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Abstract - The chain rule of information shows that 
log densities form Cauchy sequences, convergent in 
L1, proving information limits, Markov chain conver- 
gence, and existence of information projections. 

Let DtPIIQ) = E ~ l o g ~ ( x ) / q ( x ) ,  A =  E l l o g ~ ( X ) / q ( X ) I i  
and V = s l p - q l  be the  information divergence, absolute 
information divergence, and total variation distance between 
probability measures P and Q with density functions p ,  q with 
respect to a dominating measure on a measurable space. T h e  
chain rule and the Pinsker-type inequality A 5 D + m, 
deduced from V _< (which implies t h a t  if D tends to 
zero then so does V and A )  allow one to deduce in various 
settings tha t  log densities provide Cauchy sequences conver- 
gent in L1 , thereby establishing information limits including 
Markov chain convergence and information projections. 

Let {X,} be Markov with stationary transition probability on 
a general state space and  let P, be the  distribution of X,. 
Theorem 1. Markov Chain Convergence. If {X,} is a re- 
versible Markov chain with a unique invariant probability dis- 
tribution P', then lim D(e,llP*) = 0 if and only if the s e  
quence D(P,(lP*) is eventually finite. 
Proof: Let D, = D(P,IIP*). The chain rule gives D,-D, ,  
for n > m, as a divergence (between conditional distribu- 
tions for X, given Xn), establishing monotonicity and con- 
vergence of D,,  90 tha t  D ,  - D ,  + 0 as n, m + 00, and 
thus via the Pinsker-type inequality El log pm (X,)/p'(X,) - 
logPn(Xn)/P*(Xn)l + 0, so tha t  logpn(Xn)/p*(Xn) is a 
Cauchy sequence, convergent in L1. Fritz [4] used information 
inequalities for reversible chains to show the total variation 
convergence of Pn to P * ,  so t h a t  p*(X,)/p,(X,) converges 
to 1 in probability. Thus  logp,(X,)/p'(X,), which we have 
shown to be convergent in L1, must have L1 limit equal to 0. 

11. INFORMATION LIMITS 
Let 3, be a monotone sequence of sigma-fields with limit 

3,. Let P, and Qn denote the restrictions of P and Q to 
3,, let p, be the density of P, with respect to Q, ,  and let 
D,  = D(PnJIQn) for n = 1,2,. . . , 00. 

Theorem 2. Information Limit. If F, is decreasing or if 3, 
is increasing and D(PnllQn) is bounded, then logp, + logp, 
in L i ( P )  and limn D(Pn((Qn) = D(P,((Q,).  
Proof: In the  case tha t  3, is decreasing, for n > m we 
have D, - D,  = S pm log pm/pndQ establishing monotonic- 
ity, convergence, and,  hence, the Cauchy sequence property, 
so that ,  via the Pinsker-type inequalities, both Ip, -p,IdQ 
and El log p, -log p, I tend to 0 as n, m -+ ca. Hence p, is 
convergent in Ll (Q)  (denote the  limit p,) and logp, is con- 
vergent in L l ( P )  with limit logp,. Sets A in 3, are in 3, 
for all n with P ( A )  = SA pndQ,  so by L1 (Q)  convergence, 
P ( A )  = SA p,dQ, tha t  is, the  limit pm is indeed the  density 
between the restrictions of P and Q to F,. For the  increas- 
ing case one proceeds in the  same manner using the chain rule 
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to extract Cauchy convergence of p ,  in L1 (Q) and log p, in 
L1 ( P )  and to identify the limit. 

Theorem 2 implies Theorem 1 using the  decreasing 3, gen- 
erated by {X,, X,+l,.. .}. T h e  conclusion for the limit of 
increasing information is classical, see [ l ]  and the  references 
cited therein. Our analysis shows the convergence directly 
from the chain rule, without appeal to a martingale conver- 
gence theorem. T h e  results for the limit of decreasing infor- 
mation and the  information limit of Markov chains are new. 

111. INFORMATION PROJECTION 
Demonstrating existence of information projections for con- 

vex sets of distributions uses similar techniques. Let D(Cl(p) 
and D(pl(C) denote the infimum of D(qI(p) and of D(pllq), 
respectively, over choices of q in a convex set C. T h e  set C 
might not admit a minimizer and one seeks a limit q* obtained 
by sequences of q, approaching the infimum. Topsoe [7], see 
also [3], resolves the  D(Cllp) case. Here we state a result for 
t h e  D(p(1C) case developed further in the  Thesis of Li [6]. 
Theorem 3. Information Projection. Let C be convex and  
D(pllC) finite. There exists a unique q* (possibly outside of 
C) such tha t  every sequence q, with D(pllq,) + D(pJIC) has 
logq, + logq' in L l ( p ) .  Thus  D(plIq*) = D(pllC). For 
all q in C ,  cq = E,q(X)/q*(X) 5 1 and,  defining the den- 
sity T = (pq/q*)/c,, we have the  Pythagorean-like inequality 
D(p(1q) 2 D(p((q*) + D(p(Ir), where via the  Pinsker-type in- 
equality D(p( ( r )  controls the  L1 ( P )  distance between log q and 
logq'. Furthermore, if J q  = 1 for all q in C,  then s q *  5 1. 

Previously, Bell and  Cover [2] show characterizing proper- 
ties if q* is in C. Kieffer [5] shows if {logq : q E C} is closed 
in L1 (P), then there exists q* satisfying the  key properties. 

T h e  proof identifies a sequence q, in C such t h a t  D(plIqn) 1 
D(pllC) and C m , n  = Eqm(X)/qn(X)  5 1 for all n > m. With 
Tm,n (pqm/Qn)/cm,n, one finds Dm -Dn equals D(P\\rm,n) + log l /cm, , ,  so by the Cauchy sequence property, log l /c, , ,  , 
D(pllrm,n) and hence El logq,(X)/logq,(X)I converge to 0 
as n, m -+ ca. Thus  log qn is a Cauchy sequence with limit 
denoted log q* in L1 (p). Further details are in [6]. 
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