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Uniform Approximation by Neural Networks
Activated by First and Second Order Ridge Splines
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Abstract—We establish sup-norm error bounds for functions that
are approximated by linear combinations of first and second
order ridge splines and show that these bounds are near-optimal.

Index Terms—Artificial neural networks, approximation error,
spline, stratified sampling

I. I NTRODUCTION

FUNCTIONS defined onD “ r´1, 1sd are approximated
using linear combinations of ridge functions with one

layer of nonlinearities. These approximations are employed
via functions of the form

fmpxq “ fmpx, ζq “
m
ÿ

k“1

βkφpαk ¨ x ` tkq, (I.1)

which are parameterized by the vectorζ, consisting ofαk in
R

d, and tk, βk in R for k “ 1, . . . ,m, wherem ě 1 is the
number of nonlinear terms. The functionφ is allowed to be
quite general. For example, it can be bounded and Lipschitz,
polynomials with certain controls on their degrees, or bounded
with jump discontinuities. Recently in [1], it has been shown
how ramp functionsφpxq “ pxq` “ 0_x can be used to give
desirableL2pDq risk bounds of orderplog d{nq1{4, useful even
whend " n, or ppd{nq logpn{dqq1{2`1{p2pd`1qq for estimating
a functionf , given observationstpXi, Yiquni“1

in a regression
settingYi “ fpXiq ` ǫi. These bounds take advantage of the
fact that if f satisfies a certain spectral norm condition, then
fm with φ a ramp function and}αk}1, |tk|, and

řm
k“1

|βk|
bounded serves as a particularly useful approximator off .
In this case,φpα ¨ x ` tq is Lipschitz with respect toα and
t, and the boundedness of}α}1 and |t| yields bounded sup-
norm covering numbers for their respective norm spaces. Note
that such properties are not enjoyed by step functionsφpxq “
Itx ą 0u and modeling them using ramp functions requires
unbounded internal parameters becausepτxq` ^1 Ñ Itx ą 0u
asτ Ñ `8. According to the classic theory [2], [3], if the do-
main off is contained in a hyper-cuber´1, 1sd andf admits
a Fourier representationfpxq “

ş

Rd e
ix¨ω f̃pωqdω, then the

spectral conditionvf,1 ă 8, wherevf,s “
ş

Rd }ω}s
1
|f̃pωq|dω,

is enough to ensure thatf can be approximated inL8pDq
by equally weighted (β1 “ ¨ ¨ ¨ “ βm) linear combinations of
functions of the form (I.1) with φpxq “ Itx ą 0u. Typical rates
of anm-term approximation (I.1) are at mostcvf,1

?
dm´1{2,

wherec is a universal constant [2], [4], [5].
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Unlike the case with step activation functions, our analysis
makes no use of the combinatorial properties of half-spaces
as in Vapnik-Chervonenkis theory [6], [7] to obtain covering
numbers of relevant spaces. TheL2pDq case for ramp ridge
functions (also known as hinging hyperplanes) was considered
in [8] and ourL8pDq bounds improve upon that line of work.

In this paper, we will show that even tighter rates of approx-
imation are possible under two different conditions:vf,2 and
vf,3 finite. Interestingly, there is a disparity in the quality and
proof technique of the upper bounds depending on the form
of the weightsβk and degree of smoothness of the activation
function. The main idea we use for our results originates
from [9] and [10] and is essentially stratified sampling with
proportional allocation. This technique is widely appliedin
survey sampling as a means of variance reduction [11].

At the end, we will also discuss the degree to which these
bounds can be improved. Throughout this paper, we will state
explicitly how our bounds depend ond so that the reader can
fully appreciate the complexity of approximation.

II. STATEMENT OF RESULTS

Theorem 1. Supposef admits the integral representation

fpxq “
ż

r0,1sˆSd´1

spt, αq pα ¨ x ´ tqq`dµpt ˆ αq,

for x in D “ r´1, 1sd, whereµ is a sub-stochastic measure
on r0, 1s ˆ S

d´1, spt, αq is either ´1 or `1, and q “ 1, 2.
There exists a linear combination of ramp ridge functions of
the form

fmpxq “ v

m

m
ÿ

k“1

βkpx ¨ αk ´ tkqq` (II.1)

with βk P r´1, 1s, }αk}1 “ 1, 0 ď tk ď 1, and v ď 1 such
that

sup
xPD

|fpxq ´ fmpxq| ď cpplogmq1´q{2 _
?
dqm´1{2´1{d,

for some universal constantc ą 0. Furthermore, if theβk are
restricted tot´1, 1u, the upper bound is of order

pplogmq1´q{2 _
?
dqm´1{2´1{pd`2q.

Theorem 2. Let D “ r´1, 1sd. Supposef admits a Fourier
representationfpxq “

ş

Rd e
ix¨ω f̃pωqdω and

vf,2 “
ż

Rd

}ω}21|f̃pωq|dω ă `8.
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There exists a linear combination of ramp ridge functions of
the form

fmpxq “ β0 ` x ¨ α0 ` v

m

m
ÿ

k“1

βkpx ¨ αk ´ tkq` (II.2)

with βk P r´1, 1s, }αk}1 “ 1, 0 ď tk ď 1, β0 “ fp0q,
α0 “ ∇fp0q, andv ď 2vf,2 such that

sup
xPD

|fpxq ´ fmpxq| ď cvf,2p
a

logm _
?
dqm´1{2´1{d,

for some universal constantc ą 0. Furthermore, if theβk are
restricted tot´1, 1u, the upper bound is of order

vf,2p
a

logm _
?
dqm´1{2´1{pd`2q.

Theorem 3. Under the setup of Theorem2, suppose

vf,3 “
ż

Rd

}ω}3
1
|f̃pωq|dω ă `8.

There exists a linear combination of second order spline ridge
functions of the form

fmpxq “ β0`x¨α0`xTA0x` v

2m

m
ÿ

k“1

βkpx¨αk´tkq2` (II.3)

with βk P r´1, 1s, }αk}1 “ 1, 0 ď tk ď 1, β0 “ fp0q,
α0 “ ∇fp0q, A0 “ ∇∇T fp0q, and v ď 2vf,3 such that

sup
xPD

|fpxq ´ fmpxq| ď cvf,3
?
dm´1{2´1{d,

for some universal constantc ą 0. Furthermore, if theβk are
restricted tot´1, 1u, the upper bound is of order

vf,3
?
dm´1{2´1{pd`2q.

Let Hq “ tx ÞÑ zpα ¨ x ´ tqq` : }α}1 “ 1, 0 ď t ď 1, z P
t´1,`1uu and forp P r2,8s let Fq

p denote the closure of the
convex hull ofHq with respect to the} ¨}p norm onLppD,P q
for p finite, whereP is the uniform probability measure on
D, and } ¨ }8 (the supremum norm overD) for p “ 8. By
Hölder’s inequality, we have the inclusionsFq

8 Ă ¨ ¨ ¨ Ă F
q
2
.

We letCm denote the collection of all combinations
ř

hPH βhh

with positive weightsβh that sum to at most one and at most
m that are non-zero. By Theorems2 and 3, after possibly
subtracting a linear or quadratic part,f{vf,q`1 belongs toFq

p .
For p P r2,8s and ǫ ą 0, we define theǫ-metric entropy
Mppǫq to be the logarithm of the quantity

mintn : DF̃ Ă F
q
p , |F̃ | “ n, s.t. inf

f̃PF̃
sup
fPFq

p

}f ´ f̃}p ă ǫu.

Theorem1 implies that

inf
fmPCq

m

sup
fPFp

8

}f ´ fm}8 ď cpplogmq1´q{2 _
?
dqm´1{2´1{d,

for some universal constantc ą 0.
Remark 1. In [10], it was shown that the standard order
m´1{2 bound alluded to earlier could be improved to be of
order m´1{2´1{p2dq

?
logm under the slightly stronger con-

dition of finite v‹
f,1 “ supuPSd´1

ş8

0
rd|f̃pruq|dr. In general,

our assumptions are not stronger than this since the function f

with Fourier transformf̃pωq “ e´}ω´ω0}{}ω´ω0} for ω0 ‰ 0

andd ě 2 has infinitev‹
f,1 but finitevf,s for s ě 0. However,

the functionf with Fourier transformf̃pωq “ 1{p1` }ω}qd`2

has finitev‹
f,1 but infinitevf,s for s ě 2.

We will only prove Theorems2 and3. The proof of Theorem
1 uses similar arguments and so we omit it here.

Proof of Theorem2: If |z| ď c, we note the identity

´
ż c

0

rpz´uq`e
iu `p´z´uq`e

´iusdu “ eiz ´ iz´1. (II.4)

If c “ }ω}1, z “ ω ¨ x, α “ αpωq “ ω{}ω}1, andu “ }ω}1t,
0 ď t ď 1, we find that

´}ω}21
ż 1

0

rpα ¨ x ´ tq`e
i}ω}1t ` p´α ¨ x ´ tq`e

´i}ω}1tsdt “

eiω¨x ´ iω ¨ x ´ 1.

Multiplying the above byf̃pωq, integrating overRd, and
applying Fubini’s theorem yields

fpxq ´ x ¨ ∇fp0q ´ fp0q “
ż

Rd

ż 1

0

gpt, ωqdtdω,

where

gpt, ωq “ ´rpα ¨ x ´ tq` cosp}ω}1t ` bpωqq`
p´α ¨ x ´ tq` cosp}ω}1t ´ bpωqqs}ω}2

1
|f̃pωq|.

Consider the density ont´1, 1u ˆ r0, 1s ˆ R
d defined by

ppz, t, ωq “ | cospz}ω}1t ` bpωqq|}ω}2
1
|f̃pωq|{v, (II.5)

where

v “
ż

Rd

ż 1

0

r| cosp}ω}1t ` bpωqq|`

| cosp}ω}1t ´ bpωqq|s}ω}21|f̃pωq|dtdω ď 2vf,2.

Consider a random variablehpz, t, αqpxq that equals

pzα ¨ x ´ tq` spzt, ωq,

where spt, ωq “ ´sgncosp}ω}1t ` bpωqq. Note that
hpz, t, αqpxq has the form̆ pα ¨ x ´ tq`. Thus, we see that

fpxq ´ x ¨ ∇fp0q ´ fp0q “

v

ż

t´1,1uˆr0,1sˆRd

hpz, t, αqpxqdppz ˆ t ˆ ωq.

Considering a maximalǫ-packing of the spaceΩ “
tpz, s, t, αq1 : pz, sq1 P t´1,`1u2, 0 ď t ď 1, }α}1 “ 1u
with respect to the norm

}pz, s, t, αq1} “ |z| ` |s| ` |t| ` }α}1
consisting ofM ballsB1, . . . ,BM with radiusǫ. We can show
that4p2{ǫqd ď M ď 4p5{ǫqd as follows. The spacet´1,`1u2
has anǫ-packing number equal to4 for ǫ ă 2 (with respect
to Hamming distance),tt : 0 ď t ď 1u has anǫ{2-packing
number between2{ǫ andp2{ǫ`1q ď p3{ǫq, ǫ ď 1 (with respect
to |¨|), andtα : }α}1 “ 1u has anǫ{2-packing number between
p2{ǫqd and p4{ǫ ` 1qd´1 ď p5{ǫqd´1, ǫ ď 1 (with respect to
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} ¨ }1). ThusΩ has anǫ-packing number between4p2{ǫqd and
4p3{ǫqp5{ǫqd´1 ď 4p5{ǫqd. For k “ 1, . . . ,M define

pkpz, t, ωq “ ppz, t, ωqItpz, spzt, ωq, t, αpωqq1 P Bku{Lk,

where Lk is chosen to makepk integrate to one. A very
important property we will use is that ifpz, t, ωq1 is distributed
according topk and if pzk, tk, ωkq1 denotes the center ofBk,
then

|hpz, t, αqpxq ´ hpzk, tk, αkqpxq| ď }α ´ αk}1}x}8 ` |t ´ tk|
ď ǫ. (II.6)

Define a sequence ofM independent random variables
tmku1ďkďM as follows: let mk equal tmLku and rmLks
with probabilities chosen to make its mean equal tomLk.
Given, m “ tmku1ďkďM , take a random sampleγ “
tpzi,k, ti,k, αpωi,kqq1u1ďiďnk, 1ďkďM of size nk “ mk `
Itmk “ 0u from pk. Thus, we split the populationΩ into
M “strata” (B1, . . . ,BM ) and allocate the number of within-
stratum samples to be proportional to the “size” of the stratum
(m1, . . . ,mM ). The within-stratum variability is now smaller
than the population variability as evidenced by (II.6).

Note that thenk sum to be at mostm ` M because

M
ÿ

k“1

nk “
M
ÿ

k“1

mkItmk ą 0u `
M
ÿ

k“1

Itmk “ 0u

ď
M
ÿ

k“1

pmLk ` 1qItmk ą 0u `
M
ÿ

k“1

Itmk “ 0u

“ m

M
ÿ

k“1

LkItmk ą 0u ` M

ď m ` M. (II.7)

For i “ 1, . . . ,mk, let hi,k “ hpzi,k, ti,k, αpωi,kqq and fk “
2vmk

mnk

řnk

i“1
hi,k. Also, let f “ řM

k“1
fk. A simple calculation

shows that the mean off is f ´ fp0q ´ x ¨ ∇fp0q, which we
denote byg. Next, we upper bound

E sup
xPD

|fpxq ´ gpxq| “ E sup
xPD

|
M
ÿ

k“1

pfkpxq ´ Efkpxqq|

by

v

m
Em sup

xPD
|

M
ÿ

k“1

pmk ´ LkmqEpk
hpxq|`

v

m
EmEγ|m sup

xPD
|

M
ÿ

k“1

nk
ÿ

i“1

mk

nk

phi,kpxq ´ Epk
hpxqq| (II.8)

Now

Eγ|m sup
xPD

|
M
ÿ

k“1

nk
ÿ

i“1

mk

nk

phi,kpxq ´ Epk
hpxqq| ď

2Eγ|m sup
xPD

|
M
ÿ

k“1

nk
ÿ

i“1

σi,k

mk

nk

rhi,kpxq ´ µi,kpxqs|, (II.9)

where tσi,ku is a sequence of independent identically dis-
tributed Rademacher variables andtx ÞÑ µi,kpxqu is any

sequence of functions defined onD [see for example Lemma
2.3.6 in [12]]. For notational brevity, we definẽhi,kpxq “
mk

nk
rhi,kpxq ´ µi,kpxqs. By Dudley’s entropy integral method

[see Corollary 13.2 in [13]], the quantity in (II.9) can be
bounded by

24

ż δ{2

0

a

Npu,Dqdu, (II.10)

whereNpu,Dq is theu-metric entropy ofD with respect to
the normdpx, x1q defined by

d2px, x1q “
M
ÿ

k“1

nk
ÿ

i“1

ph̃i,kpxq ´ h̃i,kpx1qq2

ď pm ` Mq}x ´ x1}28, (II.11)

and δ2 “ supxPD

řM
k“1

řnk

i“1
|h̃i,kpxq|2. If we set µi,k to

equalmk

nk
hpzk, tk, αkq, wherepzk, tk, αkq1 is the center ofBk,

it follows from (II.6) and (II.7) that δ ď
?
m ` Mǫ and from

(II.11) that Npu,Dq ď d logp3
?
m ` M{uq. By evaluating

the integral in (II.10), we can bound the second term in (II.8)
by

24v
?
dm´1{2ǫ

a

´ log ǫ ` 1
a

1 ` M{m. (II.12)

For the first expectation in (II.8), we follow a similar approach.
As before,

Em sup
xPD

|
M
ÿ

k“1

pmk ´ LkmqEpk
hpxq|

ď 2Em sup
xPD

|
M
ÿ

k“1

σkpmk ´ LkmqEpk
hpxq|, (II.13)

where tσku is a sequence of independent identically dis-
tributed Rademacher variables. For notational brevity, wewrite
h̃kpxq “ pmk ´LkmqEpk

hpxq. We can also bound (II.13) by
(II.10), except this timeNpu,Dq is the u-metric entropy of
D with respect to the normρ2px, x1q defined by

ρ2px, x1q “
M
ÿ

k“1

ph̃kpxq ´ h̃kpx1qq2

ď M}x ´ x1}28, (II.14)

where the last line follows from|mk ´ Lkm| ď 1 and
|Epk

hpxq ´ Epk
hpx1q| ď }x ´ x1}8. The quantityδ is also

less than2
?
M , since supxPD |h̃kpxq| ď 2 and moreover

Npu,Dq ď d logp3
?
M{uq. Evaluating the integral in (II.10)

with these specifications yields a bound on the first term in
(II.8) of

48v
?
d

?
M

m
. (II.15)

Adding (II.15) and (II.12) together yields a bound on
E supxPD |fpxq ´ gpxq| of

48v
?
d

m1{2
p
a

M{m ` ǫ
a

1 ` M{m
a

´ log ǫ ` 1q.

Choose

M “ m
ǫ2p´ log ǫ ` 1q

1 ´ ǫ2p´ log ǫ ` 1q ď m.
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Consequently,E supxPD |fpxq ´ gpxq| is at most

96v
?
dm´1{2 ǫ

?
´ log ǫ ` 1

a

1 ´ ǫ2p´ log ǫ ` 1q
.

We showed earlier thatM — ǫ´d. Thus the stipulationM ď
m implies thatǫ is of orderm´1{pd`2q. Since the inequality
(II ) holds on average, there is a realization off for which
supxPD |fpxq´gpxq| has the same bound. Note thatf has the
desired equally weighted form.

For the second conclusion, we setmk “ mLk and nk “
rmks. In this case, the first term in (II.8) is zero and hence
E supxPD |fpxq ´ gpxq| is not greater than (II.12). The con-
clusion follows withM “ m andǫ of orderm´1{d.

Proof of Theorem3: For the result in Theorem3, we
will use exactly the same techniques. The functionfpxq ´
xT∇∇T p0qx{2 ´ x ¨ ∇fp0q ´ fp0q can be written as the real
part of

ż

Rd

peiω¨x ` pω ¨ xq2{2 ´ iω ¨ x ´ 1qf̃pωqdω. (II.16)

As before, the integrand in (II.16) admits an integral represen-
tation given by

pi{2q}ω}31
ż 1

0

rp´α ¨ x ´ tq2`e´i}ω}1t ´ pα ¨ x ´ tq2`ei}ω}1tsdt,

which can be used to show thatfpxq ´ xT∇∇T p0qx{2 ´ x ¨
∇fp0q ´ fp0q equals

v

2

ż

t´1,1uˆr0,1sˆRd

hpz, t, αqpxqdppz ˆ t ˆ ωq,

where

hpz, t, αq “ sgnsinpz}ω}1t ` bpωqq pzα ¨ x ´ tq2`
and

ppz, t, ωq “ | sinpz}ω}1t ` bpωqq|}ω}31|f̃pωq|{v,

v “
ż

Rd

ż

1

0

r| sinp}ω}1t ` bpωqq|`

| sinp}ω}1t ´ bpωqq|s}ω}31|f̃pωq|dtdω ď 2vf,3.

The metricdpx, x1q is in fact bounded by a constant multiple
of

?
m ` Mǫ}x´x1}8. To see this, we note that the function

h̃i,kpxq has the form (up to a sign difference)

mk

nk

rpα ¨ x ´ tq2` ´ pαk ¨ x ´ tkq2`s,

with }α ´ αk}1 ` |t ´ tk| ă ǫ. The gradient of̃hi,kpxq with
respect tox is equal to

∇h̃i,kpxq “ 2mk

nk

rpαpα ¨ x ´ tq` ´ αkpαk ¨ x ´ tkq`s.

Adding and subtracting 2mk

nk
αpαk ¨ x ´ tkq` to the

above expression yields the bound of orderǫ for
supxPD }∇h̃i,kpxq}1. Taylor’s theorem yields the desired
bound ondpx, x1q. Again using Dudley’s entropy integral,

we can boundE supxPD |fpxq ´ gpxq| by a universal con-
stant multiple of eitherv

?
dm´1{2p

a

M{m ` ǫ
a

1 ` M{mq
or v

?
dm´1{2ǫ

a

1 ` M{m corresponding to the equally
weighted or non-equally weighted cases, respectively. The
results follow withM “ mǫ2{p1 ´ ǫ2q ď m and ǫ of order
m´1{pd`2q or M “ m and ǫ of orderm´1{d. The additional
smoothness afforded by the stronger assumptionvf,3 ă 8
allows one to remove the

?
´ log ǫ ` 1 factor that appeared

in the final bound in the proof of Theorem2. Note that this
rate is the same as what was achieved in Theorem2, without
a

a

plogmq{d factor.

Next, we investigate the optimality of the above rates.
Theorem 4. For p P r2,8s,

inf
fmPCq

m

sup
fPFq

p

}f ´ fm}p ě

pcpd2q`3 log dqpm logmqq´1{2´pq`1q{d,

for some universal positive constantc.

Ignoring the dependence ond and logarithmic factors
in m, this result coupled with Theorem1 implies that
inffmPC1

m
supfPF1

p
}f ´ fm}p is betweenm´1{2´2{d and

m´1{2´1{d.

We now use a result that is contained in Lemma 4.2 in [14].
Lemma 1. Let H be a Hilbert space equipped with a norm
}¨} and containing a finite setG with the following properties.

(i) cardpGq :“ |G| ě 3,

(ii)
ř

g,g1PG, g‰g1 |xg, g1y| ď δ2

(iii) δ2 ď }G}2 :“ mingPG }g}2

Then there exists a collectionΩ Ă t0, 1u|G| with cardinal-
ity at least 2p1´Hp1{4qq|G|´1, where Hp1{4q is the entropy
of a Bernoulli random variable with success probability
1{4, such that each pair of elements in the setFG “
!

1

|G|

ř

gPG βgg : β P Ω
)

is separated by at least1
2

b

}G}2´δ2

|G|

in } ¨ }.
Lemma 2. If θ belongs torrsd “ t1, 2, . . . , rud, r P Z

`, then
the collection of functions

G “ tx ÞÑ sinpπθ ¨ xq{p4π}θ}2
1
q : θ P rrsdu

satisfies the assumption of the previous lemma withH “
L2pD,P q, whereP is the uniform probability measure onD.
Moreover, |G| “ rd, }G} “ 1{p4

?
2πd2r2q, and FG Ă F1

p

for all p P r2,8s.

Proof: We first observe the identity

sinpπθ ¨ xq{p4π}θ}21q “ θ ¨ x{p4π}θ}21q`
π

4

ż 1

0

rp´α ¨ x ´ tq` ´ pα ¨ x ´ tq`s sinpπ}θ}1tqdt,

whereα “ αpθq “ θ{}θ}1. Note that above integral can also
be written as an expectation of

´z sgnpsinpπ}θ}1tqq pzα ¨ x ´ tq` P H1
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with respect to the density

pθpz, tq “ π

4
| sinpπ}θ}1tq|,

on t´1, 1u ˆ r0, 1s. The fact thatpθ integrates to one is a
consequence of the identity

ż

1

0

| sinpπ}θ}1tq|dt “ 2{π.

Since
ş

D|
| sinpπθ ¨ xq|2dP pxq “ 1{2, each member ofG

has norm equal to1{p4
?
2π}θ}2

1
q and each pair of elements

is orthogonal so thatδ “ 0. Integrations overD involving
sinpπθ ¨ xq are easiest to see using an instance of Euler’s
formula sinpπθ ¨ xq “ 1

2i
pśd

k“1
eiπθkxk ´ śd

k“1
e´iπθkxkq.

An important consequence of using ramp activation functions
that is not available if one uses step activation functions
is the ability to bound the metric entropyM8pǫq of the
approximation classes.

The Lipschitz property of the ramp ridge function with respect
to its internal parameters implies that if

inf
fmPC1

m

sup
fPF1

p

}f ´ fm}p ă rpmq “ ǫ{2,

then there exists a cover̃C1

m of C1

m with cardinality at most
p9{ǫqm

`

p9{ǫqd`m´1

m

˘

such that

inf
fmPC̃1

m

sup
fPF1

p

}f ´ fm}p ă ǫ.

This shows that

Mppǫq ď c0dm logp1{ǫq,

for some positive universal constantc0.

Proof of Theorem4: We only give the proof forq “ 1.
The other case is handled similarly. Suppose contrary to the
hypothesis,

inf
fmPC1

m

sup
fPF1

p

}f ´ fm}p ă

pcpd5 log dqpm logmqq´1{2´2{d “ ǫ{2,

for some universal constantc ą 0 to be chosen later. By
the previous argument,Mppǫq ď c1dm logpcdmq for some
positive universal constantc1 ą 0. However, using Lemma2
with

1

2

}G}
a

|G|
“ 1

8
?
2πd2r2`d{2

“ ǫ{2

determinesr “ pc2d2ǫq´2{pd`4q, for some universal constant
c2 ą 0. Thus a valid lower bound forM2pǫq is |G| “ rd ě
c3cdm log d logm for some universal constantc3 ą 0. Since
Mppǫq ě M2pǫq andFG Ă F1

p , we have

c1dm logpcdmq ě c3cdm log d logm.

If c is large enough (independent ofm or d), we reach a
contradiction. This proves the lower bound.
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