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Abstract

In the context of multi-period stock market investment with options, we provide

characterization of the wealth of constantly rebalanced portfolios of stocks and options.

This characterization takes advantage of a correspondence between certain combina-

tions of options and pure gambling opportunities. Through this equivalence, prices

to be set for the options correspond to payoff odds on the gambles. Portfolios of a

sufficiently complete set of options correspond to betting fraction in gambles on state

securities. We use this correspondence to examine the compounded wealth and to show

it has a decomposition into a product of three easily interpretable factors. The best

portfolio and price strategies with hindsight are identified. We provide universal port-

folio strategies that yield the minimax drop in wealth from the maximal compounded

wealth for portfolios of stock options.
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1 Introduction

Consider a portfolio vector w = (w1, w2, . . . , wM) with
∑M

m=1 wm = 1 of M assets, where wm

represents the fraction of an investor’s wealth in asset m. For a succession of investment

periods t = 1, 2, . . . , T , let xm,t be be the return (wealth factor) for asset m expressed as the

ratio of the price at the end of period t to the price at the start of the period, yielding a vector

of returns xt = (x1,t, x2,t, . . . , xM,t). The wealth in the portfolio in period t is multiplied by

xt · w =
∑M

m=1 xm,twm. Buying and selling assets each period permits us to rebalance the

portfolio so that for the start of the each period wm is the fraction of the investor’s wealth

in asset m. Compounding wealth in this way over T periods leads to an T-period wealth

factor (ratio of wealth at the end of period T to the wealth at the start of the first period)

equal to

WT (w) =
T∏

t=1

xt ·w.(1.1)

Such compounded wealth has been extensively studied from a number of vantage points.

Markowitz (1952) initiated the study of portfolio choice via a mean-variance tradeoff. Kelly

(1956), Breiman (1961) and Algoet and Cover (1988) explored probabilistic growth rate

optimality. Arrow (1964) studied the case of portfolios of state securities in which one

can gamble on each possible stock return value. Samuelson (1969) provided a probabilistic

utility theory for multi-period investment. Bell and Cover (1980, 1988) examined competitive

optimality for arbitrary increasing utilities. Cover (1991), Cover and Ordentlich (1996, 1998),

Xie and Barron (2000) and Cross and Barron (2003) established universal portfolios with

uniformly small drop in the exponent of wealth from the maximum, uniformly over all

possible price sequences.
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Before treating the case with options we will review some facts for stock investment in

section 2. For any sequence of returns x1,x2, . . . ,xT , we let w∗ denote a choice that achieves,

with hindsight, the maximal compounded wealth WT (w∗) = max WT (w). We study the drop

from the maximum that occurs with fixed w not equal to w∗ as well as the drop that occurs

with certain portfolio estimates.

A special situation, both for its practical interest, and for its mathematical simplicity,

is that of the pure gambling scenario, such as a horse race with K horses. In this case the

vector of a gambler’s betting fractions b = (b0, b1, . . . , bK) plays the role of the portfolio

vector, where bk is the fraction of money gambled on horse k and b0 = 1 − ∑K
k=1 bk is the

fraction left in his pocket. Let the odds be ck for 1 (these odds are also denoted as 1 for

p∗k = 1/ck or reported as ck − 1 to 1), meaning that if horse k wins then the wealth gambled

on that horse is multiplied by ck. Then after T races, the wealth factor takes the form

WT (b) =
T∏

t=1

(b0 + cktbkt)

where kt is the horse that wins race t, for t = 1, 2, . . . , T . Having a positive fraction b0

reserved for the pocket can be useful when the odds are such that p∗k sums to more than

1, reflecting a track take. In a sufficiently regulation-free racing market, a no-arbitrage (no

free money) argument shows that the odds must satisfy
∑K

k=1 p∗k = 1, and whence there is no

need for retaining wealth in the pocket as this riskless asset is realizable by a combination of

bets on the horses. In that case the compounded wealth WT (b) takes an especially simple

product form

WT (b) =
T∏

t=1

cktbkt
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which may be exactly reexpressed as

WT (b) = eTD(q,p∗)−TD(q,b)(1.2)

where D(q,b) =
∑K

k=1 qk log(qk/bk) is the Kullback divergence and where qk is the relative

frequency with which horse k wins the T races. The divergence D(q,b) is non-negative and

it equals zero only when b equals q. Similar decomposition is possible for the general stock

case as we shall see.

What is important in this gambling story is that the wealth identity (1.2) lays bare the

roles of choices of the vector of betting fractions b and of the reciprocal odds p∗ compared

to the relative frequency vector q. The wealth is a product of two factors eTD(q,p∗) and

e−TD(q,b). The first governs the impact of the choice of payoff odds and the second reveals

the role of the choice of betting fraction b. With hindsight the maximal wealth betting

fraction is explicitly b∗ = q, with corresponding maximal wealth WT (b∗) = max WT (b) =

eTD(q,p∗) = Wmax
T . Indeed, any b other than q yields exponentially smaller wealth by the

factor e−TD(q,b). The theory of universal portfolios is simplest in the gambling case and

permits solution of estimated portfolios that exactly minimize the worst case drop from the

maximal compounded wealth (Cover and Ordentlich (1996), Xie and Barron(2000) building

on earlier work by Shtarkov (1988)). Moreover, these minimax strategies achieve a wealth

exponent close to the best without prior knowledge of q uniformly over all possible race

outcomes.

The aim of the present paper is to provide similar decomposition of compounded wealth

for investment in a stock and in options on that stock.

The use of options with a sufficiently complete set of strike prices enables a dramatic

simplification of the stock investment story, both for pricing and for the choice of portfolios
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and universal portfolio estimates.

In brief, a set of stock options with sufficiently many strike price levels completes the

market for that stock to provide opportunity to gamble on the exact state of the stock return.

This enables us to provide exact decomposition of the wealth in portfolios of options in terms

of the corresponding betting fractions on state securities. A difference from pure gambling

is that avoidance of arbitrage restricts the reciprocal odds p∗ to those that make the stock

return x be fair, in the sense that Ep∗x = 1. Capturing this aspect leads naturally to a

wealth decomposition into a product of three factors as revealed in Theorem 4.1. The first

factor shows that, even with options, a key role remains for the maximal wealth exponent

for the stock and cash alone. The second and third factors express respectively the effects

of the choice of price and of portfolio.

Armed with this wealth representation for option investment we provide simple expres-

sion for the portfolio of maximum wealth in terms of the relative frequencies of the states

of the return. Furthermore, for portfolio estimation these wealth identities with options

provide opportunity to determine exact minimax universal portfolios (uniformly over all

stock outcome sequences) and to provide explicit easily computed expressions for universal

portfolios.

2 Wealth Decomposition

As discussed in the introduction, when gambling on K possible states with relative frequen-

cies qk, reciprocal odds p∗k and betting fractions bk, starting with 1 dollar, the compounded
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wealth after T gambling periods is

W gambling
T (b) =

T∏

t=1

bktckt = eTD(q,p∗)e−TD(q,b)

such that, with hindsight, the best arbitrage-free odds for a bookie are p∗ = q, and, likewise,

the best betting fractions are b = q. Moreover, the difference in the Kullback divergences

D(q,p∗) and D(q,b) quantifies the rates of growth of the compounded wealth.

Now let’s give analogous conclusions for stock portfolios, followed in the next sections

by our main result for portfolios of a stock and options.

Let X be a set of possible stock return vectors and let x1,x2, . . . ,xT be the sequence

of stock return vectors for T investment periods with each xt in X . We consider portfolio

vectors w = (w1, w2, . . . , wM) with
∑M

m=1 wm = 1, providing sequences of portfolio returns

w · x1,w · x2, . . . ,w · xT . We may allow negative wm (selling short), provided one has the

positivity of x ·w for all possible return vectors x ∈ X , which constrains w to be in a convex

set C, here given by CX = {w : x · w ≥ 0,x ∈ X ,
∑M

m=1 wm = 1}. If one wishes, one

may impose a smaller convex constraint set C, for instance, to prohibit selling short, i.e.,

C+ = {w : wm ≥ 0,
∑M

m=1 wm = 1}.

Each occurrence of a return vector x in the sequence x1,x2, . . . ,xT contributes 1/T to

the empirical distribution

q(x) =
1

T

T∑

t=1

1{xt=x}.

We may write the compounded wealth with portfolio w as

WT (w) =
T∏

t=1

xt ·w = eTy(w)

where y(w) =
∑

x q(x) log(x ·w) is a concave function of the portfolio w.
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There are degenerate cases with unbounded CX and supw∈CX WT (w) infinite. In ap-

pendix A.5, it is shown that a no-arbitrage condition implies that supw∈CX WT (w) is finite.

Assume that supw∈C WT (w) is finite and that there is a maximizer w∗ = w∗(q)

maximizing the compounded wealth over choices of w in C. If w∗ is in the interior of

C, it is characterized by the first derivative condition
∑

x q(x)xm/(x · w∗) = 1 for m =

1, 2, . . . ,M . More generally (allowing w∗ on the boundary) w∗ maximizes y(w) if and only

if
∑

x(w · x/w∗ · x)q(x) ≤ 1 for all w in C [Bell and Cover (1980, 1988)].

The Bell and Cover result permits characterization of the wealth in terms of q and w.

A role is played by the non-negative function qw,w∗(x) = (w · x/w∗ · x)q(x) which we call

the wealth drop distribution.

Theorem 2.1: The compounded wealth of a constant rebalanced portfolio w for T periods

with relative frequencies of return q is

WT (w) = eTy(w)

with exponent

y(w) = D(q,q0)−D(q,qw,w∗)

where qw,w∗(x) = (w · x/w∗ · x)q(x) is the wealth drop distribution with
∑

x qw,w∗(x) ≤ 1

with equality if w∗ ∈ interior(C), and where

q0(x) = q(x)/(w∗ · x)

which also sums to not more than 1 when x includes a riskless asset of return 1. Thus the

wealth has decomposition

WT (w) = eTD(q,q0)e−TD(q,qw,w∗ )
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The first factor represents the maximal wealth with exponent y(w∗) = D(q,q0) and the

second factor represents the drop in wealth from the use of a portfolio w not equal to w∗.

Here, we use D(q, q̃) =
∑

x q(x) log q(x)/q̃(x) defined for non-negative functions q, q̃. This

divergence is non-negative when
∑

x q(x) = 1 and
∑

x q̃(x) ≤ 1 (equalling zero only when

q̃ = q).

Remarks:

1. The maximum growth rate D(q,q0) is non-negative when one of the assets is a “riskless

asset” with constant return c ≥ 1. Then
∑

x cq0(x) ≤ 1 and the maximal growth rate

D(q,q0) is at least log c. Larger growth rate requires Eqxm not equal to the riskless

rate c for some variable asset xm .

2. The wealth WT (w) =
(∏

x(x ·w)q(x)
)T

depends on q(x) and w only through the geo-

metric mean
∏

x(x ·w)q(x) of the portfolio returns. Except in trivial small T cases, it is

not a function of the means Eqxm nor is it a function of the means and the covariances

covq(xj, xm).

3. If w is chosen to be growth rate optimal for a distribution p, that is, w = w∗(p),

then the drop from the maximal exponent satisfies D(q,qw,w∗) ≤ D(q,p) [Barron and

Cover (1988)].

4. If the coordinates of w∗ and w are non-negative, then the drop in wealth exponent

from use of w instead of w∗ satisfies

D(q,qw,w∗) ≤ D(w∗,w)

as proved in Lemma A.6, Appendix A.6.
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5. The pure gambling result is a special case in which each return vector x takes the form

(0, 0, . . . , cs, 0, . . . , 0) where the non-zero return is only in one coordinate for one stock

s (a “winner-take-all” market). The inequalities from 3 and 4 then show that the worst

case drop from the maximal growth rate from using w other than w∗ occurs in such a

horse race case.

6. The maximum wealth portfolio w∗ need not be unique. There can be (especially when

the number of stocks is greater than the number of periods) a plane of choices of

portfolio vectors w that yield portfolio returns w · x = w∗ · x for all x with q(x) > 0.

Then qw,w∗ = q.

7. The portfolio wealth surface WT (w) can be rather flat function of w corresponding

to D(q,qw,w∗) small, e.g., in the case that the portfolio returns are close to each

other. This happens in particular if the range of the possible stock returns is small.

In contrast, we saw that the gambling wealth surface W gambling
T (b) is very peaked for

b near q and drops off rapidly away from q. Indeed, the drop in wealth from the

maximum is the largest in the gambling case.

8. Potential flatness of WT (w) surface means that precise estimation of w∗ is not nec-

essarily critical. Historically, it has been common for practitioners to be satisfied

with approximation to the wealth surface based on mean-variance tradeoffs, or other

utility optimizations. While that may be acceptable for certain stock settings with

flat WT (w), in contrast, for the gambling setting in which the wealth surface is highly

peaked, use of portfolios which with hindsight are wealth suboptimal can be a financial

disaster.
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9. Universal portfolios that update portfolio estimates each time step achieve a growth

rate as high as the maximum wealth constant rebalanced portfolio w∗ for arbitrary

price sequences, as shall be shown in section 8.

3 The Stock Option Setting

Suppose we consider a single stock in the market and let x denote the stock’s return, that

is, the ratio of its end-of-period price to its current price. Here x is a variable. We assume

that there are K possible states for x, denoted as a1, a2, . . . , aK , given in descending order

a1 > a2 > . . . > aK > 0. Let aK+1 be a positive number less than aK . We introduce K

options, one for each state, where each share of the kth option is for the right to buy a share

of stock at the end of the period at a price of ak+1 relative to the current stock price, for

k ∈ {1, 2, . . . , K}. When the stock state is x, let zk be the return for option k. Rationally,

investors do not exercise the call option if the price is lower than the strike price. Thus the

return is zk = (x− ak+1)
+/vk, where vk is the ratio of current option price per share to the

current stock price. The positive part (x − ak+1)
+ is used to denote that the option return

is zero when x < ak+1. The vector of option returns is z = (z1, z2, . . . , zK).

Let πk with
∑K

k=1 πk = 1 denote the fraction of money to invest in option k, then

π = (π1, π2, . . . , πK) is a portfolio on the K options. It is possible for πk to be negative,

which means that option k is shorted. Though we shall arrange that the option portfolio

return π · z is nonnegative for all possible z (i.e., for all possible x). We also assume there is

a riskless asset with constant return 1. Under a no arbitrage condition, there is no need to

explicitly hold wealth in a riskless asset or the underlying stock anymore since they can be
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replicated by the K options. That is, there exist two portfolios πriskless ∈ RK and πstock ∈ RK

on options such that for all states of the stock πriskless ·z = 1 and πstock ·z = x (see appendix

A.3 for details). Hence, any linear combination of 1, x, and coordinates of z with coefficients

summing to 1 can be realized by a linear combination on z alone.

4 Compounded Wealth for Portfolios of Stock Options

Note first that the wealth available in rebalancing between a single stock and cash (with

return 1) is

W stock
T (w) =

T∏

t=1

(1− w + wxt)

The return of the stock each period takes values in the set {a1, a2, . . . , aK}. It is x = as when

state s occurs, where s ∈ {1, 2, . . . , K}. For convenience in relating the option story to the

gambling situation, we now denote the relative frequencies of occurrences of state s as q(s)

(rather than q(x)). From Theorem 2.1, the maximum compounded wealth in the stock and

cash case (where the maximum is over all w with possible portfolio returns (1 − w + wak)

assumed to be non-negative)

W stock,max
T = max

w
W stock

T (w) = eTy∗ .

Here, the maximum wealth portfolio weight w∗ is non-zero yielding a positive y∗ = y(w∗)

when Eqx 6= 1 (that is,
∑K

s=1 q(s)as 6= 1). The maximum occurs at w∗ = w∗(q) satisfying

the properties that q0(s) = q(s)/(1−w∗ + w∗as) and asq0(s) both sum to 1. This W stock,max
T

has a role in our wealth characterization in the case of stock options.

As we mentioned before, after the introduction of the K options, we only need to choose

a portfolio π among these options. Importantly, there is a correspondence between the option
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price ratios vs, for s = 1, 2, . . . , K and the odds (cs for 1) on state securities, and, moreover,

for any portfolio on options, there is a corresponding b on state securities (betting fraction

on “horses”) such that the option return matches the gambling return, that is,

π · z = bscs when x = as.

That there should be such a correspondence is intuitively sensible when there is a sufficiently

rich collection of strike price levels for call (or put) options. For details of the correspondence

in the case of call options, see Appendix A.3. The no-arbitrage condition implies that the

reciprocal odds p∗(s) = 1/cs sum to 1 (
∑K

s=1 p∗(s) = 1) and also that asp
∗(s) sums to 1

(Ep∗x = 1) as discussed in Appendix A.1. Suppose we use portfolio π at periods 1, 2, . . . , T

with states st and corresponding stock return xt = ast , and vector of option returns zt with

element zk,t = (xt − xk+1)
+/vk. Then, our wealth is

WT (π) =
T∏

t=1

π · zt.

Here, we also allow negative coordinates of π, provided one has the positivity of z ·π for each

possible return vector z, i.e. the positivity of bs, for s = 1, 2, . . . , K.

Theorem 4.1: Under the no arbitrage condition, the compounded wealth in options is a

product of three factors

WT (π) = W stock,max
T eTD(q,p̂∗)e−TD(q,b)

where p̂∗(s) = (1−w∗+w∗as)p
∗(s), which gives D(q, p̂∗) = 0 only when the odds p∗(s) match

q(s)/(1− w∗ + w∗as).

Hence, the maximum wealth in the stock and its options is

WT (π∗) = W stock,max
T eTD(q,p̂∗)
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where 1 for p∗(s) are the odds for state securities corresponding to the option prices, for

s = 1, 2, . . . , K.

The first factor is the maximum wealth achievable investing in stock and cash only. The

second factor is a higher exponential growth available precisely when the option prices are

such that (1−w∗+w∗as)p
∗(s) is not equal to the relative frequencies q(s), that is, when the

state security reciprocal odds p∗(s) are not set to be equal to q0(s) = q(s)/(1− w∗ + w∗as).

The third factor e−TD(q,b) quantifies the drop in wealth by the use of an option portfolio

π corresponding to b on state securities other than the relative frequencies q.

Consequences of Theorem 4.1:

1. Options provide opportunities for greater wealth than with stock and cash alone be-

cause of the positivity of the divergence D(q, p̂∗) when prices are set with p∗(s) not

equal to q(s)/(1− w∗ + w∗as).

2. Portfolio choice for an investor is reduced, in the case of options, to the matter of

choosing betting fractions b on state securities to be close to what he believes q is

likely to be.

3. An investor who has confidence in his belief that the relative frequencies will be close to

b, is on one hand, encouraged to take the advantage of the options because it produces

a higher growth rate by the amount D(q, p̂∗). On the other hand, in the case of well-

priced options, his drop D(q,b) from the maximal exponent is greater than the drop

D(q,qw,w∗) in the stock-cash case with w = w∗(b) in accordance with Lemma A.6

(c.f., remarks 3 and 4 of the previous section). Then the investor is better off with the

stock-cash rebalancing alone. So if you trust that options are well-priced, you should
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not invest in them.

4. In the absence of knowledge of q, one may again seek a sequence of universal portfolios

for the options. The reduction of the option problem to a gambling problem provides

opportunities to resolve the exact minimax optimal wealth regret (uniformly over all

possible outcome sequence) as well as its asymptotics as we discuss in Section 9. These

universal portfolios achieve close to the same exponent as an investor who happened

to have used a portfolio with fractions b on the state securities equal to q.

5. Options pricing theory is made general and simple, without requirement of continuous

time or of log-normality. If one believes the relative frequencies will be near p, then one

uses the options prices corresponding to reciprocal odds of the state securities equal to

the “neutral” probabilities p∗(s) = p(s)/(1− w∗ + w∗as) with w∗ = w∗(p). These are

neutral in the sense that any portfolio of securities derived from the state securities

will have return z with Ep∗z = Epz/(1− w∗ + w∗x) = 1.

6. Our analysis shows that in a no-arbitrage setting, it is unwise for a broker or a firm

to provide a succession of simple single period options. The reason is that fortunate

investors whose portfolio corresponds to b near q would make an exponential growth

of wealth off of the broker, unless the broker happens to have chosen p∗(s) which turns

out to match q(s)/(1− w∗ + w∗as) associated with the relative frequencies.

Nonetheless, a broker who knows the probability beliefs of his potential investors

and who believes that q will not be close to any of them is encouraged to offer op-

tions or associated gambling opportunities, because the ensuing wealth of the investor

W stock,max
T e−TD(q,b) will be less than if they had invested in the stock and cash alone
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(in view of Lemma A.6), lining the pockets of the broker/bookie.

If regulated in a way that limits competition in offering option, a broker or firm may

make money primarily off the transaction fees. The no-arbitrage requirement elimi-

nates opportunity for option fees.

7. In summary, options are to be played only if one has reason to believe that the other

parties are less informed. Options are not a financial device that should persist in an

informed market.

5 Example

Assume there is a riskless asset with constant return 1 and a stock represented by return

vector (1.3, 1.1, 0.8) with current price u. We introduce a put option with strike price 1.1u,

then the return of these three assets can be represented by the following matrix

X =




1 1 1

1.3 1.1 0.8

0 0 0.3/v




where v is the ratio of current put option price to the current stock price and each row is

the return of a security in three different states. Obviously, this return matrix is invertible

and it turns out that its inverse is

X−1 =




−5.5 5 5v

6.5 −5 −25v/3

0 0 10v/3



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The no-arbitrage condition implies that x · p∗ = 1 for each row of X, thus, Xp∗ = (1, 1, 1)′.

Hence, the state price vector as a function of v is

p∗(v) = X−1




1

1

1




=




−0.5 + 5v

1.5− 25v/3

10v/3




Minimizing D(p0,p
∗) will find that the optimal price ratio v is v∗ = 0.1454017, given the

belief p0 = (1/3, 1/3, 1/3). Also, it is easy to find w∗(p0) = 1.56125. From the equality,

(1 − w∗(p0) + w∗(p0)as)p
∗(s) = 1/3, one may again confirm that the optimal v is v∗ =

0.1454017. The optimal growth rates for the stock-cash only case and the stock option case

are the same with value y(w∗) = 0.05163344 if p0 is indeed the realized frequency. If q 6= p0

is the truly realized frequency, the growth rates are different from 0.05163344. But the rates

for the stock-cash only case and the option case are still the same which can be seen from

the following section.

6 Gambling Interpretation For Pure Stock Investment

Lemma 6.1: Let w be the fraction of wealth in the stock in the pure stock-cash invest-

ment, let b be a betting fractions on state securities that realizes a stock-cash portfolio w,

and let q be the relative frequencies of the states. Consider the case, most favorable to the

oddsmaker that odds are set such that p∗(s)(1 − w∗ + w∗as) = q(s). Then the distribution

qw,w∗(x) = w·x
w∗·xq(x) with w∗ = w∗(q) takes the simple form

qw,w∗ = b
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Proof:

Matching the stock-cash portfolio return 1−w+was with the gambling return bscs = bs/p
∗(s),

we have

bs = (1− w + was)p
∗(s).

The oddsmaker’s choice, best with hindsight, is

p∗(s) = q(s)/(1− w∗ + w∗as).

Thus

bs =
1− w + was

1− w∗ + w∗as

q(s) = qw,w∗(q)(s)

which completes the proof.

The above lemma give a gambling interpretation for pure stock-cash investment. From

this lemma, we can also see that the drops in both cases (pure stock-cask case and the stock

option case) from the maximal wealth are the same. What’s more, if both the odds maker

and the investor make their decision based on a common belief p, then the drops in both

cases are the same. Indeed, the drop in the stock-cash case with w = w∗(p) is

D(q,qw∗(p),w∗(q)) =
K∑

k=1

q(k) log
1− w∗(q) + w∗(q)ak

1− w∗(p) + w∗(p)ak

Likewise, the drop in the option case using b∗(p) = p and p∗(s) = p(s)/(1−w∗(p)+w∗(p)as)

is

D(q,b∗(p))−D(q, p̂∗) =
K∑

k=1

q(k)

[
log

q(k)

b∗(k)
− log

q(k)

(1− w∗(q) + w∗(q)ak)p∗(k)

]
.

Using p̂∗(s) = (1− w∗(q) + w∗(q)as)p
∗(s), this difference is

K∑

k=1

q(k) log
1− w∗(q) + w∗(q)ak

1− w∗(p) + w∗(p)ak

.
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which also reduces to the same as for the stock-cash case.

Thus, there is a difference between the stock portfolio and option portfolio cases only

when the oddsmaker (option price setter) and the investor hold different beliefs concerning

the relative frequencies.

7 Bayes Portfolio Estimates

Let a family p(x|θ) of probability densities be given, with θ in some parameter space Θ.

For the purpose of construction of some interesting portfolio estimates, assume for now that

x1,x2, . . . ,xT are conditionally independent given θ. If θ were known, we would be inclined

to choose the portfolio vector w = w(θ) to maximize y(w, θ) = Ex|θ log x · w, recognizing

that averages of log x · w with respect to the relative frequencies q which determine the

compounded wealth would then be close to the averages with respect to p(x|θ) with high

probability. General probabilistic growth rate optimality is studied in Algoet and Cover

(1988) and competitive optimality for arbitrary increasing utilities of wealth ratios is in

Bell and Cover (1980, 1988) for any time horizon T . Here, we will not be dwelling on

properties of wealth with a presumed knowledge of the distribution. Rather, we explore

wealth consequences for certain portfolio estimators. The aim is to have wealth without

hindsight knowledge of q (or of θ) which will perform nearly as well as if we had such

knowledge.

If θ is not known, and assigned a prior distribution h(θ), then we have a poste-

rior distribution h(θ|x1,x2, . . . ,xt−1) and a predictive distribution p(xt|x1,x2, . . . ,xt−1) =

∫
p(xt|θ)h(θ|x1,x2, . . . ,xt−1)dθ, which is the ratio of pt(x1,x2, . . . ,xt) =

∫
h(θ)

∏t
j=1 p(xj|θ)dθ
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to the corresponding value at time t− 1. Our Bayes portfolio strategy chooses the portfolio

vector estimate

wt(x1,x2, . . . ,xt−1) = arg max
w

E [log(w · xt)|x1,x2, . . . ,xt−1]

where the expectation is with respect to the predictive distribution. Now our portfolio is not

constant with time but rather updated as a function of the past for each period. With the

sequence of portfolios {wt(·)}, our compounded wealth is WT =
∏T

t=1 xt ·wt(x1,x2, . . . ,xt−1).

Our contribution to the Bayes portfolio story is to note an important class of Bayes

strategies in which the role of the parameter is played directly by the portfolio w. Indeed,

let any distribution p0(x) be fixed and let

p(x|w) =
x ·w

x ·w∗(p0)
p0(x)

where w∗(p0) in C is the p0-growth optimal portfolio, for which p(x|w) sums (or integrates)

to not more than 1 for all w in C. With prior h(w) on C, it has a predictive distribution

pt(xt|x1,x2, . . . ,xt−1) =

∫
p(xt|w)

(∏t−1
j=1 xj ·w

)
h(w)dw

∫ (∏t−1
j=1 xj ·w

)
h(w)dw

=
xt ·wt(x1,x2, . . . ,xt−1)

xt ·w∗(p0)
p0(xt)

where

wt(x1,x2, . . . ,xt−1) =

∫
wWt−1(w)h(w)dw∫
Wt−1(w)h(w)dw

.

Here the choice of p(x|w) is such that the p0(x)/x · w∗ factors have cancelled out of

the numerator and denominator, such that wt(x1,x2, . . . ,xt−1) is the posterior mean of w.

Indeed, the role of the likelihood function
∏t−1

j=1 p(xj|w) is played by the wealth function

Wt−1(w).

Lemma 7.1:

(a) The portfolio w maximizes the expected log return for the distribution p(x|w).
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(b) The Bayes strategy maximizing E [log w · xt|x1,x2, . . . ,xt−1] uses the portfolio es-

timate

wt(x1,x2, . . . ,xt−1) =

∫
wWt−1(w)h(w)dw∫
Wt−1(w)h(w)dw

.

(c) The wealth of Bayes strategy W h
T =

∏T
t=1 xt ·wt(x1,x2, . . . ,xt−1) satisfies

W h
T =

∫
h(w)WT (w)dw.

The portfolio in (b) was introduced and studied by Cover (1991) and Cover and Ordentlich

(1996) for its universal wealth properties. A new contribution in Lemma 7.1 is the recognition

that it arises as Bayes optimal for the families p(x|w). [Further new contribution to universal

portfolio theory will arise from our wealth identities with options in following sections.]

A nice feature of the Bayes portfolio estimates with model p(x|w) = x·wp0(x)
x·w∗ is that

the procedure does not depend on p0(x). This gives the theoretical advantage that one may

regard {wt} as simultaneously Bayes for many families. Indeed, if in fact the outcomes

x1,x2, . . . ,xT have a particular distribution p(x), then one may regard our Bayes portfolio

estimate as arising from the family p(x|w) with p0 = p containing the true distribution at

w = w∗(p) even though the true p is unknown. That is, there is no model misspecification.

The wealth W h
T =

∫
h(w)WT (w)dw in the discrete prior case becomes W h

T =
∑

w h(w)WT (w)

which has the interpretation of a unit of wealth assigned according to h(w) to various fund

managers each of who contracts to maintain a prospectus with assigned portfolio w. Then

we regather (sum) our wealths h(w)WT (w) from each fund at the end of period T , to yield

W h
T =

∑
w h(w)WT (w).

We now turn our attention to analysis of this wealth

W h
T (x1,x2, . . . ,xT ) =

∫
h(w)WT (x1,x2, . . . ,xT ,w)dw.
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8 Universal Portfolios

Here we explore properties of our Bayes optimal wealth that hold universally for all possible

return sequences x1,x2, . . . ,xT . From our wealth identity WT (w) = eTy∗(q)e−TD(q,qw,w∗ ),

where eTy∗(q) = maxw WT (w) = W ∗
T (x1,x2, . . . ,xT ), we have that

W h
T (x1,x2, . . . ,xT ) =

∫
h(w)WT (w)dw = W ∗

T (x1,x2, . . . ,xT )
∫

h(w)e−TD(q,qw,w∗ )dw.

Our inequality D(q,qw,w∗) ≤ D(w∗,w) then yields

W h
T (x1,x2, . . . ,xT ) ≥ W ∗

T (x1,x2, . . . ,xT )
∫

h(w)e−TD(w∗,w)dw(8.1)

where the second factor
∫

h(w)e−TD(w∗,w)dw does not depend on the returns x1,x2, . . . ,xT .

The ratio W ∗
T (x1,x2, . . . ,xT )/W h

T (x1,x2, . . . ,xT ) represents the ratio of the maximal wealth

(with hindsight knowledge of q) to the actual wealth achieved by Bayes strategy with prior

h. We call this our regret.

From (8.1) the regret is never more than 1/
∫

h(w)e−TD(w∗,w)dw. This bound holds

with equality when the returns xt are winner-take-all (the horse race case). In that extremal

case, the bound has been studied in related problem of universal gambling and universal

prediction (and universal data compression) in Xie and Barron (2000). There particular

mixtures of Dirichlet priors are used (and other choices of priors) to produce a regret that is

nearly constant (uniformly over all possible gambling outcomes) and to provide bounds on

the gambling regret of the form

CM ·
(

T

2π

)M−1
2

(8.2)

where CM = Γ(1/2)M/Γ(M/2). Thus from inequality (8.1), we have that for all stock return

sequences the wealth of a suitable universal Bayes strategy never drops below the maximal
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wealth W ∗
T = eTy∗(q) (which is exponentially large) by more than this polynomial in T .

Theorem 8.1: Let h be as in Xie and Barron (2000). Then the Bayes optimal portfolio

achieves

W h
T (x1,x2, . . . ,xT )

W ∗
T (x1,x2, . . . ,xT )

≥ 1

CM

(
2π

T

)M−1
2

(1 + o(1))

uniformly over all stock return sequences x1,x2, . . . ,xT .

Remarks:

1. Similar bounds, but with a larger constant in place of CM and without the Bayes inter-

pretation are in Cover and Ordendlich (1996) for the case that h is the Dirichlet(1/2, 1/2, . . . , 1/2)

distribution. Also of interest is the minimax problem

min
{wt}

max
x1,x2,...,xT

W ∗
T (x1,x2, . . . ,xT )

WT (x1,x2, . . . ,xT , {wt})(8.3)

where the minimum is over all sequences of portfolios wt = wt(x1,x2, . . . ,xt−1) map-

ping past outcomes into portfolio vectors in C = {w : wm ≥ 0,
∑M

m=1 = 1}. Theorem

8.1 gives the upper bound of equation (8.2) on this minimax value.

2. Exact minimax strategies are also known. Such is available first for the pure gam-

bling (horse race) case from the work of Shtarkov (1988), as shown in Cover and

Ordentlich (1996) and Xie and Barron (2000), using the so called normalized maxi-

mum likelihood distribution, in which the betting fraction bt(xt|x1,x2, . . . ,xt−1) are

those whose product gives b∗(x1,x2, . . . ,xT ) = maxb
∏T

t=1 b(xt)/CT,M where CT,M =

∑
x1,x2,...,xT

maxb
∏T

t=1 b(xt) and the minimax value (with stock return restricted to

winner-take-all) is then CT,M , for every time horizon T and number of horses M . For

large T they show it has asymptotics CT,M = 1
CM

(
2π
T

)M−1
2 (1 + o(1)). Ordentlich and

Cover (1998) determine an exact minimax strategy for the general stock market (with-
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out option). The minimax value for all possible stock return vectors is the same as

with stocks restricted to winner-take-all.

3. The target level of performance is the best (with hindsight) portfolio w∗ among constant

rebalanced portfolios w, and one leaves this class to produce Bayes optimal portfolio

estimates which involve some dependence on the past to estimate w∗.

4. It is possible to study also compounded wealth in which there is a higher target level of

performance. These larger target classes allow certain parameterized strategies that do

allow dependence on the past, perhaps through a state variable. Performance bound

for universal portfolio in such cases is studies in Cover and Ordentlich (1996) and in

Cross and Barron (2003).

5. The Bayes interpretation we have gives here for the universal portfolios endows these

portfolio estimates with an equilibrium optimality property of admissibility. No com-

peting portfolio estimator sequence can have everywhere larger average log-wealth uni-

formly over all θ.

9 Universal Portfolio of a Stock and Options

We recall that the wealth of a constant rebalanced portfolio of a stock and options (at

sufficiently many levels) is

WT (π) = WT (x1, x2, . . . , xT , π) = W stock,max
T eTD(q,q̂∗)e−TD(q,b) = W option,max

T e−TD(q,b)

A probability model can put a general multi-Bernoulli distribution p(x = ak|θ) = θk, k =

1, 2, . . . , K, on the states of the stocks. If the parameter vector θ is known, the growth rate
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and competitively optimal strategy would be to use the portfolio π = πθ corresponding to

b = θ. If θ is unknown with prior h(θ), then the Bayes optimal strategy for the period t

uses the portfolio corresponding betting fractions b(xt|x1, x2, . . . , xt−1) that match the Bayes

predictive distribution p(xt|x1, x2, . . . , xt−1) yielding wealth

W h
T =

∫
WT (πθ)h(θ)dθ

which equals

W h
T = W option,max

T

∫
h(θ)e−TD(q,θ)dθ

Thus in this stock option setting, our regret W h
T /W option,max

T is here shown to be precisely

the regret 1/
∫

h(b)e−TD(q,b)db of the pure gambling case (which is the previously studied

quantity). Again for certain priors, the regret is nearly constant, not depending strongly on

the outcome frequencies q. The regret doesn’t depend on the odds of the states (nor option

prices) and this regret is bounded by a polynomial in T . Moreover, this universal strategy

is also average case-optimal for every T .

Now armed with the option-gambling correspondence, we have access via remark 2 of

section 8 to the exact minimax regret procedure for investment in a stock and options.

Theorem 9.1: The exact minimax regret for a stock with options is achieved by using a

sequence of portfolios corresponding to joint gambling fractions equal to

b∗(x1, x2, . . . , xT ) = max
θ

p(x1, x2, . . . , xT |θ)/CT,K

with minimax value

min
π1,π2,...,πT

max
x1,x2,...,xT

maxπ WT (x1, x2, . . . , xT , π)

W h
T (x1, x2, . . . , xT )

= CT,K

where CT,K =
∑

x1,x2,...,xT
maxθ p(x1, x2, . . . , xT |θ). Its values for large T are approximately

given by equation (8.2) with K in place of M .
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Thus we achieve within a polynomial factor the maximal exponential of wealth over

all portfolios of stock and options. This holds no matter what sequence of state security

odds (that is, no matter what sequence of options prices) are offered, and no matter what

sequence of of return outcomes x1, x2, . . . , xT occur.

10 Closing Remarks

We have made explicit how the wealth of constant rebalanced portfolios of stocks as well as

options on a stock depend on the underlying relative frequencies and odds offered for states

of the stock.

These identities permit a smooth carryover of precise results for universal gambling and

prediction to stock and option cases. This allows a completely nonprobabilistic story, with

bounds in which arbitrary stock return outcomes are permitted while retaining exact average

case Bayes optimality.

It is fruitful to develop the probabilistic story further. The likelihood interpretation

of compounded wealth permits an analysis of statistical efficiency (and negligibility of su-

perefficiency) of Bayes portfolio estimators. Efficiency for cumulative risk across multiple

periods as in Barron and Hengartner (1998) is relevant here. Probabilistic analysis reveals in

some cases smaller drop in the wealth exponent for Bayes portfolios for typical stock returns

than is reflected in the worst case regret. These probabilistic asymptotics will be explored

elsewhere.
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Appendix

A.1 Odds on state securities must make assets fair

Here, we are going to give an overview of relevant no-arbitrage arguments in the finite-state

setting and clarify some facts used in the main text. Some of the arguments in Appendix

A.1-A.4 are standard in finance literature [see Huang and Litzenberger (1988) or Ingersoll

(1987)].

Suppose we have a finite set {1, 2, . . . , K} of states. M securities are given by an K×M

matrix X, with Xkm denoting the return of security m in state k, k = 1, 2, . . . , K. Each row

of X provides a possible return vector x. We say that there exists an arbitrage opportunity

if there are two portfolios w and w̃ with returns w · x ≥ w̃ · x for all possible return vectors

and w · x > w̃ · x for some possible return vector. This kind of opportunity enables an

investor to make any large amount of money in some state and has return no less than w̃ ·x

in any other states.

Assume that there exists a state security for each state s which has return cs (p∗(s) =

c−1
s ) if state s occurs, 0 otherwise. For any security A, represented by vector (a1, a2, . . . , aK),

where as is the return of security A if state s occurs, under no arbitrage condition, we can

claim that

K∑

1

asp
∗(s) = 1.(10.1)

That is, the mean return of the asset using odds assigned to the state securities must be one.

Indeed, one first rule out as = 0, for s = 1, 2, . . . , K, for then it is clear that there would

be an arbitrage opportunity. Hence, assume as0 6= 0, s0 ∈ {1, 2, . . . , K}. If
∑K

1 asp
∗(s) < 1,

construct a portfolio B that contains asp
∗(s) fraction of state security s, s = 1, 2, . . . , K and
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1 − ∑K
1 asp

∗(s) fraction of asset A. Portfolio B has return as + (1 − ∑K
1 asp

∗(s))as ≥ as.

Hence, portfolio B has greater return than asset A and it is strictly bigger if state s0 occurs.

That is, there is an arbitrage. A similar argument works if
∑K

s=1 asp
∗(s) > 1. Hence, equation

(10.1) holds. Applying this equation to the stock and the riskless asset in our context, the

no-arbitrage condition implies
∑K

s=1 asp
∗(s) =

∑K
1 p∗(s) = 1. What’s more, from equation

(10.1), the arbitrary asset A can be exactly realized by a portfolio b with
∑K

k=1 bs = 1 of

state securities. Indeed, we only need to choose bs = asp
∗
s. The portfolio b has exactly the

same return with asset A.

A.2 Options provide opportunity to construct state securities

Let the option return matrix Z denoted by a K × K matrix with elements zij = (ai −

aj+1)
+/vj, that is, each column of Z is the return of an option in K different states. Since

the matrix is upper triangular with the positive diagonal elements, the matrix is nonsingular.

That is, it is invertible. For any s, let es denote the row vector in RK with a 1 in the sth

element and 0’s elsewhere. Then, using the inverse of Z, there exists a 1×K vector ws and

a scale cs that is the solution to the following equation

Zw′
s = cse

′
s with

K∑

k=1

ws,k = 1

where ws = (ws,1, ws,2, . . . , ws,K). Actually, we can solve it and find that w′
s = csZ

−1e′s with

cs = (1KZ−1e′s)
−1. Thus portfolio ws on options yields a state security s which has a return

cs if state s occurs, 0 otherwise. One may think of the state securities with return vector

cses as horses in a race where horse s yields return cs if it wins and zero otherwise. As shown

above, no arbitrage implies that
∑K

1 asp
∗(s) =

∑K
1 p∗(s) = 1.
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A.3 Correspondence between option portfolios and gambling port-

folios

Now, we can obtain any portfolio π = (π1, π2, . . . , πK) with
∑K

s=1 πs = 1 of the call options

by letting (b1, b2, . . . , bK)′ = (w′
1,w

′
2, . . . ,w

′
K)−1π′ and placing weight bs on state security

portfolio ws with
∑K

s=1 bs = 1. Obviously,

π′ = W (b1, b2, . . . , bK)′

Hence,

Zπ′ = (c1b1, c2b2, . . . , cKbK)′

where W = (w′
1,w

′
2, . . . ,w

′
K) = Z−1diag(c1, c2, . . . , cK). Hence, we only need to show

∑K
1 bs = 1. Indeed,

1Kb′ = 1KW−1π′ = (c−1
1 , c−1

2 , . . . , c−1
K )Zπ′ = 1KZ−1(e′1, e

′
2, . . . , e

′
K)Zπ′ = 1Kπ′ = 1

Similarly, it can be shown that we can obtain any portfolio b = (b1, b2, . . . , bK) with
∑K

s=1 bs =

1 of state securities by letting π = (π1, π2, . . . , πK) = bW ′ and placing weight πs on options

s with
∑K

s=1 πs = 1.

Since any security can be realized by state securities through no arbitrage condition,

the above argument shows us that it can also be realized by these K options. Specifically,

let briskless = (p∗1, p
∗
2, . . . , p

∗
K), bstock = (a1p

∗
1, a2p

∗
2, . . . , aKp∗K) and πriskless = brisklessW ,

πstock = bstockW , then portfolio πstock and πstock can realize exactly the riskless asset and

the stock respectively. Hence, when we make investment, we only need invest among the

options.
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A.4 Correspondence between option prices and state security odds

The correspondence between current option prices us and the odds cs on state securities s

is given as follows. Indeed,

(c−1
1 , c−1

2 , . . . , c−1
K ) = 1KZ−1(e1, e2, . . . , eK)

= 1KZ−1

= (v1, v2, . . . , vK)Λ−1

where the matrix Λ is

Λ =




a1 − a2 a1 − a3 . . . a1 − aK a1 − aK+1

0 a2 − a3 . . . a2 − aK a2 − aK+1

...
...

...
...

...

0 0 . . . aK−1 − aK aK−1 − aK+1

0 0 . . . 0 aK − aK+1




which is independent the prices of the options. Consequently,

(v1, v2, . . . , vK) = (c−1
1 , c−1

2 , . . . , c−1
K )Λ

Then the prices of these options are

(u1, u2, . . . , uK) = u0(c
−1
1 , c−1

2 , . . . , c−1
K )Λ = u0(p

∗
1, p

∗
2, . . . , p

∗
K)Λ

Therefore, if we determine p∗(s), we can determine the option prices, and vice versa.

A.5 No-arbitrage implies finite maximal wealth

The arbitrage definition here is slightly different with the definition in finance literature. But

it would be easy to show that if there is no-arbitrage (by the definition here) implies that
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there is no arbitrage (by the definition in finance literature, for example, Duffie (2001)) if

the return matrix X is zero.

If there are only finitely many possible state, the no-arbitrage condition implies the

finiteness of the maximal wealth.

Proof: The return of the M stock can be represented by a matrix X, with Xk,m denoting the

return of stock m in state k. Hence, Xk,. is the return of the M stocks in state k and X.,m

is the returns of stock m in different states k, for k = 1, 2, . . . , K. If X = 0, it is clear that

the claim holds. If X 6= 0, then following from Duffie (2001), there exists a strictly positive

vector ψ = (ψ1, ψ2, . . . , ψK) such that

ψX =
K∑

k=1

ψkXk,. = 1M

where 1M is a 1 ×M vector of 1s. Let bk = ψkw · Xk,., then
∑K

k=1 bk = w · ∑K
k=1 ψkXk,. =

w · 1M = 1 and bk ≥ 0 since w ·Xk,. ≥ 0. Hence,

y(w) =
K∑

k=1

q(k) log(Xk,. ·w) =
K∑

k=1

q(k) log(ψ−1bk) = D(q, ψ)−D(q,b) ≤ D(q, ψ)

On the other hand, if all the states s occurred at some investment period t, for t =

1, 2, . . . , T , and there is an arbitrage opportunity, then it can be shown that max WT (w) is

infinite using similar argument with Appendix A.1.

A.6

Here we prove the claim of Remark 4 in Theorem 2.1. We restrict attention to portfolio

vectors which are non-negative and sum to 1. Here, w∗ is the maximum wealth portfolio

subject to that constraint.

Lemma A.6: D(q,qw,w∗) ≤ D(w,w∗)
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Proof: From the context of Theorem 2.1, we have

D(q,qw,w∗) =
∑
x

q(x) log
w∗ · x
w · x

Jensen’s inequality implies that

log
w · x
w∗ · x = log

(
M∑

m=1

w∗
mxm

w∗ · x ·
wm

w∗
m

)
≥

M∑

m=1

w∗
mxm

w∗ · x log
wm

w∗
m

Using the fact that when w∗
m > 0,

∑
x q(x)xm/(w∗ · x) = 1, averaging the above inequality

with respect to q(x) yields that

∑
x

q(x) log
w · x
w∗ · x ≥

M∑

m=1

w∗
m log

wm

w∗
m

∑
x

q(x)xm

w∗ · x =
M∑

m=1

w∗
m log

wm

w∗
m

Hence, D(q,qw,w∗) ≤ D(w∗,w).

A.7

Proof of Theorem 2.1:

WT (w) =
T∏

t=1

xt ·w = eT · 1
T

∑T

t=1
log(xt·w) = eT

∑
x

q(x) log(x·w) = eTy(w)

where y(w) =
∑

x q(x) log(x ·w).

Note that

log(x ·w) = log

(
q(x)

q(x)/(x ·w∗)
· q(x)(x ·w)/(x ·w∗)

q(x)

)

Averaging the above equality with respect to q(x) yields y(w) = D(q,q0) − D(q,qw,w∗),

where w∗ = w∗(q) satisfying
∑

x q(x)xk/(x·w∗) = 1 for k = 1, 2, . . . , K, qw,w∗(x) = w·x
w∗·xq(x)

and q0(x) = q(x)/(w∗ ·x). Since qw,w∗(x) is nonnegative and sums not more than 1, it follows

that D(q,qw,w∗) is greater than or equal to 0 with equality if and only if q = qw,w∗ . Hence,

y(w) is maximized at w = w∗ and the wealth has decomposition

WT (w) = eTD(q,q0)e−TD(q,qw,w∗ )
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Proof of Theorem 4.1:

WT (π) =
T∏

t=1

π · zt

=
T∏

t=1

bstcst

= eT · 1
T

∑T

t=1
log bstcst

= eT
∑K

s=1
q(s) log bscs

= eT
∑K

s=1
q(s) log( q(s)

q(s)/(1−w∗+w∗as)
· q(s)
(1−w∗+w∗as)p∗(s) · bs

q(s))

(∗) = eTD(q,q0)eTD(q,p̂∗)e−TD(q,b)

= W stock,max
T eTD(q,p̂∗)e−TD(q,b)

Since
∑K

s=1 p∗s =
∑K

s=1 p∗sas = 1 yields
∑K

s=1 p̂∗s =
∑K

s=1(1 − w∗ + w∗as)p
∗
s = 1, then the

Kullback divergences in (∗) are in their usual sense. Hence, the maximum wealth in options

WT (π∗) = W stock,max
T eTD(q,p̂∗)

= eT
∑K

s=1
q(s) log

q(s)
q(s)/(1−w∗+w∗as)

+T
∑K

s=1
q(s) log

q(s)
(1−w∗+w∗as)p∗(s)

= eT
∑K

s=1
q(s) log

q(s)
p∗

= eTD(q,p∗)

where π∗ corresponds to b∗ = q.

We should also notice that the odds maker does be able to set odds p∗(s) for 1 such that

p̂∗(s) = q(s) and
∑K

s=1 p∗(s) =
∑K

s=1 p∗(s)as = 1. Hence, the minmax wealth in options equals

W stock,max
T . What’s more, in this special case, we can prove the existence and uniqueness of

w∗ directly given the no-arbitrage condition with respect to the states which occurred during

the T investment periods.
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