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Estimation of functions of d variables is considered using ridge
combinations of the form

řm
k“1 c1,kφp

řd
j“1 c0,j,kxj ´ bkq where

the activation function φ is a function with bounded value and
derivative. These include single-hidden layer neural networks,
polynomials, and sinusoidal models. From a sample of size n
of possibly noisy values at random sites X P B “ r´1, 1sd,
the minimax mean square error is examined for functions in
the closure of the `1 hull of ridge functions with activation φ.
It is shown to be of order d{n to a fractional power (when d
is of smaller order than n), and to be of order plog dq{n to a
fractional power (when d is of larger order than n). Dependence
on constraints v0 and v1 on the `1 norms of inner parameter
c0 and outer parameter c1, respectively, is also examined. Also,
lower and upper bounds on the fractional power are given. The
heart of the analysis is development of information-theoretic
packing numbers for these classes of functions.

Index Terms—Nonparametric regression; nonlinear regression;
neural nets; penalization; machine learning; high-dimensional
data analysis; learning theory; generalization error; greedy algo-
rithms; metric entropy; packing sets; polynomial nets; sinusoidal
nets; constant weight codes

I. INTRODUCTION

Ridge combinations provide flexible classes for fitting func-
tions of many variables. The ridge activation function may be a
general Lipschitz function. When the ridge activation function
is a sigmoid, these are single-hidden layer artificial neural
nets. When the activation is a sine or cosine function, it is
a sinusoidal model in a ridge combination form. We consider
also a class of polynomial nets which are combinations of
Hermite ridge functions. Ridge combinations are also the
functions used in projection pursuit regression fitting. What
distinguishes these models from other classical functional
forms is the presence of parameters internal to the ridge
functions which are free to be adjusted in the fit. In essence, it
is a parameterized, infinite dictionary of functions from which
we make linear combinations. This provides a flexibility of
function modeling not present in the case of a fixed dictionary.
Here we discuss results on risk properties of estimation of
functions using these models and we develop new minimax
lower bounds.

For a given activation function φpzq on R, consider the
parameterized family Fm of functions

fmpxq “ fmpx, c0, c1, bq “
řm
k“1 c1,kφp

řd
j“1 c0,j,kxj ´ bkq,

(1)
where c1 “ pc1,1, . . . , c1,mq

1 is the vector of outer layer
parameters and c0,k “ pc0,1,k, . . . , c0,d,kq

1 are the vectors
of inner parameters for the single hidden-layer of functions
φpc0,k ¨ x ´ bkq with horizontal shifts b “ pb1, . . . , bmq,
k “ 1, . . . ,m. For positive v0, let

Dv0 “ Dv0,φ “ tφpθ ¨ x´ tq, x P B : }θ}1 ď v0, t P Ru (2)

be the dictionary of all such inner layer ridge functions φpθ ¨
x´ tq with parameter restricted to the `1 ball of size v0 and
variables x restricted to the cube r´1, 1sd. The choice of the
`1 norm on the inner parameters is natural as it corresponds
to }θ}B “ supxPB |θ ¨ x| for B “ r´1, 1sd.

Let Fv0,v1 “ Fv0,v1,φ “ `1pv1,Dv0q be the closure of the set
of all linear combinations of functions in Dv0 with `1 norm of
outer coefficients not more than v1. These v0 and v1 control
the freedom in the size of this function class. They can either
be fixed for minimax evaluations, or adapted in the estimation
(as reflected in some of the upper bounds on risk for penalized
least square estimation). The functions of the form (1) are in
`1pv1,Dq when }c0,k}1 ď v0 and }c1}1 ď v1. Indeed, let
Fm,v0,v1 “ `1pm, v1,Dv0q be the subset of such functions in
`1pv1,Dv0q that use m terms.

Data are of the form tpXi, Yiqu
n
i“1, drawn independently from

a joint distribution PX,Y with PX on r´1, 1sd. The target
function is fpxq “ ErY |X “ xs, the mean of the conditional
distribution PY |X“x, optimal in mean square for the prediction
of future Y from corresponding input X . In some cases,
assumptions are made on the error of the target function
εi “ Yi ´ fpXiq (i.e. bounded, Gaussian, or sub-Gaussian).

From the data, estimators f̂pxq “ f̂px, tpXi, Yiqu
n
i“1q are

formed and the loss at a target f is the L2pPXq square error
}f´ f̂}2 and the risk is the expected squared error E}f´ f̂}2.
For any class of functions F on r´1, 1sd, the minimax risk is

Rn,dpFq “ inf
f̂

sup
fPF

E}f ´ f̂}2, (3)



where the infimum runs over all estimators f̂ of f based on
the data tpXi, Yiqu

n
i“1.

It is known that for certain complexity penalized least squares
estimators [1], [2], [3], [4] the risk satisfies

E}f ´ f̂}2 ď inf
fmPFm

t}f ´ fm}
2 `

cmd logn
n u, (4)

where the constant c depends on parameters of the noise
distribution and on properties of the activation function φ,
which can be a step function or a fixed bounded Lipschitz
function. The d log n in the second term is from the log-
cardinality of customary d-dimensional covers of the dictio-
nary. The right side is an index of resolvability expressing
the tradeoff between approximation error }f ´ fm}

2 and
descriptive complexity md log n relative to sample size, in
accordance with risk bounds for minimum description length
criteria [5], [6], [7], [8]. When the target f is in Fv1,v0 ,
it is known as in [9], [10], [11] that }f ´ fm}

2 ď v21{m
with slight improvements possible depending on the dimension
}f ´ fm}

2 ď v21{m
1{2`1{d as in [12], [13], [14]. When f is

not in Fv0,v1 , let fv0,v1 be its projection onto this convex set
of functions. Then the additional error beyond }f ´ fv0,v1}

2

is controlled by the bound

inf
m
t
v21
m `

c1md logn
n u “ 2v1p

c1d logn
n q1{2. (5)

Moreover, with f̂ restricted to Fv0,v1 , this bounds the mean
squared error E}f̂ ´ fv0,v1}

2 from the projection. The same
risk is available from `1 penalized least square estimation [3],
[6], [7], [13] and from greedy implementations of complexity
and `1 penalized estimation [3], [13]. The slight approximation
improvements (albeit not known whether available by greedy
algorithms) provide the risk bound [13]

Rn,dpFv0,v1q ď c2p
dv20v

2
1

n q1{2`1{p2pd`1qq, (6)

for bounded Lipschitz activation functions φ, improving a
similar result in [15], [14]. This fact can be shown through
improved upper bounds on the metric entropy from [16].

A couple of lower bounds on the minimax risk in Fv0,v1 are
known [14] and, improving on [14], the working paper [13]
states the lower bound

Rn,dpFv0,v1q ě c3v
d{pd`2q
1 p 1

d4n q
1{2`1{pd`2qq (7)

for an unconstrained v0.

Note that for large d, these exponents are near 1{2. Indeed, if
d is large compared to log n, then the bounds in (6) and (7)
are of the same order as with exponent 1{2. It is desirable to
have improved lower bounds which take the form d{n to a
fractional power as long as d is of smaller order than n.

Favorable performance of flexible neural network (and neural
network like) models has often been observed as in [17] in
situations in which d is of much larger order than n. Current
developments [13] are obtaining upper bounds on risk of the
form

Rn,dpFv0,v1q ď c4p
v20v

4
1 logpd`1q
n qγ , (8)

for fixed positive γ, again for bounded Lipschitz φ. These
allow d much larger than n, as long as d “ eopnq. We have
considered two cases. First with greedy implementations of
least squares with complexity or `1 penalty, such upper bounds
are obtained in [13] with γ “ 1{3 in the noise free case and
γ “ 1{4 in the sub-Gaussian noise case (which includes the
Gaussian noise case). The rate with γ “ 1{3 is also possible
in the sub-Gaussian noise setting (as well as the noise free
setting) via a least squares estimator over a discretization of
the parameter space.

It is desirable likewise to have lower bounds on the minimax
risk for this setting that show that is depends primarily on
vα0 v

2α
1 {n to some power (within log d factors). It is the purpose

of this paper to obtain such lower bounds. Here with γ “ 1{2.
Thereby, this paper on lower bounds is to provide a companion
to (refinement of) the working paper on upper bounds [13].
Lower bounding minimax risk in non-parametric regression
is primarily an information-theoretic problem. This was first
observed by [18] and then [19], [20] who adapted Fano’s
inequality in this setting. Furthermore, [14] showed conditions
such that the minimax risk ε2n is characterized (to within a
constant factor) by solving for the approximation error ε2

that matches the metric entropy relative to the sample size
plogNpεqq{n, where Npεq is the size of the largest ε-packing
set. Accordingly, the core of our analysis is providing packing
sets for Fv0,v1 for specific choices of φ.

II. RESULTS FOR SINUSOIDAL NETS

We now state our main result. In this section, it is for
the sinusoidal activation function φpzq “

?
2 sinpπzq. We

consider two regimes: when d is larger than v0 and visa-versa.
In each case, this entails putting a non-restrictive technical
condition on either quantity. For d larger than v0, this condition
is

d
v0
` 1 ą pc4

v21n
v0 logp1`d{v0q

q1{v0 , (9)

and when v0 is larger than d,

v0
d ` 1 ą pc5

v21n
d logp1`v0{dq

q1{d, (10)

for some positive constants c4, c5. Note that when d is large
compared to log n, condition (10) holds. Indeed, the left side

is at least 2 and the right side is e
1
d logp

v21n
d logp1`v0{dq

q
, which is

near 1. Likewise, (9) holds when v0 is large compared to log n.

Theorem 1. Consider the model Y “ fpXq ` ε for f P
Fv0,v1,sine, where ε „ Np0, 1q and X „ Uniformr´1, 1sd. If
d is large enough so that (9) is satisfied, then

Rn,dpFv0,v1,sineq ě c6p
v0v

2
1 logp1`d{v0q

n q1{2, (11)

for some universal constant c6 ą 0. Furthermore, if v0 is large
enough so that (10) is satisfied, then

Rn,dpFv0,v1,sineq ě c7p
dv21 logp1`v0{dq

n q1{2. (12)

for some universal constant c7 ą 0.



Before we prove Theorem 1, we first state a lemma which is
contained in the proof of Theorem 1 (pp. 46-47) in [21].

Lemma 1. For integers M,L with M ě 10 and 1 ď L ď
M{10, define the set

S “ tω P t0, 1uM : }ω}1 “ Lu.

There exists a subset A Ă S with cardinality at least
b

`

M
L

˘

such that the Hamming distance between any pairs of A is at
least L{5.

Note that the elements of the set A in Lemma 1 can be
interpreted as binary codes of length M , constant Hamming
weight L, and minimum Hamming distance L{5. These are
called constant weight codes and the cardinality of the largest
such codebook, denoted by ApM,L{5, Lq, is also given a com-
binatorial lower bound in [22]. The conclusion of Lemma 1
is ApM,L{5, Lq ě

b

`

M
L

˘

.

Proof of Theorem 1. For simplicity, we henceforth write
Fv0,v1 instead of Fv0,v1,sine. Define the collection Λ “ tθ P
Zd : }θ}1 ď v0u. Without loss of generality, assume that
v0 is an integer so that M :“ #Λ “

`

2d`v0
2d

˘

. Consider
sinusoidal ridge functions

?
2 sinpπθ ¨ xq with θ in Λ. Note

that these functions (for θ ‰ 0) are orthonormal with respect
to the uniform probability measure P on B “ r´1, 1sd. This
fact is easily established using an instance of Euler’s formula
sinpπθ ¨ xq “ 1

2i p
śd
k“1 e

iπθkxk ´
śd
k“1 e

´iπθkxkq.

For an enumeration θ1, . . . , θM of Λ, define a subclass of
Fv0,v1 by

F0 “ tfω “
v1
L

řM
k“1 ωk

?
2 sinpπθk ¨ xq : ω P Au,

where A is the set in Lemma 1. Any distinct pairs fω, fω1

in F0 have L2pP q squared distance at least }fω ´ fω1}2 ě

v21}ω ´ ω1}22{L
2 ě v21{p5Lq. A separation of ε2 determines

L “ pv1{p
?

5εqq2. Depending on the size of d relative to v0,
there are two different behaviors of M . For d ą v0, we use
M ě

`

d`v0
v0

˘

ě p1` d{v0q
v0 and for d ă v0, M ě

`

d`v0
d

˘

ě

p1` v0{dq
d.

By Lemma 1, a lower bound on the cardinality of A is
b

`

M
L

˘

with logarithm lower bounded by pL{2q logpL{Mq. To obtain
a cleaner form that highlights the dependence on L, we assume
that L ď

?
M , giving logp#Aq ě pL{4q logM . Since L is

proportional to pv1{εq2, this condition puts a lower bound on
ε of order v1M´1{4. If ε ą v1{p1` d{v0q

v0{4, it follows that
a lower bound on the logarithm of the packing number is of
order logNdąv0pεq “ v0pv1{εq

2 logp1` d{v0q. If ε ą v1{p1`
v0{dq

d{4, a lower bound on the logarithm of the packing
number is of order logNv0ądpεq “ dpv1{εq

2 logp1 ` v0{dq.
Thus we have found an ε-packing set of these cardinalities. As
such, they are lower bounds on the metric entropy of Fv0,v1 .

Next we use the information-theoretic lower bound techniques
in [14] or [23]. Let pωpx, yq “ ppxqψpy´ fωpxqq, where p is

the uniform density on r´1, 1sd and ψ is the Np0, 1q density.
Then

Rn,dpFv0,v1q ě pε2{4q inf
f̂

sup
fPF0

Pp}f ´ f̂}2 ě ε2q,

where the estimators f̂ are now restricted to F0. The supre-
mum is at least the uniformly weighted average over f P F0.
Thus a lower bound on the minimax risk is a constant times
ε2 provided the minimax probability is bounded away from
zero, as it is for sufficient size packing sets. Indeed, by Fano’s
inequality as in [14], this minimax probability is at least

1´ α logp#F0q`log 2
logp#F0q

,

for α in p0, 1q, or by an inequality of Pinsker, as in Theorem
2.5 in [23], it is at least

?
#F0

1`
?
#F0

p1´ 2α´
b

2α
logp#F0q

q,

for some α in p0, 1{8q. These inequalities hold provided we
have the following

1
#F0

ř

ωPADpp
n
ω||qq ď α logp#F0q,

bounding the mutual information between ω and the data
tpXi, Yiqu

n
i“1, where q is any fixed joint density for

tpXi, Yiqu
n
i“1. When suitable metric entropy upper bounds on

the log-cardinality of covers Fω1PA1 :“ tf : }f ´ fω1} ă ε1u
of F0 are available, one may use q as a uniform mixture of
pnω1 for ω1 in A1 as in [14], as long as ε and ε1 are arranged
to be of the same order. In the special case that F0 has small
radius already of order ε, one has the simplicity of taking A1
to be the singleton set consisting of ω1 “ 0. In the present
case, since each element in F0 has squared norm v21{L “ 5ε2

and pairs of elements in F0 have squared separation ε2, these
function are near f0 ” 0 and hence we choose q “ pn0 . A
standard calculation yields

Dppnω||p
n
0 q ď

n
2 }fω}

2 ď
nv21
2L “ p5{2qnε2.

We choose εn such that this p5{2qnε2n ď α logp#F0q. Thus,
in accordance with [14], if Ndąv0pεnq and Nv0ądpεnq are
available lower bounds on #F0, to within a constant factor, a
minimax lower bound ε2n on the L2pP q squared error risk is
determined by matching

ε2n “
logNdąv0

pεnq

n ,

and
ε2n “

logNv0ądpεnq

n .

Solving in either case, we find that

ε2n “ p
v0v

2
1 logp1`d{v0q

n q1{2,

and
ε2n “ p

dv21 logp1`v0{dq
n q1{2.

These quantities are valid lower bounds on Rn,dpFv0,v1q to
within constant factors, provided Ndąv0pεnq and Nv0ądpεnq
are valid lower bounds on the εn-packing number of Fv0,v1 .
Checking that εn ą v1{p1 ` d{v0q

v0{2 and εn ą v1{p1 `
v0{dq

d{2 yields conditions (9) and (10), respectively.



III. IMPLICATIONS FOR NEURAL NETS

The variation of a function f with respect to a dictionary D
[24], also called the atomic norm of f with respect to D,
denoted Vf pDq, is defined as the infimum of all v such that f
is in `1pv,Dq. Here the closure in the definition of `1pv,Dq
is taken in L8.

Define φpzq “
?

2 sinpπzq. On the interval r´v0, v0s, it can be
shown that φpzq has variation Vφ “ 2

?
2πv0 with resepct to

the dictionary of unit step activation functions ˘steppz1 ´ t1q,
where steppzq “ Itz ą 0u, or equivalently, variation

?
2πv0

with respect to the dictionary of signum activation functions
with shifts ˘sgnpz1 ´ t1q, where sgnpzq “ 2steppzq ´ 1. This
can be seen directly from the identity

sin z “ v
2

ż 1

0

cospvtqrsgnpz{v ´ tq ´ sgnp´z{v ´ tqsdt,

for |z| ď v. Evaluation of
ş1

0
| cospvtq|dt gives the exact value

of φ with respect to sgn as
?

2πv0 for integer v “ v0.
Accordingly, Fv0,v1,φ is contained in F1,

?
2πv0v1,sgn.

Likewise, for the clipped linear function clippzq “

sgnpzqmint1, |z|u a similar identity holds:

sin z “ z ` v2

2

ż 1

0

sinpvtqrclipp´2z{v ´ 2t´ 1q´

clipp2z{v ´ 2t´ 1qsdt,

for |z| ď v. The above form arises from integrating

cosw “ cos v ´ v
2

ż 1

0

sinpvtqrsgnp´w{v ´ tq`

sgnpw{v ´ tqsdt,

from w “ 0 to w “ z. And likewise, evaluation of
ş1

0
| sinpvtq|dt gives the exact variation of φ with respect to

the dictionary of clip activation functions ˘clippz1 ´ t1q as
Vφ “

?
2πpv20 ` 1q for integer v “ v0. Accordingly, Fv0,v1,φ

is contained in F2,
?
2πpv20`1qv1,clip and hence we have the

following corollary.

Corollary 1. Using the same setup and conditions (9) and
(10) as in Theorem 1, the minimax risk for the sigmoid classes
F1,

?
2πv0v1,sgn and F2,

?
2πpv20`1qv1,clip have the same lower

bounds (11) and (12) as for Fv0,v1,sine.

IV. IMPLICATIONS FOR POLYNOMIAL NETS

It is also possible to give minimax lower bounds for the
function classes Fv0,v1,φ`

with activation function φ` equal to
the standardized Hermite polynomial H`{

?
`!, where H`pzq “

p´1q`e
z2

2 d`

dz`
e´

z2

2 . As with Theorem 1, this requires a lower
bound on d:

d
v20
ą pc8

v21n

v20 logpd{v20q
q2{v

2
0 . (13)

for some constant c8 ą 0. Moreover, we also need a growth
condition on the order of the polynomial `:

` ą c9 logp
v21n

v20 logpd{v20q
q, (14)

for some constant c9 ą 0. In light of (13), condition (14) is
also satisfied if ` is at least a constant multiple of v20 logpd{v20q.

Theorem 2. Consider the model Y “ fpXq ` ε for f P
Fv0,v1,φ`

, where ε „ Np0, 1q and X „ Np0, Idq. If d and `
are large enough so that conditions (13) and (14) are satisfied,
respectively, then

Rn,dpFv0,v1,φ`
q ě c10p

v20v
2
1 logpd{v20q
n q1{2, (15)

for some universal constant c10 ą 0.

Proof of Theorem 2. By Lemma 1, if d ě 10 and 1 ď d1 ď
d{10, there exists a subset C of t0, 1ud with cardinality at least

M :“
b

`

d
d1

˘

such that each element has Hamming weight d1

and pairs of elements have minumum Hamming distance d1{5.
Thus, if a and a1 belong to this codebook, |a ¨ a1| ď p9{10qd1.
Choose d1 “ v20 (assuming that v20 is an integer less than d),
and form the collection B “ tθ “ a{v0 : a P Cu. Note that
each member of B has unit `2 norm and `1 norm v0. Moreover,
the Euclidean inner product between each pair has magnitude
bounded by 9{10. Next, we use the fact that if X „ Np0, Idq
and θ, θ1 have unit `2 norm, then Erφ`pθ ¨ Xqφ`pθ1 ¨ Xqs “
pθ¨θ1q`. For an enumeration θ1, . . . , θM of B, define a subclass
of Fv0,v1,H`

by

F0 “ tfω “
v1
L

řM
k“1 ωkφ`pθk ¨ xq : ω P Au,

where A is the set from Lemma 1. Moreover, since each θk
has unit norm, }ω´ω1}1 ě L{5, and }ω´ω1}21 ď 2L}ω´ω1}1,

}fω ´ fω1}2 “
v21
L2 r}ω ´ ω

1}1`
ř

i‰jpωi ´ ω
1
iqpωj ´ ω

1
jqpθi ¨ θjq

`s

ě
v21
L2 r}ω ´ ω

1}1 ´ }ω ´ ω
1}21p9{10q`s

ě
v21
L2 }ω ´ ω

1}1p1´ 2Lp9{10q`q

ě
v21
L p1´ 2Lp9{10q`q

ě
v21
10L ,

provided ` ą
logp4Lq
logp10{9q . A separation of ε2 determines

L “ pv1{p
?

10εqq2. If L ď
?
M , or equivalently, ε ě

v1M
´1{4, then logp#F0q is at least a constant multiple of

logNdąv0pεq “ pv0v1{εq
2 logpd{v20q. As before in Theorem 1,

a minimax lower bound ε2n on the L2pP q squared error risk
is determined by matching

ε2n “
logNdąv0

pεnq

n ,

which yields
ε2n “ p

v20v
2
1 logpd{v20q
n q1{2.

If conditions (13) and (14) are satisfied, Ndąv0pεnq is a valid
lower bound on the εn-packing number of Fv0,v1,φ`

.



Remark. It is possible to obtain similar lower bounds with
H`pzq replaced by a clipped version, in which it is extended
at constant height for |z| ą ζ`,δ , where Erφ2`pZqIt|Z| ą
ζ`,δus ď δ and Z „ Np0, 1q. Then corollary conclusions
follow also for sigmoid classes using the variation of φ`pzq on
tz : |z| ď ζ`,δu. Thereby, we obtain lower bounds for sigmoid
nets for Gaussian design as well as for the uniform design of
Corollary 1.

V. DISCUSSION

Our risk lower bound of the form p
v0v

2
1 logp1`d{v0q

n q1{2 shows
that in the very high-dimensional case, it is the v0v

2
1{n to

a half-power that controls the rate (to within a logarithmic
factor). The v0 and v1, as `1 norms of the inner and outer
coefficient vectors, have the interpretations as the effective
dimensions of these vectors. Indeed, a vector in Rd with
bounded coefficients that has v0 non-negligible coordinates has
`1 norm of thin order. These rates confirm that it is the power
of these effective dimensions over sample size n (instead of
the full ambient dimension d) that controls the main behavior
of the statistical risk. Our lower bounds on packing numbers
complement the upper bound covering numbers in [25] and
[13].

Our rates are akin to those obtained by the authors in [26]
for high-dimensional linear regression. However, there is an
important difference. The richness of Fv0,v1 is largely deter-
mined by the sizes of v0 and v1 and Fv0,v1 more flexibly
represents a larger class of functions. It would be interesting
to see if the 1{2 power in the lower minimax rates in (11)
could be further improved to match or get near (8).
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