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Let f⋆ be a function on R
d satisfying a spectral norm condition.

For various noise settings, we show that E‖f̂ − f⋆‖2 ≤ vf⋆

(

log d
n

)1/4
,

where n is the sample size and f̂ is either a penalized least squares
estimator or a greedily obtained version of such using linear combina-
tions of ramp, sinusoidal, sigmoidal or other bounded Lipschitz ridge
functions. Our risk bound is effective even when the dimension d is
much larger than the available sample size. For settings where the di-
mension is larger than the square root of the sample size this quantity

is seen to improve the more familiar risk bound of vf⋆

(

d log(n/d)
n

)1/2

,

also investigated here.

1. Introduction. Functions f⋆ in R
d are approximated using linear com-

binations of ridge functions with one layer of nonlinearities. These approxi-
mations are employed via functions of the form

(1.1) fm(x) = fm(x, ζ) =

m
∑

k=1

ckφ(ak · x+ bk),

which is parameterized by the vector ζ, consisting of ak in R
d, and bk, ck

in R for k = 1, . . . ,m, where m ≥ 1 is the number of nonlinear terms.
The functions φ are allowed to be quite general. For example, they can be
bounded and Lipschitz, polynomials with certain controls on their degrees,
or bounded with jump discontinuities. It is useful to view the representation
(1.1) as

(1.2)
∑

h∈H
βhh(x),
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2

where H is a library of candidate basis or activation functions of the form
h(x) = φ(θh · x) and the βh are non-negative, where all but finitely many
are zero.

We can reduce (1.1) to (1.2) as follows. Suppose the library is symmetric
H = −H and contains the zero function. Without loss of generality, we
may assume that the ck are non-negative by replacing the associated φ with
φ sgnck, that by assumption also belongs to H. One can assume the internal
parameters ak · x + bk take the form θk · x by appending a one to x and bk
to ak. Note that now x and θk are (d+ 1)-dimensional.

Suppose P is an arbitrary probability measure on [−1, 1]d. Let ‖ · ‖ be the
L2(P ) norm induced by the inner product 〈·, ·〉. Define vf⋆,s =

∫

Rd ‖ω‖s1f̃(ω)dω,
for s ≥ 0. If f⋆ has a bounded domain in [−1, 1]d and a Fourier representation
f⋆(x) =

∫

Rd e
iω·xf̃(ω)dω with vf⋆,1 < +∞, it is possible to use approximat-

ing functions of the form (1.1) with a single activation function φ. Such
activation functions φ can be be general bounded monotone functions.

The following result from [2] provides a useful starting point for approximat-
ing general functions f⋆ by linear combinations of such objects. Suppose vf⋆,1

is finite. Then by [2], there exists an artificial neural network of the form
(1.1) with φ(x) = sgn(x) with ‖ak‖1 = 1 and |bk| ≤ 1 such that

‖f⋆ − fm‖2 ≤
4v2f⋆,1

m
.

If φ has right at left limits −1 and +1, respectively, the fact that φ(τx) →
sgn(x) as τ → +∞ allows one to use somewhat arbitrary activation functions
as basis elements. It is natural to impose a restriction on the size of the
internal parameters and to also enjoy a certain degree of smoothness not
offered by step functions. Thus we consider the result in [10], which allows
one to approximate f⋆ by linear combinations of ramp ridge functions (also
known as first order ridge splines or hinging hyper-planes) (x · α − t)+ =
max{0, x ·α− t}, with ‖α‖1 = 1, |t| ≤ 1. These functions are continuous and
Lipschitz. In the supplementary material Supplement A we refine a result
from [10]. For an arbitrary target function f⋆ with vf⋆,2 finite, there exists
an approximation of the form (1.1) activated by ridge ramp functions with
‖ak‖ = 1 and |bk| ≤ 1 such that

‖f⋆ − fm‖2 ≤
16v2f⋆,2

m
.

The supplement also discusses refinements of these approximation bounds
and how one can reach similar conclusions with second order splines having

imsart-aos ver. 2011/11/15 file: KlusowskiBarron2016.tex date: July 7, 2016



RISK BOUNDS FOR HIGH-DIMENSIONAL RIDGE COMBINATIONS 3

bounded internal parameters. The Lipschitz property of the ramp functions
yields smaller covering numbers and thus improved rates over that which
can be obtained using step functions. We define the set

Hramp = {x 7→ ±(α · x− t)+ : ‖α‖1 = 1, |t| ≤ 1}.

We then set Framp to be the linear span ofHramp. In general, for a symmetric
collection of dictionary elements H = −H containing the zero function, we
let F = FH be the linear span of H. The variation vf = ‖f‖H of f with
respect to H (or the atomic norm of f with respect to H) is defined by

lim
δ↓0

inf
fδ∈F

{

‖β‖1 : fδ =
∑

h∈H
βhh and ‖fδ − f‖ ≤ δ, βh ∈ R

+

}

,

where ‖β‖1 =
∑

h∈H βh. For functions in FH, this variation picks out the
smallest ‖β‖1 among representations f =

∑

h∈H βhh. For functions in the
L2(P ) closure of the linear span of H, the variation is the smallest limit
of such ℓ1 norms among functions approaching the target. The subspace of
functions with ‖f‖H finite is denoted L1,H.

Note that the condition
∫

Rd ‖ω‖21|f̃(ω)|dω < +∞ ensures that f⋆ belongs to
L1,Hramp and ‖f⋆‖Hramp ≤ vf⋆,2. Functions with moderate variation are par-
ticularly closely approximated. Nevertheless, even when ‖f⋆‖H is infinite, we
express the trade-offs in approximation accuracy for consistently estimating
functions in the closure of the linear span of H.

In what follows, we assume h has L∞ norm at most one, h is Lipschitz
with Lipschitz constant at most one, and the internal parameters have ℓ1
norm at most Λ. This control on the size of the internal parameters will be
featured prominently throughout. In the case of ramp activation functions,
we are content with the assumption Λ = 2. Note that if one restricts the
size of the domain and internal parameters (say, to handle polynomials), the
functions h are still bounded and Lipschitz but with possibly considerably
worse constants.

Suppose data {(Xi, Yi)}ni=1 are independently drawn from the distribution of
(X,Y ). To produce predictions of the real-valued response Y from its input
X, the target regression function f⋆(x) = E[Y |X = x] is to be estimated.
The function f⋆ is assumed to be bounded in magnitude by a positive con-
stant B. We assume the noise ǫ = Y − f⋆(X) has moments (conditioned
on X) that satisfy a Bernstein condition with parameter η > 0. That is, we
assume

E(|ǫ|k|X) ≤ 1

2
k!ηk−2

V(ǫ|X), k = 3, 4, . . . ,
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4

whereV(ǫ|X) ≤ σ2. This assumption is equivalent to requiring that E(e|ǫ|/ν |X)
is uniformly bounded in X for some ν > 0. A stricter assumption is that
E(e|ǫ|

2/ν |X) is uniformly bounded in X, which corresponds to an error dis-
tribution with sub-Gaussian tails. These two noise settings will give rise to
different risk bounds, as we will see.

The input design X is assumed to be a d-dimensional vector with sub-
Gaussian coordinates. This condition implies that ‖X‖2∞ is on average bounded
by a constant multiple of log d. We will see that in our framework, estima-
tors of f⋆ are functions of training and test data. If one seeks to describe
the error of an estimator for f⋆ evaluated at a new set of random points dis-
tributed according to P , the estimator is allowed to depend on the test data
and the sub-Gaussian coordinates can be shown to affect the rates below
only by a logarithmic factor in d. This paper will focus only on the ability of
an estimator to generalize to a new data set. For ease of analysis, we assume
that X is contained in the hyper-cube [−1, 1]d, i.e. the supremum norm of
X is at most one. No assumption is made about whether the coordinates of
X are independent.

Because f⋆ is bounded in magnitude by B, it is useful to truncate an esti-
mator f̂ at a level Bn at least B. Depending on the nature of the noise ǫ,
we will see that Bn will need to be at least B plus a term of order

√
log n or

log n. We define the truncation operator T that acts on function f in F by
Tf = min{|f |, Bn}sgnf . Associated with the truncation operator is a tail
quantity

Tn = 2
n
∑

i=1

(|Yi|2 −B2
n)I{|Yi| > Bn}

that appears in the following analysis. Lemma 9 describes the finite sample
behavior of ETn.

The empirical mean squared error of a function f as a candidate fit to the
observed data is (1/n)

∑n
i=1(Yi − f(Xi))

2. Given the collection of functions
F , a penalty penn(f), f ∈ F , and data, a penalized least squares estimator
f̂ arises by optimizing or approximately optimizing

(1/n)
n
∑

i=1

(Yi − f(Xi))
2 + penn(f)/n.

Our method of risk analysis proceeds as follows. Given a collection F of
candidate functions, we show that there is a countable approximating set F̃
of representations f̃ , variable-distortion, variable-complexity cover of F , and
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RISK BOUNDS FOR HIGH-DIMENSIONAL RIDGE COMBINATIONS 5

a complexity function Ln(f̃), with the property that for each f in F , there is
an f̃ in F̃ such that penn(f) is not less than a constant multiple of γnLn(f̃)+
∆n(f, f̃), where γn is a constant (depending on B, Bn, σ2, and η) and
∆n(f, f̃) is given as a suitable empirical measure of distortion (based on sums
of squared errors). The variable-distortion, variable-complexity terminology
has its origins in [6], [7], and [12]. The task is to determine penalties such
that an estimator f̂ approximately achieving the minimum of ‖Y − f‖2n +
penn(f)/n satisfies

(1.3) E‖T f̂ − f⋆‖2 ≤ c inf
f∈F

{‖f − f⋆‖2 + Epenn(f)/n + EAf},

for some universal c > 1 and positive quantity Af that decays as n grows.
The quantity

inf
f∈F

{‖f − f⋆‖2 + Epenn(f)/n+ EAf}.

is an index of resolvability of f⋆ by functions F with sample size n. We shall
take particular advantage of such risk bounds in the case that penn(f) does
not depend on X. Our restriction of X to [−1, 1]d is one way to allow the
construction of such penalties.

The following table expresses the heart of our results, expressing valid penal-
ties providing such risk bounds for moderate and high-dimensional situa-
tions.

Noise ǫ λn & penn(f)/n &

sub-Gaussian / sub-exponential
(

γ2

n
log(d+1)

n

)1/4

vfλn

zero
(

γn log(d+1)
n

)1/3

(vf )
4/3λn

sub-Gaussian / sub-exponential
(

dγn log(n/d+1)
n

)1/2+1/(2(d+3))

vfλn

Table 1: Penalties for Theorem 2

The results we wish to highlight are contained in the first two rows of Table
1. The penalties as stated are valid up to modest universal constants and
negligible terms that do not depend on the candidate fit. The quantity γn
is of order log2 n in the sub-exponential noise case, order log n in the sub-
Gaussian noise case and of constant order in the zero noise case. This γn (as
defined in Lemma 9) depends on the variance bound σ2, Bernstein parameter
η, the upper bound B of ‖f⋆‖H, and the noise tail level Bn of the indicated
order.
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When f⋆ belongs to L1,H, a resulting valid risk bound is a constant multiple

of ‖f⋆‖Hλn or ‖f⋆‖4/3H λn, according to the indicated cases. In this way the
λn expression provides a rate of convergence.

The classical risk bounds for mean squared error, involving d/n to some
power, are only useful when the sample size is much larger than the dimen-
sion. Here, in contrast, in the first two lines of Table 1, we see the dependence
on dimension is logarithmic, permitting much smaller sample sizes. The price
we pay for the smaller dependence on dimension is a deteriorated rate with
exponent 1/4 in general and 1/3 under a no noise assumption. The rates in
last row improve upon the familiar exponent of 1/2 to 1/2 + 1/(2(d + 3)).
Note that when d is large, this enhancement in the exponent is negligible.
The rate in the first row is better than the third approximately for d >

√
n,

the second is better than the third row approximately for d > n1/3, and
both of these first two rows have risk tending to zero as long as d < eo(n).

For functions in L1,Hramp , an upper bound of ((d/n) log(n/d))1/2 for the
squared error loss is obtained in [3]. Using the truncated penalized ℓ1 least
squares estimator (1.3), we obtain an improved rate of order
((dγn/n) log(n/d))

1/2+1/(2(d+3)) , where γn is logarithmic in n, using tech-
niques that originate in [15] and [14], with some corrections here. A slightly
better rate with the d + 3 replaced by d + 1 in the denominator of the ex-
ponent can be achieved through more technical means, that we choose not
to put in the present paper to keep the length under control.

In an upcoming paper, the authors intend to show that this rate is almost
optimal in the Gaussian noise, uniform design setting, since we provide mini-
max rates between (1/n)1/2+1/(d+2) and (d/n)1/2+1/2(d+1) for functions in
L1,Hramp . Compare this with [20], where the mini-max L2 risk for functions
in L1,Hstep (i.e. function approximated by linear combinations of step ridge
functions) is determined to be between
(1/n)1/2+1/(2(d+1))(log n)−(1+1/d)(1+2/d)(1+2/d)(2+1/d) and (log n/n)1/2+1/(2(2d+1)) .

These quantities have the attractive feature that the rate does not deteri-
orate as the dimension grows. However, they are only useful provided d/n
is small. In high dimensional settings, the available sample size might not
be large enough to ensure this condition. These results are all based on ob-
taining covering numbers for the library {x 7→ φ(θ · x) : ‖θ‖1 ≤ Λ}. If φ
satisfies a Lipschitz condition, these numbers are equivalent to ℓ1 covering
numbers of the internal parameters or of the Euclidean inner product of the
data and the internal parameters. The factor of d multiplying the reciprocal
of the sample size is produced from the order d log(Λ/ǫ) log cardinality of
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RISK BOUNDS FOR HIGH-DIMENSIONAL RIDGE COMBINATIONS 7

the standard covering of the library {θ : ‖θ‖1 ≤ Λ}. What enables us to cir-
cumvent this polynomial dependence on d is to use an alternative cover of
{x 7→ x·θ : ‖θ‖1 ≤ Λ} that has log cardinality of order (Λ/ǫ)2 log(d+1). Mis-
classification errors for neural networks with bounded internal parameters
have been analyzed in [9] and [18].

In this paper we bound the mean squared error of function estimation, ex-
tending the results of [3], [4], [20], [15], [8], [7], [18], [11], [1], [21], [17].

2. Greedy Algorithm. The main difficulty with constructing an estima-
tor that satisfies (1.3) is that it involves a dm-dimensional optimization.
Here, we outline a greedy approach that reduces the problem to perform-
ing m d-dimensional optimizations. This construction is based on the ℓ1-
penalized greedy pursuit (LPGP) in [15], with the modification that the
penalty can be a convex function of the candidate function complexity.
Greedy strategies for approximating functions in the closure of the linear
span of a subset of a Hilbert space has its origins in [16] and and many of
its statistical implications were studied in [8] and [15].

Let f⋆ be a function, not necessarily in F . Initialize f0 = 0. For m =
1, 2, . . . , iteratively, given the terms of fm−1 as h1, . . . , hm−1 and the coef-
ficients of it as β1,m−1, . . . , βm−1,m−1, we proceed as follows. Let fm(x) =
∑m

j=1 βj,mhj(x) =
∑m

j=1 βj,mφ(θhj
· x), with the term hm in H chosen to

come within a constant factor c ≥ 1 of the maximum inner product with the
residual f⋆ − fm−1; that is

〈hm, f⋆ − fm−1〉 ≥
1

c
sup
h∈H

〈h, f⋆ − fm−1〉.

Define fm(x) = (1 − αm)fm−1(x) + βm,mhm(x). Associated with this rep-
resentation of fm is the ℓ1 norm of its coefficients vm =

∑m
j=1 |βj,m| =

(1− αm)vm−1 + βm,m. The coefficients αm and βm,m are chosen so that

‖f⋆ − (1− αm)fm−1 − βm,mhm‖2 +w(vm)

≤ inf
α∈[0,1], β∈R+

[‖f⋆ − (1− α)fm−1 − βhm‖2 + w((1 − α)vm−1 + β)],

where w : R → R is a real-valued non-negative convex function. In the em-
pirical setting, with Ri = Yi − fm−1(Xi), the high-dimensional optimization
task is to find θm such that

1

n

n
∑

i=1

Riφ(θm ·Xi) ≥
1

c
sup

‖θ‖1≤Λ

1

n

n
∑

i=1

Riφ(θ ·Xi)
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One appealing aspect of the slight sub-optimality of θm is that it permits the
use of adaptive annealing techniques developed by the authors in a forth-
coming paper [5]. The algorithm samples from a distribution proportional

to et(
1
n

∑n
i=1 Riφ(θ·Xi))p0(θ) which has, for t sufficiently large, a mean that is

at least 1
c sup‖θ‖1≤Λ

1
n

∑n
i=1 Riφ(θ ·Xi).

Theorem 1. If fm is chosen according to the greedy scheme described
previously, then

‖f⋆ − fm‖2 + w(vm) ≤ inf
f∈F

{

‖f⋆ − f‖2 + w(cvf ) +
4bf
m

}

,

where bf = c2v2f + 2vf‖f⋆‖(c+ 1)− ‖f‖2. Furthermore,

‖f⋆ − fm‖2 + w(vm) ≤

inf
f∈F

inf
δ>0

{

(1 + δ)‖f⋆ − f‖2 + w(cvf ) +
4(1 + δ)δ−1(c+ 1)2v2f

m

}

,

and hence with δ =
2(c+1)vf

‖f⋆−f‖√m
,

‖f⋆ − fm‖2 + w(vm) ≤ inf
f∈F

{

(

‖f⋆ − f‖+ 2(c+ 1)vf√
m

)2

+w(cvf )

}

.

Proof. Fix any f in the linear span F , with the form
∑

h∈H βhh, with
non-negative βh.

em = ‖f⋆ − fm‖2 − ‖f⋆ − f‖2 + w(vm).

Then from the definition of αm and βm,m,

em = ‖f⋆ − (1− αm)fm−1 − βm,mhm‖2 − ‖f⋆ − f‖2+
w((1 − αm)vm−1 + βm,m)

≤ ‖f⋆ − (1− αm)fm−1 − αmcvfhm‖2 − ‖f⋆ − f‖2+
w((1− αm)vm−1 + αmcvf )

≤ ‖f⋆ − (1− αm)fm−1 − αmcvfhm‖2 − ‖f⋆ − f‖2+
(1− αm)w(vm−1) + αmw(cvf ),

where the last line follows from the convexity of w. Now ‖f⋆−(1−αm)fm−1−
αmcvfhm‖2 is equal to ‖(1−αm)(f⋆−fm−1)+αm(f

⋆−chmvf )‖2. Expanding
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RISK BOUNDS FOR HIGH-DIMENSIONAL RIDGE COMBINATIONS 9

this quantity leads to

‖f⋆ − (1− αm)fm−1 − αmcvfhm‖2 = (1− αm)2‖f⋆ − fm−1‖2
− 2αm(1− αm)〈f⋆ − fm−1, chmvf − f⋆〉
+ α2

m‖f⋆ − chmvf‖2.

Next we add (1 − αm)w(vm−1) + αmw(cvf ) − ‖f⋆ − f‖2 to this expression
to obtain

em ≤ (1− αm)em−1 + α2
m[‖f⋆ − chmvf‖2 − ‖f⋆ − f‖2] + αmw(cvf )

− 2αm(1− αm)〈f⋆ − fm−1, chmvf − f〉
+ αm(1− αm)[2〈f⋆ − fm−1, f

⋆ − f〉 − ‖f⋆ − fm−1‖2 − ‖f⋆ − f‖2],

which is further upper bounded by

em ≤ (1− αm)em−1 + α2
m[‖f⋆ − chmvf‖2 − ‖f⋆ − f‖2] + αmw(cvf )

− 2αm(1− αm)〈f⋆ − fm−1, chmvf − f〉
− αm(1− αm)(‖f⋆ − fm−1‖ − ‖f⋆ − f‖)2,

Consider a random variable that equals h with probability βh/vf having
mean f . Since a maximum is at least an average, the choice of hm implies
that 〈f⋆ − fm−1, chmvf 〉 is at least 〈f⋆ − fm−1, f〉. This shows that em is
no less than (1 − αm)em−1 + α2

m[‖f⋆ − chmvf‖2 − ‖f⋆ − f‖2] + αmw(cvf ).
Expanding the squares in ‖f⋆− chmvf‖2−‖f⋆− f‖2 and using the Cauchy-
Schwarz inequality yields the bound ‖chmvf‖2+2‖f⋆‖(‖f−chmvf‖)−‖f‖2.
Since ‖hm‖ ≤ 1 and ‖f‖ ≤ vf , we find that ‖f⋆ − chmvf‖2 −‖f⋆ − f‖2 is at
most bf = c2v2f + 2vf‖f⋆‖(c+ 1)− ‖f‖2. Hence we have shown that

e1 ≤ bf +w(cvf )

and
em ≤ (1− αm)em−1 + α2

mbf + αmw(cvf ).

Choose αm = 2/(m + 1), m ≥ 2 and use an inductive argument to estab-
lish the claim. The second statement in the theorem follows from similar
arguments upon consideration of

em = ‖f⋆ − fm‖2 − (1 + δ)‖f⋆ − f‖2 + w(vm),

together with the inequality a2 − (1 + δ)b2 ≤ (1 + δ)δ−1(a− b)2.
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3. Risk bounds. Here we state our main theorem.

Theorem 2. Let f⋆ be a real-valued function on [−1, 1]d with finite vari-
ation vf⋆ with respect to the library H = {h(x) = φ(θh · x)}. We further
assume that φ is Lipschitz function with ‖φ‖∞ ≤ 1 and ‖θh‖ ≤ Λ. In the
case that f⋆ belongs to L1,Hramp, φ is a ramp function with Λ = 2. If f̂ is
chosen to satisfy

1

n

n
∑

i=1

(Yi − f̂(Xi))
2 + penn(f̂)/n ≤ inf

f∈F

{

1

n

n
∑

i=1

(Yi − f(Xi))
2 + penn(f)/n

}

,

then for the truncated estimator T f̂ and for penn(f) depending on vf as
specified below, the risk has the resolvability bound

E‖T f̂ − f⋆‖2 ≤ 2(τ + 1) inf
f∈F

{‖f − f⋆‖2 + Epenn(f)/n},

The penalty divided by sample size penn(f)/n is at least

16vf

(

γnB
2
nΛ

2 log(d+ 1)

n

)1/4

+ 8

(

γnB
2
nΛ

2 log(d+ 1)

n

)1/2

+
Tn

n

and

60vfΛ

(

dγn log(n/d+ 1)

n

)1/2+1/2(d+3)

+
1

Λ2

(

dγn log(n/d+ 1)

n

)1/2+1/2(d+3)

+

(

dγn log(n/d+ 1)

n

)1/2+3/2(d+3)

+
dγn log(n/d+ 1)

n
+

Tn

n
,

when d is small compared to n. In the no noise setting, penn(f)/n is at least

16v
4/3
f

(

γnΛ
2 log(d+ 1)

n

)1/3

+ 4(v
4/3
f + 1)

(

γnΛ
2 log(d+ 1)

n

)2/3

,

Here γn = (2τ)−1(1+δ1/2)(1+2/δ1)(B+Bn)
2+2(1+1/δ2)σ

2+2(B+Bn)η
and τ = (1 + δ1)(1 + δ2) for some δ1 > 0 and δ2 > 0. Accordingly, if f⋆

belongs to L1,H, E‖T f̂ − f⋆‖2 is not more than a constant multiple of the
above penalties with vf replaced by ‖f⋆‖H.

If f̂m is the LPGP estimator from the previous section, then by Theorem 1,

1

n

n
∑

i=1

(Yi−f̂m(Xi))
2+w(vf̂m) ≤ inf

f∈F

{

1

n

n
∑

i=1

(Yi − f(Xi))
2 + w(cvf ) +

4bf
m

}

,
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RISK BOUNDS FOR HIGH-DIMENSIONAL RIDGE COMBINATIONS 11

where bf is the empirical version of the same quantity in Theorem 1 and
hence the risk has the resolvability bound

E‖T f̂ − f⋆‖2 ≤ 2(τ + 1) inf
f∈F

{‖f − f⋆‖2 + Epenn(cf)/n + 4Ebf/m},

for a penalty, convex in vf , penn(f) = nw(vf ) as before. If m is chosen
to be of order between

√
n and n so as to make the computational effects

negligible, the previously described L2(P ) rates for estimating f⋆ in L1,H via

the truncated estimator T f̂m are attainable under the appropriate penalties.

As we have said, where we have d+3 in the denominator in the exponent, it
is possible to improve it to a d+1. Such improvements are due to improved
covers for the complexity evaluation. These refinements also hold for the
LPGP estimator, although the number of iterations m needs to be of slightly
higher order than before.

One can also extend these results to include penalties that depend on the
number of terms m in an m-term greedy approximation f̂m to f⋆. We take
f̂m to be an m term fit from an LPGP algorithm and choose m̂ among all
m ∈ M (i.e. M = {1, . . . , n}) to minimize

1

n

n
∑

i=1

(Yi − f̂m(Xi))
2 + penn(f̂m,m)/n.

This approach enables the use of a data-based stopping criterion for the
greedy algorithm. For more details on these adaptive methods, we refer the
reader to [15]. The resolvability risk bound allows also for interpolation rates
between L2 and L1,H refining the results of [8] and in accordance with the
best balance between error of approximation and penalty.

The target f⋆ is not necessarily in F . To each f in F , there corresponds a
function ρ, which assigns to (X,Y ) the relative loss

ρ(X,Y ) = ρf (X,Y ) = (Y − f(X))2 − (Y − f⋆(X))2.

Let X ′ be an independent copy of the training data X used for testing the
efficacy of a fit f̂ based on X,Y . The relative empirical loss with respect to
the training data is denoted by Pn(f ||f⋆) = 1

n

∑n
i=1 ρ(Xi, Yi) and that with

respect to the independent copy is P ′
n(f ||f⋆) = 1

n

∑n
i=1 ρ(X

′
i, Yi). We define

the empirical squared error by on the training and test data by Dn(f, f̃) =
1
n

∑n
i=1(f(Xi) − f̃(Xi))

2 and D′
n(f, f̃) = 1

n

∑n
i=1(f(X

′
i) − f̃(X ′

i))
2 for all

f, f̃ in F . Using the relationship Y = f⋆(X) + ǫ, we note that ρ(X,Y ) can
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also be written as (f(X)− f⋆(X))2 − 2ǫ(f(X)− f⋆(X)) = g2(X)− 2ǫg(X),
where g(x) = f(x) − f⋆(x). Hence we have the relationship Pn(f ||f⋆) =
Dn(f, f

⋆)− 2
n

∑n
i=1 ǫig(Xi).

The relative empirical loss P ′
n(f ||f⋆) is an unbiased estimate of the risk

E‖f̂−f⋆‖2. Since ǫi has mean zero conditioned on Xi, the mean of P ′
n(f ||f⋆)

with respect toX ′ and Y is E‖f̂−f⋆‖2. Such a quantity captures how well the
fit f̂ based on the training data generalizes to a new set of observations. The
goal is to control the empirical discrepancy P ′

n(f ||f⋆)− cPn(f ||f⋆) between
the loss on the future data and the loss on the training data for a constant
τ > 1. Toward this end, we seek a positive quantity penn(f) to satisfy

E sup
f∈F

{

P ′
n(f ||f⋆)− τPn(f ||f⋆)− τpenn(f)/n

}

≤ 0,

Once such an inequality holds, the data-based choice f̂ in F yields

EP ′
n(f̂ ||f⋆) ≤ τE[Pn(f̂ ||f⋆) + penn(f)/n].

If f̂ satisfies
(3.1)

1

n

n
∑

i=1

(Yi−f̂(Xi))
2+

penn(f̂)

n
≤ inf

f∈F

{

1

n

n
∑

i=1

(Yi − f(Xi))
2 +

penn(f)

n
+Af

}

,

for some positive quantity Af that decays to zero as the sample size grows,
we see that

EP ′
n(f̂ ||f⋆) ≤ τ inf

f∈F
E[Pn(f ||f⋆) + penn(f)/n+Af ].

Using EP ′
n(f̂ ||f⋆) = E‖f̂ − f⋆‖2 and EPn(f ||f⋆) = ‖f − f⋆‖2, the above

expression is seen to be

E‖f̂ − f⋆‖2 ≤ τ inf
f∈F

{‖f − f⋆‖2 + Epenn(f)/n+ EAf}.

For the purposes of proving results in the case when F is uncountable, it
is useful to consider complexities Ln(f̃) for f̃ in a countable subset F̃ of F
satisfying

∑

f̃∈F̃ e−γnLn(f̃) ≤ 1 for some γn > 0 and such that

sup
f∈F

{

P ′
n(f ||f⋆)− τPn(f ||f⋆)− τpenn(f)/n

}

≤ sup
f̃∈F̃

{

P ′
n(f̃ ||f⋆)− τPn(f̃ ||f⋆)− τγnLn(f̃)/n

}

,(3.2)
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RISK BOUNDS FOR HIGH-DIMENSIONAL RIDGE COMBINATIONS 13

with

E sup
f̃∈F̃

{

P ′
n(f̃ ||f⋆)− τPn(f̃ ||f⋆)− τγnLn(f̃)/n

}

≤ 0.

The condition in (3.2) is equivalent to requiring that

sup
f∈F

inf
f̃∈F̃

{∆n(f, f̃) + γnLn(f̃)− penn(f)} ≤ 0,

where

∆n(f, f̃) = n[Pn(f̃ ||f⋆)− Pn(f ||f⋆)]− (n/τ)[P ′
n(f̃ ||f⋆)− P ′

n(f ||f⋆)].

If we truncate the penalized least squares estimator f̂ at a certain level Bn,
for E‖T f̂ − f⋆‖2 to maintain the resolvability bound τ inff∈F{‖f − f⋆‖2 +
Epenn(f)/n+ EAf}, we require that

sup
f∈F

inf
f̃∈F̃

{∆n(f, f̃) + γnLn(f̃)− penn(f)} ≤ 0,

where

∆n(f, f̃) = n[Pn(T f̃ ||f⋆)− Pn(f ||f⋆)]− (n/τ)[P ′
n(T f̃ ||f⋆)− P ′

n(Tf ||f⋆)].

Rather than working with the relative empirical loss P ′
n(Tf ||f⋆), we prefer

to work with D′
n(Tf, f

⋆). These two quantities are related to each other,
provided 1

n

∑n
i=1 ǫig(X

′
i) is small and they are exactly equal in the no noise

case. Hence we would like to determine penalties that ensure

E sup
f∈F

{

D′
n(Tf, f

⋆)− τPn(f ||f⋆)− τpenn(f)/n
}

≤ 0.

Suppose we require that

E sup
f∈F

{τ−1
1 D′

n(Tf, f
⋆)− ττ2Pn(f ||f⋆)−

ττ2penn(f)/n} ≤ 0,

for some τ1, τ2 ≥ 1. This further inflates the resulting risk bound by (1 +
τ1)(1 + τ2) so that the factor τ is replaced with ττ1τ2 in (3). However, it
enables us to create countable covers F̃ with smaller errors in approximating
functions from F . To see this, suppose the countable cover F̃ satisfies

sup
f∈F

{

τ−1
1 D′

n(Tf, f
⋆)− ττ2Pn(f ||f⋆)− ττ2penn(f)/n

}

≤ sup
f̃∈F̃

{

D′
n(T f̃ , f

⋆)− τPn(T f̃ ||f⋆)− τγnLn(f̃)/n
}

,

imsart-aos ver. 2011/11/15 file: KlusowskiBarron2016.tex date: July 7, 2016



14

or equivalently that

sup
f∈F

inf
f̃∈F̃

{

∆n(f, f̃) +
γn
τ2

Ln(f̃)− penn(f)

}

≤ 0,

where

∆n(f, f̃) = n[τ−1
2 Pn(T f̃ ||f⋆)− Pn(f ||f⋆)]+

nτ−1τ−1
2 [τ−1

1 D′
n(Tf, f

⋆)−D′
n(T f̃ , f

⋆)].

There are two cases to consider for bounding ∆n(f, f̃). In the noise case, we
set τ2 = 1 and τ1 = 1/τ + 1. Using the inequality, τ−1a2 − b2 ≤ 1

τ−1(b− a)2

that can be derived from (a/
√
τ − b

√
τ)2 ≥ 0, we can upper bound the

difference τ−1
1 D′

n(Tf, f
⋆)−D′

n(T f̃ , f
⋆) by

(τ1 − 1)−1D′
n(Tf, T f̃).

This quantity does not involve f⋆, which is desirable for the proceeding
analysis. Hence ∆n(f, f̃) is not greater than

n[Pn(T f̃ ||f⋆)− Pn(f ||f⋆) +D′
n(Tf, T f̃)].

and thus we seek a penalty penn(f) that is at least

γnLn(f̃) + n[Pn(T f̃ ||f⋆)− Pn(f ||f⋆) +D′
n(Tf, T f̃)].

An estimator f̂ satisfying (3.1) with penality penn(f) that is at least

γnLn(f̃) + n[Pn(T f̃ ||f⋆)− Pn(f ||f⋆) +D′
n(Tf, T f̃)].

satisfies the risk bound

E‖T f̂ − f⋆‖2 ≤ (τ + 1) inf
f∈F

{‖f − f⋆‖2 + Epenn(f)/n + EAf}.

In the no noise case, we set both τ1 and τ2 to be strictly greater than one.
We can bound the difference

τ−1
2 Pn(T f̃ ||f⋆)− Pn(f ||f⋆) = τ−1

2 Dn(T f̃ , f
⋆)−Dn(f, f

⋆)

≤ τ−1
2 Dn(f̃ , f

⋆)−Dn(f, f
⋆)

by (τ2 − 1)−1Dn(f̃ , f) so that ∆n(f, f̃) has the bound

n(τ2 − 1)−1Dn(f̃ , f) + nτ−1τ−1
2 (τ1 − 1)−1D′

n(f, f̃).
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RISK BOUNDS FOR HIGH-DIMENSIONAL RIDGE COMBINATIONS 15

If we set τ2 = 2 and τ1 = 1/τ + 1, we find that ∆n(f, f̃) is no less than

n[Dn(f̃ , f) +D′
n(f, f̃)].

An estimator f̂ satisfying (3.1) with penality penn(f) that is at least

γnLn(f̃) + n[Dn(f̃ , f) +D′
n(f, f̃)].

satisfies the risk bound

E‖T f̂ − f⋆‖2 ≤ 2(τ + 1) inf
f∈F

{‖f − f⋆‖2 + Epenn(f)/n+ EAf}.

By bounding the distortion in this way, we eliminate some error in ap-
proximating f by f̃ that arises from analyzing Pn(T f̃ ||f⋆) − Pn(f ||f⋆) and
Dn(T f̃ , f

⋆)−Dn(Tf, f
⋆).

Theorem 3. Suppose F̃ is a countable collection of functions that satisfies

E sup
f̃∈F̃

{

D′
n(T f̃ , f

⋆)− τPn(f̃ ||f⋆)− τγnLn(f̃)
}

≤ 0.

If penn(f) is at least

γnLn(f̃) + n[Pn(T f̃ ||f⋆)− Pn(f ||f⋆) +D′
n(Tf, T f̃)].

or
γnLn(f̃) + n[Dn(f̃ , f) +D′

n(f, f̃)]

corresponding to the noise or no noise setting, then the truncated estimator
T f̂ with f̂ satisfying (3.1) has the resolvability bound

E‖T f̂ − f⋆‖2 ≤ 2(τ + 1) inf
f∈F

{‖f − f⋆‖2 + Epenn(f)/n+ EAf}.

Recall that g is equal to f − f⋆. In this way, there is a one to one correspon-
dence between f and g. To simplify notation, we sometimes write Dn(f, f

⋆)
as Dn(g) and D′

n(f, f
⋆) as D′

n(g). Moreover, assume an analogous notation
holds for the relative loss functions Pn(f ||f⋆) and P ′(f ||f⋆) and complexities
Ln(f).

Theorem 4. If F is a countable collection of functions bounded in mag-
nitude by Bn and Ln(f) satisfies the Kraft inequality

∑

f∈F e−Ln(f) ≤ 1,
then

E sup
f∈F

{

D′
n(f ||f⋆)− τPn(f ||f⋆)− τγnLn(f)/n

}

≤ 0,

where τ = (1+ δ1)(1 + δ2) and γn = (2τ)−1(1 + δ1/2)(1 + 2/δ1)(B +Bn)
2 +

2(1 + 1/δ2)σ
2 + 2(B +Bn)η.
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Proof. Let s2(g) be as in Lemma 1. Since g2 is non-negative, s2(g) ≤
D′

n(g
2) + Dn(g

2). Moreover, since |f | ≤ Bn and |f⋆| ≤ B, it follows that
s2(g) ≤ (B +Bn)

2(D′
n(g) +Dn(g)). Let γ1 = A1(B +Bn)

2/2 with A1 to be
specified later. By Lemma 1, we have

E sup
g∈G

{

(1− 1/A1)D
′
n(g) − (1 + 1/A1)Dn(g)−

γ1
n
L(g)

}

(3.3)

≤ E sup
g∈G

{

D′
n(g) −Dn(g) −

γ1
n
L(g)− 1

2γ1
s2(g)

}

≤ 0(3.4)

By Lemma 2, we also know that

(3.5) E sup
g∈G

{

1

n

n
∑

i=1

ǫig(Xi)−
γ2
n
L(g) − 1

A2n
Dn(g)

}

≤ 0,

where γ2 = A2σ
2/2 + (B + Bn)η. Adding the expression in (3.3) to 2a > 0

times the expression in (3.5) and collecting terms, we find that 1 + 1/A1 +
2a/A2 should be equal to a in order for Dn(g) and 1

n

∑n
i=1 ǫig(Xi) to be

added together to produce Pn(g). Thus we find that

E sup
g∈G

{

(1− 1/A1)D
′
n(g) − a(Pn(g) +

γn
n
L(g))

}

≤ 0,

where γn = γ1/a + 2γ2. Choosing A1 = 1 + 2/δ1, A2 = 2(1 + 1/δ2), and
τ = (1 + δ1)(1 + δ2), we find that a = τ(1 − 1/A1). Dividing the resulting
expression by 1− 1/A1 produces

E sup
g∈G

{

D′
n(g) − τPn(g)− τγnL(g)/n

}

≤ 0.

In general, the penalty should not depend on the unknown test data X ′.
However if one seeks to describe the error of a fit f̂ trained with the data
(X,Y ) at new data points X ′, a penalty that depends on X ′ is natural and
fits in with the standard trans-inductive setting in machine learning [13].
Since we have been assuming that the input design X is contained in a cube
with side length at most one, the dependence onX ′ of the penalties as shown
in the following lemmata can be ignored.

When we speak of empirical L2 covers of H, we mean with respect to the
empirical measure of X ∪ X ′ on both the training and test data. That is,
empirical L2 covers of H are with respect to the squared norm [D(h, h̃) +
D′(h, h̃)]/2.

imsart-aos ver. 2011/11/15 file: KlusowskiBarron2016.tex date: July 7, 2016



RISK BOUNDS FOR HIGH-DIMENSIONAL RIDGE COMBINATIONS 17

Theorem 5. Let f =
∑

h βhh. Let H̃1 be an empirical L2 ǫ1-net for H of
cardinality M1. Let H̃2 be an empirical L2 ǫ2-net for H of cardinality M2.
Suppose these empirical covers do not depend on the underlying data. There
exists a subset F̃ of F with cardinality at most

(M2+M1+m0

M1+m0

)

such that for
v ≥ vf and ṽ = v(1 +M1/m0)

Pn(T f̃ ||f⋆)− Pn(f ||f⋆) +D′
n(Tf, T f̃) ≤

2ṽ2ǫ21
m0

+
ṽ2M1

2m2
0

+ 8Bnṽǫ2 +
Tn

n
,

for some f̃ in F̃ . Alternatively, there exists a subset F̃ of F with cardinality
at most

(M2+m0

m0

)

such that

Pn(T f̃ ||f⋆)− Pn(f ||f⋆) +D′
n(Tf, T f̃) ≤

2vvf
m0

+ 8Bnvǫ2 +
Tn

n
,

and in the case of no noise with Bn ≥ B

Dn(f̃ , f) +D′
n(f, f̃) ≤

4vvf
m0

+ 4v2ǫ22

for some f̃ in F̃ .

Proof. The proof is an immediate consequence of Lemma 4.

According to Theorems 3 and 4, a valid penalty is at least

γnLn(f̃) + n[Pn(T f̃ ||f⋆)− Pn(f ||f⋆) +D′
n(Tf, T f̃)],

where f̃ belongs to a countable set F̃ satisfying
∑

f̃∈F̃ e−Ln(f̃) ≤ 1. The

constant γn is as prescribed in Theorem 4. By Theorem 5, there is a set F̃
with cardinality at most

(M2+M1+m0

M1+m0

)

such that for all f with vf ≤ v, there

is a f̃ in F̃ such that Pn(T f̃ ||f⋆)− Pn(f ||f⋆) +D′
n(Tf, T f̃) is bounded by

2ṽ2ǫ21
m0

+
ṽ2M1

2m2
0

+ 8Bnṽǫ2 +
Tn

n
.

Using the fact that the logarithm of
(M2+M1+m0

M1+m0

)

is bounded by (M1 +
m0) log(e(M2/M1 + 1)), a valid penalty divided by sample size is at least

γn
n
(M1 +m0) log(e(M2/M1 + 1)) +

2ṽ2ǫ21
m0

+
ṽ2M1

2m2
0

+ 8Bnṽǫ2 +
Tn

n
.(3.6)
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Alternatively, there is a set F̃ with cardinality at most
(

M2+m0
m0

)

such that

for all f with vf ≤ v, there is a f̃ in F̃ such that Pn(T f̃ ||f⋆)− Pn(f ||f⋆) +
D′

n(Tf, T f̃) is bounded by

2vvf
m0

+ 8Bnvǫ2 +
Tn

n

and hence a valid penalty divided by sample size is at least

(3.7)
γnm0 logM2

n
+

2vvf
m0

+ 8Bnvǫ2 +
Tn

n
.

In the no noise case, a valid penalty divided by sample size is at least

(3.8)
γnm0 logM2

n
+

4vvf
m0

+ 4v2ǫ22.

We now discuss how m0, ǫ1, and ǫ2 should be chosen to produce penalties
that yield optimal risk properties for T f̂ .

4. Risk bounds in high dimensions.

4.1. Noise case. By Lemma 6, an empirical L2 ǫ2-cover of H has cardi-

nality less than
(2d+⌈(Λ/ǫ2)2⌉

⌈(Λ/ǫ2)2⌉
)

. The logarithm of
(2d+⌈(Λ/ǫ2)2⌉

⌈(Λ/ǫ2)2⌉
)

is bounded by

4(Λ/ǫ2)
2 log(d+ 1).

Continuing from the expression (3.7), we find that penn(f)/n is at least

4γnm0(Λ/ǫ2)
2 log(d+ 1)

n
+

2vvf
m0

+ 8Bnvǫ2 +
Tn

n
.

Choosing m0 to be the ceiling of
(

vvfnǫ
2
2

2γnΛ2 log(d+1)

)1/2
, we see that penn(f)/n

must be at least

8γnΛ
2 log(d+ 1)

nǫ22
+ 8

(

vvfγnΛ
2 log(d+ 1)

nǫ22

)1/2

+ 8Bnvǫ2 +
Tn

n
.

Finally, we set v = vf and ǫ2 =
(

γnΛ2 log(d+1)
nB2

n

)1/4
so that penn(f)/n must

be at least

16vf

(

γnB
2
nΛ

2 log(d+ 1)

n

)1/4

+ 8

(

γnB
2
nΛ

2 log(d+ 1)

n

)1/2

+
Tn

n
.
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We see that the main term in the penalty divided by sample size is

16vf

(

γnB
2
nΛ

2 log(d+ 1)

n

)1/4

.

4.2. No noise case. Continuing from the expression (3.8), we find that
penn(f)/n is at least

4γnm0(Λ/ǫ2)
2 log(d+ 1)

n
+

4vvf
m0

+ 4v2ǫ22.

Choosingm0 to be the ceiling of
(

vvfnǫ
2
2(τ+1)2

γnΛ2 log(d+1)(τ+2)

)1/2
, we see that penn(f)/n

must be at least

4γnΛ
2 log(d+ 1)

nǫ22
+ 8

(

vvfγnΛ
2 log(d+ 1)

nǫ22

)1/2

+ 4v2ǫ22.

Finally, we set v = vf and ǫ2 =
(

4(τ+2)/(τ+1)2γnΛ2 log(d+1)
nv2

)1/6
so that

penn(f)/n must be at least

16v
4/3
f

(

γnΛ
2 log(d+ 1)

n

)1/3

+ 4(v
4/3
f + 1)

(

γnΛ
2 log(d+ 1)

n

)2/3

,

where we used the fact that v2/3 ≤ v4/3 + 1. We see that the main term in
the penalty divided by sample size is

16v
4/3
f

(

γnΛ
2 log(d+ 1)

n

)1/3

.

4.3. Combining the noise and no noise cases. As the previous sections
show, there are differences in the risk bounds depending on the nature of
the noise. These bounds only incorporate information about the presence of
noise, without regard to the degree of variability. Ideally one would prefer
to have a bound that interpolates between these two situations and recov-
ers the no noise case exactly when the variability is zero. We can establish
the validity of a penalty divided by sample size that is at least a constant
multiple of

(4.1)

(

v4fΛ
2γn log(d+ 1)

n

)1/3

+
√
σ

(

v4fΛ
2γn log(d+ 1)

n

)1/4

.
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plus negligible terms that do not depend on the candidate fit. Note that
this penalty is a convex function of vf and hence the setting of Theorem 1
applies. For a proof of the above form of the penalty, we refer the reader to
the supplement Supplement A.

5. Risk bounds with improved exponents for moderate dimen-

sions. Continuing from the expression (3.6), we find that penn(f)/n is at
least

γn
n
(M1 +m0) log(e(M2/M1 + 1)) +

2ṽ2ǫ21
m0

+
ṽ2M1

2m2
0

+ 8Bnṽǫ2 +
Tn

n
.

Note that we can bound B2
n by γn by choosing δ1 and δ2 appropriately. For

the precise definition of γn, see Theorem 4. The strategy for optimization is
to first consider the terms

(5.1)
γn
n
m0 log(e(M2/M1 + 1)) +

2ṽ2ǫ21
m0

+ 8
√
γnṽǫ2.

After m0, M1, and M2 have been selected, we then check that

(5.2)
γn
n
M1 log(e(M2/M1 + 1)) +

ṽ2M1

2m2
0

is relatively negligible. Choosingm0 to be the ceiling of
(

2ṽ2nǫ21
γn log(e(M2/M1+1))

)1/2
,

we see that (5.1) is at most

γn
n

log(e(M2/M1 + 1)) + 4

(

ṽ2γnǫ
2
1 log(e(M2/M1 + 1))

n

)1/2

+ 8
√
γnṽǫ2.

Note that an empirical L2 ǫ-cover of H has cardinality between (Λ/ǫ)d and
(2Λ/ǫ + 1)d ≤ (3Λ/ǫ)d whenever ǫ ≤ Λ. Thus M2/M1 ≤ (3ǫ1/ǫ2)

d whenever
ǫ2 ≤ Λ and hence

log(e(M2/M1 + 1)) ≤ 1 + (d/2) log(9ǫ21/ǫ
2
2 + 1) ≤ d log(9ǫ21/ǫ

2
2 + 1),

whenever ǫ21 ≥ ǫ22(e− 1)/9. These inequalities imply that (5.1) is at most

dγn log(9ǫ
2
1/ǫ

2
2 + 1)

n
+ 4

(

ṽ2ǫ21dγn log(9ǫ
2
1/ǫ

2
2 + 1)

n

)1/2

+ 8
√
γnṽǫ2.

Next, set

ǫ22 =
9dǫ21
n

.
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This means that the assumption ǫ21 ≥ ǫ22(e − 1)/9 is valid provided d ≤
n/(e− 1). Thus (5.1) is at most

dγn log(n/d+ 1)

n
+ 20ǫ1ṽ

√

dγn log(n/d+ 1)

n
.

Next, we add in the terms from (5.2). The selections of m0 and ǫ1 make
(5.2) at most

M1dγn log(n/d+ 1)

n
+

M1dγn log(n/d+ 1)

nǫ21

Since M1 ≤ (3Λ/ǫ1)
d whenever ǫ1 ≤ Λ, we find that (5.2) is at most

(3Λ)ddγn log(n/d+ 1)

nǫd1
+

(3Λ)ddγn log(n/d+ 1)

nǫd+2
1

Let ǫ1 = 3Λ
(

dγn log(n/d+1)
n

)1/2(d+3)
. Choosing ṽ = vf , we see that a valid

penalty divided by sample size is at least

60vfΛ

(

dγn log(n/d+ 1)

n

)1/2+1/2(d+3)

+
1

Λ2

(

dγn log(n/d+ 1)

n

)1/2+1/2(d+3)

+

(

dγn log(n/d+ 1)

n

)1/2+3/2(d+3)

+
dγn log(n/d+ 1)

n
+

Tn

n
.

Note that for the form of the above penalty to be valid, we need dγn log(n/d)
n

to be small enough to ensure that ǫ1 and ǫ2 are both less than Λ.

Remark. It is possible to remove the term v2M1

4m2
0

from the bound in Lemma

5 at the expense of a larger set F̃ . For example, let (1/m0)
∑m

k=1 bkhk, ‖b‖ ≥
vf be as in the first part of Lemma 4. Note that the vector
(b1, . . . , bm)′/‖b‖1 belongs to the ℓ1 unit ball. This space has an ǫ-covering
number of order (1/ǫ)m0+M1 and thus the collection of representors F̃ is of
order

(1/ǫ2)
m0+M1

(

M2 +M1 +m0

M1 +m0

)

.

This new cover can be used to yield even tighter bounds than those presented
in Table 1. However, the analysis is more technical and we omit it here. We

imsart-aos ver. 2011/11/15 file: KlusowskiBarron2016.tex date: July 7, 2016



22

will however say that slightly improved rates of order vf⋆

(

d
n log n

d

)1/2+1/(2(d+1))

are possible.

6. Proofs of the lemmata. An important aspect of the above covers F̃
is that they only depend on the data (X,X ′) through ‖X‖2∞+‖X ′‖2∞, where
‖X‖2∞ = 1

n

∑n
i=1 ‖Xi‖2∞. Since the coordinates of X and X ′ are restricted

to belong to [−1, 1]d, the penalties and quantities satisfying Kraft’s inequal-
ity do not depend on X and X ′. This is an important implication for the
following empirical process theory. On the other hand, using the fact that
‖X‖2∞+‖X ′‖2∞ is symmetric in the coordinates of X and X ′ and has a mean
that is at most logarithmic in d, the following bounds can be adapted to han-
dle covers F̃ that depend on the training and test data without imposing
sup-norm controls.

Lemma 1. Let (X,X ′) = (X1, . . . ,Xn,X
′
1, . . . ,X

′
n), where X ′ is an in-

dependent copy of the data X and where (X1, . . . ,Xn) are component-wise
independent but not necessarily identically distributed. A countable function
class G and complexities L(g) satisfying

∑

g∈G e
−L(g) ≤ 1 are given. Then

for arbitrary positive γ,

(6.1) E sup
g∈G

{

D′
n(g) −Dn(g) −

γ

n
L(g)− 1

2γ
s2(g)

}

≤ 0,

where s2(g) = 1
n

∑n
i=1(g

2(Xi)− g2(X ′
i))

2.

Proof. Let Z = (Z1, . . . , Zn) be a sequence of independent centered Bernoulli
random variables with success probability 1/2. Since Xi and X ′

i are identi-
cally distributed, g2(Xi)−g2(X ′

i) is a symmetric random variable and hence
sign changes do not affect the expectation in (6.1). Thus the right hand side
of the inequality in (6.1) is equal to

EZ,X,X′ sup
g∈G

{

1

n

n
∑

i=1

Zi(g
2(Xi)− g2(X ′

i))−
γ

n
L(g) − 1

2γ
s2(g)

}

.

Using the identity x = λ log(x/λ) with λ = γ/n, conditioning on X and X ′,
and applying Jensen’s inequality to move EZ inside the logarithm, we have
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that

EZ sup
g∈G

{

1

n

n
∑

i=1

Zi(g
2(Xi)− g2(X ′

i))−
γ

n
L(g) − 1

2γ
s2(g)

}

≤ γ

n
logEZ sup

g∈G
exp

{

1

γ

n
∑

i=1

Zi(g
2(Xi)− g2(X ′

i))− L(g) − n

2γ2
s2(g)

}

.

Replacing the supremumwith the sum and using the linearity of expectation,
the above expression is not more than

γ

n
log
∑

g∈G
EZ exp

{

1

γ

n
∑

i=1

Zi(g
2(Xi)− g2(X ′

i))− L(g)− n

2γ2
s2(g)

}

=
γ

n
log
∑

g∈G
exp

{

−L(g)− n

2γ2
s2(g)

}

EZ exp

{

1

γ

n
∑

i=1

Zi(g
2(Xi)− g2(X ′

i))

}

.

Next, note that by the independence of Z1, . . . , Zn,

EZ exp

{

1

γ

n
∑

i=1

Zi(g
2(Xi)− g2(X ′

i))

}

=
n
∏

i=1

EZi exp

{

1

γ
Zi(g

2(Xi)− g2(X ′
i))

}

.

Using the inequality ex+e−x ≤ 2ex
2/2, each EZi exp

{

1
γZi(g

2(Xi)− g2(X ′
i))
}

is not more than exp
{

1
2γ2 (g

2(Xi)− g2(X ′
i))

2
}

. Whence

EZ exp

{

1

γ

n
∑

i=1

Zi(g
2(Xi)− g2(X ′

i))

}

≤ exp

{

n

2γ2
s2(g)

}

.

The claim follows from the fact that γ
n log

∑

g∈G e
−L(g) ≤ 0.

Lemma 2. Let ǫ = (ǫ1, . . . , ǫn) be conditionally independent random vari-
ables given {Xi}ni=1, with conditional mean zero, satisfying Bernstein’s mo-
ment condition with parameter η > 0. A countable class G and complexities
L(g) satisfying

∑

g∈G
e−L(g) ≤ 1

are given. Assume a bound K, such that |g(x)| ≤ K for all g in G. Then

E sup
g∈G

{

1

n

n
∑

i=1

ǫig(Xi)−
γ

n
L(g)− 1

An

n
∑

i=1

g2(Xi)

}

≤ 0.

where A is an arbitrary constant and γ = Aσ2/2 +Kh.
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Proof. Using the identity x = λ log(x/λ) with λ = γ/n, conditioning on
X , and applying Jensen’s inequality to move Eǫ inside the logarithm, we
have that

Eǫ|X sup
g∈G

{

1

n

n
∑

i=1

ǫig(Xi)−
γ

n
L(g) − 1

An

n
∑

i=1

g2(Xi)

}

≤ γ

n
logEǫ|X sup

g∈G
exp

{

1

γ

n
∑

i=1

ǫig(Xi)− L(g) − 1

γA

n
∑

i=1

g2(Xi)

}

.

Replacing the supremumwith the sum and using the linearity of expectation,
the above expression is not more than

γ

n
log
∑

g∈G
Eǫ|X exp

{

1

γ

n
∑

i=1

ǫig(Xi)− L(g)− 1

γA

n
∑

i=1

g2(Xi)

}

=
γ

n
log
∑

g∈G
exp

{

−L(g)− 1

γA

n
∑

i=1

g2(Xi)

}

Eǫ|X exp

{

1

γ

n
∑

i=1

ǫig(Xi)

}

.

Next, note that by the independence of ǫ1, . . . , ǫn conditional on X,

Eǫ|X exp

{

1

γ

n
∑

i=1

ǫig(Xi)

}

=

n
∏

i=1

Eǫi|Xi
exp

{

1

γ
ǫig(Xi)

}

.

By Lemma 7, each Eǫi|Xi
exp

{

1
γ ǫig(Xi)

}

is not more than exp
{

σ2g2(Xi)
2γ2(1−ηK/γ)

}

.

Whence

Eǫ|X exp

{

1

γ

n
∑

i=1

ǫig(Xi)

}

≤ exp

{

σ2
∑n

i=1 g
2(Xi)

2γ2(1− ηK/γ)

}

= exp

{

1

γA

n
∑

i=1

g2(Xi)

}

,

where the last line follows from the definition of γ. The proof is finished
after observing that γ

n log
∑

g∈G e
−L(g) ≤ 0.

Lemma 3. For f =
∑

h βhh and f0 in F , there is a choice of h1, . . . , hm
in H with fm = (v/m)

∑m
k=1 hk, v ≥ vf such that

‖fm − f0‖2 − ‖f0 − f‖2 ≤ vvf
m

.

Moreover, the same bound holds for any convex combination of ‖fm−f0‖2−
‖f0 − f‖2 and ρ2(fm, f), where ρ is a possibly different Hilbert space norm.
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Proof. Let H be a random variable that equals hv with probability βh/v
and zero with probability 1 − vf/v. Let H1, . . . ,Hm be a random sample
from the distribution defining H. Then H = 1

m

∑m
j=1Hj has mean f and

furthermore the mean of ‖fm − f0‖2 − ‖f0 − f‖2 is the mean is ‖f −H‖2.
This quantity is seen to be bounded by vvf/m. As a consequence of the
bound holding on average, there exists a realization of fm of H (having
form (v/m)

∑m
k=1 hk) such that ‖fm − f0‖2 − ‖f0 − f‖2 is also bounded by

V vf/m.

The next lemma is an extension of a technique used in [19] to improve the
L2 error of an m-term approximation of a function in L1,H. The idea is
essentially stratified sampling with proportional allocation used in survey
sampling as a means of variance reduction. In the following, we use the
notation ‖ · ‖ to denote a generic Hilbert space norm.

Lemma 4. Let H̃ be an L2 ǫ1-net of H with cardinality M1. For f =
∑

h βhh and f0 in F , there is a choice of h1, . . . , hm in H with fm =
(1/m0)

∑m
k=1 bkhk, m ≤ m0 +M1 and ‖b‖1 ≥ vf such that

‖f0 − fm‖2 − ‖f0 − f‖2 ≤ vvf ǫ
2
1

m0
.

Moreover, there is an equally weighted linear combination fm = (v/m0)
∑m

k=1 hk,
v ≥ vf , m ≤ m0 +M1 such that

‖f0 − fm‖2 − ‖f0 − f‖2 ≤ v2ǫ21(1 +M1/m0)

m0
+

v2M1

4m2
0

.

The same bound holds for any convex combination of ‖fm−f0‖2−‖f0−f‖2
and ρ2(fm, f), where ρ is a possibly different Hilbert space norm.

Proof. Suppose the elements of H̃ are h̃1, . . . , h̃M1 . Consider the M1 sets

H̃j = {h ∈ H : ‖h− h̃j‖2 ≤ ǫ21},

j = 1, . . . ,M1. By working instead with disjoint sets H̃j \
⋃

1≤i≤j−1 H̃i (H̃0 =

∅) that are contained in H̃j and whose union is H, we may assume that the
H̃j form a partition of H. Let M = m0 + M1 and vj =

∑

h∈H̃j
βh. To

obtain the first conclusion, define a random variable Hj to equal hvj with
probability βh/vj for all h ∈ H̃j. let H1,j, . . . ,Hnj ,j be a random sample
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of size Nj =
⌈

vjM
V

⌉

, where V = vM
m0

and v ≥ vf , from the distribution

defining Hj. Note that the Nj sum to at most M . Define gj =
∑

h∈H̃j
βhh

and f =
∑M1

j=1
1
Nj

∑Nj

k=1Hk,j. Note that the mean of f is f . This means the

expectation of ‖f0− f‖2−‖f0− f‖2 is the expectation of ‖f − f‖2, which is
equal to

∑M1
j=1E‖Hj − gj‖2/Nj . Now E‖Hj − gj‖2/Nj is further bounded by

(V/M)
∑

h∈H̃j

βh inf
hj

‖h− hj‖2 ≤ (V/M)
∑

h∈H̃j

βh‖h− h̃j‖2 ≤ vjvǫ
2
1

m0
.

The above fact was established by noting that the mean of a real-valued
random variable minimizes its average squared distance from any point hj .
Summing over 1 ≤ j ≤ M1 produces the claim. Since this bound holds on
average, there exists a realization fm of f (having form (1/m0)

∑m
k=1 bkhk

with ‖b‖1 ≥ vf ) such that ‖f0 − fm‖2 − ‖f0 − f‖2 is also bounded by
vvf ǫ

2
1

m0
.

For the second conclusion, we proceed in a similar fashion. Suppose nj is a

random variable that equals
⌈

vjM
V

⌉

and
⌊

vjM
V

⌋

with respective probabilities

chosen to make its average equal to
vjM
V . Furthermore, assume n1, . . . , nM1

are independent. Define Vj = V
M nj. Since Vj ≤ vj + V

M , the Vj sum to
at most V . Let Hj be a random variable that equals hvj with probability
βh/vj for all h ∈ H̃j. For each j and conditional on nj, let H1,j, . . . ,Hnj ,j

be a random sample of size Nj = nj + I{nj = 0} from the distribution
defining Hj. Note that the Nj sum to at most M . Define gj =

∑

h∈H̃j
βhh

and f =
∑M1

j=1
1
Nj

∑Nj

k=1Hk,j. Note that the conditional mean of H given

N1, . . . , NM1 is g =
∑M1

j=1(Vj/vj)gj and hence the mean of f is f . This

means the expectation of ‖f0−f‖2−‖f0−f‖2 is the expectation of ‖f−f‖2,
which is equal to

∑M1
j=1 E‖Hj − (Vj/vj)gj‖2/Nj + E‖f − g‖2 by the law of

total variance. Now E‖Hj − (Vj/vj)gj‖2/Nj is further bounded by

(V/M)2(nj/vj)
∑

h∈H̃j

βh inf
hj

‖h− hj‖2 ≤
v2Mǫ21
m2

0

.

The above fact was established by noting that the mean of a real-valued
random variable minimizes its average squared distance from any point hj .
Next, note that by the independence of the coordinates of v1, . . . , vM1 and
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the fact that Vj has mean vj,

E‖f − g‖2 = E‖
M1
∑

j=1

(vj/vj − 1)gj‖2 = (V/M)2
M1
∑

j=1

(‖gj‖2/v2j )V(nj).

Finally, observe that ‖gj‖2 ≤ v2j and V(nj) ≤ 1/4 (a random variable whose
range is contained in an interval of length one has variance bounded by
1/4). This shows that E‖f −g‖2 ≤ v2M1

4m2
0
. Since this bound holds on average,

there exists a realization fm of f (having form (v/m0)
∑m

k=1 hk) such that

‖f0 − fm‖2 − ‖f0 − f‖2 is also bounded by
v2ǫ21(1+M1/m0)

m0
+ v2M1

4m2
0
.

Lemma 5. Let y = {yi}ni=1 be a sequence of real numbers and let x =

{xi}ni=1 and x′ = {x′i}ni=1 be sequences d-dimensional vectors. Let H̃1 be an
empirical L2 ǫ1-net for H with cardinality M1 and H̃2 be an empirical L2

ǫ2-net for H with cardinality M2. For f =
∑

h βhh in F , there is a choice
of h̃1, . . . , h̃m in H̃2 with f̃m = (v/m0)

∑m
k=1 h̃k, v ≥ vf , and m ≤ m0+M1,

such that

1

n

n
∑

i=1

(yi − T f̃m(xi))
2 − 1

n

n
∑

i=1

(yi − f(xi))
2+

1

n

n
∑

i=1

(T f̃m(x′i))
2 − Tf(x′i))

2

≤ 2v2ǫ21(1 +M1/m0)

m0
+

v2M1

2m2
0

+ 8Bnv (1 +M1/m0) ǫ2

+
Tn

n
.

If F̃ denotes the collection of functions of the form f̃m, then F̃ has cardi-
nality at most

(M2+M1+m0

M1+m0

)

.

Moreover, there is a choice of h̃1, . . . , h̃m0 in H̃2 with f̃m0 = (v/m0)
∑m0

k=1 h̃k,
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v ≥ vf such that

1

n

n
∑

i=1

(yi − T f̃m0(xi))
2 − 1

n

n
∑

i=1

(yi − f(xi))
2+

1

n

n
∑

i=1

(T f̃m0(x
′
i)− Tf(x′i))

2

≤ 2vvf
m0

+ 8Bnvǫ2 +
Tn

n
.(6.2)

and

1

n

n
∑

i=1

(f̃m0(xi)− f(xi))
2 +

1

n

n
∑

i=1

(f̃m0(x
′
i)− f(x′i))

2

≤ 4vvf
m0

+ 4v2ǫ22.(6.3)

If F̃ denotes the collection of functions of the form f̃m0 , then F̃ has cardi-
nality at most

(M2+m0

m0

)

.

Proof. We only prove the first claim of the lemma. Inequalities (6.2) and
(6.3) follow from similar arguments and Lemma 3. Let fm = (v/m0)

∑m
k=1 hk

be as in the second part of Lemma 4. Since H̃2 is an empirical L2 ǫ2-net for
H, for each hk there is an h̃k in H̃2 such that

1

2n

n
∑

i=1

|hk(xi)− h̃k(xi)|2 +
1

2n

n
∑

i=1

|hk(x′i)− h̃k(x
′
i)|2 ≤ ǫ22.
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Let f̃m = (v/m0)
∑m

k=1 h̃k. By Lemma 8 (I) and (II),

(y − T f̃m(x))2 − (y − f(x))2 = [(y − fm(x))2 − (y − f(x))2]+

[(y − T f̃m(x))
2 − (y − Tfm(x))2]+

[(y − Tfm(x))2 − (y − fm(x))2]

≤ [(y − fm(x))2 − (y − f(x))2]+

4Bn|fm(x)− f̃m(x)|+
4Bn(|y| −Bn)I{|y| > Bn}+

2(|y| −Bn)
2
I{|y| > Bn}

= [(y − fm(x))2 − (y − f(x))2]+

4Bn|fm(x)− f̃m(x)|+
2(|y|2 −B2

n)I{|y| > Bn}.

By Lemma 8 (III),

(T f̃m(x′)− Tf(x′))2 ≤ (f(x′)− fm(x′))2 + 4Bn|f̃m(x′)− fm(x′)|.

Thus we find that (y− T f̃m(x))2 − (y− f(x))2 + (T f̃m(x′)−Tf(x′))2 is not
greater than

[(y − fm(x))2 − (y − f(x))2] + (f(x′)− fm(x′))2+

4Bn[|fm(x)− f̃m(x)|+ |f̃m(x′)− fm(x′)|] + 2(|y|2 −B2
n)I{|y| > Bn}

By the second conclusion in Lemma 4,

1

n

n
∑

i=1

(yi − fm(xi))
2 − 1

n

n
∑

i=1

(yi − f(xi))
2+

1

n

n
∑

i=1

(fm(x′i)− f(x′i))
2 ≤ 2v2ǫ21(1 +M1/m0)

m0
+

v2M1

2m2
0

.

By the concavity of the square root function,

1

2n

n
∑

i=1

|hk(xi)− h̃k(xi)|+
1

2n

n
∑

i=1

|hk(x′i)− h̃k(x
′
i)|

is also no greater than ǫ2. Using this, we have that

1

n

n
∑

i=1

|fm(xi)− f̃m(xi)|+
1

n

n
∑

i=1

|fm(x′i)− f̃m(x′i)| ≤ 2v (1 +M1/m0) ǫ2.

imsart-aos ver. 2011/11/15 file: KlusowskiBarron2016.tex date: July 7, 2016



30

The last conclusion about the cardinality of F̃ follows from Lemma 10.

Lemma 6. Let x = {xi}ni=1, where each xi is a d-dimensional vector in R
d.

Define ‖x‖2∞ = 1
n

∑n
i=1 ‖xi‖2∞. There is a subset H̃ of H with cardinality at

most
(2d+m

m

)

such that for each h(x) = φ(x · θ) with ‖θ‖1 ≤ Λ in H, there is

h̃(x) = φ(x · θ̃) in H̃ such that 1
n

∑n
i=1 |h(xi)− h̃(xi)|2 ≤ Λ‖θ‖1‖x‖2∞/m.

Proof. By the Lipschitz condition on φ, it is enough to prove the bound for
1
n

∑n
i=1 |θ ·xi− θ̃ ·xi|2. Let v be a random vector that equals ejsgn(θj)Λ with

probability |θj |/Λ, j = 1, 2, . . . , d and equals the zero vector with probability
1 − ‖θ‖1/Λ. Let v1, v2, . . . , vm be a random sample from the distribution
defining v. Note that the average of θ = 1

m

∑m
j=1 vj is θ and hence the

average of each |θ · xi − θ · xi|2 is the variance of v · xi divided by m. Taking
the expectation of the desired quantity, we have

E
1

n

n
∑

i=1

|θ · xi − θ · xi|2 =
1

n

n
∑

i=1

E|θ · xi − θ · xi|2

≤ 1

n

n
∑

i=1

E(v · xi)2
m

≤ 1

n

n
∑

i=1

‖xi‖2∞Λ‖θ‖1
m

= Λ‖θ‖1‖x‖2∞/m.

Since this bound holds on average, there must exist a realization θ̃ of θ for
which the inequality is also satisfied. Consider the collection of all vectors
of the form

(Λ/m)
m
∑

j=1

uj ,

where uj is any of the 2d + 1 signed standard basis vectors including the
zero vector. This collection has cardinality bounded by the number of non-
negative integer solutions q1, q2, . . . , q2d+1 to

q1 + q2 + · · ·+ q2d+1 = m.

This number is
(

2d+m
m

)

with its logarithm is bounded by m log(e(2d/m+1))
or 2m log(d+1). An important aspect of the log cardinality of this empirical
cover is that it is logarithmic (and not linear) in the dimension d. This
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small dependence on d is what produces desirable risk bounds when d is
significantly greater than the available sample size n.

Lemma 7. Let Z have mean zero and variance σ2. Moreover, suppose Z
satisfies Bernstein’s moment condition with parameter η > 0. Then

(6.4) E(etZ) ≤ exp

{

t2σ2/2

1− η|t|

}

, |t| < 1/η.

Lemma 8. Define Tf = min{Bn, |f |}sgnf . Then
(I) (y − Tf)2 ≤ (y − f)2 + 2(|y| −Bn)

2
I{|y| > Bn},

(II) (y− Tf)2 ≤ (y− T f̃)2 +4Bn|f − f̃ |+4Bn(|y| −Bn)I{|y| > Bn}, and
(III) (T f̃ − Tf)2 ≤ (f − f1)

2 + 4Bn|f1 − f̃ |.

Proof. (I) Since (y−Tf)2 = (y− f)2+2(f −Tf)(2y− f −Tf), the proof
will be complete if we can show that

(f − Tf)(2y − f − Tf) ≤ (|y| −Bn)
2
I{|y| > Bn}.

Note that if |f | ≤ Bn, the left hand size of the above expression is zero.
Thus we may assume that |f | > Bn, in which case f −Tf = sgnf(|f |−Bn).
Thus

(f − Tf)(2y − f − Tf) = 2ysgnf(|f | −Bn)− (|f | −Bn)(|f |+Bn)

≤ 2|y|(|f | −Bn)− (|f | −Bn)(|f |+Bn).

If |y| ≤ Bn, the above expression is less than −(|f | − Bn)
2 ≤ 0. Otherwise,

it is a quadratic in |f | that attains its global maximum at |f | = |y|. This
yields a maximum value of (|y| −Bn)

2.

(II) For the second claim, note that

(y − Tf)2 = (y − T f̃)2 + (T f̃ − Tf)(2y − T f̃ − Tf).

Hence, we are done if we can show that

(T f̃ − Tf)(2y − T f̃ − Tf) ≤ 4Bn|f − f̃ |+ 4Bn(|y| −Bn)I{|y| > Bn}.

If |y| ≤ Bn, then

(T f̃ − Tf)(2y − T f̃ − Tf) ≤ 4Bn|T f̃ − Tf |
≤ 4Bn|f̃ − f |.
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If |y| > Bn, then

(T f̃ − Tf)(2y − T f̃ − Tf) ≤ 2|T f̃ − Tf ||y|+ 2Bn|T f̃ − Tf |
= 2|T f̃ − Tf |(|y| −Bn) + 4Bn|T f̃ − Tf |
≤ 4Bn(|y| −Bn) + 4Bn|f̃ − f |.

(III) For the last claim, note that

(T f̃ − Tf)2 = (T f̃ − Tf1)
2 + [2T f̃ − Tf1 − Tf ](Tf1 − Tf)

≤ (T f̃ − Tf1)
2 + 4Bn|Tf1 − Tf |

≤ (f̃ − f1)
2 + 4Bn|f1 − f |

Lemma 9. Let Y = f⋆(X) + ǫ with |f⋆(X)| ≤ B. Suppose

(I) Ee|ǫ|/ν < +∞ or

(II) Ee|ǫ|
2/ν < +∞

for some ν > 0. Then E[(Y 2 −B2
n)I{|Y | > Bn}] is at most

(I) (4ν2/n)Ee|ǫ|/ν provided Bn >
√
2(B + ν log n) or

(II) (2ν/n)Ee|ǫ|
2/ν provided Bn >

√
2(B +

√
ν log n).

Proof. Under assumption (I),

P(Y 2 −B2
n > t) = P(|Y | >

√

t+B2
n)

≤ P(|ǫ| >
√

t+B2
n −B)

≤ P(|ǫ| > (1/
√
2)(

√
t+Bn)−B)

≤ e−
1
ν

√
t
2 e

− 1
ν
(Bn√

2
−B)

Ee|ǫ|/ν.

The last inequality follows from a simple application of Markov’s inequality
after exponentiation. Integrating the previous expression from t = 0 to t =

+∞ (
∫∞
0 e−

1
ν

√
t
2 dt = 4ν2) yields an upper bound on E[(Y 2 − B2

n)I{|Y | >
Bn}] that is at most (4ν2/n)Ee|ǫ|/ν provided Bn >

√
2(B + ν log n).

Under assumption (II),

P(Y 2 −B2
n > t) = P(|Y |2 > t+B2

n)

≤ P(|ǫ|2 > (1/2)(t +B2
n)−B2)

≤ e−
t
2ν e−

1
v
(
B2
n
2

−B2)
Ee|ǫ|

2/ν .
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The last inequality follows from a simple application of Markov’s inequal-
ity after exponentiation. Integrating the previous expression from t = 0 to
t = +∞ (

∫∞
0 e−

t
2ν dt = 2ν) yields an upper bound on E[(Y 2 − B2

n)I{|Y | >
Bn}] that is at most (2ν/n)Ee|ǫ|

2/ν provided Bn >
√
2(B +

√
ν log n) ≥

√

2(B2 + ν log n).

Lemma 10. The number of functions having the form v
m

∑m
k=1 hk, where

hk belong to a library of size M is at most
(M−1+m

m

)

≤
(M+m

m

)

with its
logarithm bounded by m log(e(M/m + 1)).

Proof. Suppose the elements in the library are indexed from 1 to M . Let qi
be the number of terms in

∑m
k=1 hk of type i. Hence the number of function of

the form v
m

∑m
k=1 hk is at most the number of non-negative integer solutions

q1, q2, . . . , qM to q1 + q2 + · · · + qM = m. This number is
(M−1+m

m

)

with
its logarithm bounded by the minimum of m log(e((M − 1)/m + 1)) and
m logM .
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SUPPLEMENTARY MATERIAL

Supplement A: Proof of an approximation result and justification

of (4.1).
(doi: COMPLETED BY THE TYPESETTER; .pdf). We prove that a func-
tion satisfying a certain spectral condition belongs to the closure of the linear
span of ridge ramp functions. We also give a justification for the penalty di-
vided by sample size as stated in (4.1).
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COMBINATIONS INCLUDING NEURAL NETWORKS”

By Jason M. Klusowski and Andrew R. Barron

Yale University

We prove that a function satisfying a certain spectral condition
belongs to the closure of the linear span of ridge ramp functions.
We also give a justification for the penalty divided by sample size as
stated in (4.1).

Theorem. For an arbitrary target function f⋆(x) =
∫

Rd e
ix·ωf̃(ω)dω with

vf⋆,2 =
∫

Rd ‖ω‖21|f̃(ω)|dω finite, there exists a linear combination of ridge
ramp functions with ‖ak‖ = 1 and |bk| ≤ 1 such that

‖f⋆ − fm‖2 ≤
16v2f⋆,2

m
.

Proof. If f⋆ can be extended to a function on L2(Rd) with Fourier trans-
form f̃ , the function f⋆(x) − x · ∇f⋆(0) − f⋆(0) can be written as the real
part of

(6.5)

∫

Rd

(eiω·x − iω · x− 1)f̃(ω)dω.

If |z| ≤ c, we note the identity

−
∫ c

0
[(z − u)+e

iu + (−z − u)+e
−iu]du = eiz − iz − 1.

If c = ‖ω‖1, z = ω · x, α = α(ω) = ω/‖ω‖1, and u = ‖ω‖1t, 0 ≤ t ≤ 1, we
find that

−‖ω‖21
∫ 1

0
[(α · x− t)+e

i‖ω‖1t + (−α · x− t)+e
−i‖ω‖1t]dt =

eiω·x − iω · x− 1.
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Multiplying the above by f̃(ω) = eib(ω)|f̃(ω)|, integrating over R
d, and ap-

plying Fubini’s theorem yields

f⋆(x)− x · ∇f⋆(0)− f⋆(0) =

∫

Rd

∫ 1

0
g(t, ω)dtdω,

where

g(t, ω) = −[(α · x− t)+ cos(‖ω‖1t+ b(ω))+

(−α · x− t)+ cos(‖ω‖1t− b(ω))]‖ω‖21|f̃(ω)|.

Consider the density on {0, 1} × [0, 1] × R
d defined by

p(z, t, ω) = (1− γ)(1− z)µ(t, ω) + γzν(t, ω)

where µ(t, ω) = | cos(‖ω‖1t+b(ω))|‖ω‖21|f̃(ω)|/U and ν(t, ω) = | cos(‖ω‖1t−
b(ω))|‖ω‖21|f̃(ω)|/V with constants U and V chosen to make µ and ν inte-
grate to one, respectively. Choose γ = V/(U + V ) and consider the random
variable η(z, t, α)(x) that equals

(1− z)(α · x− t)+sµ(t, ω) + z(−α · x− t)+sν(t, ω),

where sµ(t, ω) = −sgn cos(‖ω‖1t + b(ω)) and sν(t, ω) = −sgn cos(‖ω‖1t −
b(ω)). Note that η(z, t, α)(x) has the form ±(α · x− t)+ and B = U + V ≤
2vf⋆,2. Thus, we see that

f⋆(x)− x · ∇f⋆(0)− f⋆(0) =

B

∫

{0,1}×[0,1]×Rd

η(z, t, α)(x)dp(z × t× ω).

One can obtain the final result by sampling (z1, t1, ω1), . . . , (zm, tm, ωm) ran-
domly from p(z, t, ω) and considering the average 1

m

∑m
k=1 h(zk, tk, ωk). Note

that since x = (x)+ − (−x)+, we can regard x · ∇f⋆(0) as belonging to
the linear span of {x 7→ ±(α · x − t)+ : ‖α‖1 = 1, |t| ≤ 1}. An easy
argument shows that its variance is bounded by 16v2f⋆ ,2/m. This simple ar-
gument can be extended to higher order expansions of f⋆. The function
f⋆(x) − xTHf⋆(0)x/2 − x · ∇f⋆(0) − f⋆(0) (Hf⋆(0) is the Hessian of f⋆ at
the point zero) can be written as the real part of

(6.6)

∫

Rd

(eiω·x + (ω · x)2/2− iω · x− 1)f̃(ω)dω.

As before, the integrand in (6.6) admits an integral representation by

(i/2)‖ω‖31
∫ 1

0
[(−α · x− t)2+e

−i‖ω‖1t − (α · x− t)2+e
i‖ω‖1t]dt.
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Employing a sampling argument from an appropriately defined density, we
are able to approximate f⋆(x)− xTHf⋆(0)x/2− x · ∇f⋆(0) by a linear com-
binations of m second order spline functions (having bounded internal pa-
rameters) (α · x− t)2+ with a squared error bounded by 16v2f⋆ ,3/m.

In the next part of the supplement, we justify the form of the penalty divided
by sample size as stated in (4.1). For this, we first need a lemma.

Lemma. Let f =
∑

h βhh and let H̃ be an empirical L2 ǫ-net of H of size
M . There is a choice of h̃1, . . . , h̃m in H̃ with f̃m = (v/m)

∑m
k=1 h̃k, v ≥ vf

such that

Pn(T f̃ ||f⋆)− 2Pn(f ||f⋆) +D′
n(f̃ , f) ≤

4vvf
m

+ 6v2ǫ2 + 4σvǫ+ Tn +Rn,

where Rn = 1
n

∑n
i=1(ǫ

2
i−σ2)I{ 1

n

∑n
i=1(ǫ

2
i−σ2) > 0}. Moreover, ERn ≤ 4

√
3ησ√
n

and if F̃ denotes the collection of functions of the form f̃m, then F̃ has
cardinality at most

(M+m
m

)

.

Proof. Let fm = (v/m)
∑m

k=1 hk be as in Lemma 3 and f̃ = f̃m =
(v/m)

∑m
k=1 h̃k be as in Lemma 5. Furthermore, define

τn = min{1,
√

Dn(f̃m, fm)/σ2}.

By Lemma 8 (I),

Pn(T f̃m||f⋆) ≤ Pn(f̃m||f⋆) + Tn,

and hence

Pn(T f̃m||f⋆)− (1 + τn)Pn(f ||f⋆) ≤ Pn(f̃m||f⋆)− (1 + τn)Pn(f ||f⋆) + Tn.

Also observe that

Pn(f̃m||f⋆)− (1 + τn)Pn(f ||f⋆) = [Pn(f̃m||f⋆)− (1 + τn)Pn(fm||f⋆)]+

(1 + τn)[Pn(fm||f⋆)− Pn(f ||f⋆)],

and
D′

n(f̃m, f) ≤ 2D′
n(f̃m, fm) + 2D′

n(f, fm).

By Lemma 3,

Pn(fm||f⋆)− Pn(f ||f⋆) +D′
n(f̃ , f) ≤

2vvf
m

.
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Using the inequality a2 − (1 + τ)b2 ≤ 1+τ
τ (a− b)2, we have

Pn(f̃m||f⋆)− (1 + τn)Pn(fm||f⋆) ≤ 1 + τn
τn

Dn(f̃m, fm) + τnǫ
2
n

≤ 1 + τn
τn

Dn(f̃m, fm) + τnσ
2 +Rn

≤ 3Dn(f̃m, fm) + 2σ

√

Dn(f̃m, fm) +Rn,

where the last inequality follows from the definition of τn and ǫ2n = 1
n

∑n
i=1 ǫ

2
i .

The first conclusion is proved after observing that Dn(f̃m, fm) ≤ 2v2ǫ2.

The statement about the cardinality of F̃ follows immediately from the form
of f̃ and Lemma 10.

We are also able to comment on how Rn behaves on average. To see this,
note that Rn ≤ s + RnI{Rn > s} for all s > 0. Now, RnI{Rn > s} =
1
n

∑n
i=1(ǫ

2
i −σ2)I{ 1

n

∑n
i=1(ǫ

2
i −σ2) > s}. By Chebychev’s inequality and the

fact that V(ǫ) ≤ σ2 and V(ǫ2) ≤ 12η2σ2 (as per the Bernstein moment

condition on the noise), P( 1n
∑n

i=1(ǫ
2
i − σ2) > s + t) ≤ V(ǫ2)

n(t+s)2
. Integrating

this inequality from t = 0 to t = +∞ yields RnI{Rn > s} ≤ V(ǫ2)
ns . Choosing

s =
√

V(ǫ2)/n produces ERn ≤ 2
√

V(ǫ2)√
n

≤ 4
√
3ησ√
n

.

By the above lemma and similar arguments leading to the conclusion of
Theorem 3, we see that a valid penalty divided by sample size is at least

γnm logM

n
+

4vvf
m

+ 6v2ǫ2 + 2σvǫ+ Tn +Rn

By Lemma 6, an empirical L2 ǫ-cover ofH has cardinality less than
(2d+⌈(Λ/ǫ)2⌉

⌈(Λ/ǫ)2⌉
)

.

The logarithm of
(2d+⌈(Λ/ǫ)2⌉

⌈(Λ/ǫ)2⌉
)

is bounded by 4(Λ/ǫ)2 log(d+1). Thus we see

that a valid penalty divided by sample size is at least

(6.7)
4γnm(Λ/ǫ)2 log(d+ 1)

n
+

4vvf
m

+ 6v2ǫ2 + 4σvǫ+ Tn +Rn

Choose m to be the ceiling of
(

nvvf ǫ
2

γnΓ2 log(d+1)

)1/2
. Plugging this back into

(6.7), we find that a valid penalty divided by sample size is at least

8

(

vvfγnΛ
2 log(d+ 1)

nǫ2

)1/2

+
4γnΛ

2 log(d+ 1)

nǫ2
+ 6v2ǫ2 + 4σvǫ + Tn +Rn.
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Choose v = vf and

ǫ =
1

(

v2n
γnΛ2 log(d+1)

)1/6
+
(

σ2n
γnΛ2 log(d+1)

)1/4
.

With this choice of ǫ, a valid penalty divided by sample size is seen to be at
least a modest constant multiple of

(

v4fΛ
2γn log(d+ 1)

n

)1/3

+
√
σ

(

v4fΛ
2γn log(d+ 1)

n

)1/4

+

(

v2fΛ
2γn log(d+ 1)

n

)2/3

+

(

Λ2γn log(d+ 1)

n

)2/3

+

√
σ

(

Λ4/3γn log(d+ 1)

n

)3/4

+ Tn +Rn.

Thus when Λ2γn log(d+1)
n is small, we see that the penalty divided by sample

size has the form (4.1) plus negligible terms that do not depend on the
candidate fit.
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