Uniform Approximation by Neural Networks Activated by First and Second Order Ridge Splines

Jason M. Klusowski, Student Member, IEEE and Andrew R. Barron, Fellow, IEEE

Abstract—We establish sup-norm error bounds for functions that are approximated by linear combinations of first and second order ridge splines and show that these bounds are near-optimal.

Index Terms—Artificial neural networks, approximation error, spline, stratified sampling

I. INTRODUCTION

F UNCTIONS defined on $D = [-1, 1]^d$ are approximated using linear combinations of ridge functions with one layer of nonlinearities. These approximations are employed via functions of the form

$$f_m(x) = f_m(x,\zeta) = \sum_{k=1}^m \beta_k \phi(\alpha_k \cdot x + t_k), \qquad (I.1)$$

which are parameterized by the vector ζ , consisting of α_k in \mathbb{R}^d , and t_k, β_k in \mathbb{R} for $k = 1, \ldots, m$, where $m \ge 1$ is the number of nonlinear terms. The function ϕ is allowed to be quite general. For example, it can be bounded and Lipschitz, polynomials with certain controls on their degrees, or bounded with jump discontinuities. Recently in [1], it has been shown how ramp functions $\phi(x) = (x)_+ = 0 \lor x$ can be used to give desirable $L^2(D)$ risk bounds of order $(\log d/n)^{1/4}$, useful even when $d \gg n$, or $((d/n) \log(n/d))^{1/2+1/(2(d+1))}$ for estimating a function f, given observations $\{(X_i, Y_i)\}_{i=1}^n$ in a regression setting $Y_i = f(X_i) + \epsilon_i$. These bounds take advantage of the fact that if f satisfies a certain spectral norm condition, then f_m with ϕ a ramp function and $\|\alpha_k\|_1$, $|t_k|$, and $\sum_{k=1}^m |\beta_k|$ bounded serves as a particularly useful approximator of f. In this case, $\phi(\alpha \cdot x + t)$ is Lipschitz with respect to α and t, and the boundedness of $\|\alpha\|_1$ and |t| yields bounded supnorm covering numbers for their respective norm spaces. Note that such properties are not enjoyed by step functions $\phi(x) =$ $\mathbb{I}\{x > 0\}$ and modeling them using ramp functions requires unbounded internal parameters because $(\tau x)_+ \land 1 \rightarrow \mathbb{I}\{x > 0\}$ as $\tau \to +\infty$. According to the classic theory [2], [3], if the domain of f is contained in a hyper-cube $[-1, 1]^d$ and f admits a Fourier representation $f(x) = \int_{\mathbb{R}^d} e^{ix \cdot \omega} \tilde{f}(\omega) d\omega$, then the spectral condition $v_{f,1} < \infty$, where $v_{f,s} = \int_{\mathbb{R}^d} \|\omega\|_1^s |\tilde{f}(\omega)| d\omega$, is enough to ensure that f can be approximated in $L^{\infty}(D)$ by equally weighted $(\beta_1 = \cdots = \beta_m)$ linear combinations of functions of the form (I.1) with $\phi(x) = \mathbb{I}\{x > 0\}$. Typical rates of an *m*-term approximation (I.1) are at most $cv_{f,1}\sqrt{dm^{-1/2}}$, where c is a universal constant [2], [4], [5].

Unlike the case with step activation functions, our analysis makes no use of the combinatorial properties of half-spaces as in Vapnik-Chervonenkis theory [6], [7] to obtain covering numbers of relevant spaces. The $L^2(D)$ case for ramp ridge functions (also known as hinging hyperplanes) was considered in [8] and our $L^{\infty}(D)$ bounds improve upon that line of work.

In this paper, we will show that even tighter rates of approximation are possible under two different conditions: $v_{f,2}$ and $v_{f,3}$ finite. Interestingly, there is a disparity in the quality and proof technique of the upper bounds depending on the form of the weights β_k and degree of smoothness of the activation function. The main idea we use for our results originates from [9] and [10] and is essentially stratified sampling with proportional allocation. This technique is widely applied in survey sampling as a means of variance reduction [11].

At the end, we will also discuss the degree to which these bounds can be improved. Throughout this paper, we will state explicitly how our bounds depend on d so that the reader can fully appreciate the complexity of approximation.

II. STATEMENT OF RESULTS

Theorem 1. Suppose f admits the integral representation

$$f(x) = \int_{[0,1]\times\mathbb{S}^{d-1}} s(t,\alpha) \ (\alpha \cdot x - t)^q_+ d\mu(t\times\alpha),$$

for x in $D = [-1, 1]^d$, where μ is a sub-stochastic measure on $[0, 1] \times \mathbb{S}^{d-1}$, $s(t, \alpha)$ is either -1 or +1, and q = 1, 2. There exists a linear combination of ramp ridge functions of the form

$$f_m(x) = \frac{v}{m} \sum_{k=1}^m \beta_k (x \cdot \alpha_k - t_k)_+^q$$
(II.1)

with $\beta_k \in [-1,1]$, $\|\alpha_k\|_1 = 1$, $0 \leq t_k \leq 1$, and $v \leq 1$ such that

$$\sup_{x \in D} |f(x) - f_m(x)| \le c((\log m)^{1-q/2} \vee \sqrt{d})m^{-1/2-1/d},$$

for some universal constant c > 0. Furthermore, if the β_k are restricted to $\{-1, 1\}$, the upper bound is of order

$$((\log m)^{1-q/2} \vee \sqrt{d})m^{-1/2-1/(d+2)}.$$

Theorem 2. Let $D = [-1, 1]^d$. Suppose f admits a Fourier representation $f(x) = \int_{\mathbb{R}^d} e^{ix \cdot \omega} \tilde{f}(\omega) d\omega$ and

$$v_{f,2} = \int_{\mathbb{R}^d} \|\omega\|_1^2 |\tilde{f}(\omega)| d\omega < +\infty$$

Jason M. Klusowski and Andrew R. Barron are with the Department of Statistics, Yale University, New Haven, CT, USA e-mail: {jason.klusowski, andrew.barron}@yale.edu.

There exists a linear combination of ramp ridge functions of the form

$$f_m(x) = \beta_0 + x \cdot \alpha_0 + \frac{v}{m} \sum_{k=1}^m \beta_k (x \cdot \alpha_k - t_k)_+$$
(II.2)

with $\beta_k \in [-1, 1]$, $\|\alpha_k\|_1 = 1$, $0 \leq t_k \leq 1$, $\beta_0 = f(0)$, $\alpha_0 = \nabla f(0)$, and $v \leq 2v_{f,2}$ such that

$$\sup_{x \in D} |f(x) - f_m(x)| \le c v_{f,2} (\sqrt{\log m} \vee \sqrt{d}) m^{-1/2 - 1/d},$$

for some universal constant c > 0. Furthermore, if the β_k are restricted to $\{-1,1\}$, the upper bound is of order

$$v_{f,2}(\sqrt{\log m} \vee \sqrt{d})m^{-1/2-1/(d+2)}.$$

Theorem 3. Under the setup of Theorem 2, suppose

$$v_{f,3} = \int_{\mathbb{R}^d} \|\omega\|_1^3 |\tilde{f}(\omega)| d\omega < +\infty.$$

There exists a linear combination of second order spline ridge functions of the form

$$f_m(x) = \beta_0 + x \cdot \alpha_0 + x^T A_0 x + \frac{v}{2m} \sum_{k=1}^m \beta_k (x \cdot \alpha_k - t_k)_+^2 \quad (\text{II.3})$$

with $\beta_k \in [-1, 1]$, $\|\alpha_k\|_1 = 1$, $0 \leq t_k \leq 1$, $\beta_0 = f(0)$, $\alpha_0 = \nabla f(0)$, $A_0 = \nabla \nabla^T f(0)$, and $v \leq 2v_{f,3}$ such that

$$\sup_{x \in D} |f(x) - f_m(x)| \le c v_{f,3} \sqrt{dm^{-1/2 - 1/d}}$$

for some universal constant c > 0. Furthermore, if the β_k are restricted to $\{-1,1\}$, the upper bound is of order

$$v_{f,3}\sqrt{d}m^{-1/2-1/(d+2)}$$

Let $\mathcal{H}_q = \{x \mapsto z(\alpha \cdot x - t)_+^q : \|\alpha\|_1 = 1, \ 0 \leq t \leq 1, \ z \in \{-1, +1\}\}$ and for $p \in [2, \infty]$ let \mathcal{F}_p^q denote the closure of the convex hull of \mathcal{H}_q with respect to the $\|\cdot\|_p$ norm on $L^p(D, P)$ for p finite, where P is the uniform probability measure on D, and $\|\cdot\|_\infty$ (the supremum norm over D) for $p = \infty$. By Hölder's inequality, we have the inclusions $\mathcal{F}_\infty^q \subset \cdots \subset \mathcal{F}_2^q$. We let \mathcal{C}_m denote the collection of all combinations $\sum_{h \in \mathcal{H}} \beta_h h$ with positive weights β_h that sum to at most one and at most m that are non-zero. By Theorems 2 and 3, after possibly subtracting a linear or quadratic part, $f/v_{f,q+1}$ belongs to \mathcal{F}_p^q . For $p \in [2, \infty]$ and $\epsilon > 0$, we define the ϵ -metric entropy $M_p(\epsilon)$ to be the logarithm of the quantity

$$\min\{n: \exists \tilde{\mathcal{F}} \subset \mathcal{F}_p^q, \ |\tilde{\mathcal{F}}| = n, \text{ s.t. } \inf_{\tilde{f} \in \tilde{\mathcal{F}}} \sup_{f \in \mathcal{F}_p^q} \|f - \tilde{f}\|_p < \epsilon\}.$$

Theorem 1 implies that

$$\inf_{f_m \in \mathcal{C}_m^q} \sup_{f \in \mathcal{F}_\infty^p} \|f - f_m\|_\infty \leqslant c((\log m)^{1-q/2} \vee \sqrt{d})m^{-1/2-1/d},$$

for some universal constant c > 0.

Remark 1. In [10], it was shown that the standard order $m^{-1/2}$ bound alluded to earlier could be improved to be of order $m^{-1/2-1/(2d)}\sqrt{\log m}$ under the slightly stronger condition of finite $v_{f,1}^{\star} = \sup_{u \in \mathbb{S}^{d-1}} \int_0^{\infty} r^d |\tilde{f}(ru)| dr$. In general, our assumptions are not stronger than this since the function f with Fourier transform $\tilde{f}(\omega) = e^{-\|\omega-\omega_0\|}/\|\omega-\omega_0\|$ for $\omega_0 \neq 0$

and $d \ge 2$ has infinite $v_{f,1}^*$ but finite $v_{f,s}$ for $s \ge 0$. However, the function f with Fourier transform $\tilde{f}(\omega) = 1/(1 + \|\omega\|)^{d+2}$ has finite $v_{f,1}^*$ but infinite $v_{f,s}$ for $s \ge 2$.

We will only prove Theorems 2 and 3. The proof of Theorem 1 uses similar arguments and so we omit it here.

Proof of Theorem 2: If $|z| \leq c$, we note the identity

$$-\int_{0}^{c} [(z-u)_{+}e^{iu} + (-z-u)_{+}e^{-iu}]du = e^{iz} - iz - 1.$$
(II.4)

If $c = \|\omega\|_1$, $z = \omega \cdot x$, $\alpha = \alpha(\omega) = \omega/\|\omega\|_1$, and $u = \|\omega\|_1 t$, $0 \le t \le 1$, we find that

$$-\|\omega\|_{1}^{2}\int_{0}^{1} [(\alpha \cdot x - t)_{+}e^{i\|\omega\|_{1}t} + (-\alpha \cdot x - t)_{+}e^{-i\|\omega\|_{1}t}]dt = e^{i\omega \cdot x} - i\omega \cdot x - 1.$$

Multiplying the above by $\tilde{f}(\omega)$, integrating over \mathbb{R}^d , and applying Fubini's theorem yields

$$f(x) - x \cdot \nabla f(0) - f(0) = \int_{\mathbb{R}^d} \int_0^1 g(t, \omega) dt d\omega,$$

where

$$g(t,\omega) = -[(\alpha \cdot x - t)_{+} \cos(\|\omega\|_{1}t + b(\omega)) + (-\alpha \cdot x - t)_{+} \cos(\|\omega\|_{1}t - b(\omega))]\|\omega\|_{1}^{2}|\tilde{f}(\omega)|.$$

Consider the density on $\{-1,1\} \times [0,1] \times \mathbb{R}^d$ defined by

$$p(z,t,\omega) = |\cos(z||\omega||_{1}t + b(\omega))|||\omega||_{1}^{2}|\tilde{f}(\omega)|/v, \quad \text{(II.5)}$$

where

 $|\cos|$

$$\begin{aligned} v &= \int_{\mathbb{R}^d} \int_0^1 [|\cos(\|\omega\|_1 t + b(\omega))| + \\ (\|\omega\|_1 t - b(\omega))|] \|\omega\|_1^2 |\tilde{f}(\omega)| dt d\omega \leqslant 2v_{f,2}. \end{aligned}$$

Consider a random variable $h(z, t, \alpha)(x)$ that equals

 $(z\alpha \cdot x - t)_+ s(zt, \omega),$

where $s(t,\omega) = -\operatorname{sgn}\cos(\|\omega\|_1 t + b(\omega))$. Note that $h(z,t,\alpha)(x)$ has the form $\pm (\alpha \cdot x - t)_+$. Thus, we see that

$$\begin{split} f(x) - x \cdot \nabla f(0) - f(0) &= \\ v \int_{\{-1,1\} \times [0,1] \times \mathbb{R}^d} h(z,t,\alpha)(x) dp(z \times t \times \omega). \end{split}$$

Considering a maximal ϵ -packing of the space $\Omega = \{(z, s, t, \alpha)' : (z, s)' \in \{-1, +1\}^2, 0 \leq t \leq 1, \|\alpha\|_1 = 1\}$ with respect to the norm

$$||(z, s, t, \alpha)'|| = |z| + |s| + |t| + ||\alpha||_1$$

consisting of M balls $\mathcal{B}_1, \ldots, \mathcal{B}_M$ with radius ϵ . We can show that $4(2/\epsilon)^d \leq M \leq 4(5/\epsilon)^d$ as follows. The space $\{-1, +1\}^2$ has an ϵ -packing number equal to 4 for $\epsilon < 2$ (with respect to Hamming distance), $\{t : 0 \leq t \leq 1\}$ has an $\epsilon/2$ -packing number between $2/\epsilon$ and $(2/\epsilon+1) \leq (3/\epsilon), \epsilon \leq 1$ (with respect to $|\cdot|$), and $\{\alpha : \|\alpha\|_1 = 1\}$ has an $\epsilon/2$ -packing number between $(2/\epsilon)^d$ and $(4/\epsilon + 1)^{d-1} \leq (5/\epsilon)^{d-1}, \epsilon \leq 1$ (with respect to $\|\cdot\|_1$). Thus Ω has an ϵ -packing number between $4(2/\epsilon)^d$ and $4(3/\epsilon)(5/\epsilon)^{d-1} \leq 4(5/\epsilon)^d$. For $k = 1, \ldots, M$ define

$$p_k(z,t,\omega) = p(z,t,\omega)\mathbb{I}\{(z,s(zt,\omega),t,\alpha(\omega))' \in \mathcal{B}_k\}/L_k,\$$

where L_k is chosen to make p_k integrate to one. A very important property we will use is that if $(z, t, \omega)'$ is distributed according to p_k and if $(z_k, t_k, \omega_k)'$ denotes the center of \mathcal{B}_k , then

$$|h(z,t,\alpha)(x) - h(z_k,t_k,\alpha_k)(x)| \leq \|\alpha - \alpha_k\|_1 \|x\|_{\infty} + |t - t_k| \leq \epsilon.$$
 (II.6)

Define a sequence of M independent random variables $\{m_k\}_{1 \le k \le M}$ as follows: let m_k equal $[mL_k]$ and $[mL_k]$ with probabilities chosen to make its mean equal to mL_k . Given, $\underline{m} = \{m_k\}_{1 \le k \le M}$, take a random sample $\underline{\gamma} = \{(z_{i,k}, t_{i,k}, \alpha(\omega_{i,k}))'\}_{1 \le i \le n_k, 1 \le k \le M}$ of size $n_k = m_k + \mathbb{I}\{m_k = 0\}$ from p_k . Thus, we split the population Ω into M "strata" $(\mathcal{B}_1, \ldots, \mathcal{B}_M)$ and allocate the number of withinstratum samples to be proportional to the "size" of the stratum (m_1, \ldots, m_M) . The within-stratum variability is now smaller than the population variability as evidenced by (II.6).

Note that the n_k sum to be at most m + M because

$$\sum_{k=1}^{M} n_{k} = \sum_{k=1}^{M} m_{k} \mathbb{I}\{m_{k} > 0\} + \sum_{k=1}^{M} \mathbb{I}\{m_{k} = 0\}$$

$$\leqslant \sum_{k=1}^{M} (mL_{k} + 1) \mathbb{I}\{m_{k} > 0\} + \sum_{k=1}^{M} \mathbb{I}\{m_{k} = 0\}$$

$$= m \sum_{k=1}^{M} L_{k} \mathbb{I}\{m_{k} > 0\} + M$$

$$\leqslant m + M. \tag{II.7}$$

For $i = 1, ..., m_k$, let $h_{i,k} = h(z_{i,k}, t_{i,k}, \alpha(\omega_{i,k}))$ and $f_k = \frac{2vm_k}{mn_k} \sum_{i=1}^{n_k} h_{i,k}$. Also, let $\overline{f} = \sum_{k=1}^{M} f_k$. A simple calculation shows that the mean of \overline{f} is $f - f(0) - x \cdot \nabla f(0)$, which we denote by q. Next, we upper bound

$$\mathbb{E}\sup_{x\in D} |\overline{f}(x) - g(x)| = \mathbb{E}\sup_{x\in D} |\sum_{k=1}^{M} (f_k(x) - \mathbb{E}f_k(x))|$$

by

$$\frac{v}{m} \mathbb{E}_{\underline{m}} \sup_{x \in D} |\sum_{k=1}^{M} (m_k - L_k m) \mathbb{E}_{p_k} h(x)| + \frac{v}{m} \mathbb{E}_{\underline{m}} \mathbb{E}_{\underline{\gamma}|\underline{m}} \sup_{x \in D} |\sum_{k=1}^{M} \sum_{i=1}^{n_k} \frac{m_k}{n_k} (h_{i,k}(x) - \mathbb{E}_{p_k} h(x))| \quad (\text{II.8})$$

Now

$$\mathbb{E}_{\underline{\gamma}|\underline{m}} \sup_{x \in D} |\sum_{k=1}^{M} \sum_{i=1}^{n_k} \frac{m_k}{n_k} (h_{i,k}(x) - \mathbb{E}_{p_k} h(x))| \leq 2\mathbb{E}_{\underline{\gamma}|\underline{m}} \sup_{x \in D} |\sum_{k=1}^{M} \sum_{i=1}^{n_k} \sigma_{i,k} \frac{m_k}{n_k} [h_{i,k}(x) - \mu_{i,k}(x)]|, \quad (\text{II.9})$$

where $\{\sigma_{i,k}\}$ is a sequence of independent identically distributed Rademacher variables and $\{x \mapsto \mu_{i,k}(x)\}$ is any sequence of functions defined on D [see for example Lemma 2.3.6 in [12]]. For notational brevity, we define $\tilde{h}_{i,k}(x) = \frac{m_k}{n_k} [h_{i,k}(x) - \mu_{i,k}(x)]$. By Dudley's entropy integral method [see Corollary 13.2 in [13]], the quantity in (II.9) can be bounded by

$$24 \int_0^{b/2} \sqrt{N(u,D)} du,$$
 (II.10)

where N(u, D) is the *u*-metric entropy of *D* with respect to the norm d(x, x') defined by

$$d^{2}(x, x') = \sum_{k=1}^{M} \sum_{i=1}^{n_{k}} (\tilde{h}_{i,k}(x) - \tilde{h}_{i,k}(x'))^{2}$$

$$\leq (m+M) \|x - x'\|_{\infty}^{2}, \qquad \text{(II.11)}$$

and $\delta^2 = \sup_{x \in D} \sum_{k=1}^M \sum_{i=1}^{n_k} |\tilde{h}_{i,k}(x)|^2$. If we set $\mu_{i,k}$ to equal $\frac{m_k}{n_k} h(z_k, t_k, \alpha_k)$, where $(z_k, t_k, \alpha_k)'$ is the center of \mathcal{B}_k , it follows from (II.6) and (II.7) that $\delta \leq \sqrt{m+M}\epsilon$ and from (II.11) that $N(u, D) \leq d \log(3\sqrt{m+M}/u)$. By evaluating the integral in (II.10), we can bound the second term in (II.8) by

$$24v\sqrt{d}m^{-1/2}\epsilon\sqrt{-\log\epsilon+1}\sqrt{1+M/m}.$$
 (II.12)

For the first expectation in (II.8), we follow a similar approach. As before,

$$\mathbb{E}_{\underline{m}} \sup_{x \in D} |\sum_{k=1}^{M} (m_k - L_k m) \mathbb{E}_{p_k} h(x)|$$

$$\leq 2\mathbb{E}_{\underline{m}} \sup_{x \in D} |\sum_{k=1}^{M} \sigma_k (m_k - L_k m) \mathbb{E}_{p_k} h(x)|, \qquad \text{(II.13)}$$

where $\{\sigma_k\}$ is a sequence of independent identically distributed Rademacher variables. For notational brevity, we write $\tilde{h}_k(x) = (m_k - L_k m) \mathbb{E}_{p_k} h(x)$. We can also bound (II.13) by (II.10), except this time N(u, D) is the *u*-metric entropy of D with respect to the norm $\rho^2(x, x')$ defined by

$$\rho^{2}(x, x') = \sum_{k=1}^{M} (\tilde{h}_{k}(x) - \tilde{h}_{k}(x'))^{2}$$

$$\leq M \|x - x'\|_{\infty}^{2}, \qquad (II.14)$$

where the last line follows from $|m_k - L_k m| \leq 1$ and $|\mathbb{E}_{p_k} h(x) - \mathbb{E}_{p_k} h(x')| \leq ||x - x'||_{\infty}$. The quantity δ is also less than $2\sqrt{M}$, since $\sup_{x \in D} |\tilde{h}_k(x)| \leq 2$ and moreover $N(u, D) \leq d \log(3\sqrt{M}/u)$. Evaluating the integral in (II.10) with these specifications yields a bound on the first term in (II.8) of

$$\frac{48v\sqrt{d}\sqrt{M}}{m}.$$
 (II.15)

Adding (II.15) and (II.12) together yields a bound on $\mathbb{E}\sup_{x\in D} |\overline{f}(x) - g(x)|$ of

$$\frac{48v\sqrt{d}}{m^{1/2}}(\sqrt{M/m} + \epsilon\sqrt{1 + M/m}\sqrt{-\log\epsilon + 1}).$$

Choose

$$M = m \frac{\epsilon^2 (-\log \epsilon + 1)}{1 - \epsilon^2 (-\log \epsilon + 1)} \leqslant m.$$

Consequently, $\mathbb{E} \sup_{x \in D} |\overline{f}(x) - g(x)|$ is at most

$$96v\sqrt{d}m^{-1/2}\frac{\epsilon\sqrt{-\log\epsilon+1}}{\sqrt{1-\epsilon^2(-\log\epsilon+1)}}$$

We showed earlier that $M \simeq \epsilon^{-d}$. Thus the stipulation $M \le m$ implies that ϵ is of order $m^{-1/(d+2)}$. Since the inequality (II) holds on average, there is a realization of \overline{f} for which $\sup_{x\in D} |\overline{f}(x) - g(x)|$ has the same bound. Note that \overline{f} has the desired equally weighted form.

For the second conclusion, we set $m_k = mL_k$ and $n_k = [m_k]$. In this case, the first term in (II.8) is zero and hence $\mathbb{E}\sup_{x\in D} |\overline{f}(x) - g(x)|$ is not greater than (II.12). The conclusion follows with M = m and ϵ of order $m^{-1/d}$.

Proof of Theorem 3: For the result in Theorem 3, we will use exactly the same techniques. The function $f(x) - x^T \nabla \nabla^T(0) x/2 - x \cdot \nabla f(0) - f(0)$ can be written as the real part of

$$\int_{\mathbb{R}^d} (e^{i\omega \cdot x} + (\omega \cdot x)^2/2 - i\omega \cdot x - 1)\tilde{f}(\omega)d\omega.$$
 (II.16)

As before, the integrand in (II.16) admits an integral representation given by

$$(i/2)\|\omega\|_{1}^{3}\int_{0}^{1}\left[(-\alpha \cdot x - t)_{+}^{2}e^{-i\|\omega\|_{1}t} - (\alpha \cdot x - t)_{+}^{2}e^{i\|\omega\|_{1}t}\right]dt,$$

which can be used to show that $f(x) - x^T \nabla \nabla^T(0) x/2 - x \cdot \nabla f(0) - f(0)$ equals

$$\frac{v}{2} \int_{\{-1,1\}\times[0,1]\times\mathbb{R}^d} h(z,t,\alpha)(x) dp(z\times t\times\omega),$$

where

$$h(z,t,\alpha) = \operatorname{sgn}\sin(z\|\omega\|_1 t + b(\omega)) \ (z\alpha \cdot x - t)_+^2$$

and

$$p(z,t,\omega) = |\sin(z||\omega||_{1}t + b(\omega))|||\omega||_{1}^{3}|f(\omega)|/v,$$
$$v = \int_{\mathbb{R}^{d}} \int_{0}^{1} [|\sin(||\omega||_{1}t + b(\omega))| + |\sin(||\omega||_{1}t - b(\omega))|]||\omega||_{1}^{3}|\tilde{f}(\omega)|dtd\omega \leq 2v_{f,3}.$$

The metric d(x, x') is in fact bounded by a constant multiple of $\sqrt{m+M}\epsilon \|x-x'\|_{\infty}$. To see this, we note that the function $\tilde{h}_{i,k}(x)$ has the form (up to a sign difference)

$$\frac{m_k}{n_k} [(\alpha \cdot x - t)_+^2 - (\alpha_k \cdot x - t_k)_+^2],$$

with $\|\alpha - \alpha_k\|_1 + |t - t_k| < \epsilon$. The gradient of $\tilde{h}_{i,k}(x)$ with respect to x is equal to

$$\nabla \tilde{h}_{i,k}(x) = \frac{2m_k}{n_k} [(\alpha(\alpha \cdot x - t)_+ - \alpha_k(\alpha_k \cdot x - t_k)_+].$$

Adding and subtracting $\frac{2m_k}{n_k}\alpha(\alpha_k \cdot x - t_k)_+$ to the above expression yields the bound of order ϵ for $\sup_{x\in D} \|\nabla \tilde{h}_{i,k}(x)\|_1$. Taylor's theorem yields the desired bound on d(x, x'). Again using Dudley's entropy integral,

we can bound $\mathbb{E} \sup_{x \in D} |\overline{f}(x) - g(x)|$ by a universal constant multiple of either $v\sqrt{d}m^{-1/2}(\sqrt{M/m} + \epsilon\sqrt{1+M/m})$ or $v\sqrt{d}m^{-1/2}\epsilon\sqrt{1+M/m}$ corresponding to the equally weighted or non-equally weighted cases, respectively. The results follow with $M = m\epsilon^2/(1-\epsilon^2) \leq m$ and ϵ of order $m^{-1/(d+2)}$ or M = m and ϵ of order $m^{-1/d}$. The additional smoothness afforded by the stronger assumption $v_{f,3} < \infty$ allows one to remove the $\sqrt{-\log \epsilon + 1}$ factor that appeared in the final bound in the proof of Theorem 2. Note that this rate is the same as what was achieved in Theorem 2, without a $\sqrt{(\log m)/d}$ factor.

Next, we investigate the optimality of the above rates. **Theorem 4.** For $p \in [2, \infty]$,

$$\inf_{f_m \in \mathcal{C}_m^q} \sup_{f \in \mathcal{F}_p^q} \|f - f_m\|_p \ge c(d^{2q+3}\log d)(m\log m))^{-1/2 - (q+1)/d},$$

for some universal positive constant c.

Ignoring the dependence on d and logarithmic factors in m, this result coupled with Theorem 1 implies that $\inf_{f_m \in C_m^1} \sup_{f \in \mathcal{F}_p^1} ||f - f_m||_p$ is between $m^{-1/2 - 2/d}$ and $m^{-1/2 - 1/d}$.

We now use a result that is contained in Lemma 4.2 in [14]. **Lemma 1.** Let H be a Hilbert space equipped with a norm $\|\cdot\|$ and containing a finite set G with the following properties.

(i)
$$card(G) := |G| \ge 3,$$

(ii) $\sum_{g,g' \in G, g \ne g'} |\langle g, g' \rangle| \le \delta^2$
(iii) $\delta^2 \le ||G||^2 := \min_{g \in G} ||g||^2$

Then there exists a collection $\Omega \subset \{0,1\}^{|G|}$ with cardinality at least $2^{(1-H(1/4))|G|-1}$, where H(1/4) is the entropy of a Bernoulli random variable with success probability 1/4, such that each pair of elements in the set $\mathcal{F}_G = \left\{\frac{1}{|G|}\sum_{g\in G}\beta_g g: \beta\in\Omega\right\}$ is separated by at least $\frac{1}{2}\sqrt{\frac{\|G\|^2-\delta^2}{|G|}}$ in $\|\cdot\|$.

Lemma 2. If θ belongs to $[r]^d = \{1, 2, ..., r\}^d$, $r \in \mathbb{Z}^+$, then the collection of functions

$$G = \{x \mapsto \sin(\pi\theta \cdot x) / (4\pi \|\theta\|_1^2) : \theta \in [r]^d\}$$

satisfies the assumption of the previous lemma with $H = L^2(D, P)$, where P is the uniform probability measure on D. Moreover, $|G| = r^d$, $||G|| = 1/(4\sqrt{2\pi}d^2r^2)$, and $\mathcal{F}_G \subset \mathcal{F}_p^1$ for all $p \in [2, \infty]$.

Proof: We first observe the identity

$$\sin(\pi\theta \cdot x)/(4\pi\|\theta\|_{1}^{2}) = \theta \cdot x/(4\pi\|\theta\|_{1}^{2}) + \frac{\pi}{4} \int_{0}^{1} [(-\alpha \cdot x - t)_{+} - (\alpha \cdot x - t)_{+}] \sin(\pi\|\theta\|_{1}t) dt,$$

where $\alpha = \alpha(\theta) = \theta/\|\theta\|_1$. Note that above integral can also be written as an expectation of

$$-z \operatorname{sgn}(\sin(\pi \|\theta\|_1 t)) (z\alpha \cdot x - t)_+ \in \mathcal{H}_1$$

with respect to the density

$$p_{\theta}(z,t) = \frac{\pi}{4} |\sin(\pi \|\theta\|_1 t)|,$$

on $\{-1,1\} \times [0,1]$. The fact that p_{θ} integrates to one is a consequence of the identity

$$\int_0^1 |\sin(\pi \|\theta\|_1 t)| dt = 2/\pi$$

Since $\int_{D|} |\sin(\pi\theta \cdot x)|^2 dP(x) = 1/2$, each member of G has norm equal to $1/(4\sqrt{2}\pi \|\theta\|_1^2)$ and each pair of elements is orthogonal so that $\delta = 0$. Integrations over D involving $\sin(\pi\theta \cdot x)$ are easiest to see using an instance of Euler's formula $\sin(\pi\theta \cdot x) = \frac{1}{2i}(\prod_{k=1}^d e^{i\pi\theta_k x_k} - \prod_{k=1}^d e^{-i\pi\theta_k x_k})$.

An important consequence of using ramp activation functions that is not available if one uses step activation functions is the ability to bound the metric entropy $M_{\infty}(\epsilon)$ of the approximation classes.

The Lipschitz property of the ramp ridge function with respect to its internal parameters implies that if

$$\inf_{f_m \in \mathcal{C}_m^1} \sup_{f \in \mathcal{F}_p^1} \|f - f_m\|_p < r(m) = \epsilon/2,$$

then there exists a cover $\tilde{\mathcal{C}}_m^1$ of \mathcal{C}_m^1 with cardinality at most $(9/\epsilon)^m \binom{(9/\epsilon)^d + m - 1}{m}$ such that

$$\inf_{f_m \in \tilde{\mathcal{C}}_m^1} \sup_{f \in \mathcal{F}_p^1} \|f - f_m\|_p < \epsilon$$

This shows that

$$M_p(\epsilon) \leq c_0 dm \log(1/\epsilon),$$

for some positive universal constant c_0 .

Proof of Theorem 4: We only give the proof for q = 1. The other case is handled similarly. Suppose contrary to the hypothesis,

$$\inf_{f_m \in \mathcal{C}_m^1} \sup_{f \in \mathcal{F}_p^1} \|f - f_m\|_p < (c(d^5 \log d)(m \log m))^{-1/2 - 2/d} = \epsilon/2,$$

for some universal constant c > 0 to be chosen later. By the previous argument, $M_p(\epsilon) \leq c_1 dm \log(cdm)$ for some positive universal constant $c_1 > 0$. However, using Lemma 2 with

$$\frac{1}{2}\frac{\|G\|}{\sqrt{|G|}} = \frac{1}{8\sqrt{2}\pi d^2r^{2+d/2}} = \epsilon/2$$

determines $r = (c_2 d^2 \epsilon)^{-2/(d+4)}$, for some universal constant $c_2 > 0$. Thus a valid lower bound for $M_2(\epsilon)$ is $|G| = r^d \ge c_3 c dm \log d \log m$ for some universal constant $c_3 > 0$. Since $M_p(\epsilon) \ge M_2(\epsilon)$ and $\mathcal{F}_G \subset \mathcal{F}_p^1$, we have

$$c_1 dm \log(cdm) \ge c_3 cdm \log d \log m.$$

If c is large enough (independent of m or d), we reach a contradiction. This proves the lower bound.

ACKNOWLEDGMENT

The authors would like to thank Joowon Kim for helpful comments on earlier drafts of this manuscript.

REFERENCES

- J. M. Klusowski and A. R. Barron, "Risk bounds for high-dimensional ridge function combinations including neural networks," *Submitted to Annals of Statistics*, 2016.
- [2] A. R. Barron, "Neural net approximation," Yale Workshop on Adaptive and Learning Systems, Yale University Press, 1992.
- [3] —, "Universal approximation bounds for superpositions of a sigmoidal function," *IEEE Trans. Inform. Theory*, vol. 39, no. 3, pp. 930–945, 1993. [Online]. Available: http://dx.doi.org/10.1109/18.256500
- [4] G. H. L. Cheang and A. R. Barron, "A better approximation for balls," J. Approx. Theory, vol. 104, no. 2, pp. 183–203, 2000. [Online]. Available: http://dx.doi.org/10.1006/jath.1999.3441
- [5] J. E. Yukich, M. B. Stinchcombe, and H. White, "Sup-norm approximation bounds for networks through probabilistic methods," *IEEE Trans. Inform. Theory*, vol. 41, no. 4, pp. 1021–1027, 1995. [Online]. Available: http://dx.doi.org/10.1109/18.391247
- [6] V. N. Vapnik and A. J. Červonenkis, "The uniform convergence of frequencies of the appearance of events to their probabilities," *Teor. Verojatnost. i Primenen.*, vol. 16, pp. 264–279, 1971.
- [7] D. Haussler, "Sphere packing numbers for subsets of the Boolean n-cube with bounded Vapnik-Chervonenkis dimension," J. Combin. Theory Ser. A, vol. 69, no. 2, pp. 217–232, 1995. [Online]. Available: http://dx.doi.org/10.1016/0097-3165(95)90052-7
- [8] L. Breiman, "Hinging hyperplanes for regression, classification, and function approximation," *IEEE Trans. Inform. Theory*, vol. 39, no. 3, pp. 999–1013, 1993. [Online]. Available: http://dx.doi.org/10.1109/18.256506
- [9] Y. Makovoz, "Random approximants and neural networks," J. Approx. Theory, vol. 85, no. 1, pp. 98–109, 1996. [Online]. Available: http://dx.doi.org/10.1006/jath.1996.0031
- [10] —, "Uniform approximation by neural networks," J. Approx. Theory, vol. 95, no. 2, pp. 215–228, 1998. [Online]. Available: http://dx.doi.org/10.1006/jath.1997.3217
- [11] J. Neyman, "On the two different aspects of the representative method: The method of stratified sampling and the method of purposive selection," *Journal of the Royal Statistical Society*, vol. 97, no. 4, pp. 558– 625, 1934.
- [12] A. W. van der Vaart and J. A. Wellner, Weak convergence and empirical processes, ser. Springer Series in Statistics. Springer-Verlag, New York, 1996, with applications to statistics. [Online]. Available: http://dx.doi.org/10.1007/978-1-4757-2545-2
- [13] S. Boucheron, G. Lugosi, and P. Massart, *Concentration inequalities*. Oxford University Press, Oxford, 2013, a nonasymptotic theory of independence, With a foreword by Michel Ledoux. [Online]. Available: http://dx.doi.org/10.1093/acprof:oso/9780199535255.001.0001
- [14] V. Kůrková and M. Sanguineti, "Estimates of covering numbers of convex sets with slowly decaying orthogonal subsets," *Discrete Appl. Math.*, vol. 155, no. 15, pp. 1930–1942, 2007. [Online]. Available: http://dx.doi.org/10.1016/j.dam.2007.04.007