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Abstract— We determine, for both countable and uncountable
collections of functions, information-theoretic conditions on a
penalty pen(f) such that the optimizer f̂ of the penalized log
likelihood criterion log 1/likelihood(f)+pen(f) has risk not more
than the index of resolvability corresponding to the accuracy of
the optimizer of the expected value of the criterion. If F is the
linear span of a dictionary of functions, traditional description-
length penalties are based on the number of non-zero terms (the
`0 norm of the coefficients). We specialize our general conclusions
to show the `1 norm of the coefficients times a suitable multiplier
λ is also an information-theoretically valid penalty.

I. INTRODUCTION

From work in information theory and statistics, there are
connections between high-quality data compression and ac-
curate statistical estimation. The original Shannon [63] code
construction and the condition of Kraft characterizing valid
codelengths show the correspondence between probability
distributions p(data) for data and optimal variable-length
binary codes of length essentially log2 1/p(data) bits (see,
e.g., [28]). The development of universal data compression
and, in particular, the minimum description-length (MDL)
principle has built this correspondence further for the case of
distributions pf (data) that depend on an unknown function
f believed to belong to a family F which may be given
parametrically (see [14] or [36] and work cited therein). The
function f may provide a density or log-density function, or, in
the case that the data consists of pairs of inputs X and outputs
Y , the function f(x) may refer to a regression function,
classification function, Poisson intensity function, etc. that
captures an essential aspect of the conditional distribution of Y
given X . Starting from a discussion of coding redundancy, we
analyze statistical risk of estimation, capturing its relationship
to the accuracy of approximation and the level of complexity
of functions f in F , to contribute to a general theory of
penalized likelihood.

This 2008 Information Theory Workshop plenary presenta-
tion is abridged from the Festschrift for Jorma Rissanen [13].

Ideal procedures adapt to the complexity revealed by the
data. Results for mixture-based and prediction-based proce-
dures are discussed and new results are presented for proce-
dures that optimize penalized likelihood. Penalties pen(f) are
typically related to parameter dimension or to function irreg-
ularity. We develop means to determine when such penalties
capture information-theoretic complexity to provide for quality
compression and accurate function estimation.

An index of resolvability captures the performance of these
procedures. It upper bounds the statistical risk as does a
related expression involving an expected redundancy of data
compression. These resolvability and redundancy bounds on
risk have been developed for penalized likelihood restricted
to a countable set of functions which discretizes F , with
complexity penalty pen(f) = L(f) equal to an information-
theoretic codelength for f , see [11], [4], [46], [43], [44],[36].
The present paper gives a simple and natural method to
extend the previous information-theoretic bounds for penalized
likelihood from the countable to uncountable F case.

Early advocacy of penalized likelihood estimation with
penalty on the roughness of the density is in [35], [31],
[65],[71]. Risk results for quadratic penalties in Hilbert space
settings are developed in [29] based on functional analysis
tools. Empirical process techniques built around metric en-
tropy calculations yield rate results for penalties designed for
a wide variety of function classes in [64]. Related theory
for constrained maximum likelihood in nonparametric settings
is in [53] and for minimum contrast estimators, sieves, and
penalties is in [16], [17], [9].

The use of `1 penalization of log-likelihoods is a currently
popular approach, see [54]. The penalty is applied to coeffi-
cients in linear models for f , coinciding with a generalized
linear model pf (u) for the data, where the terms of the linear
model are members of a dictionary of candidates. For special
cases, see [42], [1], [34],[77]. That work has focussed on
algorithmic development related to Lasso [70], basis pursuit
[23], [24], LARS [32], coordinate algorithms [33] and relaxed
greedy algorithms [40], [6], [48], [22], [78], [10]. A new
algorithmic result is established at the end of this paper.

Recent work analyzes risk of `1 penalized procedures. Some
of it, requiring restrictions on the correlation of dictionary
members, addresses whether the procedure performs as well as
a subset selection rule, as in [18], [19], [20], [50]. For general
dictionaries without correlation conditions, we ask whether an
`1 penalized criterion performs as well as the best tradeoff
between approximation error and `1 norm of coefficients. This
is examined for `1 penalized least squares in the manuscripts
[80] and [39] and for `1 penalized likelihood in the present
paper. Penalized likelihood risk bounds should capture the
tradeoff of Kullback-Leibler approximation error and penalty.
This motivates demonstration that the `1 penalty satisfies the
information-theoretic requirements for the results we seek.



Extending information-theoretic risk results to uncountable
families F , the main tool developed in Section 3 is the
notion of a variable-complexity cover to allow for variable
penalty levels. Distortion is based on discrepancies between
log-likelihood and its theoretical analog rather than based on
the metrics of traditional metric entropy. In brief, a valid
penalty pen(f) is one for which for each f in F there is
a representor in the cover for which pen(f) is not less than
its complexity plus distortion.

Often F is arranged as a union of families Fm of functions
of similar characteristics, e.g., parametric families Fm =
{fθ,m : θ ∈ Rdm} of given parameter dimension dm. Consider
linear combinations of a dictionary H of functions. Such
fθ(x) =

∑
h∈H θhh(x) are specified by the coefficients θ =

(θh : h ∈ H). The set of linear combinations F is the union
of models Fm for subsets m of H in which the fθ,m(x) =∑

h∈m θhh(x). These families have dimension dm = card(m)
when the functions in m are linearly independent.

The data may come from a general sample space. It is
traditional to think of finite length strings U = Un =
(U1, U2, . . . , Un), consisting of a sequence of outcomes
X1, X2, . . . , Xn or outcome pairs (Xi, Yi)n

i=1. We write U
for the sample space and PU |f (or more briefly Pf ) for the
distributions on U . Likewise EU |f or more briefly Ef denotes
the expected value. When being explicit about sample size,
we index by n, as in PUn|f or P

(n)
f .

For lossless data compression, U is countable, pf (u) is
the probability mass function, and q(u), satisfying Kraft’s
inequality

∑
u∈U q(u) ≤ 1, is a coding distribution with code-

lengths log2 1/q(u) in bits. The pointwise coding redundancy
is log 1/q(u)− log 1/pf (u), the difference between the actual
codelength and the codelength we would have had if f were
given. Following past MDL work, we allow continuous sample
spaces and density functions relative to a given reference
measure, yet, we refer to the log density ratio as a redundancy.
See [2] for a limiting code redundancy interpretation of the
absolutely continuous case involving fine discretizations.

Thus our setting is that the distributions PU |f have density
functions p(u|f) = pf (u), relative to a fixed reference
measure, which provides the likelihood function of f at data
U . The reference measure is assumed to be a product of
measures on the individual spaces. For the special case of
i.i.d. modeling, there is a space U for the individual outcomes
with distributions P

(1)
f = Pf and then U is taken to be the

product space Un and PUn|f = Pn
f is taken to be the product

measure with joint density pf (un) =
∏n

i=1 pf (ui).
The object of universal data compression and universal

modeling is the choice of a distribution q(u), u ∈ U , such that
the redundancy log 1/q(u)−log 1/pf (u) is kept not larger than
need be (measured either pointwise or in expectation over u
and either on the average or in worst case over f ) for functions
in each class of interest.

As discussed in [61], [14], [36], minimum description-
length methods choose q in one of several interrelated ways:
by Bayes mixtures, by predictive models, by two-stage codes,
or by normalized maximum-likelihood codes. We discuss some

aspects of these with an eye toward redundancy and resolv-
ability bounds on risk.

Our treatment of penalized likelihood gives general
information-theoretic penalty formulation in sections 2 and
3, with risk bounds given for squared Hellinger and related
distances, and then application to `1 penalties in sections
4 and 5. For information-theoretic context, we first review
redundancy and resolvability bounds for mixture models and
their implications for the risk of predictive estimators, with
the stronger Kullback-Leiber loss. This material shows that
tools are in place for dealing with uncountable families by
mixture models and their associated predictive interpretations.
Then penalized likelihood is studied because of its familiarity
and comparative ease of computation.

A. Mixture models

These models for U use a prior distribution w on F leading
to a mixture density q(u) = qw(u) =

∫
pf (u)w(df). For

instance with F a union of families Fm, the prior may be built
from a probability w(m) and a distribution on Fm for each m.
If Fm is given parametrically the prior may originate on the
parameters yielding q(u|m) = qwm(u) =

∫
pfθ,m

(u)w(dθ|m),
and an overall mixture q(u) =

∑
m w(m)q(u|m). A mixture

distribution has average case optimal redundancy, averaging
over u according to pf (u) and averaging over functions
according to the prior.

Here we discuss tools for redundancy and resolvability
bounds for mixtures and the bounds they yield on risk.

The expected redundancy of the mixture qwm takes the
form Ef [log p(U |f)/qwm(U)] which is the Kullback-Leibler
divergence between the mixture and the target. In each family,
the minimax procedure with smallest worst case expected
redundancy corresponds to a prior wm yielding the largest
minimum average redundancy. Suitable approximate forms
for the optimal wm, called the least favorable prior or ca-
pacity achieving prior, are available in an asymptotic setting
[26], [27] and [73]. For smooth parametric families with a
Fisher information I(θ|m), an asymptotically optimal prior
is proportional to |I(θ|m)|1/2 and the resulting redundancy
behaves asymptotically like dm

2 log n plus a specified constant
determined by the logarithm of the integral of this root Fisher
information. There are finite sample bounds of the same form
but with slightly larger constants, from examination of the
resolvability of mixtures we come to shortly.

Pointwise minimax redundancy theory identifies the small-
est constant penalty to add to log 1/p(U |f̂m), where f̂m =
fθ̂,m is the maximizer of the likelihood, such that the
result retains a data-compression interpretation. This prob-
lem is studied in an asymptotic setting in [62], [14],
[66], [67], [68], [69], [74], showing that the same value
dm

2 log n
2π + log

∫
|I(θ|m)|1/2dθ characterizes this smallest

constant penalty asymptotically. Such theory provides addi-
tional data compression justification for a penalty with main
term proportional to the dimension dm.

Choosing w(m) is also addressed from an information-
theoretic standpoint. The MDL parameter cost primarily de-



termined by the dimension dm. Thinking of log 1/w(m) as
a codelength, we set it using the log-cardinality of models
of the same dimension (one can not do much better than
that for most such models). For models which correspond to
subsets m of size d chosen out of p candidate terms in a
dictionary, the log 1/w(m) can be set to be log

(
p
d

)
, plus a

small additional description length for the dimension d. Often
p is large compared to the sample size n, so this log 1/w(m)
of order dm log p/dm substantially adds to dm

2 log n in the
total description length.

B. Index of resolvability of mixtures

For mixtures an expected redundancy bound is developed
in [8] and shown to bound an associated statistical risk. The
Kullback divergence D(PU ||QU ) = E log p(U)/q(U) is the
total expected redundancy for data U described using q(u)
but governed by a density p(u). Suppose this density has the
form pf∗(u). A tool for examining redundancy is Dn(f∗, f) =
D(PU |f∗ ||PU |f ) measuring how well f approximates f∗.
In the i.i.d. modeling case this divergence takes the form
Dn(f∗, f) = nD(f∗, f) where D(f∗, f) is the divergence
between the single observation distributions D(Pf∗ ||Pf ).

The resolvability bound on expected redundancy of mixtures
is as follows. Let the distribution QU be a general mixture
with density q(u) =

∫
p(u|f)W (df) formed from a prior W .

Let B be any measurable subset of functions in F . Then by
restriction of the integral to B followed by Jensen’s inequality,
the redundancy of the mixture Q is bounded by the sum of
the maximum divergence of distributions in B from the target
f∗ and the log reciprocal prior probability of B, and thus,

D(PU |f∗ ||QU ) ≤ min
B

{
max
f∈B

Dn(f∗, f) + log
1

W (B)

}
.

In i.i.d. modeling, we divide by n to obtain a redundancy rate
bound. When the B = {f} are singleton sets, the right side is
the same as the index of resolvability given in [11], used there
for two-stage codes, as will be discussed further. The optimal
sets for the resolvability bound for mixture codes take the form
of Kullback balls Br,f∗ = {f : D(f∗, f) ≤ r2}, yielding

(1/n)D(PUn|f∗ ||QUn
) ≤ min

r≥0

{
r2 +

log 1/W (Br,f∗)
n

}
.

As in [8] with suitable choices of prior, it provides the
usual (dm/2)(log n)/n behavior of redundancy rate in finite-
dimensional families, and rates of the form (1/n)ρ for positive
ρ < 1 for various infinite-dimensional families of functions.
Similar characterization arises from a stronger Bayes resolv-
ability bound D(PU |f∗ ||QU ) ≤ − log

∫
e−Dn(f∗,f)W (df) as

developed in [3], [8], [37], and [79].

C. Implications for predictive risk

For predictive models of a sequence UN = (Un)N
n=1 the

joint distribution q(UN ) (for universal modeling or coding) is
formed by gluing together predictive distributions q(un|un−1),
that is, by multiplying together these conditional densities for
n = 1, 2, . . . , N . In the i.i.d. modeling case, given f , the den-
sity for Un given the past is p(un|f). Predictive distributions

are often created in the form p(un|f̂n−1) by plugging in an
estimate f̂n−1 based on the past un−1. Predictive distribution
need not be restricted to be of plug-in form. Indeed, the prior
average of a predictive redundancy is optimized by a Bayes
predictive density q(un|un−1). The predictive redundancy is
EfD(PUn|f ||QUn|Un−1

), which is the Kullback risk of the
predictive density, based on a sample of size n − 1. The
model built by multiplying the Bayes predictive densities
together is the mixture qw(u). Correspondingly, by the chain
rule, the total codelength and its redundancy yield the same
values, respectively, as the mixture codelength and redundancy
discussed in (1) above. Indeed, the total redundancy of the
predictive model is

D(PUN |f ||QUN
) =

N∑
n=1

EfD(PUn|f ||QUn|Un−1
),

the cumulative Kullback risk. Dividing by N we see that the
Cesàro average of the risks of the predictive distributions is
bounded by the index of resolvability discussed above.

This chain rule property has been put to use for related
conclusions. For example, it is the basis of the analysis of
negligibility of superefficiency in [12] and it plays a critical
role for non-finite dimensional families in identifying the
minimax rates of estimation in [76] and [38].

D. Two-stage codes

We turn our attention to models based on two-stage codes.
We recall some previous results here, and give in the next
sections some simple generalizations to penalized likelihoods.
Two-stage codes were used in the original formulation of the
MDL principle [57], [58] and in the analysis of [11]. One
works with a countable set F̃ of possible functions, perhaps
obtained by discretization of the underlying family F . A key
ingredient in building the total two-stage description length
are assignments of complexities Ln(f), for f ∈ F , satisfying
the Kraft inequality

∑
f∈F 2−Ln(f) ≤ 1.

These complexities typically have the form of a codelength
for the model class m (of the form L(m) = log 1/w(m) as
discussed above), plus a codelength L(f |m) or L(θ|m) for the
parameters that determine the functions in Fm, which may
be discretized to a grid of precision δ for each coordinate,
each of which is described using about log 1/δ bits. Under,
respectively, first or second order smoothness conditions on
how the likelihood depends on the parameters, the codelength
for the parameters comes out best if the precision δ is of order
1
n or 1√

n
, leading to L(f |m) of approximately dm log n or

dm

2 log n, respectively, for functions in smooth families Fm.
For each function f and data U , one has a two-stage

codelength Ln(f) + log 1/pf (U) corresponding to the bits of
description of f followed by the bits of the Shannon code
for U given f . Then the minimum total two-stage codelength
takes the form

min
f∈F̃

{
log

1
pf (U)

+ Ln(f)
}

.



A minimizer f̂ is called the minimum complexity estimator
for density estimation [11] and it is called the complexity reg-
ularization estimator for regression and classification problems
[4].

Typical behavior of the minimal two stage codelength is
revealed by investigating what happens when the data Un

are distributed according to pf∗(un) for various possible f∗.
Eventually exact discovery occurs when f∗ is in F̃ as shown in
[2], [11], but its complexity, as ultimately revealed by the data,
may be too great for full specification of f∗ to be a suitable
description with moderate sample sizes. It is helpful to have
a notion of a surrogate function f∗n in the list F̃ , appropriate
to the current sample size n, in place of f∗ which is not
necessarily in the countable F̃ . The appropriateness of such
an f∗n is judged by whether it captures expected compression
and estimation properties of the target.

The redundancy rate of the two-stage description is shown
in [11] to be not more than the index of resolvability defined
by

Rn(f∗) = min
f∈F̃

{
1
n

D(PUn|f∗ ||PUn|f ) +
1
n

Ln(f)
}

.

For i.i.d. modeling it takes the form

Rn(f∗) = min
f∈F̃

{
D(f∗, f) +

Ln(f)
n

}
,

capturing the ideal tradeoff in error of approximation of f∗

and the complexity relative to the sample size. The function
f∗n which achieves this minimum is the population counterpart
to the sample-based f̂ . It best resolves the target for the given
sample size. Since f̂ is the sample-based minimizer, one has an
inequality between the pointwise redundancy and a pointwise
version of the resolvability

log
pf∗(U)
pf̂ (U)

+ Ln(f̂) ≤ log
pf∗(U)
pf∗n(U)

+ Ln(f∗n).

The resolvability bound on the expected redundancy is the
result of taking the expectation of this pointwise inequality.

This Rn(f∗) also bounds the statistical risk of f̂ , as we
recall and develop further in Section 2, with a simplified
proof and with extension in Section 3 to uncountable F .
The heart of our statistical analysis is the demonstration that
the loss function we examine is smaller in expectation and
stochastically not much more than the pointwise redundancy.

When F̃ is a union of sets F̃m, the complexities may take
the form L(m, f) = L(m) + L(f |m) for the description of
m followed by the description of f given m. Then there are
actually three-stages with minimum total

min
m

min
f∈F̃m

{
L(m) + L(f |m) + log

1
pf (U)

}
.

The associated minimizer m̂ provides a model selection in
accordance with the MDL principle. Likewise the resolvability
takes the form

Rn(f∗) = min
m

min
f∈F̃m

{
D(f∗, f) +

L(m, f)
n

}
.

The ideal model selection is the choice m∗
n achieving this

minimum, and the performance of the sample based MDL
selection m̂ is captured by the resolvability at m∗

n.
Two-stage codes in parametric families are closely related

to average-case optimal mixture-codes, and their codelengths
achieve similar forms [2]. It is always possible to construct a
mixture of shorter codelength than any two-stage code. Thus,
when it is computationally feasible, it is preferable to use
mixture codes.

Nevertheless, in many estimation settings, it is common to
use a penalized likelihood criterion. We address information-
theoretic and statistical properties of such procedures.

II. RISK AND RESOLVABILITY FOR COUNTABLE F̃
Here we recall risk bounds for penalized likelihood with

a countable F̃ . Henceforth we use base e exponentials and
logarithms to simplify the mathematics (the units for coding
interpretations become nats rather than bits).

For our loss function, we need of another measure of diver-
gence analogous to the Kullback-Leibler divergence. For pairs
of probability distributions P and P̃ on a measurable space,
the Bhattacharyya, Hellinger, Chernoff, Rényi divergence [15],
[30], [25], [56] is given by d(P, P̃ ) = 2 log 1/

∫
(p(u)p̃(u))1/2

where p and p̃, respectively, are the densities of P and P̃ with
respect to a reference measure that dominates the distributions
and with respect to which the integrals are taken. Writing
D(P ||P̃ ) = −2E log(p̃(U)/p(U))1/2 and employing Jensen’s
inequality shows that D(P ||P̃ ) ≥ d(P, P̃ ).

On a sequence space Un, if Pn and P̃n are n-fold products
of the measures P and P̃ , then d(Pn, P̃n) = nd(P, P̃ ) and
D(Pn, P̃n) = nD(P, P̃ ). Analogous to notation used above,
we use dn(f∗, f) to denote the divergence between the joint
distributions PU |f∗ and PU |f , and likewise d(f∗, f) to be the
divergence between the distributions PU1|f∗ and PU1|f .

This divergence is closely connected to familiar distances
such as the L1 distance between the densities and the Hellinger
distance. It upper bounds the square of the L1 distance and
the square of the Hellinger distance with which it is equivalent
as explained below. This d(P, P̃ ), like the squared Hellinger
distance, is locally equivalent to one-half the Kullback-Leibler
divergence when log p(u)/p̃(u) is upper-bounded by a con-
stant. Moreover, it evaluates to familiar quantities in special
cases, e.g., for two normals of mean µ and µ̃ and variance 1,
this d(P, P̃ ) is 1

4 (µ− µ̃)2. The most important reason four our
use of this loss function is that it allows clean examination
of the risk, without putting any conditions on the density
functions pf (u).

The integral used in the divergence is called the Hellinger
affinity A(P, P̃ ) =

∫
p1/2p̃1/2. It is related to the squared

Hellinger distance H2(P, P̃ ) =
∫

(p(u)1/2−p̃(u)1/2)2 by A =
1 − 1

2H2 and hence the divergence d(P, P̃ ) = −2 log A =
−2 log(1− 1

2H2) is not less than H2(P, P̃ ). We let An(f∗, f)
denote the Hellinger affinity between the joint distributions
PU |f∗ and PU |f . Its role in part of our analysis will be as
a normalizer, equaling the expectation of [pf (U)/pf∗(U)]1/2

for each fixed f .



The following result from Johnathan Li’s thesis [46] is a
simplification of a conclusion from [11]. It is also presented
in [43] and in [36]. We repeat it here because it is a stepping
stone for the extensions we give in this paper.

Theorem 2.1: Resolvability bound on risk ([46]). For a
countable F̃ , and Ln(f) = 2Ln(f) satisfying

∑
e−Ln(f) ≤ 1,

let f̂ be the estimator achieving

min
f∈F̃

{
log

1
pf (Un)

+ Ln(f)
}

.

Then, for any target function f∗ and for all sample sizes, the
expected divergence of f̂ from f∗ is bounded by the index of
resolvability

Edn(f∗, f̂) ≤ min
f∈F̃

{Dn(f∗, f) + Ln(f) }.

In particular with i.i.d. modeling, the risk satisfies

Ed(f∗, f̂) ≤ min
f∈F̃

{
D(f∗, f) +

Ln(f)
n

}
.

Proof of Theorem 2.1: We have

2 log
1

An(f∗, f̂)
=

2 log

[
(pf̂ (U)/pf∗(U))1/2e−L(f̂)

An(f∗, f̂)

]
+ log

pf∗(U)
pf̂ (U)

+ Ln(f̂).

Inside the first part on the right side the ratio is evaluated at
f̂ . We replace it by the sum of such ratios over all f ∈ F̃
obtaining the upper bound

2 log
∑
f∈F̃

[
(pf (U)/pf∗(U))1/2e−L(f)

An(f∗, f)

]
+log

pf∗(U)
pf̂ (U)

+Ln(f̂).

Now we take the expected value for U distributed according to
PU |f∗ . For the expectation of the first part, by Jensen, obtain-
ing a further upper bound, we may bring the expectation inside
the log and then bring it also inside the sum. There we note
for each fixed f that E(pf (U)/pf∗(U))1/2 = An(Pf∗ , Pf ),
so there is a cancelation of the ratio. Then all that is left
inside the log is

∑
e−L(f) which by assumption is not more

than 1. Thus the expected value of the first part is bounded
by 0. What then remains is the expectation of the pointwise
redundancy, which being less than the value at f∗n, is bounded
by the index of resolvability, which completes the proof for
the general case. Dividing through by n gives the conclusion
for the i.i.d. case.

If log pf∗(u)/pf (u) ≤ B for all u in U , then by [75],
Lemma 4, we have d(f∗, f) ≤ D(f∗||f) ≤ CB d(f∗, f),
for a constant CB given there that is less than 2 + B.
Consequently, we have the following.

Corollary 2.2: If, in the i.i.d. case, the log density ratios are
bounded by a constant B, that is, if | log pf∗(u)/pf (u)| ≤ B
for all f ∈ F̃ , then there is a constant CB ≤ 2 + B such that
the Kullback risk satisfies

ED(f∗, f̂) ≤ CB min
f∈F̃

{
D(f∗, f) +

Ln(f)
n

}
.

Remarks.
The factor 2 in the penalty is a byproduct of using the

Chernoff-Rényi divergence with parameter 1/2. As in [11],
other multipliers may be used, though the best bound there
occurs with the factor 2. See [79], Thm. 4.1 or [36], Ch. 15,
for analogous bounds for Chernoff-Rényi divergences with
parameter λ between 0 and 1.

Refinements in Li’s thesis deal with the case that the
distribution of the data is not near any of the Pf . He extends
the result to bound the distance of the estimate from a reversed
information projection onto a convex hull of the Pf .

Applications of resolvability bounds on risk for penalized
likelihood are developed in [11], [46], [47], [55],[43], [44],
[72]. Corresponding results for complexity penalized least
squares are developed in [4] with applications and further
extensions in [5], [7], [51], [52], [39].

The proof of Theorem 2.1 here is the same as in Li’s Thesis.
One slight difference is we have pointed out that the expected
redundancy of the two-stage code is also a bound on the risk,
as also noted in [36]. It even more closely relates the risk and
coding notions.

The above proof compares the loss dn(f∗, f̂) with the point-
wise redundancy rn = log pf∗(U)/pf̂ (U)+Ln(f̂) and shows
that the difference has mean bounded by 0. In like manner we
obtain a measure of concentration of this difference.

Theorem 2.3: Tightness of the relationship between loss
and redundancy: The difference between the loss dn(f∗, f̂)
and the pointwise redundancy rn is stochastically less than an
exponential random variable of mean 2.
Proof of Theorem 2.3: As shown in the proof of Theorem
2.1 the difference in question is bounded by

2 log
∑
f∈F̃

[
(pf (U)/pf∗(U))1/2e−L(f)

An(f∗, f)

]
.

The probability that this exceeds any positive τ is bounded
first by dividing through by 2, then exponentiating and using
Markov’s inequality, yielding e−τ/2 times an expectation
shown in the proof of Theorem 2.1 to be not more than 1.
This completes the proof of Theorem 2.3.
Further remarks:

In the i.i.d. case we measure the loss by the individual diver-
gence obtained by dividing through by n. Consequently, in this
case the difference between the loss d(f∗, f̂) and pointwise
redundancy rate is stochastically less than an exponential of
mean 2/n. It is exponentially unlikely (with probability not
more than e−nτ/2) to be greater than any positive τ .

The original bound in [11] also proceeded by a tail proba-
bility calculation, though noticeably more elaborate than given
here. An advantage of that proof is its change of measure from
the one at f∗ to the one at f∗n, showing that the behavior when
f∗ is true can indeed be addressed by the behavior one would
have if one thought of the distribution as being governed by
the f∗n which best resolves f∗ at the given sample size.

In this section we assumed the space F̃ of candidate fits
is countable. From statistics and engineering standpoints, it



is awkward to force a user of this theory to construct a
discretization of his space of functions in order to use our
result. We overcome this difficulty in the next section.

III. RISK AND RESOLVABILITY FOR UNCOUNTABLE F
We come to the main new contributions of the paper.

We consider estimators f̂ that maximize pf (U)e−pen(f) or,
equivalently, that achieve the following minimum:

min
f∈F

{
log

1
pf (U)

+ pen(f)
}

.

Since the log ratio separates, for any target p∗, this sample
minimization is equivalent to the following,

min
f∈F

{
log

p∗(U)
pf (U)

+ pen(f)
}

.

We want to know for proposed penalties pen(f), f ∈ F , when
it will be the case that f̂ has risk controlled by the population-
based counterpart:

min
f∈F

{
E log

p∗(U)
pf (U)

+ pen(f)
}

,

where the expectation is with respect to p∗(U). One may
specialize to p∗ = pf∗ in the family. In general, it need not be
a member of the family {pf : f ∈ F}, though such a bound is
only useful when the target is approximated by such densities.

There are two related aspects to the question of whether
such a bound holds. One concerns whether the optimal sample
quantities suitably mirror the population quantities even for
such possibly larger F , and the other is to capture what is
essential for the penalty.

A quantity that may be considered in examining this matter
is the discrepancy between sample and population values,
defined by,

log
p∗(U)
pf (U)

− E log
p∗(U)
pf (U)

.

Perhaps it is ideally centered, yielding mean 0 when defined
in this way, with subtraction of the Kullback divergence.
However, control of this discrepancy to produce bounds on
Kullback risk (using, e.g., Bernstein-type bounds), would
require conditions relating the variance of the log density
ratios to the expected log ratio. Though such development is
possible, e.g., if the log densities ratios are bounded, it is not
as clean an approach as what follows.

Instead, we use the following discrepancy which is of
similar spirit to the above and easier to control in the desired
manner,

log
p∗(U)
pf (U)

− 2 log
1

E(pf (U)/p∗(U))1/2
.

This discrepancy does not subtract off as large a value, so it
is not mean centered, but that is not an obstacle if we are
willing to use the Hellinger risk, as the control needed of the
discrepancy is one-sided in character. No moment condition is
needed working with the expected square-roots that give the
Hellinger affinities, which are automatically bounded by 1.

In Theorem 2.1, the penalty L(f) is used to show that if
added to the discrepancy, then uniformly for f in the countable
F̃ (i.e., even with a data-based f̂ in place of a fixed f ) we have
that the expectation of the penalized discrepancy is positive.

This leads us to consider, in the uncountable case, penalties
which exhibit a similar discrepancy control. We say that
a collection F with a penalty pen(f) for f ∈ F has a
variable–complexity variable–discrepancy cover suitable for
p∗ if there exists a countable F̃ and L(f̃) = 2L(f̃) satisfying∑

f̃ e−L(f̃) ≤ 1, such that the following condition (∗) holds
for all U :

inf
f̃∈F̃

{
log

p∗(U)
pf̃ (U)

− 2 log
1

E(pf̃ (U)/p∗(U))1/2
+ L(f̃)

}
≤

inf
f∈F

{
log

p∗(U)
pf (U)

− 2 log
1

E(pf (U)/p∗(U))1/2
+ pen(f)

}
.

(∗)
This condition captures the aim that the penalty in the uncount-
able case mirrors an information-theoretically valid penalty in
the countable case. The above condition will give what we
want because the minimum over the countable f̃ is shown to
have non-negative expectation and so the minimum over all f
in F will also.

Equivalent to condition (∗) is that there be a F̃ and L(f̃)
with

∑
e−L(f̃) ≤ 1 such that for f in F the penalty satisfies

pen(f) ≥

min
f̃∈F̃

{
log

pf (U)
pf̃ (U)

− 2 log
E(pf (U)/p∗(U))1/2

E(pf̃ (U)/p∗(U))1/2
+ 2L(f̃)

}
.

That is, the penalty exceeds the minimum complexity plus
discrepancy difference. The log ratios separate so the mini-
mizing f̃ does not depend on f . Nevertheless, the following
characterization (∗∗) is convenient. For each f in F there is
an associated representor f̃ in F̃ for which

pen(f) ≥ { log
pf (U)
pf̃ (U)

−2 log
E(pf (U)/p∗(U))1/2

E(pf̃ (U)/p∗(U))1/2
+2L(f̃) }.

(∗∗)
The idea is that if f̃ is close to f then the discrepancy
difference is small. Then the complexity of such f̃ along
with the discrepancy difference assesses whether a penalty
pen(f) is suitable. The minimizer in F̃ depends on the data
and accordingly we allow the representor f̃ of f to also have
such dependence. With this freedom, in cases of interest, the
variable complexity cover condition indeed holds for all U ,
though it would suffice for our purposes that (*) hold in
expectation.

One strategy to verify the condition would be to create a
metric-based cover of F with a metric chosen such that for
each f and its representor f̃ one has | log pf (U)/pf̃ (U)| plus
the difference in the divergences arranged if possible to be less
than a distance between f and f̃ . Some examples where this
can be done are in [11]. Such covers give a metric entropy
flavor, though the L(f̃) provides variable complexity rather
than the fixed log-cardinality of metric entropy. The present



theory and applications show such covering by metric balls is
not an essential ingredient.

Condition (∗∗) specifies that there be a cover with variable
distortion plus complexity rather than a fixed distance and
fixed cardinality. This is analogous to the distortion plus rate
tradeoff in Shannon’s rate-distortion theory. In our treatment,
the distortion is the discrepancy difference (which does not
need to be a metric), the codebook is the cover F̃ , the
codelengths are the complexities L(f̃). Valid penalties pen(f)
exceed the minimal sum of distortion plus complexity.

Our main theorem, generalizing Theorem 2.1 to the case of
uncountable F , is the following.

Theorem 3.1: Consider F and penn(f) satisfying the dis-
crepancy plus complexity requirement (∗) and the estimator f̂
achieving the optimum penalized likelihood

min
f∈F

{
log

1
pf (U)

+ penn(f)
}

.

If the data U are distributed according to PU |f∗ , then

Edn(f∗, f̂) ≤ min
f∈F

{
E log

pf∗(U)
pf (U)

+ penn(f)
}

.

In particular, for i.i.d. modeling,

Ed(f∗, f̂) ≤ min
f∈F

{
D(f∗, f) +

penn(f)
n

}
.

Proof of Theorem 3.1. From the characterization (∗∗), at
f = f̂ in F there is an associated f̃ in F̃ for which

2 log
1

An(Pf∗ , Pf̂ )
≤

2 log

[
(pf̃ (U)/pf∗(U))1/2e−L(f̃)

An(Pf∗ , Pf̃ )

]
+

[
log

pf∗(U)
pf̂ (U)

+ pen(f̂)

]
.

The first part of the right side has expectation not more than
0 by the same analysis as in Theorem 2.1 (replacing the ratio
inside the log, which is there evaluated at a random f̃ , by its
sum over all of F̃ and bringing the expectation inside the log
by Jensen’s inequality). The expectation of the second part
is an expected minimum which is bounded by the minimum
expectation. This completes the proof.

In like manner we have the following.
Corollary 3.2: For F and penn(f) satisfying the discrep-

ancy plus complexity requirement, the difference between
the loss dn(f∗, f̂) and the pointwise redundancy rn =
log pf∗(U)/pf̂ (U) + penn(f̂) is stochastically less than an
exponential random variable of mean 2.
Proof of Corollary 3.2. An interpretation of this assertion
is that at a particular f = f̂ the penalized discrepancy
log pf∗(U)/pf (U)− 2 log 1/An(f∗, f) + penn(f) is stochas-
tically greater than −Z where Z is an exponential random
variable of mean 2. The requirement on the penalty enforces
that uniformly in F this penalized discrepancy exceeds a min-
imum complexity penalized discrepancy from the countable
class case, which as in the proof of Theorem 2.2 is already

seen to be stochastically greater than such a random variable.
This completes the proof.
Remark: Consider the case that f models the log density
function of independent random variables X1, . . . , Xn, in the
sense that for some reference density p0(x) we have

pf (x) =
p0(x) e f(x)

cf

where cf is the normalizing constant. Examining the difference
in discrepancies at f and a representing f̃ we see that both
p0(x) and cf cancel out. What remains for our penalty
requirement is that for each f in F there is a f̃ in a countable
F̃ with complexities L(f̃) for which

pen(f) ≥

2L(f̃)+
n∑

i=1

(f(Xi)−f̃(Xi))+2n log E exp{ 1
2 (f̃(X)−f(X))}

where the expectation is with respect to a distribution for X
constructed to have density which is the normalized pointwise
affinity pa(x) = [pf∗(x)pf (x)]1/2/A(f∗, f).

In the final section we illustrate how to demonstrate the
existence of such representors f̃ using an `1 penalty on
coefficients in representation of f in the linear span of a
dictionary of candidate basis functions.

IV. INFORMATION-THEORETIC VALIDITY OF `1 PENALTY

Let F be the linear span of a dictionary H of functions.
Thus any f in F is of the form f(x) = fθ(x) =

∑
h θhh(x)

where the coefficients are denoted θ = (θh : h ∈ H). We
assume that the functions in the dictionary are bounded. We
want to show that a weighted `1 norm of the coefficients
||θ||1 =

∑
h |θh|ah can be used to formulate a valid penalty.

Here we use the weights ah = ‖h‖∞. For f in F we denote
Vf = min{‖θ‖1 : fθ = f}. With the definition of Vf further
extended to a closure of F , this Vf is called the variation of
f with respect to H. We will show that certain multiples of
Vf are valid penalties.

The dictionary H is a finite set of p candidate terms,
typically much larger than the sample size. As we shall see,
the codelengths of our representors will arise via a variable
number of terms times the log cardinality of the dictionary.
Accordingly, for sensible risk bounds, it is only the logarithm
of p, and not p itself, that we need to be small compared to
the sample size n.

A valid penalty will be seen to be a multiple of Vf ,
by arranging the number of terms in the representor to be
proportional to Vf and by showing that a representor with
that many terms suitably controls the discrepancy difference.
We proceed now to give the specifics.

The countable set F̃ of representors is taken to be the set
of all functions of the form f̃(x) = V 1

K

∑K
k=1 hk(x)/ahk

for terms hk in H ∪ −H ∪ {0}, where the number of terms
K is in {1, 2, . . .} and the nonnegative multipliers V will be
determined from K in a manner we will specify later. We let



p be the cardinality of H ∪−H ∪ {0}, allowing for h or −h
or 0 to be a term in f̃ for each h in H.

The main part of the codelength L(f̃) is K log p nats to
describe the choices of h1, . . . , hK . The other part is for the
description of K and it is negligible in comparison, but to
include it simply, we may use a possibly crude codelength
for the integer K such as K log 2. Adding these contributions
of K log 2 for the description of K and of K log p for the
description of f̃ given K, we have

L(f̃) = K log(2p).

To establish existence of a representor f̃ of f with the de-
sired properties, we put a distribution on choices of h1, . . . , hK

in which each is selected independently, where hk is h with
probability |θh|ah/V (with a sign flip if θh is negative). Here
K = Kf = dVf/δe is set to equal Vf/δ rounded up to the
nearest integer, where Vf =

∑
h |θh|ah, where a small value

for δ will be specified later. Moreover, we set V = Kδ, which
is Vf rounded up to the nearest point in a grid of spacings δ.
When Vf is strictly less than V there is leftover an event of
probability 1− Vf/V in which hk is set to 0.

As f varies, so does the complexity of its representors. Yet
for any one f , with K = Kf , each of the possibilities for
the terms hk produces a possible representor f̃ with the same
complexity Kf log 2p.

The key property of our random choice of f̃(x) representing
f(x) is that, for each x, it is a sample average of i.i.d. choices
V hk(x)/ahk

. Each of these terms has expectation f(x) and
variance V

∑
h |θh|h2(x)/ah − f2(x) not more than V 2.

As the sample average of K such independent terms, f̃(x)
has expectation f(x) and variance (1/K) times the variance
given for a single draw. We will also need expectations of
exponentials of f̃(x) which is made possible by the represen-
tation of such an exponential of sums as the product of the
exponentials of the independent summands.

The existence argument proceeds as follows. The quantity
we need to bound to set a valid penalty is the minimum over
F̃ of the complexity-penalized discrepancy difference:

2L(f̃) +
n∑

i=1

(f(Xi)− f̃(Xi)) + 2n log
∫

p(x)e(f̃(x)−f(x))/2

where p(x) = pa(x) is a probability density function as spec-
ified in the preceding section. The minimizing f̃ gives a value
not more than the expectation over random f̃ obtained by the
sample average of randomly selected hk. We condition on the
data X1, . . . Xn. The terms f(Xi) − f̃(Xi) have expectation
0 so it remains to bound the expectation of the log term. It is
less than or equal to the log of the expectation, so we bring
that expectation inside the integral. Then at each x we examine
the expectation of the exponential of 1

2 [f̃(x)− f(x)]. By the
independence and identical distribution of the K summands
that comprise the exponent, the expectation is equal to the Kth
power of the expectation of exp{ 1

2K [V h(x)/ah − f(x)]} for
a randomly drawn h.

We now take advantage of classical bound of Hoeffding,
easily verified by using the series expansion of the exponential.

If T is a random variable with range bounded by B, then
E exp{ 1

K (T − µ)} ≤ exp{ B2

8K2 }.
Let R(x) = maxh h(x)/ah − minh h(x)/ah be the range

of h(x)/ah as h varies for the given x, which is uniformly
bounded by 2. At x given, T = 1

2V h(x)/ah is a random
variable, induced by the random h, having range V

2 R(x).
Then at the given x, using the Hoeffding inequality gives
that the expectation of exp{ 1

2 (f̃(x) − f(x))} is bounded by
exp{ (V R(x))2

32K which is not more than exp{ V 2

8K }.
The expectation of the log of the integral of this exponential

is bounded by V 2

8K or equivalently 1
8V δ. When multiplied by

2n, it yields a discrepancy difference bound of
1
4n V δ,

where V is not more than Vf + δ.
Now twice the complexity plus the discrepancy bound has

size 2K log(2p) + 1
4nVfδ + 1

4nδ2, which, with our choice of
K = dVf/δe not more than Vf/δ +1, shows that a penalty of
the form

penn(f) ≥ λVf + C

is valid as long as λ is at least 2
δ log(2p) + 1

4nδ and C =
2 log(2p) + 1

4nδ2. We set δ = ( 8 log 2p
n )1/2 as it optimizes

the bound on λ producing a critical value λ∗n equal to
(2n log 2p)1/2 and a value of C = 4 log(2p). The presence
of the constant term C in the penalty does not affect the
optimization that produces the penalized likelihood estimator,
that is, the estimator is the same as if we used a pure `1 penalty
equal to λVf . Nevertheless, for application of our theory giving
risk bounds, the C found here is part of our bound.

We summarize the conclusion with the following Theorem.
The setting is as above with the density model pf (x) with
exponent f(x). The estimate is chosen with f in the linear span
of the dictionary H. The data are i.i.d. according to pf∗(x).

Theorem 4.1: The `1 penalized likelihood estimator f̂ = fθ̂
achieving

min
θ

{
log

1
pfθ

(Xn)
+ λn||θ||1

}
,

or, equivalently,

min
f

{
log

1
pf (Xn)

+ λn Vf

}
,

has risk Ed(f∗, f̂) bounded for every sample size by

Rn(f∗) ≤ inf
f∈F

{
D(f∗, f) +

λnVf

n

}
+

4 log 2p

n

provided λn

n ≥
[

2 log(2p)
n

]1/2

.
In particular, if f∗ has finite variation Vf∗ then for all n,

Ed(f∗, f̂) ≤ Rn(f∗) ≤ λnVf∗

n
+

4 log 2p

n
.

Note that the last term 4 log 2p
n , is typically negligible compared

the main term, which is near[
2 log 2p

n

]1/2

Vf∗ .



Not only does this result exhibit [(log p)/n]1/2 as the rate of
convergence, but also it gives clean finite sample bounds.

Even if Vf∗ is finite, the best resolvability can occur
with simpler functions. In fact, until n is large compared to
V 2

f∗ log p, the index of resolvability will favor approximating
functions f∗n with smaller variation.

V. REFINED RESOLVABILITY FOR `1 PENALIZATION

Two directions of refinement of this risk conclusion for `1
penalized log likelihood are presented briefly. Details of these
and other extensions are in the full paper [13].

First, consider infinite dictionaries with a finite metric
dimension property. At a suitable precision of order 1/

√
n,

an L∞ cover of the dictionary has size about nd/2 where d is
the metric dimension of the dictionary. Then analogous con-
clusions obtain with log p replaced by (d/2) log n, so that if f∗

has finite variation with respect to the dictionary then the risk
is of order bounded by [(d log n)/n]1/2. Thus the performance
of the `1 penalized log-likelihood estimator is in agreement
with what was obtained previously for other estimators in
[5], [7], [51], [52], [48], [41], [10]. A noteworthy feature
is that unlike standard derivative-based regularity conditions
which lead to rates that degrade with dimension, the variation
condition with respect to a finite-dimensional dictionary has
rate of statistical risk at least as good as the power 1/2.

Secondly, an improved method of approximation with prob-
abilistic proof originates in Makovoz [49], with a stratified
sampling interpretation in [39]. It yields an improvement in
which V 2/K is replaced by ε2

0V
2/(K − K0) where ε0 is

the distance attained by the best covering of the dictionary of
size K0 <K. It allows a somewhat smaller λn and improved
risk bounds for `1 penalized log-likelihood estimators of order[

d
n log n

d

] 1
2+ 1

2d+2 , which remains near the rate 1/2 when d is
large. This conclusion is in agreement with what is achieved
by other estimators in [76] and it is close to the lower
bound on optimal rates given there. Similar implications for
classification problems using convex hulls of a dictionary are
in [45] and for `1 penalized least squares in [39].

This completes our story of the risk of penalized log
likelihood. Common penalties for functions in uncountable
sets F may be used, such as the `1 norm of the coefficients
of f , which may, at first glance, not look like a complexity
penalty. Nevertheless, variable cover arguments show that the
`1 penalty does have the property we require. For suitable
multipliers λ, the `1 penalized discrepancy exceeds the com-
plexity penalized discrepancy, and hence inherits its clean risk
properties.

VI. A NOTE ON COMPUTATION

Consider a relaxed greedy algorithm in which we succes-
sively optimize the `1 penalized likelihood one term at a time,
optimizing choices of α, β and h in the update

f̂k(x) = (1− α)f̂k−1(x) + βh(x)

for each k = 1, 2, . . .. Our result is that it solves the `1
penalized likelihood optimization, with a guarantee that after

k steps we have a k component mixture within order 1/k
of the optimum. Indeed, one initializes with f̂0(x) = 0 and
v0 = 0. Then for each step k, ones optimizes α, β, and
h to provide the the kth term hk(x). At each iteration one
loops through the dictionary trying each h ∈ H, solving for
the best associated scalars 0 ≤ α ≤ 1 and β ∈ R, and
picks the h that best improves the `1 penalized log-likelihood,
using vk = (1 − α)vk−1 + |β| ahk

as the updated bound on
the variation of f̂k. This is a case of what we call an `1
penalized greedy pursuit. This algorithm solves the penalized
log-likelihood problem, with an explicit guarantee on how
close we are to the optimum after k steps. Indeed, for any
given data set X and for all k ≥ 1,

1
n

[
log

1
pf̂k

(X)
+ λvk

]
≤

inf
f

{
1
n

[
log

1
pf (X)

+ λVf

]
+

2V 2
f

k + 1

}
,

where the infimum is over functions in the linear span of
the dictionary, and the variation corresponds to the weighted
`1 norm ‖θ‖1 =

∑
h∈H |θh|ah, with ah set to be not less

than ‖h‖∞. This inequality shows that f̂k has penalized log-
likelihood within order 1/k of the optimum.

This computation bound for `1 penalized log-likelihood
is developed in the Yale thesis research of one of us, Xi
Luo, adapting some ideas from the corresponding algorithmic
theory for `1 penalized least squares from [39]. The proof of
this computation bound and the risk analysis given above have
aspects in common. So it is insightful to give the proof here.

It is equivalent to show that for each f in the linear span
that

1
n

[
log

pf (Xn)
pf̂k

(Xn)
+ λ(vk − Vf )

]
≤

2V 2
f

k + 1
.

The left side of this desired inequality which we shall call ek

is built from the difference in the criterion values at f̂k and
an arbitrary f . It can be expressed as

ek =
1
n

n∑
i=1

[f(Xi)− f̂k(Xi)] + log
∫

pf (x)ef̂k(x)−f(x)

+ λ[vk − Vf ],

where the integral arising from the ratio of the normalizers for
pf̂k

and pf . Without loss of generality, making H closed under
sign change, we restrict to positive β. This ek is evaluated with
f̂k(x) = (1−α)f̂k−1(x)+βh(x) and vk = (1−α)vk−1+βah,
at the optimized α, β and h, so we have that it is as least as
good as at an arbitrary h with β = αv/ah where v = Vf .
Thus for any h we have that ek is not more than

1
n

n∑
i=1

[f(Xi)− ᾱf̂k−1(Xi)− αh(Xi)/ah] +

log
∫

pf (x)e[ᾱf̂k−1(x)+αvh(x)/ah−f(x)] + ᾱλ[vk−1 − v],



where ᾱ = (1 − α). Now reinterpret the integral us-
ing the expectation of eα[vh(x)/ah−f(x)] with respect to
p(x) = eᾱ[fk−1(x)−f(x)]pf (x)/c, where c is its normaliz-
ing constant. Accordingly, we add and subtract log c =
log

∫
eᾱ[fk−1(x)−f(x)]pf (x) which, by Jensen’s inequality us-

ing ᾱ ≤ 1, is not more than ᾱ log
∫

e[fk−1(x)−f(x)]pf (x).
Recognizing that this last integral is what arises in ek−1 and
distributing f between the terms with coefficients ᾱ and α,
we obtain that ek is not more than

ᾱek+α
1
n

n∑
i=1

[f(Xi)−vh(Xi)/ah]+log
∫

eα[vh(x)/ah−f(x)]p(x).

This inequality holds for all h so it holds in expectation with
a random selection in which each h is drawn with probability
ah|θh|/v where the θh are the coefficients in the representation
f(x) =

∑
h∈H θhh(x) with v =

∑
h |θh|ah = Vf . We

bring this expectation for random h inside the logarithm,
and then inside the integral, obtaining an upper bound by
Jensen’s inequality. For each x and random h the quantities
[vh(x)/ah − f(x)] have mean zero and have range of length
not more than 2v since ah ≥ ‖h‖∞. So by Hoeffding’s mo-
ment generating function bound, the expectation for random
h of eα[vh(x)/ah−f(x)] is not more than eα2v2/2. Thus

ek ≤ (1− α)ek−1 + α2V 2
f

for all 0 ≤ α ≤ 1, and so in particular with α = 2/(k + 1).
Also e0 ≤ 2V 2

f , so by induction

ek ≤
2V 2

f

k + 1
,

which is the desired result.
This computation bound and its regression counterpart in

[39] is related to past relaxed greedy algorithm work (with
λ = 0 in [40], [6], [48], [21], [22], [47], [78], [10]. These
previous results control the number of terms k rather than their
`1 norm. The result stated here for `1 penalized log-likelihood
and in [39] for regression, takes the matter a step further to
show that with suitable positive λ the greedy pursuit algorithm
solves the `1 penalized problem.

This computation analysis fits with our risk results. In
the proof of Theorem 3.1, instead of the exact penalized
likelihood estimator f̂ , substitute its k term greedy fit f̂k, The
computation bound shows that this penalized likelihood ratio
is not more than its corresponding value at any f , with addition
of 2V 2

f /(k + 1). Accordingly, its risk is not more than

Ed(f∗, f̂k) ≤ min
f∈F

{
D(f∗, f) +

λnVf

n
+

2V 2
f

k + 1

}
+

C

n
.

The key step in our results is demonstration of approxima-
tion, computation, or covering properties, by showing that they
hold on the average for certain distributions on the dictionary
of possibilities.
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