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Abstract—We establish sup-norm error bounds for functions that - Unlike the case with step activation functions, our analysi

are approximated by linear combinations of first and second makes no use of the combinatorial properties of half-spaces

order ridge splines and show that these bounds are near-optial. as in Vapnik-Chervonenkis theorg][ [7] to obtain covering
numbers of relevant spaces. Thé(D) case for ramp ridge

Index Terms—Avtificial neural networks, approximation error, ~ fUnctions (also known as hinging hyperplanes) was consttler
spline, stratified sampling in [8] and ourL* (D) bounds improve upon that line of work.

In this paper, we will show that even tighter rates of approx-
imation are possible under two different conditiong:, and

vy, finite. Interestingly, there is a disparity in the qualitydan
UNCTIONS defined onD = [—1,1]¢ are approximated proof technique of the upper bounds depending on the form
using linear combinations of ridge functions with on&f the weightsg,. and degree of smoothness of the activation

layer of nonlinearities. These approximations are emmloyfinction. The main idea we use for our results originates
via functions of the form from [9] and [10] and is essentially stratified sampling with

m proportional allocation. This technique is widely applied
fm(@) = fn(2,0) = Z Brd(o - = + ty,), (1.1) survey sampling as a means of variance reductidi [
k=1

At the end, we will also discuss the degree to which these
which are parameterized by the vectgrconsisting ofoy in - bounds can be improved. Throughout this paper, we will state
R?, andty, B in R for k = 1,...,m, wherem > 1 is the explicitly how our bounds depend ahso that the reader can
number of nonlinear terms. The functi@nis allowed to be fully appreciate the complexity of approximation.
quite general. For example, it can be bounded and Lipschitz,
polynomials with certain controls on their degrees, or lumch
with jump discontinuities. Recently irl], it has been shown Il. STATEMENT OF RESULTS
how ramp functiong(z) = (z); = 0 v « can be used to give
desirablel*(D) risk bounds of ordeflog d/n)"/*, useful even Theorem 1. Supposef admits the integral representation
whend » n, or ((d/n)log(n/d))"/>+1/(2(d+1) for estimating
a fu.nctionf, given observation§(X;, Y;)}™ , in a regression 7) — J s(t,a) (a-z—t)Ldu(t x a),
settingY; = f(X;) + ;. These bounds take advantage of the [0,1] xSd—1
fact that if f satisfies a certain spectral norm condition, then ) p . )
fm With ¢ a ramp function andayy, |t|, and X", |Bs] forz in D = [-1,1]¢, w.hergu is a sub-stochastic measure
bounded serves as a particularly useful approximatorf.of ON [0,1] x S971, s(t,a) is either -1 or +1, and ¢ = 1,2.

In this caseg(a -  + t) is Lipschitz with respect tax and There exists a linear combination of ramp ridge functions of
¢, and the boundedness {fi|; and [¢| yields bounded sup- the form

norm covering numbers for their respective norm spacese Not (@) =
that such properties are not enjoyed by step functiting = "

I{z > 0} and modeling them using ramp functions requires

unbounded internal parameters becausg . A1 — I{z > 0} With 8, € [-1,1], Jax[1 =1, 0 < tx < 1, andv < 1 such
asT — +o0. According to the classic theorg]j [3], if the do- that

main of f is contained in a hyper-cuje-1, 1]¢ and f admits B o

a Fourier representatiofi(z) = (. e f(w)dw, then the iggwx) — fu(@)] < e((logm)' =92 v Vd)ym =12V,
spectral conditionyy,; < oo, wherevy ; = (., lew|5] £ (w)|dw,
is enough to ensure thagt can be approximated i (D)

I. INTRODUCTION

3=

D Bl o — i)l (1.1)
k=1

for some universal constant> 0. Furthermore, if thes, are

by equally weighted§, = -- - = 43,,) linear combinations of restricted to{—1, 1}, the upper bound is of order
functions of the forml(1) with ¢(z) = I{z > 0}. Typical rates 1—q/2 —1/2-1/(d+2)

of anm-term approximationl(1) are at mostuv ;v/dm ="/, ((togm) v Vdm '

wherec is a universal constang], [4], [5]. Theorem 2. Let D = [-1,1]%. Supposef admits a Fourier
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There exists a linear combination of ramp ridge functions @fndd > 2 has infinitev} , but finitev , for s > 0. However,
the form the functionf with Fourier transformf(w) = 1/(1 + ||w] )42
has finitev} ; but infinitevy ; for s > 2.

fm( ) [’30 +x-ap + — 2 ﬂk T Qg 7tk) (”2)

We will only prove Theorem& and3. The proof of Theorem

k
, ' 1 uses similar arguments and so we omit it here.
with B € [-11], Jax|1 = 1,0 < & < 1, Bo = f(0),
ap = V£(0), andv < 2vy5 such that Proof of Theoren®: If |z| < ¢, we note the identity
— —1/2-1/d ¢ iu —iu iz .
imelg|f(x) fm(@)] < cvpa(y/logm v Vd)m : 7L[(z7u)+e t(—2z—u)pe ™]du = e —iz—1. (11.4)

for some universal constant> 0. Furthermore, if the3, are

If c=|wli, z2=w- -z, a=alw) =w/|w|i, andu = |w|;t,
restricted to{—1, 1}, the upper bound is of order |l @) /Il el

0 <t <1, we find that
va(y/logm v Vd)ym™1/21/(d+2) 1 . .
~Jw]? f [(a @ —t) el 4 (ma- o —t) e htar =

Theorem 3. Under the setup of Theore) suppose 0
~ e T _jw .z —1.
vf3 =J lw[3] f(w)|dw < +o0. o - i _

Rd Multiplying the above by f(w), integrating overR¢, and
There exists a linear combination of second order splingeid applying Fubini’s theorem yields
functions of the form

f(@)—2-Vf(0 JRJ (t, w)dtdw,

fm(x) = Bo+z-ap+a AO:C+— Eﬂk Teoo— tk)+ (11.3)
M3 where

with 8, € [-1,1], Jaxfi = 1,0 < tp < 1, Bo = f(0), ey —
i . Jow] glt.) = —[(@+ = 1)1 cos(|wlt + b))+
0 7 VIO A = VNI, andu = 2uy such bt (—a+w = 1) con(lelst — b)) IwlR1 )]

su r)— fm(@)] < cv \/Em_l/Q_l/d,
meg (@) = fm(@)] 13 Consider the density of-1,1} x [0,1] x R? defined by

for some universal constaat> 0. Furthermore, if th are P
’ & p(z,t,w) = [ cos(z|w|rt + b(w))[[w]F]f(w)|/v,  (11.5)

restricted to{—1, 1}, the upper bound is of order

vpaVdm— /2 1@+) where
- t+0
LetHy ={z— z(a-z—t) : a1 =1, 0<t <1, z¢€ v J J cos(lwl @I+
{—1,+1}} and forp € [2, o] let 7} denote the closure of the | cos(|w]1t — bw))[]|w]?]f(w)|dtdw < 205 .

convex hull ofH, with respect to th$ |, norm onL?(D, P)

for p finite, WhereP is the uniform probability measure onConsider a random variable(z, ¢, ) (z) that equals
, and| - |, (the supremum norm oveD) for p = «. By

Hblder’s inequality, we have the inclusiods}, c --- < FJ.

We letC,, denote the collection of all combinatiods, _,, 3,7 where s(t,w) = —sgncos(|w|it + b(w)). Note that

with positive weightss;, that sum to at most one and at Mosk,(z,t, o)(z) has the form+(a - = — t),. Thus, we see that
m that are non-zero. By TheorenZ&sand 3, after possibly

subtracting a linear or quadratic paftvy,q+1 belongs taFy. f(z) —z-Vf(0)— f(0) =

For p € [2,0] ande > 0, we define thee-metric entropy
M, (e) to be the logarithm of the quantity Y (—1,1}x[0,1] xR? Azt @) (@)dp(z x t xw).

(za-x —t)4 s(zt,w),

Considering a maximale-packing of the space? =
{(z,8,t,0) : (z,8) € {-1,+1}%, 0 <t < 1, o = 1}
with respect to the norm

min{n : 3F Fi |F| = n, S.t.}nﬁ_;uﬁq If = fllp <€}
€ €Fp

Theoreml implies that

inf su — finlloo < c((logm)*=92 v Vd mfl/Q*l/d,
712k, S 1F = Fmllo < e{(logm) ) 12,58, @) = [2] + [s] + [¢] + [l
for some universal constant> 0. consisting ofM balls By, . .., Bys with radiuse. We can show
Remark 1. In [10], it was shown that the standard orderthat4(2/e) < M < 4(5/¢)? as follows. The spacg-1, +1}?
m~/2 bound alluded to earlier could be improved to be ofias ane-packing number equal té for e < 2 (with respect
order m~/2-1/(24) \/logm under the slightly stronger con-to Hamming distance){t : 0 < ¢ < 1} has ane/2-packing
dition of finite v} ; = sup,,cgi— SSO r¢| f(ru)|dr. In general, number betweed/c and(2/e+1) < (3/e€), € < 1 (with respect
our assumptions are not stronger than this since the fungfio to|-|), and{a : |a|; = 1} has an/2-packing number between
with Fourier transformf (w) = e~ l“=«oll /|w—wo| forwo # 0 (2/€)? and (4/e + 1)471 < (5/¢)471, e < 1 (with respect to



| -1l1). ThusQ has ane-packing number betweet(2/¢)? and sequence of functions defined @h[see for example Lemma

4(3/€)(5/e)t < 4(5/e)L. Fork = 1,..., M define 2.3.6 in [12]]. For notational brevity, we defing, ;(z) =
Mk [h, — U . By Dudley’ t int | thod
(e t,w) = et W) (2, 5(2t, @), £, a(w)) € Be}/L, ” [hik(x) — pir(x)]. By Dudley’s entropy integral metho

[see Corollary 13.2 in 13]], the quantity in {I.9) can be
where L, is chosen to makey, integrate to one. A very bounded by

) . . o 5/2
important property we will use is that (£, ¢, w)’ is distributed N TN,

according top;, and if (zj, tx, wi)" denotes the center &, 24 o N(u, D)du, (11.10)
then

where N (u, D) is the u-metric entropy ofD with respect to

|h(z.t,a)(x) = h(zk, tr, 0k)(@)] < | — ag|1 ]z + [t — ti| the normd(x, ) defined by
<e (11.6) My

X i . d2 A ilz 7}31_ N\ 2
Define a sequence of\/ independent random variables (z,2) ;;11'221( (@) (@)
{mr}1<k<m as follows: letm; equal |mLy| and [mLy] < (n 2
with probabilities chosen to make its mean equalntd.;. < (m+ M)z = o, (11)
Given, m = {mrhi<k<nm, take a random sample = and 2 = sup,., SM S (b (2)]2. If we set iy to
{(zik tisk, (wik)) hi<isne, 1<k OF size my, = my + equalZh(z, ty, ax), where(zy, ty, o)’ is the center 0By,

I{my, = 0} from p;. Thus, we split the populatiof Into it f510ws from (11.6) and (1.7) thats < +/m + Me and from

M “strata” (By,...,By) and a_IIocate the nu_mber of within-(”_ll) that N(u, D) < dlog(3v/m + M/u). By evaluating
stratum samples to be proportional to the “size” of the strat integral in [1.10), we can bound the second term Ihg)
(ma,...,my). The within-stratum variability is now smaller by

than the population variability as evidenced 6.

-1/2., /—

Note that then;, sum to be at most: + M because 240+ dm 6\/ loge + 1\/1 + M/m. (I1.12)
M M M For the first expectation ifI(8), we follow a similar approach.
Dink = > mel{my > 0} + > I{my = 0} As before,
k=1 k=1 k=1 M

M M
< D (mLy + DI{my > 0} + Y. I{my = 0} Ep sup | k;m — Lym)Ep, h()|
k=1 k=1 M
o < 2E,;, sup | Z or(mi — Lym)E,, h(z)| (1.13)
=m Y Lyl{mg > 0} + M ™ oeh S PRI
k=1
<m+ M. (1.7) where {o}} is a sequence of independent identically dis-
tributed Rademacher variables. For notational brevityywrite
Fori=1,....me let hij = h(zip tig, a(wir)) and fr = hi(x) = (my — Lym)E,, h(z). We can also boundI(13) by

2“1;21; S . Also, let f = szwzl f5. A simple calculation (Ll)llot)h excepttt?isﬂt]imeN(u,QD) i/s tgefy-n:jeéric entropy of
shows that the mean gf is f — f(0) — z - V£(0), which we with respect to the normp®(z, 2') defined by

denote byg. Next, we upper bound ) Mo ~ )
u P(x,a) = kZ (h(x) = hi(a'))
Esup |f(z) — g(z)| = Esu z) — Efi(x =1
sup 7(z) = 9(o)] = Esup| 3 (fu(e) ~ Efe(e) e (114)
by where the last line follows fromm; — Lym| < 1 and
M [E,, h(z) — Ep h(2')| < |2 — 2/|. The quantitys is also
EEmSUM Z(mk — Lym)E,, h(z)|+ less than2v/M, sincesup,.p |hx(x)] < 2 and moreover
m weD ;T N(u, D) < dlog(3vM/u). Evaluating the integral inli(10)
v AT, with these specifications yields a bound on the first term in
— BBy sup | Y, >~ (hiw(z) = By h(2))]  (1.8)  (11.8) of
m ToweD Do Tk 48/ dv/ M
_— (11.15)
Now m
M np Adding (1.15) and (l.12) together yields a bound on
m =
Eyim Sgg| Z Z n_k(hzk(x) —Ep h(z))| < Esup,ep |f(z) — g(z)| of
r k=1i=1
M Nk 48'[}\/8
2B sup| D} C’l’»k:—:[hiyk(@ —pik(@)]l,  (11.9) iz (VM /m V1+M/my/~loge +1).

€D 1=
Choose
where {0; 1} is a sequence of independent identically dis-

tributed Rademacher variables afd — ;. (x)} is any

M—m e2(—loge +1) “m
1—e€?(—loge+1)



ConsequentlyE sup,.p, |f(z) — g(z)| is at most

ey/—loge+1

96vv/dm~'/2 :
\/1—€2(—loge +1)

We showed earlier that/ = ¢~¢. Thus the stipulation\/ <

m implies thate is of orderm—'/(4+2) Since the inequality

(I1) holds on average, there is a realization fofor which

sup,.p |f(z)—g(x)| has the same bound. Note thfahas the

desired equally weighted form.

For the second conclusion, we set, = mlL; andn; =

we can boundEsup,.p, |f(z) — g(x)| by a universal con-
stant multiple of eithevy/dm=Y2(y/M/m + ey/1 + M/m)

or vv/dm~'?e\/1+ M/m corresponding to the equally
weighted or non-equally weighted cases, respectively. The
results follow with M = me?/(1 — €2) < m ande of order
m~(4+2) or M = m ande of orderm~"/¢. The additional
smoothness afforded by the stronger assumptipp < o
allows one to remove the/—Tloge + 1 factor that appeared

in the final bound in the proof of Theoreth Note that this
rate is the same as what was achieved in Thed@ewithout

a +/(logm)/d factor. [ |

[my]. In this case, the first term inl(8) is zero and hence eyt we investigate the optimality of the above rates.

Esup,ep |f(z) — g(x)| is not greater thanll(12). The con- Theorem 4. For pe 2]
[

clusion follows with M = m ande of orderm—1/<,

Proof of Theorem3: For the result in Theorem, we

will use exactly the same techniques. The functifi) —

2T'VVT(0)z/2 — 2 - Vf(0) — £(0) can be written as the real

part of

JRd(ew'w +(w-z)?/2—iw-z—1)f(w)dw. (1.16)

inf - sup [ f— finlp =
m&lm feF]

(C(d2q+3 log d)(mlog 771))_1/2_(‘1*‘1)/‘17
for some universal positive constant

Ignoring the dependence om and logarithmic factors
in m, this result coupled with Theorem implies that

As before, the integrand inl(16) admits an integral represen-inf; cci supsczi [f — flp IS between m~—1/2-2/d gnd
meCh, SUD feFl

tation given by

1

[(—a-z—t)2e ot — (a2 —1)2eilelit]qy,

2l |

0

which can be used to show thatz) — 27 VvV (0)z/2 — = -
Vf(0)— f(0) equals

v

J h(z,t,a)(x)dp(z x t x w),
2 Ji—11yx[0,1] xRe

where
h(z,t, ) = sgnsin(z|w|1t + b(w)) (za-x —t)%
and

p(z,t,w) = |sin(z]w]st + b))l |w]3]f @)I/2,

o= ] Usin(tit+ b+
sin(lelt — ) N1 (@)ldids < 2075

m—1/2-1/d_

We now use a result that is contained in Lemma 4.21i.[
Lemma 1. Let H be a Hilbert space equipped with a norm
| -] and containing a finite set with the following properties.

(i) card(G) := |G| = 3,

(") Zg,g/EG, g#g’ |<gag/>| < 52
(i) 6% <[G|? := mingec | g]?

Then there exists a collectiof < {0,1}/S| with cardinal-
ity at least 20 -H/)IGI-1 " where H(1/4) is the entropy
of a Bernoulli random variable with success probability
1/4, such that each pair of elements in the sBt =

{ﬁ Ygec Bog: B € Q} is separated by at Ieaﬁq/%
in |- .

Lemma 2. If 6 belongs to[r]? = {1,2, ..
the collection of functions

L} re Z7T, then

G = {z — sin(xf - x)/(4x|0]?) : 6 € [r]"}

The metricd(x, 2’) is in fact bounded by a constant multiple i h . ¢ th . | dith
of \/m + Me|z—a'|.. To see this, we note that the functiorPaUSies the assumption of the previous lemma wth=

hi.r(z) has the form (up to a sign difference)

m
oz~ )3 — (o z —tr)3],
N

with |a — ax |1 + |t — tx| < e. The gradient ofz; ;. (x) with

respect tar is equal to

~ 2m
Vhik(@) = = El(ala- @ = 1) = axlon 2= te)4].
Adding and subtracting 2™ a(y; -

above expression vyields the bound of order for

sup,ep |[Vhix(z)|1. Taylors theorem yields the desired
bound ond(xz,2’). Again using Dudley’s entropy integral,

L?(D, P), whereP is the uniform probability measure af.
Moreover, |G| = r*, |G| = 1/(4v2rd*?), and Fg < F,
for all p € [2, o0].

Proof: We first observe the identity

sin(rf) - x)/ (47 |0]3) = 0 - x/(47|0]7)+

T (! .
1 Jo [(—a -z —1t)y — (a-x—t)4]sin(n]0]1t)dt,

z — i)+ 10 the wherea — a() = 6/0],. Note that above integral can also

be written as an expectation of

—z sgr(sin(7|0]|1t)) (zav-x — )4 € Hy
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consequence of the identity
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