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Least Squares Superposition Codes of Moderate
Dictionary Size Are Reliable at Rates up to Capacity

Antony Joseph, Student Member, IEEE, and Andrew R Barron, Senior Member, IEEE

Abstract—For the additive white Gaussian noise channel with
average codeword power constraint, coding methods are analyzed
in which the codewords are sparse superpositions, that is, linear
combinations of subsets of vectors from a given design, with the
possible messages indexed by the choice of subset. Decoding is by
least squares (maximum likelihood), tailored to the assumed form
of codewords being linear combinations of elements of the design.
Communication is shown to be reliable with error probability ex-
ponentially small for all rates up to the Shannon capacity.

Index Terms—Achieving capacity, compressed sensing, exponen-
tial error bounds, Gaussian channel, maximum likelihood estima-
tion, subset selection.

I. INTRODUCTION

T HE additive white Gaussian noise channel is basic to
Shannon theory and real communication models. In

superposition coding schemes, the codewords are sparse linear
combinations of elements from a given dictionary. We show
that superposition codes from polynomial size dictionaries with
maximum likelihood (minimum distance) decoding achieve
exponentially small error probability for any communication
rate less than the Shannon capacity. A companion paper [8],[9]
provides a fast decoding method and its analysis. The develop-
ments involve a merging of modern perspectives on statistical
linear model selection and information theory.

The familiar communication problem is as follows. Input
bit strings of length are mapped
into codewords, of length , with control of their power. The
channel adds independent noise to the selected code-
word yielding a received length string . Using the received
string and knowledge of the codebook, the decoder, then, gets
an estimate of the transmitted string . Block error is the
event , bit error at position is the event , and
the bit error rate is . Analogous section
error rate for our code is defined as follows. The reliability
requirement is that, with sufficiently large , the bit error
rate or section error rate is small with high probability, when
averaged over input strings as well as the distribution of . A
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more stringent requirement would be to have small block error
probability, again averaged over the distributions of and .
As will be made clear later on, for ease of analysis, we perform
a further averaging over the distribution of our design matrix.

The communication rate is the ratio of the input
length to the code length for communication across the channel.
By traditional information theory, as in [20], [35], and [60],
the supremum of reliable rates is the channel capacity

, where is a constraint on the power of
the codewords. Standard communication models, even in con-
tinuous time, have been reduced to the aforementioned discrete-
time white Gaussian noise setting, as in [31] and [35].

We now describe the superposition coding scheme. The story
begins with a dictionary (design matrix) , with
columns for . We further assume
that , with and being positive integers. The dic-
tionary is partitioned into sections, each of size as depicted
in Fig. 1.

The codewords take the form of particular linear combina-
tions of subsets of columns of the dictionary. Specifically, each
codeword is of the form , where belongs to a set
given by

Consequently, for , the codeword is a superposition
of columns of , with exactly one column selected from each
section. The received vector is then in accordance with the sta-
tistical linear model

(1)

where is the noise vector distributed .
For ease of encoding, it is assumed that the section size is

a power of 2. The input bit strings are of length ,
which split into substrings of size . The encoder maps

to simply by interpreting each substring of as giving the
index of which coordinate of is nonzero in the corresponding
section. That is, each substring is the binary representation of
the corresponding index.

As mentioned earlier, we analyze the maximum likelihood
decoder. This decoder is the same as that which chooses the
that maximizes the posterior probability when the prior distri-
bution is uniform over . The decoder is given by

(2)

where denotes the Euclidean norm. Here, we implicitly as-
sume that if the minimization has a nonunique solution, one
may take to be any value in the solution set. Since the earlier
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Fig. 1. Schematic rendering of the dictionary matrix � and coefficient vector �. The vertical bars in the � matrix indicate the selected columns from a section.

is a least squares minimization problem over coefficient vec-
tors in , we also call this the least squares decoder. Although
the aforementioned decoder is not a computationally feasible
scheme, the result is significant since we show that one can
achieve rates up to capacity with a codebook that has a com-
pact representation in the form of the dictionary .

The entries of are drawn independently from a normal dis-
tribution with mean zero and variance . With this distri-
bution, one has that for each , the expected codeword
power, given by , is equal to . Our design pro-
duces a distribution of codeword powers , across the

codewords, that is highly concentrated near , with average
codeword power having expectation

. Use of average power rather than individual power constraint
does not increase the capacity.

An alternative method would be to arrange the entries of to
be equiprobable random variables. This would achieve
an approximately Gaussian distribution for the ’s. It is very
likely that this alternative design also achieves capacity, though
that is not explored here.

As we have said, the rate of the code is input bits
per channel uses and we arrange for arbitrarily close to . For
our code, this rate is . For specified rate , the
code length . As explained in the following,
the section size will be related to the number of sections
by an expression of polynomial size. Consequently, the length

and the number of terms agree to within a log factor.
Control of the dictionary size is critical to computationally

advantageous coding and decoding. If the number of sections
were fixed, then has size that is exponential
in , making its direct use impractical. Instead, with agreeing
with to within a factor, the dictionary size is more manage-
able. In this setting, we construct reliable, high-rate codes with
codewords corresponding to linear combinations of subsets of
terms in moderate size dictionaries.

The idea of superposition codes for Gaussian channels began
with Cover [19] in the context of determination of the capacity
region of certain multiple user channels. There represents the
number of messages decoded and a selected column represents
the codeword for a message. Codes for the Gaussian channel
based on sparse linear combinations have been proposed in the
compressed sensing community by Tropp [64]. However, as he
discusses, the rate achieved there is not up to capacity. Relation-

ship of our study to that in these communities will be discussed
in further detail later on.

We now describe our main result concerning the performance
of the least squares decoder. We show that if , for any

exceeding a particular positive function of the signal-to-noise
ratio , then rates arbitrarily close to capacity can be achieved.
This function is near for small and near 1 for large .
Consequently, the dictionary has size that is polyno-
mial in . This required section size does not depend on the gap

, and thus, the dictionary has a compact representation
irrespective of the closeness of to .

For , let denote the joint distribution of
given . Further, let denote the number of mistakes
made by the least squares decoder, that is, the number of sections
in which the position of the nonzero term in is different from
that in the true . Denote the error event

(3)

that the decoder makes mistakes in at least fraction of sec-
tions. Assuming that is drawn from a uniform distribution over
all elements from , the average probability of error con-
ditional on is given by

Deriving bounds for the aforementioned is not easy. We follow
the information theory tradition and bound the average of the
earlier over the distribution of , given by

(4)

For positive , let . Furthermore, for
, let

(5)

A positive expression possessing properties explained in
Section IV, lemma 5 is used. For large , it is near a function
near for small and near 1 for large . Our main result
is the following.
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Proposition 1: Assume , where , and rate
is less than capacity . Let represents the fraction of section
mistakes made by the least squares decoder. Then

with , where

(6)

is evaluated at and .
Proposition 1 is proved in Section V.

Remark: It is shown in Appendix C that the exponent
can be improved by replacing with

where

Here, is a positive function of and , which for given
is near for small , where and are positive

expressions as in (43) and (44) shown later.
Let . Then, it is not hard to see that

(7)

Accordingly, the function , appearing in the lower bound
(6), may be replaced by , revealing that the exponent is,
up to a constant, of the form , where

. With the improved bound in Appendix C, it is of the form
.

Moreover, an approach is discussed which completes the task
of identifying the terms by arranging sufficient distance between
the subsets, using composition with an outer Reed–Solomon
(RS) code of rate near one. It corrects the small fraction of re-
maining mistakes so that we end up not only with small mistake
rate but also with small block error probability. If
is the rate of an RS code, with , then section error
rates less than can be corrected, provided . Fur-
thermore, if (or simply ) is the rate associated with our
inner (superposition) code, then the total rate after correcting for
the remaining mistakes is given by . The
end result, using our theory for the distribution of the fraction of
mistakes of the superposition code, is that the block error prob-
ability is exponentially small. One may regard the composite
code as a superposition code in which the subsets are forced to
maintain at least a certain minimal separation, so that decoding
to within a certain distance from the true subset implies exact de-
coding. Accordingly, we make the following claim about block
error probability.

Proposition 2: For given fraction of mistakes , let be a
rate for which the partitioned superposition code with sections
has exponentially small probability of Proposi-
tion 1. Then, through concatenation with an outer RS code, one
obtains a code with rate and block error probability
less than or equal to .

Proposition 2 is proved in Section VI.
Particular interest is given to the case that the rate is made to

approach the capacity . Arrange and .

One may let the rate gap tend to zero (e.g., at a rate
or any polynomial rate not faster than ); then, the overall
rate continues to have drop from
capacity of order , with the composite code having block
error probability of order

The aforementioned exponent, of order for near , is
in agreement with the form of the optimal reliability bounds as
in [35] and [53], though, here, our constant is not demonstrated
to be optimal.

In Fig. 2, we plot curves of achievable rates using our scheme
for block error probability fixed at and signal-to-noise ra-
tios of 20 and 100. We also compare this to a rate curve given in
[53] (PPV curve), where it is demonstrated that for a Gaussian
channel with signal-to-noise ratio , the block error probability
, code length , and rate with an optimal code can be well

approximated by the following relation:

(8)

where is the channel dis-
persion and is the inverse normal cumulative distribution
function.

For the superposition code curve, the -axis gives the highest
for which the error probability stays below . We see

for the given and block error probability values, the achievable
rates using our scheme are reasonably close to the theoretically
best scheme. Note that the PPV curve was computed with an ap-
proach that uses a codebook of size that is exponential in block
length, whereas our dictionary, of size , is of considerably
smaller size.

A. Variants of the Superposition Scheme

To distinguish it from other sparse superposition codes, the
code analyzed here may be called a partitioned superposition
code. The motivations for introducing the partitioning versus
arbitrary subsets, in the superposition coding scheme, are the
ease in mapping the input bit string to the coefficient vector and
the ease in composition with the outer RS code. Natural vari-
ants of the schemes are subset superposition coding, where one
arranges for a number of the coordinates to be nonzero and
taking the value 1, with the message conveyed by the choice of
subset. With somewhat greater freedom, one may have signed
superposition coding, where one arranges the nonzero coeffi-
cients to be or . Then, the message is conveyed by the
sequence of signs as well as the choice of subset. In both cases,
if one takes the elements of to be i.i.d as before,
then the expected power of each codeword is . The signed su-
perposition coding scheme has been proposed in [36] and [64].

As mentioned earlier, superposition codes began with [19]
for multiuser channels in the context of determination of the ca-
pacity region of Gaussian broadcast channels. There the number
of users corresponds to . The codewords for user , for

, corresponds to the columns in section . In that set-
ting, what is sent is the sum of codewords, one from each user.
With fixed, is exponential in . Here, for the



2544 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 58, NO. 5, MAY 2012

Fig. 2. Plot of comparison between achievable rates using our scheme and the theoretical best possible rates for block error probability of �� and signal-to-noise
ratio (�) values of 20 and 100. The curves for our partitioned superposition code were evaluated at points with number of sections� ranging from 20 to 100 in steps
of 10, with corresponding � values taken to be � , where � is as given in Lemma 5, (32), and (33) later on. For the � values of 20 and 100 shown previously,
� is around 2.6 and 1.6, respectively. For details on computations, refer to Appendix D.

single-user channel, by allowing to be of the same order as
, to within a factor, we make it possible to achieve rates

close to capacity with polynomial size dictionaries. Related rate
splitting (partitioning) for superposition codes is developed for
Gaussian multiple-access problems in [18] and [59].

As to the relationship to single-user decoding, note that in
the Gaussian broadcast channel, with optimal decoding, it is ar-
ranged that one of the receivers decodes all the messages. This is
also the case for the multiple access channel receiver. The termi-
nology of superposition codes, rate splitting (partitioning), and
issues of power allocations arise from such work in multiuser
Shannon theory. Here, to achieve the benefits of the reduced
size dictionary, we decode the sections jointly rather than suc-
cessively. Here, it does allow the power allocation to be con-
stant across sections. In the companion paper [8], in achieving
a practical decoder, we do make use of standard variable power
allocation in the sections.

Sparse superposition codes have been proposed for commu-
nication in random access channels as in [14] and [27].

Our ideas of sparse superposition coding are adapted to
Gaussian vector quantization in [42].

B. Related Work on Sparse Signal Recovery

While reviewing works on sparse signal recovery and com-
pressed sensing, we adhere to our notation that we have a linear
model of the form

where is a deterministic or random matrix and
has exactly nonzero values. The quantities , and

will be called parameters for the model. In our description in
the following, we denote as some positive constant whose
value will change from time to time.

The conclusions here complement recent work on sparse
signal recovery in the linear model setup as we now discuss.

In a broad sense, these works analyze for various schemes
(practical or otherwise), conditions on the parameters so that
certain reliability requirements are satisfied with high proba-
bility. Closely related to our work is the requirement that only
the indices corresponding to the nonzero elements of , that
is the support of , be recovered exactly or almost exactly.
The conditions explored by this community do translate into
results on communication rate, though heretofore not rates up
to capacity.

In this paper, in order to achieve rates arbitrarily close ca-
pacity, we require , with precise values of speci-
fied later on, putting us in the sublinear sparsity regime, that is,

as . Also, if we change the scale and
take the elements of the matrix as i.i.d standard normal, the
nonzero values of assume the value . Accordingly, al-
though most the claims in this area are for more general sparsity
regimes and values of , the results most relevant to us are those
for the sublinear sparsity regime and when the nonzero ’s are
at least .

A significant portion of the work in this area focuses on
deterministic matrices satisfying certain assumptions. A
common assumption is the mutual incoherence condition
[15], [24], [33] which places controls on the magnitude cor-
relation between distinct pairs of columns. Another related
assumption is the exact recovery condition [64], [68], [72].
The recovery uses -relaxation methods such as Lasso [62]
or iterative methods such as orthogonal matching pursuit
[49], [52]. This line has been pursued by the authors in [23],
[24], [32], [70], [72], and others, for general sparse signal
recovery problems and by Tropp [64] for the communication
problem. While the aforementioned covers broad classes of
dictionaries, they impose severe constraints on the dictionaries.
Indeed, when applied to Gaussian matrices, they require

or sparsity ,
which would correspond to rate approaching 0. In contrast,
for our scheme , which using
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and , one gets that is
sufficient for subset recovery, which is of a smaller order of
magnitude than the aforementioned. Consequently, these re-
sults on deterministic matrices, when applied to our setting,
are insufficient to communicate at positive rates, let alone rates
close to capacity.

The aforementioned works allow for decoding of arbitrary
sparse subsets with high probability. This rather stringent form
of conclusion corresponds to worst case error probability in the
communication setting.

Work which does correspond to positive rate, when translated
to the communication setting, arises from three approaches.
First, there is the work of Candes and Plan [15] and Tropp [65],
[66], in which one looks at the probability of error averaged over
codewords (i.e., the subset is chosen randomly). This achieves
reliable support recovery with as high as .
Second, there is the work of Zhang [71] that employs a more
involved forward/backward stepwise selection algorithm, for
dictionaries satisfying certain properties, to achieve reliable
performance for arbitrary subsets (worst case error probability),
again for as high . However, the constants
are such that demonstration that rates up to capacity can be
achieved has been lacking.

Third, analysis using random matrices in the noisy set-
ting has also been carried out in [17], [22], and [68], among
others, where the analysis in [68] addresses the issue of sup-
port recovery. More closely related to ours, support recovery of
the least squares decoder is analyzed in [2], [28], and [67], for
Gaussian matrices, where Akcakaya and Tarokh [2] also ad-
dress the issue of partial support recovery. Similar to aforemen-
tioned, one can infer from this that communication at positive
rates is possible using random designs. The signal recovery pur-
pose is somewhat different here from our communications pur-
pose, in that the work typically does not constrain the nonzero
coefficients to the same value, and the resulting freedom in their
values lead to order of magnitude conclusions that obstruct in-
terpretation in terms of exact rate.

Furthermore, there are result giving necessary conditions for
exact support recovery [29], [67], [69] and for partial support
recovery [2]. Both these agree in terms of order of magnitude,
requiring an order of for the regime we deal with. In
[56], it is shown that in the linear sparsity regime, that is, when

is of the same order as , one requires for
reliable recovery of the support. An implication of this is that
the sublinear sparsity regime is necessary for communication at
positive rates.

Consequently, one can infer, from some of the aforemen-
tioned works, that communication at positive rates is possible
with sparse superposition codes. We add to the existing litera-
ture by showing that one can achieve any rate up to capacity
in certain sparsity regimes with a compact dictionary, albeit for
a computationally infeasible scheme. Furthermore, we demon-
strate that the error exponents are of the optimal form.

C. Practical Decoding Algorithms Approaching Capacity

Along with this paper, we pursued the problem of achieving
capacity using computationally feasible schemes. In [8] and [9],
an iterative decoding scheme, called adaptive successive de-

coding, is analyzed. This is similar in spirit to iterative decoding
techniques such as forward stepwise regression [7], [41], re-
laxed greedy algorithm [6], [38], [44], and orthogonal matching
pursuit [49], [52], and other iterative algorithms [13], [21], [51].
The rate attained there is of the order of below ca-
pacity, with corresponding error probability being exponentially
small in . These performance levels are not as good
as obtained here with the optimal decoder. The sparse superpo-
sition codes achieving these performance levels, by least squares
and by adaptive successive decoding, are different in an impor-
tant aspect. For this paper, we use a constant power allocation,
with the same power for each term. However, in [8] and [9],
to yield rates near capacity, we needed a variable power alloca-
tion, achieved by a specific schedule of the nonzero ’s. In con-
trast, if one were to use equal power allocation for the decoding
scheme, then reliable decoding holds only up to a threshold rate

, which is less than the capacity .
Since the focus here is on the least squares decoder, we defer
detailed discussion to the later paper [9].

D. Related Communication Issues and Schemes

The development, here, is specific to the discrete-time
channel for which for with
real-valued inputs and outputs and with independent Gaussian
noise.

Standard approaches, as discussed in [31], entail a decom-
position of the problem into separate problems of coding and
of shaping of a multivariate signal constellation. Notice that we
build shaping directly into the coding scheme by choosing code-
words to follow a distribution.

For the low signal-to-noise regime, binary codes suffice for
communication near capacity and there is no need for shaping.
The performance of the maximum likelihood decoder for binary
linear codes, with a random design matrix and with exponential
error bounds at rates up to capacity for the binary symmetric
channel, has been established in [26]. Computationally feasible
schemes, with empirically good performance, for discrete chan-
nels include LDPC codes [34], [46], [47], [57], [58] and turbo
codes [12], [50]. Error bounds for rates up to capacity for ex-
pander codes (related to LDPC) are shown in [5] and for LDPC
codes with random low-density design matrix in [43], whereas
turbo codes have an error floor [37], [54] that precludes such
exponential scaling of error probability. Thus, the work in [5],
[26], and [43], with a random design matrix of controlled size,
are conclusions for discrete channels that correspond to the con-
clusion obtained here for the Gaussian channel for rates up to
capacity.

Recently, practical and capacity-achieving polar codes have
been developed for discrete channels [3], [4], though with an
error probability that is exponentially small in rather than

. Unlike the present development, it remains unknown how the
exponent for the polar codes depends on the closeness of to

.
When the signal-to-noise ratio is not small, proper shaping

for the Gaussian channel requires larger size signal alphabets,
as explained in [31]. For example, Abbe and Barron [1] pro-
vide such analysis adapting polar codes to use for the Gaussian
channel.
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The analysis of concatenated codes in [30] is an important
forerunner to the development we give here. The author in [30]
identified benefits of an outer RS code paired in theory with an
optimal inner code of Shannon–Gallager type and in practice
with binary inner codes based on linear combinations of orthog-
onal terms (for target rates less than 1 such a basis is avail-
able). The challenge concerning theoretically good inner codes
is that the number of messages searched is exponentially large
in the inner code length. Forney made the inner code length of
logarithmic size compared to the outer code length as a step to-
ward practical solution. However, caution is required with such
a strategy. Suppose the rate of the inner code has only a small
drop from capacity, . For small inner code error prob-
ability, the inner code length must be of order at least . So
with that scheme, one has the undesirable consequence that the
required outer code length becomes exponential in .

For the Gaussian noise channel, our tactic to overcome that
difficulty uses a superposition inner code with a polynomial
size dictionary. We use inner and outer code lengths that are
comparable, with the outer code used to correct errors in a
small fraction of the sections of the inner code. The overall
code length to achieve error probability remains of the order

.
Section II contains brief preliminaries. Section III provides

core lemmas on the reliability of least squares for our super-
position codes. Section IV analyzes the matter of section size
sufficient for reliability. In Sections V and VI, we give proofs
of propositions 1 and 2, respectively. In Section VII, we dis-
cuss how our results can be adapted for an approximate form of
the least squares decoder. The Appendix collects some auxiliary
matters.

II. PRELIMINARIES

For vectors of length , let be the sum of squares
of coordinates, let be the average square,
and let be the associated inner product.
It is a matter of taste, but we find it slightly more convenient to
work, henceforth, with the norm rather than .

Concerning the base of the logarithm ( ) and associated
exponential ( ), base 2 is most suitable for interpretation and
base most suitable for the calculus. For instance, the rate

is measured in bits if the log is base 2 and nats if
the log is base . Typically, conclusions are stated in a manner
that can be interpreted to be invariant to the choice of base, and
base is used for convenience in the derivations.

We make repeated use of the following moment generating
function and its associated Cramer–Chernoff large deviation ex-
ponent in constructing bounds on error probabilities. If and

are normal with means equal to 0, variances equal to 1, and
correlation coefficient , then

(9)

when and infinity otherwise. So, taking
the logarithm, the associated cumulant generating function
of is , with the

understanding that the minus log is replaced by infinity when
is at least . For positive , we define the quantity

given by

(10)

The expression corresponding to but with the maximum
restricted to is denoted as , that is

(11)

When the optimal is strictly less than 1, the value of
matches as given previously.

The case occurs when
, or equivalently . Then, the exponent is

, which is as least .
Consequently, in this regime, is between and . The
special case is included with .

There is a role for the function

(12)

for , where is the signal-to-noise ratio
and is the channel capacity. We
note that is a nonnegative concave function equal to 0
when is 0 or 1 and strictly positive in between. The quantity

is larger by the additional amount , positive
when the rate is less than the Shannon capacity .

Remark on average codeword power: The average codeword
power has expectation with respect to
that matches , for all . The distribution
of the average codeword power is tightly concentrated around

as explained in the [11, Appendix], and will not be explored
further here.

III. PERFORMANCE OF LEAST SQUARES

In this section, we examine the performance of the least
squares decoder (2) in terms of rate and reliability. For ,
let denote the set of indices for which
is nonzero. Furthermore, let

(13)

denote the set of allowed subset of terms. It corresponds to the
subsets of of size and comprising of exactly

one term from each section.
Recall that we are interested in bounding given in (4).

By symmetry

where . Correspondingly, for fixed
, we proceed to obtain bounds for . Let

. Furthermore, let be the least squares solution (2) and
. Notice that , which is

also the number of sections incorrectly decoded.
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For let be the
event that there are exactly mistakes. Now, can be ex-
pressed as a disjoint union of , for . Correspondingly

(14)

In the following two lemmas, we give bounds for
for .

Lemma 3: Set for an . The prob-
ability can be bounded by , where

(15)

where and . Here, is
the signal-to-noise ratio.

Remark: Notice that depends also on , and .
Whether is exponentially small depends on the relative
size of the combinatorial term and the exponential term in

and .
Proof of Lemma 3: For the occurrence of , there must be

an which differs from the subset sent in an amount
and which has

, or equivalently has , where

(16)

The analysis proceeds by considering an arbitrary such ,
bounding the probability that , and then using an
appropriately designed union bound to put such probabilities
together. Notice that the subsets and have an intersection

of size and difference of size
.

Let denote the joint density of and when
is sent. Furthermore, let . The actual den-
sity of given , denoted by , has mean and
variance . Furthermore, there is conditional inde-
pendence of and given .

Next, consider the alternative hypothesis that was sent and
let denote the corresponding joint density under this
hypothesis. The conditional density for given and ,
denoted by , is now Normal( ). With
respect to this alternative hypothesis, the conditional distribu-
tion for given remains Normal( ). That
is, .

We decompose the test statistic in (16) as , where

(17)

and

(18)

Note that depends only on terms in , whereas
depends also on the part of not in .

Concerning , note that we may express it as

(19)

where

is the adjustment by the logarithm of the ratio of the normalizing
constants of these densities. Using Bayes rule, notice that

Correspondingly, one gets from (19) that

(20)

We are examining the event that there is an , with
and . For positive , the indicator

of this event satisfies

where is of size and of size .
The earlier follows since if there is such an with ,
then indeed that contributes a term on the right side of value at
least 1. Here, the outer sum is over . For each such

, for the inner sum, we have sections in each of which, to
comprise , there is a term selected from among choices
other than the one prescribed by .

To bound the probability of , take the expectation of both
sides, bring the expectation on the right inside the outer sum, and
write it as the iterated expectation, where on the inside condition
on , , and to pull out the factor involving , to get
that is not more than

Notice that , that is, is
independent of , and . Correspondingly, the inner
expectation may be expressed as . Furthermore, we ar-
range for to be not more than 1. Then, by Jensen’s inequality,
the expectation may be brought inside the power and
inside the inner sum, yielding

(21)

Recall that

from (20). Consequently, one has
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which is equal to . The sum over entails less than
, where , choices so the bound (21) becomes

(22)

The sum over in the aforementioned expression is over
terms. Furthermore, is a sum of independent mean-
zero random variables each of which is the difference of squares
of normals for which the squared correlation is .
So using (9), the expectation is found to be equal
to . When plugged in earlier and
optimized over in , one gets from the expression of
given in (11) that the expectation in the right side of (22) is equal
to . This completes the proof of the lemma.

Remark: A natural question to ask is why we did not use the
simpler union bound for given by

where , is any set with . One could
then use a Chernoff bound for the term . Indeed,
this is what we tried initially; however, due to the presence of the
two combinatorial terms, we were unable to make the aforemen-
tioned go to zero, with large , for all rates less than capacity. In
our aforementioned proof, by introducing the term in the ex-
ponent, we were able to reduce the term to . Optimizing
over revealed the best bound using this method. Somewhat
similar analysis has been done before to obtain error exponent
for the standard channel coding problem, for example, in [35].

A difficulty with the Lemma 3 bound is that for near 1 and
for correspondingly close to , in the key quantity

, the order of is , which is too close to zero to
cancel the effect of the combinatorial coefficient .

The following lemma refines the analysis of Lemma 3, ob-
taining the same exponent with an improved correlation coef-
ficient. The denominator of now becomes

. This is an improvement due to the presence of the
factor allowing the conclusion to be useful also for
near 1. The price we pay is the presence of an additional term
in the bound.

Lemma 4: Let a positive integer be given and let
. Then, is bounded by the minimum for

in the interval of , where

(23)

where, here, the quantities and

Proof of Lemma 4: Split the test statistic
where

and

Take positive and negative . Then,
, with being the event that there is an , with

and . Similarly, is the corre-
sponding event that . The part has no dependence on

so its treatment is more simple. It is a mean zero average of
differences of squared normal random variables, with squared
correlation . So using its moment generating func-
tion, is exponentially small, bounded by the second of
the two expressions in (23).

Concerning , its analysis is much the same as for
Lemma 3. We again decompose as the sum

, where is the same as earlier. The differ-
ence is that in forming we subtract rather

than . Consequently

which again involves a difference of squares of standardized
normals. But here the coefficient multiplying is such
that we have maximized the correlations between the
and . Consequently, we have reduced the spread
of the distribution of the differences of squares of their stan-
dardizations as quantified by the cumulant generating function.
One finds that the squared correlation coefficient is

for which .
Accordingly we have that the moment generating function is

which gives
rise to the bound appearing as the first of the two expressions in
(23). This completes the proof of Lemma 4.

From Lemma 4, one gets that , where

Consequently, from Lemmas 3 and 4, along with (14), one gets
that , where

(24)

This is the bound we use to numerically compute the rate curve
in Fig. 2. Accordingly, the error exponent of Propo-
sition 1 satisfies

(25)

Our task will be to give simplified lower bounds for the right
side of (25) for all . In the next section, we characterize
the section size required to achieve rates up to capacity. In Sec-
tion V, we prove Proposition 1 and in Section VI, we prove
Proposition 2. We also remark that in Appendix F we discuss
how the bounds of the aforementioned two lemmas may be mod-
ified to deal with the subset superposition coding scheme de-
scribed in Section I-A.
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Since the bounds of Lemma 4 are better than those in Lemma
3 for values near 1, for simplicity we only use the bounds
from Lemma 4 in characterizing the error exponents. Corre-
spondingly, from hereon we take

(26)

as in Lemma 4.

IV. SUFFICIENT SECTION SIZE

We call the section size rate, that is,
the bits required to describe the member of a section relative
to the bits required to describe which section. It is invariant to
the base of the log. Equivalently, we have and related by

. Note that the size of controls the polynomial size of
the dictionary .

The code length may be written as

We do not want a requirement on the section sizes with of
order for then the complexity would grow exponen-
tially with this inverse of the gap from capacity. So, instead, we
decompose where .
We investigate in this section the use of to cancel out the
combinatorial coefficient appearing in the first term in
(23). In subsequent sections, excess in , beyond that needed
to cancel the combinatorial coefficient, plus are
used to produce exponentially small error probability.

Define and .
Now, is increasing as a function of , so
is greater than whenever . Accordingly, we
decompose the exponent as the sum of two components,
namely, and the difference .

We then ask whether the first part of the exponent denoted
is sufficient to cancel out the effect of the log combina-

torial coefficient . That is, we want to arrange for the
nonnegativity of the difference

(27)

This function is plotted in Fig. 3 for specific choices of , ,
, and .
Using , one finds that for sufficiently large
depending on , the difference is nonnegative uniformly

for the permitted in . The smallest such section size rate
is

(28)

where the maximum is for in . This
definition is invariant to the choice of base of the logarithm,
assuming that the same base is used for the communication rate

and for the that arises in the definition of .
In the aforementioned ratio, the numerator and denominator

are both 0 at and (yielding at the ends).

Accordingly, we have excluded 0 and 1 from the definition of
for finite . Nevertheless, limiting ratios arise at these ends.

We give bounds for and show that the value of is
fairly insensitive to the value of , with the maximum over the
whole range being close to a limit which is characterized by
values in the vicinity of .

Let near 15.8 be the solution to

Lemma 5: The quantity has the following properties.
(a) For

(29)

where .
(b) The limit for large of is a continuous function

which is given, for , by

(30)

and for by

(31)

(c) For all and using log base e, the aforemen-
tioned is bounded by

(32)

in the case , which is approximately for
small positive , whereas in the case , it is bounded
by

(33)

which asymptotes to the value 1 for large .
The proof of the aforementioned lemma is routine. For con-

venience, it is given in Appendix B.
While is undesirably large for small , we have reasonable

values for moderately large . In particular, equals 5.0 and 3,
respectively, at and , and it is near 1 for large .

Numerically, it is of interest to ascertain the minimal section
size rate , for a specified such as , for
chosen to be a given high fraction of , say , for
at a fixed small target fraction of mistakes, say , and for

to be a small target probability, so as to obtain .
Here, as in (24). This is illustrated in Fig. 4 plotting
the minimal section size rate as a function of for .
With such moderately less than , we observe substantial
reduction in the required section size rate.

V. PROOF OF PROPOSITION 1

In this section, we put the aforementioned conclusions to-
gether to prove proposition 1, demonstrating the reliability of
approximate least squares. The following lemma will be useful
in proving the lower bound for the error exponent in proposition
1. Let as earlier.
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Fig. 3. Exponents of contributions to the error probability as functions of � �
��� using exact least squares, i.e., � � �, with � � ���,� � � , signal-to-
noise ratio � � ��, and rate 70% of capacity. The red and blue curves are
the � ��� 	 
� � and � ��� 	� � bounds, using the natural logarithm, from
the two terms in lemma 4 with optimized � . The dotted green curve is 	
(27). With � � �
�, the total probability of at least that fraction of mistakes is
bounded by �
� � �� .

Fig. 4. Sufficient section size rate � as a function of the signal-to-noise ratio
�. The dashed curve shows � at � � 
�. Just below it, the thin solid curve
is the limit for large �. For section size � � � , the error probabilities are
exponentially small for all � 
 � and any � � �. The bottom curve shows
the minimal section size rate for the bound on the error probability contributions
to be less than � , with � � �
�� and � � �
� at � � 
�.

Lemma 6: The following bounds hold.
(a) For positive and correlation , let

. Then

(34)

and

(35)

(b) For , let . Then

(36)

For convenience, we put its proof in Appendix A.
We now prove Proposition 1. Consider the exponent

appearing in the error bound (23).
Now, has a nondecreasing derivative with
respect to . So is greater than

. Consequently, it lies above the
tangent line (the first order Taylor expansion) at , that is

(37)

where is the derivative of
with respect to , which is, here, evaluated at . In detail, the
derivative is seen to equal

(38)

when , and this derivative is equal to 1 oth-
erwise. (The latter case with derivative equal to 1 includes the
situations and where with ; all
other have ).

We now lower bound the derivative evaluated
at . Using the upper bound on given in (36) and
the form of , one gets that is bounded by

, which using
and , one gets that

Further using the lower bound in (36), one has
is at least , where we make use of .
Correspondingly

(39)

the right side of which is , where is as in (5).
Now, we are in a position to apply lemma 4 and lemma 5.

If the section size rate is at least , we have that
cancels the combinatorial coefficient , and hence, the first
term in the bound (23) (the part controlling )
is not more than

where . Using and
and (39) yield not more than the sum of

and
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for any choice of . For convenience, we take
to be . In this case, the first part of the aforementioned
sum is .

Now, use (34) to get that is at
least , where .
Correspondingly, using , one gets that

. Accordingly, is
at least .

It follows from the aforementioned that

where . Consequently, summing over all
, for which , one gets

The exponent in the right side of the aforementioned equation
is . Now, use the to
complete the proof of proposition 1.

Remarks: The form given for the exponential bound is meant
only to reveal the general character of what is available. A com-
promise was made by introduction of an inequality (the tangent
bound on the exponent) to proceed most simply to this demon-
stration. Now, understanding that it is exponentially small, our
best evaluation avoids this compromise and proceeds directly,
using the bound (24), as it provides substantial numerical im-
provement.

In the next section, we prove proposition 2, while at the same
time review basic properties of the RS codes.

VI. PROOF OF PROPOSITION 2

We employ RS codes [45], [48], [55] as an outer code for
correcting any remaining section mistakes. The symbols for the
RS code come from a Galois field consisting of elements de-
noted by , with typically taken to be of the form .
If represent message and codeword lengths, re-
spectively, then an RS code with symbols in and min-
imum distance between codewords given by can have the
following parameters:

Here, gives the number of parity check symbols
added to the message to form the codeword. In what follows,
we find it convenient to take to be equal to so that we
can view each symbol in as giving a number between
1 and .

We now demonstrate how the RS code can be used as an outer
code in conjunction with our inner superposition code to achieve
low block error probability. For simplicity, assume that is a
power of 2. First, consider the case when equals . Taking

, we have that since is equal to , the RS code
length becomes . Thus, one can view each symbol as repre-
senting an index in each of the sections. The number of input
symbols is, then, , so setting ,

one sees that the outer rate equals which is at
least .

For code composition, message bits become
the input symbols to the outer code. The symbols of
the outer codeword, having length , give the labels of terms
sent from each section using our inner superposition with
code length . From the received , the
estimated labels using our least squares decoder
can be again thought of as output symbols for our RS codes. If

denotes the section mistake rate, it follows
from the distance property of the outer code that if ,
then these errors can be corrected. The overall rate is
seen to be equal to the product of rates which is at
least . Since we arrange for to be smaller than
some with exponentially small probability , it follows from
the previous that composition with an outer code allows us to
communicate with the same reliability, albeit with a slightly
smaller rate given by .

The case when can be dealt with by observing ([45],
p. 240) that an RS code as aforementioned can
be shortened by length , where , to form an

code with the same minimum distance
as earlier. This is easily seen by viewing each codeword as being
created by appending parity check symbols to the
end of the corresponding message string. Then, the code formed
by considering the set of codewords with the leading symbols
identical to zero has precisely the properties stated earlier.

With equal to as earlier, we have equals ; so
taking to be , we get an code, with

, , and minimum distance . Now,
since the outer code length is and symbols of this code are
in the code composition can be carried out as earlier.
This completes the proof of Proposition 2.

VII. GENERALIZATION TO APPROXIMATE LEAST SQUARES

In conclusion, we remark that our results are equally valid for
an approximate least squares decoder, which for some nonneg-
ative chooses a satisfying

(40)

where is what is sent. Since the aforementioned is less re-
strictive than (2), it may be possible to find a computationally
feasible algorithm for it. Indeed, we show in Appendix E that
any computationally feasible algorithm, if it be an accurate de-
coder, then it must be an approximate least squares decoder for
some small .

We now describe how our error probability bounds can be
generalized to incorporate (40). We note that (40) is equivalent
to finding an , so that , with ,
where is as in (16). We find that the expression for
in lemma 3 holds for approximate least squares decoders with

, if we replace by . Fur-
thermore, the expression for of lemma 4 is also true
for , if one replaces the appearing in the second
term of the bound by . Accordingly, for such approximate



2552 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 58, NO. 5, MAY 2012

decoders, with , the bound corresponding to lemma
4 becomes

(41)

where and
is as in lemma 4.

The analysis of this decoder is quite similar to that of (2).
Interested readers may refer to [11] for a more general analysis
incorporating (40).

APPENDIX A
PROOF OF LEMMA 6

We first prove (a). Write explicitly as an in-
creasing function of the ratio . Working with
logarithm base , the derivative with respect to of the expres-
sion being maximized yields a quadratic equation which can be
solved for the optimal

Using this , we get that ,
which is at least . Here, , with

. Correspondingly, . This
proves (34).

For the lower bound on , recall that the
case case occurs when ,
in which case is at least . Using

proves (35).
Next we prove (b). Notice the has second derivative

. It follows that
, since the difference of the two sides has neg-

ative second derivative, so it is concave and equals 0 at
and .

For the upper bound, notice that the derivative of is
at and at , where and

. Correspondingly, is bounded from earlier
by the minimum of and . Now, it is not hard to
see that

Correspondingly, we get the upper bound in (36).

APPENDIX B
PROOF OF LEMMA 5

We first prove (a). Define , which, using
the lower bound on given in lemma 6 (b) and

, is at least
. Consequently, is at least

using . Correspondingly, using (35) and the lower
bound (7), one gets that is at least

which is equal to times

Furthermore, can be bounded by
and . Therefore, it is at most

, where . Using this,
the lower bound on and the form of given in (28), one
gets that can be bounded by
times

Now, use to get that

Now, observe that the second term in the maximum given pre-
viously dominates the other two terms for all . This completes
the proof of (a).

Next we prove (b). For in , we use
and the strict positivity of to see that the ratio in the defini-
tion of tends to zero uniformly within compact sets interior
to . So the limit is determined by the maximum of the
limits of the ratios at the two ends. In the vicinity of the left and
right ends, we replace by the continuous upper bounds

and , respectively, which are tight at
and , respectively. Then, in accordance

with L’Hôpital’s rule, the limit of the ratios equals the ratios of
the derivatives at and , respectively. Accordingly

(42)

where and are the derivatives of with respect to
evaluated at and , respectively.
To determine the behavior of in the vicinity of

0 and 1, we first need to determine whether the optimal in its
definition is strictly less than 1 or equal to 1. From Section II,
the case occurs if and only if . The
right side of this is . So it is equivalent to
determine whether the ratio

is less than 1 for in the vicinity of 0 and 1. Using L’Hôpital’s
rule, it suffices to determine whether the ratio of derivatives is
less than 1 when evaluated at 0 and 1. At , it is

which is not more than 1/2 (certainly less than 1)
for all positive , whereas at , the ratio of derivatives is

which is less than 1 if and only
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if . In other words, at , the optimum is less than
one for all , whereas at , it is less than one if and only if

.
For the cases in which the optimal , we need to deter-

mine the derivative of at and . Recall that is
the composition of the functions and

and . Also recall that
the limit of , as tends to 0 or 1, is zero.

Use chain rule for finding the derivative of , taking the
products of the associated derivatives. The first of these func-
tions has derivative which is 1/4 at ,
the second of these has derivative which is 1/2 at

, and the third of these functions is

which has derivative that evaluates to at
and evaluates to

at . Correspondingly, for , the derivative of is
for all , whereas for , its deriva-

tive is for .
For , the magnitude of the derivative of at 1 is

smaller than at 0. Indeed, taking square roots, this is the same as
the claim that .
Replacing and rearranging, it reduces to

, which is true for since the two sides match at
and have derivatives . Thus, the limiting

value for near 1 is what matters for the maximum. This pro-
duces the claimed form of for .

In contrast for , the optimal equals 1 for in the
vicinity of 1. In this case, we use
which has derivative equal to

at , which is again smaller in magnitude than the deriva-
tive at , producing the claimed form for for .

At we equate and see that
both of the expressions for the magnitude of the derivative at
1 agree with each other (both reducing to ), so
the argument extends to this case, and the expression for is
continuous in .

(c) is proved by using and simplifying
the resulting expression. This completes the proof of Lemma 5.

APPENDIX C
IMPROVEMENT IN FORM OF EXPONENT

The following improvement in the form of the exponent in
Proposition 1 can be obtained.

Theorem 7: Assume , where , and rate
is less than capacity . For the least squares decoder

Here

where is positive and tends to as tends to 0. Here

(43)

and

(44)

Proof of Theorem 7: Here, we determine the minimum
value of for which the combinatorial term is canceled,
and we characterize the amount beyond that minimum which
makes the error probability exponentially small. Arrange
to be the solution to the equation

To see its characteristics, let at

using log base . Here, is the inverse of the function
which is the composition of the increasing functions

and previously dis-
cussed in Section II. This is near for small . When

, the condition is satisfied and
indeed solves the aforementioned equation;

otherwise, provides the solution.
Now, , which from earlier

can be bounded by . Also,
. Consequently, is small for large

; moreover, for near 0 and 1, it is of order and ,
respectively, and via the indicated bounds, derivatives at 0 and
1 can be explicitly determined.

The analysis in Lemma 5 may be interpreted as determining
section size rates such that the differentiable upper bounds on

are less than or equal to for ,
where, noting that these quantities are 0 at the endpoints of the
interval, the critical section size rate is determined by matching
the slopes at . At the other end of the interval, the bound
on the difference has a strictly positive slope for

at , given by as in (43). The positivity of
follows from recalling that , since the second term
in (42) always turns out to be the greater one. Consequently, one
may take for some positive , where
tends to as tends to 0.

Recall that . Express as the sum
of needed to cancel the combinatorial coefficient, and

, which is positive. This
arises in establishing that the main term in the proba-

bility bound is exponentially small. It decomposes as
. Arrange to be

so that .
Consider the exponent as given

in lemma 4. We take a reference for which
and for which is at least and at least a multiple of

. For convenience, we set to
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be half way between and . Recall that
has a nondecreasing derivative with respect to . So

is greater than . Con-
sequently, it lies above the tangent line at , that is

where as earlier is the derivative of
with respect to , which is, here, evaluated at

. Its expression is as in (38).
We wish to examine the behavior of for near 0.

For this, we first lower bound the derivative . Since this
derivative is nondecreasing, it is at least as large as the value at

. Now, recall that has a limit 0 as
tends to 0. Furthermore, has limit as
tends to 0. Consequently, from (38), at , we have

tends to , given by (44), as tends to 0. Consequently,
, where is positive and tends to as

goes to 0.
Next examine . Since is at least , it follows

that is at least . Consequently, as
in the proof of proposition 1, if the section size rate is at least

, then the bound (23) is not more than the sum of

and

Using half way between and , the first part of
the bound is at most

This bound is superior to the previous one, when closely
matches , because of the addition of the nonnegative
term. The second part of the bound can be dealt with as in propo-
sition 1. Accordingly, we have proved that

where for small . It tends to as
tends to 0. This completes the proof of Theorem 7.

APPENDIX D
COMPUTATIONS

We describe how the rate curves in Fig. 2 were computed. The
block error probability was fixed at and the signal-to-
ratio was taken to be 20 and 100. The PPV curve was curve
was computed using the right side of (8) for the given and .
The maximum achievable (composite) rate for the superposi-
tion code was calculated in the following manner. The number
of sections, ranged from 20 to 100 in steps of 10, with the
corresponding section size taken to be , where as in
(32) and (33).

For given and values of , and , the inner coder rate
was decreased from to in decrements of

. For a given , the minimum section mistake rate
so that the error probability, computed using bounds

(24), is at most was computed. The corresponding composite
rate is taken to be

The maximum of the composite rates , when
ranged from to in decrements of , is

the reported maximum achievable rate for the superposition
code for the given values of , and .

APPENDIX E
ACCURATE DECODER APPROXIMATE LEAST SQUARES

In Lemma 9 in the following, we show that any decoder is an
approximate least squares decoder. More specifically, we show
that if the fraction of mistakes made by a decoder is small,
the distance of the estimated fit from cannot be much
greater than distance of the codeword sent, that is , from

. To prove this, we require the following lemma, which is a
consequence of the restricted isometry property [16], [17] for
Gaussian random matrices. We recall that the entries of our
matrix are i.i.d .

Lemma 8: Let and . Then,
the following holds except on a set with probability at most

:

(45)

where is related to the
restricted isometry property constant.

Proof: Statement (45) is equivalent to giving uniform
bounds on the maximum singular value of the matrices

, for all , where is as in (13). For
, let denote the maximum singular value of .

We use a result in [61] (see also [17]), giving tail bounds for
the maximum singular value for Gaussian matrices from which
one gets that for positive

Accordingly, choose and use
to get that , except on a set with probability .

We need to hold uniformly for all sets
, with high probability. Correspondingly, using

, using a union bound, one gets that the probability of the
event

is at least . This completes the proof of the lemma.
If , then from standard results on the tail

bounds of chi-square random variables, one has that

(46)
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Lemma 8 and (46) gives us the following.

Lemma 9: Assume that a decoder for the superpo-
sition code, operating at rate , makes at most
section of mistakes. Denote as the estimate of the true

outputted by the decoder. Then, with probability at least
, the estimate satisfies

with . In other words, with
high probability, is the solution of an approximate least
squares decoder (40) with the given .

Proof: We need to show that cannot be much
greater than . Notice that

(47)

where for (47) we use the fact that the noise .
Now, , since the decoder makes at most
mistakes. Accordingly, using lemma 8 and (46), one gets that
with probability at least , one gets that

and . Consequently, from
(47), one gets

with probability at least , where
.

APPENDIX F
ERROR BOUNDS FOR SUBSET SUPERPOSITION CODES

The method of analysis also allows the consideration of
subset superposition coding described in Section I-A. In this
case, all subsets of size correspond to codewords, so with
the rate in nats, we have . The analysis proceeds
in the same manner, with the same number of choices
of sets where and agree on terms,
but now with choices of sets of size
they disagree. We obtain the same bounds as earlier except
that where we have , with the exponent , it is
replaced by , with the exponent defined
by .

Correspondingly, for subset superposition coding, the proba-
bility is bounded by the minimum of the same expres-
sions given in Lemma 3 and Lemma 4, except that the term
appearing in these expression is replaced by the quantity
defined previously. We have not investigated in greater detail for
whether there is reliability for any rate below capacity for these
codes.
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