectation with
respect to .
Define the Jeffreys prior density with respect to the Lebesgue

measure as

where is the normalization constant.

Let be the Dirichlet function.
Then, from (4), we have

(5)
Let denote the mixture by (Jeffreys mixture) which

is We also define the
Dirichlet prior density as

where . This is a product of Dirichlet
prior densities, one for each context, reflecting independence à
priori between the contexts. In contrast, is not of product
form because depends on all of for each . Note that

holds as approaches the boundaries of
, if holds.

III. RESULTS
A. Minimax Regret

We establish a tight upper bound on the minimax regret for
Markov model by the following theorem.

Theorem 1: Let be a class of
-order Markov chains with alphabet . Define a

modified Jeffreys prior density for as

where is assumed and . Let
be a mixture of Markov sources as

Then, for an arbitrary , the
following bound on holds for any

:

(6)

where converges to 0 as goes to infinity.
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The complete proof is given in Section IV, but we give the
intuition here.
The main tool for the proof is the Laplace approximation, by

which we have the following asymptotics:

(7)

This is obtained by writing as the exponential of
, and taking a second-order Taylor expansion for

near . In this way, one approximates with a Gaussian
density function for .
When the model is an exponential family,

holds. Then, if were an exponential family, our task would be
to control the accuracy of approximation (7) only. Though the
stationaryMarkov model is not exponential type, it converges to
an exponential family, when the sample size goes to infinity (see
[29] for example). Moreover, for the Markov model, the empir-
ical Fisher information converges to the Fisher information

(8)

This convergence holds uniformly for with in a set in the
interior of . As a consequence, it is possible to make the regret
of the modified Jeffreys mixture converge to the minimax one.
This task is accomplished by a case argument concerning

whether the MLE is near the boundary of the parameter space
or not. When we restrict the sequence so that the MLE

belongs to a compact set included in the interior
of , then we can prove that the convergence of (7) and (8)
is uniform for those sequences, since neighborhoods of are
guaranteed to be included in . The Laplace approximation is
valid as long as neighborhoods of of radius of larger order than

are included in . Consequently, it is possible to prove
the uniform convergence of the regret, even if we moderate
the restriction on the sequences. Instead of sequences being re-
stricted to have MLE in a fixed set , we allow more generally
for sequences with the MLE in , where
we let

and

For the sequences with within order of the boundary
of , we cannot use the Laplace approximation. The shape of

becomes that of a truncated Gaussian, with reduced
value of the integral in (7). A similar reduction to the integral oc-
curs if is on the boundary. Hence, the regret would be larger
by some amount. Indeed, it has been shown for the memory-
less case that the regret of Jeffreys mixture is larger than the
asymptotic minimax value by the amount , when
is located at a vertex of (Lemma 3, [28]). Hence, we need the
contribution from the second term of , which is .
With the help from it, for on or near the boundary, we can ob-
tain smaller regret than the minimax value. For the proof, we
use Lemma 4 of [28].

The need to consider the difference between and
as in (8) makes the proof about the interior region harder (this
problem does not exist for the memoryless case [28] and one-
dimensional exponential family [21]).

B. Lower Bound

It is possible to directly obtain a lower bound on the max-
imin regret which asymptotically matches the upper bound in
the previous section. Here, we will give an outline of the proof.
Let be an arbitrary compact subset of , and define for each

In a fashion similar to the upper bound, by Laplace approxima-
tion, it is possible to show that

(9)

uniformly for all and for all . Let is
the Jeffreys mixture of for . Define the restriction of

to as

where

By the definition of , it is at least

which by the approximation (9) is of the form

uniformly in . Consequently

Now, let be a sequence of compact subsets of such
that and holds ( converges
to ). Let denote the set .
Then, it is possible to prove
This implies
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The right-hand side matches our upper bound on the minimax
regret. Another way is to utilize Rissanen’s result (Theorem 1,
[17]) for a compact interior to .

Remark 1: Theorem 1 is a generalization of the result about
the first-order Markov chain with alphabet size 2 in [26], but the
proof is not its straightforward extension.

Remark 2: A similar bound for Markov chains is obtained
in [1], but it is not demonstrated to be uniformly valid over all
. In [17], [21] and [31], upper bounds of the same form on

the minimax regret are obtained for more general models, but
they hold under the restriction on the sequences that MLE is
located in a compact set included in the interior of the parameter
space (an exception is one-dimensional exponential family in
[21]). Under that condition, Jeffreys mixture (we do not need
modification) is asymptotically minimax.

Remark 3: It is possible to apply our minimax procedure
to the universal prediction problem, using the conditionals

, which equals
,

where denotes the posterior density of given

(recall ). The conditionals are essential also
for universal coding, since it is needed for arithmetic coding.

Remark 4: The depends on because of the
modification of Jeffreys prior. Thus, we have to know the length
of the sequence in advance, in order to use for the pre-
diction, while the Laplace estimator does not depend on the
total length of the sequence. However, it is possible to calculate

even for , and use it for prediction, though
the minimax property is lost.

C. Computation of Posterior Updates

Although for a product of Dirichlet priors, posterior predic-
tive densities and mixture densities are easy to compute (using
the fact that the posterior densities is also Dirichlet), there are
additional challenges in computation of the Jeffreys mixture and
its modified forms.
The general form of the product of Dirichlet densities is

where the normal-

izing factors are which are called
Dirichlet integrals (given as a ratio of products of Gamma
functions). For a Dirichlet prior, it is known that the poste-
rior distributions given data are Dirichlet , where
denotes the -dimensional vector with all entries

are 1 and is the -dimensional vector with entries
. Its predictive distribution follows Laplace update

rules for evaluation of

In particular, with , this provides what is also called the
Krichevsky–Trofimov estimator.
In contrast, the Jeffreys posterior is more involved because

of the factor in the prior as in (5) where

depends on all ( ). The posterior density
is proportional to as described in
Appendix A. For the computation of the Jeffreys predictive
probabilities and Jeffreys mixture, define the unnormalized
estimates

(10)

Then, the Jeffreys predictive probabilities for possible next sym-
bols given data with are proportional to
these . That is, is
equal to

The successive predictive probabilities are com-
puted in the same way, where in place of we use the vector
of counts for and , based on the data
segment for each .
The Jeffreys mixture is computed from successive

products of such predictive probabilities.
Also, without the factor, one has the

mixture . Our modified Jeffreys mixture
is thus

The associated marginals are
for . The posterior weight it gives to the

Jeffreys mixture is

The associated predictive probabilities
are

This method of computing the mixture needs the computation
of

where is the vector of context counts for each
initial segment of length .
It lacks the explicit form of .

Nevertheless, comparison of these integrals leads to advocacy
of a Monte Carlo evaluation. To compute from data , one

way is to average with a large number (a
million) of independent each drawn according to the Dirichlet

distribution. A refinement to this Monte Carlo evalu-
ation is given in Section VI for the two-state first-order Markov
case.
An alternative to Monte Carlo evaluation is an approximation

formula appropriate for long strings with , as developed
next.
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D. Approximation Formula

As stated in the preceding section, the Jeffreys mixture for the
Markov model is nearly a best strategy, but it is hard to calculate
it in general, because it is a multi-integral with respect to the
parameter . The following theorem provides its approximation
formula, which is easier to calculate than the original form.
Here, note that
with .

Theorem 2: Let be a class
of th-order Markov chains with the alphabet . Let
be a compact set included in the interior of and be an

arbitrary natural number. Then, for all and for all

(11)

holds, uniformly for all infinite sequences
such that holds for all for some .
This represents the approximation formula as an additive

modification to the estimator .
Note that the following multiplicative form is equally valid:

This theorem is proved from Theorem 3 given later.
Theorem 2 shows how we should correct the Laplace-like

estimator (the first factor of the right-hand side) in order to de-
crease the worst case logarithmic regret. The correction (second
term) contains the derivative of the stationary probabilities,
which are rational functions of the parameter as shown in
Appendix B.
The following example is the simplest case.

Example 1: Let and ( ). We
have and . Let

and ; then, the sum in exponent in the third line of
(11) equals

Let ( ); then, by Theorem 2, the approxima-
tion of the Jeffreys mixture for this case is given by

(12)

where the error term is and denotes
.

Note that this depends not only on but on and that
the difference between this and the Laplace-like estimator is
of order (where “ ” denotes negation of “ ”).
It is known that the Jeffreys mixture for the i.i.d. case induces
the Laplace-like estimator (Krichevsky–Trofimov estimator),
which is widely used in many data compression or predic-
tion methods, e.g., in the CONTEXT [16] and the CTW [25]
method, even though these methods are for non-i.i.d. sources.
The reason is that it is in a very simple form and is believed
to have good coding performance. Theorem 2 shows that for
Markov sources, the Laplace estimator is different from the
minimax strategy in terms of second-order efficiency. More-
over, the theorem suggests that we may have to calculate the
derivative of stationary probabilities every time a datum is
input to achieve the minimax regret in sequential prediction or
data compression with Markov models. If we employ a naive
algorithm to calculate them, the computational cost is of order

, since it includes the eigenvalue problem. Note that it can
be reduced to by making use of the Sherman–Morrison
formula (see [15] for example).
We can show a more general approximation formula (The-

orem 3), from which Theorem 2 is obtained as a corollary. To
state it, we need some preliminaries. First, we introduce another
parameter than . Note that is rewritten as follows:

(13)

where we let ,
, and

. Recall that ,
where denotes the number of occurrences of at

the state in the sequence , and .
Define similarly as . Let

; then, holds.

Let . It is known that the map
on is one to one and analytic (see [3]). Note

that holds. Define functions as

(14)



444 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 59, NO. 1, JANUARY 2013

Then, we have . Let denote the
matrix whose component is . Note that is
positive definite for any . Let denote the inverse
matrix of . Then, the following holds:

(15)

That is, equals the Fisher information matrix for
the multinomial Bernoulli model. Note that

holds. Since ,
holds. Hence, we have

Therefore, we have

(16)

Given the prior measure , denote the prior density func-
tion with respect to as

For the Jeffreys prior and the Dirichlet prior, let

The following is our assumption for a prior density .
Assumption 1: For a compact set included in , there

exists a certain integer , such that for all , for all
, and for all

is integrable over .
Suppose that Assumption 1 holds for a prior . Then,

is integrable
for any such that for all , . This assumption
holds for Jeffreys prior (see Lemma 5 in Appendix C).
The following theorem provides an approximation formula

for a general prior density.

Theorem 3: Let be a compact set included in the interior
of . Suppose that the prior density satisfies Assumption 1
for a certain . Then, the following holds, uniformly for all

infinite sequences such that holds for
all :

(17)

Alternatively, the following holds uniformly for all sequences
such that holds for all

, where we recall

(18)

The proof is given in Section V.
Noting , Theorem 2 is easily derived

from (18) and (16).

E. Simulation

Concerning the simplest case (Example 1), where the target
model is the first-order Markov chain with binary alphabet, we
evaluate the coding regret of the strategy using the algorithm
described in Sections III-C and III-D.
In the following experiments, we used the Monte Carlo

method when holds for the current state , and other-
wise we used the approximation formula (12), when computing
the successive factors of and .
We generated data sequences of length , which was

according to Markov sources with various parameter settings.
The parameter settings are and (

), which satisfies the assumption of Theorem 1. Note that
must be smaller than ; hence,
the setting is nearly optimal for rapid convergence of
. In fact, we have when . We

set Monte Carlo sample size to 1 000 000. Table I here shows
the results of our experiment. In each line, we list the MLE for

and the computed values of the regret of the proce-
dures based on and . The regret of is
defined by

The column heading lists the regrets by the genuine
Jeffreys mixture and the column heading lists the regrets
by the modified Jeffreys mixture computed by the proposed
method. Here, the and are computed by as a
product of successive factors required for prediction and for
arithmetic coding. If is the minimax strategy,
converges to , which approximately equals 1.2985 (see
Appendix D). The regrets by in Table I are approximately
0.08 nat larger than this value. It coincides with the fact that

. For the ordi-
nary (nonextremal) cases, we see that the regrets of the genuine
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TABLE I
REGRET (ORDINARY CASES)

Jeffreys mixture (the case of ) are between 1.297 and
1.303. For each line, the data are generated according to a
Markov source with and equal to the two digit values
which the reported and clearly estimate. While the ex-
pected regret depends only on the and based on the
whole sample, our approximation uses the based on
partial samples of sizes . Consequently, different realiza-
tions of of the same Markov types and will have
slightly different computed regret.
Here, we used a Monte Carlo sample size of 1 000 000 for

near three digit accuracy. A Monte Carlo size of 10 000 would
be sufficient for two digit accuracy.

IV. PROOF OF THEOREM 1

In this section, we give the proof of Theorem 1. As described
in Section III-A, a key of the proof is the convergence rate of
the determinant of empirical Fisher information to that of Fisher
information. Comparing (3) with (4), we realize that our main

task is to evaluate the ratio for where
. Hence, we first give a lemma about this item in the next

section. After that we will prove Theorem 1.

A. Convergence of State Frequency to Stationary Probability

We can show the following Lemma.

Lemma 1: Let . For all , if
is satisfied, then the following two inequalities hold:

(19)

(20)

where is a certain positive constant independent of and .

Remark: When the model is the first-order Markov chain
with alphabet , the proposition which corresponds to
Lemma 1 is easy to show, since the explicit forms of are
very simple.
Let , where we assume

Then, we have as goes to
infinity. Hence, by Lemma 1, we have uniformly

for all such that . Hence, Lemma 1 implies that
empirical Fisher information converges to Fisher information,
uniformly for all such that .
In the remainder of this section, we describe the proof of

Lemma 1.
The sequence of states of are the successive overlap-

ping segments of length shifting by just 1. Thus, there is a
length sequence of states arising from after the initial state.
Define for every pair of strings as the number

of transitions from the state to the state in the
sequence . Likewise, for , we let denote the
number of occurrences of an individual symbol after the
state in the sequence . Then, equals .
Similarly, we are to define the parameter for every
. First, define

The set consists of the states which are reached by one tran-
sition from the state . Note that for , there exists a
unique such that . Let denote such
for every and . Then, for every , define

.

Then, let be a matrix whose component is ;
then, it is the state transition probability matrix, and let be
its power.
First, we will show the following.

Proposition 1: Let be a nonnegative real number. If
holds for each and each , then holds.

Proof: Note that the stationary probabilities ( )
satisfy the following linear equations:

(21)

For each and , we have by the as-
sumption. Now holds for each pair . This
implies that it is possible to get to any state from any state by
transitions. Further, holds for all ,
This implies that each element of is larger than , i.e.,

each is larger than . This completes the proof of Proposition
1.

Proposition 2: There exists a certain positive number ,
such that

holds for all , for all , for all , for all ,
and for all , where .

Proof: Renumber the states as . De-

fine a matrix as and a vector as
. By Lemma 4 in Appendix B, we have

(22)
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and for all and for all , where
denotes the cofactor of , where is the identity
matrix. Hence, we have

Note that the derivative of is bounded from above when
. Therefore, we have for all , for all , and

for all

This completes the proof of Proposition 2.

Remark: By using Lemma 4 in Appendix B, which gives an
explicit form of the stationary probabilities , we can write
down the Jeffreys prior as

where denotes the cofactor of the matrix whose
entries are , and is the normalization constant.
Now, we can prove Lemma 1.
Proof of Lemma 1: Let be the initial state,

and be the final state. First, we treat a special case
in which holds. In this case, we have

(23)

since the number of all transition from the state equals the
number of all transition to the state . Hence, we have

(24)

This implies .
When , let be a minimum path from state to
( does not exceed ). By adding a sequence to the se-

quence , we have . Then, we have
. Let denote the number of transition from

state to state in the sequence , and let
. Here, or 1, since is the minimum path

from to . We have .
Hence

where we use the fact that for sufficiently
large . This can be shown as follows. If holds for
all , then for all . Since there exists
one at least such that , we have

, which is smaller than for sufficiently large .
This contradicts the assumption .
By and Proposition 1, we have

, i.e.,
. Therefore, holds, which means

. This is (19).

Hence, we have

Hence

Also, we have .
Therefore, we have

By Taylor’s theorem, we have

where is a point between and . Since
, holds. Hence, by Proposi-

tion 2, we have

Hence, we have

(25)

Since , we have

and

Hence

that is

holds. Together with (25) and , we
have

where we use (19) and let . This
completes the Proof of Lemma 1.
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B. Proof of Theorem 1

Now, we can prove Theorem 1.
Proof of Theorem 1: Let denote a certain constant which

satisfies

There exists such , since is smaller than

by the assumption of the theorem (recall ). Define
. Suppose that holds. Then, by Lemma 1,

we have

when goes to infinity.
Since , we have and

Since , it follows that holds. This implies
.

In this proof, let denote .
Part I (interior points): First, we treat sequences with
. Note the inequality

We evaluate the ratio .
We can write

(26)

Therefore, we have

Here, recall

We evaluate this integration (denoted as ) by Laplace approx-
imation. We define a neighborhood of as

where is the same one as (15).We show that for sufficiently
large , is included in . Note that all eigenvalues of

are larger than 1 for arbitrary . Hence, the min-
imum eigenvalue of is larger than , which by Lemma
1 satisfies

The second inequality here follows from

(recall ). Then, by Proposition 1, the minimum
eigenvalue of is larger than for all such that

. Therefore, with Lemma 1, the diameter of
is smaller than

(27)

Its ratio to converges to 0 as goes to infinity, since
. Hence, is included in

for sufficiently large . Hence, we have

where we have used Taylor’s theorem in the manipulation from
the third line to the fourth line, and we let

(28)

(29)

In (29), the supremum is taken for all : , for
all , and for all . The quanti-
ties provide the empirical Fisher information for the
Bernoulli sources. Note that holds.
We are going to show that the following two inequalities uni-

formly hold for all :

(30)

(31)
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where converges to 0 as goes to infinity. These inequal-
ities imply .
As for (30), note that we have

(32)

where we let denote the diameter of . Since
converges to 0 (recall (27)), the last expression

converges to 1 as goes to infinity. We can also show

in the same way as we obtain (25). (Recall that
is an upper bound on the diameter of .) Hence

since . Together with (32), we have (30).
As for (31), first we are going to show as goes to

infinity. Note that

holds. Let and . Then, we can
write

Since

holds, we have

In a manner similar to the evaluation of (32), we have

This converges to 0 as goes to infinity. Next we will show

(33)

The integral over is equal to the integral over the whole
space minus the compliment . Thus, the integral on the left-
hand side is equal to

(34)

which is

(35)

where

(36)

Abbreviate . In , we
have and hence the exponent in the inte-
gral (36) satisfies ,
where we have reserved the part to preserve integra-
bility. Accordingly, we have

Bounding it further by enlarging the last factor, integrating over
, yields

Since , the inequality holds for
sufficiently large , and hence

holds for sufficiently large . Therefore, (34) yields

This is (33) as desired.
Since , (33) yields

By Lemma 1 and since , this implies (31).
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Since (30) and (31) hold, we have

where converges to 0 as goes to infinity. Therefore, we
have

This implies

(37)

Part II (near boundaries): Now, we consider the case in
which . We use the second term in the mixture as

With the prior of product form, this becomes a product of inte-
grals. Use

Then, we have

where

and is the set of states such that .
Split the states in into subsets

and . For , we are assured
that is not empty.
Note that is in a form of regret of the mixture by the

Dirichlet prior with for the memoryless case. Since the
Dirichlet prior with has higher value than the Jeffreys
prior near boundaries of , the quantity for
is smaller than . Indeed, if , then there is a
symbol such that , so .
Consequently, adapting Xie and Barron’s Lemma ([28, Lemma
4]) for the present case and for

(38)

holds, where is a constant depending on only .

As for , we use the following bound, which holds for
all :

(39)

This inequality (39) is derived by Lemma 1 of [28]. The lemma
is a uniform bound on the regret of the Jeffreys mixture for
memoryless case, and can be applied to our case by noting

and then

Here, is the Jeffreys prior for the multino-
mial Bernoulli model.
Hence, we have

which is not more than

(40)

where

We claim that (40) is less than

(41)

Since (40) is maximized when for any configuration
of , it is the worst case. Then, the maximum of (40) is
achieved when for
and for . This provides an
upper bound which is no more than

whose dependence on is of the form

Its derivative with respect to is positive when
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Whence for , the largest is the worst case, which
provides the following upper bound on (40):

which is less than (41) by . Therefore,
we have

(42)

where .
Since is assumed, the expression (42) is

smaller than the right-hand side of (37), when ex-
ceeds the constant . This completes
the proof of Theorem 1.

V. PROOF OF THE APPROXIMATION FORMULA

In this section, we give the proof of Theorem 2. For the pur-
pose of abbreviation, we define two functions and as fol-
lows. Define on as

(43)

where and are the same ones as in (13). In particular, recall
. Note that the following holds: for each

, let denote a real number and denote a vector
. Define on as

Then, defining , we have

Since and

we have

(44)

Also, recalling the definition of (14), we have

(45)

Then, since is positive definite, is strictly
concave with respect to , whenever each is positive.

Finally, we let

(46)

Then, we have

Note that need not be normalized in this expression, since it
remains unchanged when we multiply by a positive constant.
Hence, we assume that does not have to be a probability den-
sity hereafter.
First, we prove the following lemma.

Lemma 2: Let be a compact set included in the interior of
. Let be the function defined as (46). Suppose that in

be a positive-valued function, which is integrable over .
We assume that satisfies Assumption 1 and that

holds. Then, for all and for all , the fol-
lowing holds, uniformly for :

Proof: In this proof, we let denote , omitting .
Partial differentiating with respect to , we
have

(47)

where we have used (44). The second term on the right-hand
side is integrable because of Assumption 1 and the first term
on the right-hand side is integrable because is bounded.
Therefore, the left-hand side is also integrable. Integrating both
sides over , and doing some manipulation, we have

(48)

We can show that the third term on the right-hand side is zero.
Indeed, by the Fubini’s theorem, we have
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where is -dimensional vector which is obtained by
removing the element from the vector . Hence, dividing
both sides of (48) by , we have

Therefore, it suffices for obtaining the claim of the Lemma to
show that

(49)

holds uniformly for . We use Laplace integration to
prove this. Let

Since for and since is of class in ,
is of class in . Therefore, is of class in

.
Define a neighborhood of ( ) in

as

Further define

where we assume

From (46), we have

where we let

Then, we will evaluate and
.

Let denote a function or . Assume
without loss of generality; then, we have

(50)

Using Taylor’s theorem, we have

where with ( ).
Hence, we have

Since is compact

holds for sufficiently large (small ), for all
, and for all , where is a certain constant.

(Hereafter, let ( ) denote a certain positive con-
stant.) Hence, we have

(51)

Using these inequalities, we evaluate the second term of (50).

Let denote the -dimensional vector and
. Noting that

is strictly concave with respect to , we
have

Hence, we have

(52)
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Next, we evaluate the first term of (50). We have

Hence, we have

(53)

For the upper bound on , from (1) we have

(54)

For the lower bound on , from (51) we have

In the same manner as obtaining (52), we have

Hence, we have

(55)

Hence, with (54), we have

From this and (53), we have

By this equation and (52), we have

The last equality is obtained since
holds for large . Recall that this has been

proved for and . Hence, we have
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This completes the proof of Lemma 2.
Proof of Theorem 3: First, we will prove (17). In Lemma

2, plug in and into and , respectively. Then, since
holds for large by the assumption, we have

for all . Hence, we obtain (17).

Next, we prove (18). Let . We can
prove that the density satisfies Assumption 1, provided
satisfies it. In fact

and both terms in the last line are integrable when

(For the second term, see the proof of Lemma 5 in Appendix C.)
Note that

where we have defined Laplace estimator as

This implies

(56)

Hence, we have

(57)

By assumption, holds for all large . Hence, by
Lemma 2 and (57), we have for all and for all

This completes the proof of Theorem 3.

VI. REFINEMENT FOR THE TWO-STATE FIRST-ORDER
MARKOV CASE

As we have seen, the Jeffreys prior differs from a product of
Dirichlet priors by the factor

where is the stationary probability of the state associated
with . In the two-state first-order Markov chain case, these
stationary probabilities are

where and , which yields the Jeffreys factor

Accordingly, the Jeffreys mixture probability
takes the form

where and . The factor
prevents the integral from decoupling as a product of

integrals for and for .



454 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 59, NO. 1, JANUARY 2013

A. Refined Approximation to

The following lemma obtains tight upper and lower bounds
on for this two-state first-order Markov case. The idea
of the lemma is to obtain approximate decoupling of and in
the integral.

Lemma 3: For and in

(58)

where and .
Consequently, we have the upper bound on of

where is the Beta
function. This upper bound is valid for any in .
Moreover, we have the lower bound on of

(59)

With the choice and
, the and contributions to the integral

vanish, yielding the lower bound on of

These upper and lower bounds hold for all nonnegative counts
and the ratio of the upper and lower bounds

tends to 1 when these four counts get large.
Proof of Lemma 3: The function is convex on
and so it is greater than or equal to the left-hand side of (58)

which is its first-order Taylor expansion, tangent to the function
at . Likewise, interpret with

and , . The function is
concave on and so it is less than or equal to its first-order
Taylor expansion, tangent to it at , which yields the right-
hand side of (58).
From Sterling’s formula, the Gamma function has the prop-

erty that the ratio con-
verges to 1 for each as (see, e.g., [10, p. 80] or [9,
p. 886]). The ratio of the upper bound of to the lower
bound at the chosen , is seen to equal

which accordingly approaches 1 as , , , get large.
This completes the proof of Lemma 3.

Remark: The variance of a distribution is
near

which is typically of order . However, if either
or stays bounded and the sum gets large, then

the variance is of the smaller order .
In the integral (59), the remainder of the Taylor expansion

is of order
.

Neglecting effects from and far from , which do not
contribute substantially unless and are large, it reveals
that matches its lower bound approximation to within
a factor of order

B. Improved Monte Carlo Calculation of Predictive
Probabilities

The Jeffreys predictive probabilities in
the case arise as the ratio of integrals. As we have
seen, the numerator integral is

and the denominator integral is the same but without the factor
. If we multiply and divide in the integral by the expression

, then these integrals can be expressed
via expectation forms of appropriate Beta densities. For the nu-
merator, we use

(60)

where denotes a probability den-
sity function. For the denominator , we use the same
expression but with the 2 replaced by 1. Here, we have in-
corporated the normalizing constants of these Beta densities.
Accordingly, when we compute the predictive probabilities, we
compensate for the ratio of the normalizing constants which is

equal to . Consequently, with
, the Jeffreys predictive probability is

where we have used .
To interpret this expression, the is

the approximation to the predictive probability, which is asymp-
totically equivalent to the approximation formula (12) given by
Lemma 3. It is accurate when the counts are very large, and then
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TABLE II
REGRET (BOUNDARY CASES)

and are near 1.When the counts are small or to im-
prove the precision when the counts are moderate, evaluation of

and is appropriate.
We suggest Monte Carlo evaluation in which the exact inte-

grals and are replaced by sample averages of the
quantity in brackets (see the first line of (60) for ) using
independent draws from the respective Beta distributions. The
expression in brackets is al-
ways less than or equal to 1 and it is near to 1 when the Beta dis-
tribution has sufficient counts to make the distribution peaked
near and . This expression
arises as the exponential of the remainder of a first-order Taylor
expansion used in the proof of Lemma 3, so its drop from 1 is
of the order . The crux is it has consid-
erably reduced variance compared to the previously suggested
Monte Carlo. As a result, one does not use as large a Monte
Carlo sample size to produce accurate computations.
Table II here shows computation results for the regrets

using and including cases with sequences
with very small numbers of transitions. We report values of

given, as earlier, by

using either the Jeffreys rule or its modification . The column
heading refers to lower bounds on regret of the procedural
obtained from the upper bound on in Lemma 3; the
heading refers to upper bounds on regret obtained from the
lower bound on .
The total sample size as earlier is . EachMonte Carlo

calculation is performed by the improved-precision version de-
veloped here. The objective is to render these digit accuracy on
these regrets. For initial sequence of length less than 100, the
Beta distributions are not so peaked and we used Monte Carlo
size of 100 000.
Once all four counts , , , and reach at least

100, we switch to the approximation formulas (12). For moder-
ates size counts (not all at least 100) the Monte Carlo refinement
to the A.F. with Monte Carlo size of 10 000.
This scheme allowed sensible precision of computation over

a broader range of cases than before.

VII. CONCLUDING REMARK

We have shown that the modified Jeffreys mixtures asymp-
totically achieve the minimax regret forMarkov models without
any restriction on the sequences. The obtained regret is of the
same form as that for the multinomial Bernoulli models. Then,
we consider the computational aspects of the minimax strate-
gies, and we have obtained an approximation formula of Jef-
freys mixture for Markov models.

APPENDIX A
JEFFREYS POSTERIOR UPDATING

Here, we derive (10) and explain the Jeffreys posterior and
its relationship to the Dirichlet posterior. Note that the Jeffreys
posterior given is proportional to

Since , it is proportional to

where is a collection of counts from . Since
the posterior for the Dirichlet prior, denoted by

, is proportional to , we
have

APPENDIX B
EXPRESSION OF STATIONARY PROBABILITIES OF A

MARKOV MODEL

Here, we will prove Lemma 4, which gives an explicit for-
mula of the stationary probabilities for Markov chains and de-
scribe a certain property of it.
For its proof, we utilize the following theorem given by

Chaiken and Kleitman [5].

Theorem 4 (Matrix Tree Theorem): Let denote a
squared matrix of order , whose entries are

.

Let ( ) be the determinant of the matrix
obtained by omitting the th row and column of for
all : . Let be the set of all arborescences on
vertexes rooted at . For each in ,
let be the product of over all directed arcs in
. Then, the identity holds.
See [5] for the proof. Here, an arborescence is a graph in

which every vertex other than roots has in-degree one, there are
no cycles, and the roots have in-degree zero. The matrix tree
theorem is well known in circuit theory and graph theory and
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several variations exist (see, e.g., [4], [12], and [14]). Theorem
4 is a fairly general one.
We have the following.

Lemma 4: Let be a state transition matrix of a first-order
Markov chain with alphabet , i.e., is a condi-
tional probability of ’s generation after ’s. Let be the sta-
tionary probability of the symbol defined by theMarkov chain.

Let , and let denote the cofactor of
the matrix . Then, we have the following.
1) For each , holds.
2) Each is a sum of products of certain components
of , in particular, not less than .

3) When , the following equalities hold:

Proof: Let . Since , we
have ( ). Hence, adding the th
line of to the first line for , the first line of
the resultant matrix is equal to minus the second line of . This
implies ( ). Since this argument holds
for any pair of lines by symmetry, we have item 1.
In order to show item 2, we use Theorem 4, assuming

for . Then, satisfies the property of in
Theorem 4, where we have ( ) and .
Hence, the following holds:

This implies that is a sum of products of certain non-
diagonal elements of . Hence, . By item 1, this
holds for every .
Now, we will show item 3. Let denote the matrix

with entries are . Then, we have
. This implies that the vectors

( ) are the eigenvector of
with eigenvalue 1. Here, note that when . Then,
we have obtained

This completes the proof of Lemma 4.

APPENDIX C
LEMMA FOR JEFFREYS PRIOR

Lemma 5: There exists a certain integer , such that
for all , for all , for all , and for all

is integrable over .

Proof: Recall that

We have

Therefore, recalling (16), it is sufficient to show that the fol-
lowing two are integrable for all and for all

(61)

(62)

Now let be . As for (48), note
that

Recall that .
Hence if , we have

for all . Hence, for all , we
have

Hence, when , (48) is integrable.

Now, we examine (62). Let ; then,
by Proposition 3, we have

where . Hence, if , we have

Hence when , (62) is integrable. This completes
the proof of Lemma 5.

APPENDIX D
THEORETICAL VALUE OF THE MINIMAX REGRET FOR THE

SIMPLEST CASE

For the simplest case (Example 1), since
and , we have
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The last expression equals four times the Catalan constant (see,
e.g., [2]), which equals . (See,
e.g., [9, p. 1036].) Hence, we have .

ACKNOWLEDGMENT

The authors express their sincere gratitude to anonymous ref-
erees, in particular for teaching us about the matrix tree theorem,
and toMariko Tsurusaki for helping them to perform the numer-
ical experiments.

REFERENCES

[1] K. Atteson, “The asymptotic redundancy of Bayes rules for Markov
chains,” IEEE Trans. Inf. Theory, vol. 45, no. 6, pp. 2104–2109, Sep.
1999.

[2] D. M. Bradley, Representations of Catalan’s constant 1998 [Online].
Available: http://germain.umemat.maine.edu/faculty/bradley/pa-
pers/c1.ps

[3] L. D. Brown, Fundamentals of Statistical Exponential Fami-
lies. Hayward, CA: Inst. Math. Statist., 1986.

[4] A. Cayley, “A theorem on trees,”Quart. J. Math., vol. 23, pp. 376–378,
1889.

[5] S. Chaiken and D. J. Kleitman, “Matrix tree theorems,” J. Combin.
Theory, Series A, vol. 24, pp. 377–381, May 1978.

[6] B. Clarke and A. R. Barron, “Information-theoretic asymptotics of
Bayes methods,” IEEE Trans. Inf. Theory, vol. 36, no. 3, pp. 453–471,
May 1990.

[7] B. Clarke and A. R. Barron, “Jeffreys’ prior is asymptotically least fa-
vorable under entropy risk,” J. Statist. Plann. Infer., vol. 41, pp. 37–60,
1994.

[8] M. Gotoh, T. Matsushima, and S. Hirasawa, “A generalization of B.
S. Clarke and A. R. Barron’s asymptotics of Bayes codes for FSMX
sources,” IEICE Trans. Fund., vol. E81-A, no. 10, pp. 2123–2132,
1998.

[9] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Prod-
ucts, 6th ed. New York: Academic, 2000.

[10] F. B. Hildebrand, Advanced Calculus for Applications, 2nd ed. En-
glewood Cliffs, NJ: Prentice-Hall, 1976.

[11] P. Jacquet and W. Szpankowski, “Markov types and minimax redun-
dancy for Markov sources,” IEEE Trans. Inf. Theory, vol. 50, no. 7,
Jul. 2004.

[12] G. Kirchhoff, “Über die auflosung der gleichungen auf welche man bei
der untersuchung der linearen verteilung galvanisher ströme gefuhrt
wird,” Ann. Phys. Chem., vol. 72, pp. 497–508, 1847.

[13] T. Kawabata and F. Willems, “A context tree weighting algorithm with
an incremental context set,” IEICE Trans. Fund., vol. E83-A, no. 10,
pp. 1898–1903, 2000.

[14] J. C. Maxwell, A Treatise on Electricity and Magnetism I, 3rd ed.
London, U.K.: Oxford Univ. Press, 1892, ch. 6.

[15] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling,
Numerical Recipes in C: The Art of Scientific Computing, 2nd ed.
Cambridge, U.K.: Cambridge Univ. Press, 1993.

[16] J. Rissanen, “A universal data compression system,” IEEE Trans. Inf.
Theory, vol. 29, no. 5, pp. 656–664, Sep. 1983.

[17] J. Rissanen, “Fisher information and stochastic complexity,” IEEE
Trans. Inf. Theory, vol. 42, no. 1, pp. 40–47, Jan. 1996.

[18] Y. M. Shtar’kov, “Universal sequential coding of single messages,”
Probl. Inf. Transmiss., vol. 23, no. 3, pp. 3–17, Jul. 1987.

[19] J. Takeuchi, “Characterization of the Bayes estimator and the MDL
estimator for exponential families,” IEEE Trans. Inf. Theory, vol. 43,
no. 4, pp. 1165–1174, Jul. 1997.

[20] J. Takeuchi, “Fisher information determinant and stochastic com-
plexity for Markov models,” in Proc. IEEE. Int. Symp. Inf. Theory,
Seoul, Korea, Jun. 2009, pp. 1894–1898.

[21] J. Takeuchi and A. R. Barron, “Asymptotically minimax regret by
Bayes mixtures,” in Proc. IEEE. Int. Symp. Inf. Theory, Boston, MA,
Aug. 1998, p. 318.

[22] J. Takeuchi and T. Kawabata, “Approximation of Bayes code for
Markov sources,” in Proc. IEEE. Int. Symp. Inf. Theory, Whistler, BC,
Canada, Sep. 1995, p. 391.

[23] J. Takeuchi, T. Kawabata, and A. R. Barron, “Properties of Jeffreys
mixture for Markov sources,” in Proc. 4th Workshop Inf. Based Induc-
tion Sciences (it IBIS2001), Tokyo, Japan, Jul. 2001, pp. 327–332.

[24] M. J. Weinberger, J. Rissanen, and M. Feder, “A universal finite
memory source,” IEEE Trans. Inf. Theory, vol. 41, no. 3, pp. 643–652,
May 1995.

[25] F.Willems, Y. Shtar’kov, and T. Tjalkens, “The context-tree weighting
method: Basic properties,” IEEE Trans. Inf. Theory, vol. 41, no. 3, pp.
653–664, May 1995.

[26] Q. Xie, Minimax coding and prediction, Doctoral Dissertation, Dept.
of Statistics, Yale University, 1997.

[27] Q. Xie and A. R. Barron, “Minimax redundancy for the class of mem-
oryless sources,” IEEE Trans. Inf. Theory, vol. 43, no. 2, pp. 646–657,
Mar. 1997.

[28] Q. Xie and A. R. Barron, “Asymptotic minimax regret for data com-
pression, gambling, and prediction,” IEEE Trans. Inf. Theory, vol. 46,
no. 2, pp. 431–445, Mar. 2000.

[29] H. Itoh and S. Amari, “Geometry of information sources (in Japanese),”
in Proc. 11th Symp. Inf. Theory Appl., Ooita, Japan, Dec. 1988, pp.
57–60.

[30] T. Kawabata, “Bayes codes and context tree weighting method (in
Japanese),” Tech. Rep. IEICE, IT93-121. Mar. 1994, pp. 7–12.

[31] J. Takeuchi, “On minimax regret with respect to families of stationary
stochastic processes (in Japanese),” in Proc. 3rd Workshop Inf. Based
Induct. Sci., Shizuoka, Japan, Jul. 2000, pp. 63–68.

[32] J. Takeuchi and T. Kawabata, “On data compression algorithms by
Bayes coding for Markov sources (in Japanese),” in Proc. 17th Symp.
Inf. Theory Appl., Hiroshima, Japan, Dec. 1994, pp. 513–516.

Jun’ichi Takeuchi (M’05) was born in Tokyo, Japan in 1964. He graduated
from the University of Tokyo in majoring physics in 1989. He received the Dr.
Eng. degree in mathematical engineering from the University of Tokyo in 1996.
From 1989 to 2006, he worked for NEC Corporation, Japan. In 2006, he joined
Kyushu University, Fukuoka, Japan, where he is a Professor of Mathematical
Engineering. From 1996 to 1997 he was a Visiting Research Scholar at Depart-
ment of Statistics, Yale University, New Haven, CT, USA. His research interest
includes mathematical statistics, information geometry, information theory, and
machine learning. He is a member of IEEE, IEICE, IPSJ, and JSIAM.

Tsutomu Kawabata (M’93) was born in Toyama, Japan, in 1955. He received
BE, ME, and DE degrees in mathematical engineering from the University
of Tokyo, in 1978, 1980, and 1993 respectively. He joined the University of
Electro-Communications in 1982 and is currently a Professor at the Department
of Communication Engineering and Informatics. He was a visitor at Stanford
University during 1987–89 and 1996–97, and at Eindhoven University of Tech-
nology in 1995, and at INRIA in 1996. His research interests lie in information
and communication theory, and include quantizations, rate-distortions, and
lossless data compressions.

Andrew R. Barron (S’84–M’85–SM’00–F’12) was born in Trenton, NJ, on
September 28, 1959. He received the B.S. degree in electrical engineering and
mathematical sciences from Rice University, Houston, TX, in 1981, and the
M.S. and Ph.D. degrees in electrical engineering from StanfordUniversity, Stan-
ford, CA, in 1982 and 1985, respectively.
From 1977 to 1982, he was a consultant and summer employee of Adap-

tronics, Inc., McLean, VA. From 1985 until 1992, he was a faculty member of
the University of Illinois at Urbana-Champaign in the Department of Statistics
and the Department of Electrical and Computer Engineering. He was a Visiting
Research Scholar at the Berkeley Mathematical Sciences Research Institute in
the Fall of 1991 and Barron Associates, Inc., Standardsville, VA, in the Spring
of 1992.
In 1992, he joined Yale University, New Haven, CT, as a Professor of Statis-

tics, where he has served as Chair of Statistics from 1999–2006. His research
interests include the study of information-theoretic properties in the topics of
probability limit theory, statistical inference, high-dimensional function estima-
tion, neural networks, model selection, communication, universal data compres-
sion, prediction, and investment theory.
Dr. Barron received (jointly with Bertrand S. Clarke) the 1991 Browder J.

Thompson Prize (best paper in all IEEE TRANSACTIONS in 1990 by authors
age 30 or under) for the paper “Information-Theoretic Asymptotics of Bayes
Methods.” Dr. Barron was an Institute of Mathematical Statistics Medallion
Award recipient in 2005. He served on the Board of Governors of the IEEE
Information Theory Society from 1995 to 1999, and was Secretary of the Board
of Governors during 1989–1990. He has served as an Associate Editor for the
IEEE TRANSACTION ON INFORMATION THEORY from 1993 to 1995, and the An-
nals of Statistics for 1995–1997.


