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ABSTRACT. We determine, for both countable and uncountable collections of functions, information-
theoretic conditions on a penalty pen(f) such that the optimizer f̂ of the penalized log likelihood
criterion log 1/likelihood(f) + pen(f) has statistical risk not more than the index of resolvability
corresponding to the accuracy of the optimizer of the expected value of the criterion. If F is the lin-
ear span of a dictionary of functions, traditional description-length penalties are based on the number
of non-zero terms of candidate fits (the `0 norm of the coefficients) as we review. We specialize our
general conclusions to show the `1 norm of the coefficients times a suitable multiplier λ is also an
information-theoretically valid penalty.

1. INTRODUCTION

From work in the information theory and statistics communities, there are close connections

between high-quality data compression and accurate statistical estimation. The original Shannon

(1948) code construction and the condition of Kraft characterizing valid codelengths show the cor-

respondence between probability distributions p(data) for data and optimal variable-length binary

codes of length essentially log2 1/p(data) bits (see, e.g., Cover and Thomas 2007). The devel-

opment of universal data compression and, in particular, the minimum description-length (MDL)

principle has built this correspondence further to deal with the case of distributions pf (data) that

depend on an unknown function f believed to belong to a family F which may be given parametri-

cally (see, Barron, Rissanen and Yu 1998 or Grünwald 2007 and work cited therein). The function

f may provide a density or log-density function (for instance we may have pf (x) = p0(x)ef(x)/cf

where p0 is a reference distribution and cf is a normalizing constant), or, in the case that the data

consists of pairs of inputs X and outputs Y , the function f(x) may refer to a regression function,

classification function, Poisson intensity function, etc. that captures an essential aspect of the con-

ditional distribution of Y given X . Starting from a discussion of coding redundancy, we analyze

statistical risk of estimation, capturing its relationship to the accuracy of approximation and the

level of complexity of functions f in F , to contribute to a general theory of penalized likelihood.
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Ideal procedures adapt to the complexity revealed by the data. Results for mixture-based and

prediction-based procedures are discussed and new results are presented for procedures that opti-

mize penalized likelihood. Penalties pen(f) are typically related to parameter dimension or to func-

tion irregularity. We develop means to determine when such penalties capture information-theoretic

complexity to provide for quality compression and accurate function estimation.

An index of resolvability, the optimum sum of relative entropy approximation error and penalty

relative to the sample size, is used to capture the performance of these procedures. It upper bounds

the statistical risk as does a related expression involving an expected redundancy of data com-

pression. These resolvability and redundancy bounds on risk have been developed for penalized

likelihood restricted to a countable set of functions which discretizes F , with complexity penalty

pen(f) = L(f) equal to an information-theoretic codelength for f (Barron and Cover 1991, Barron

1990, Li 1999, Kolaczyk and Nowak 2004,2005, and Grünwald 2007). The estimator is inter-

pretable as a maximizing posterior probability with L(f) equal to the log reciprocal prior prob-

ability of f . Without restriction to a countable class, resolvability bounds on risk of penalized

likelihood estimators have been developed for functions in finite-dimensional families with penalty

proportional to the dimension (Yang and Barron 1998, Barron, Birgé and Massart 1999). Moreover,

resolvability bounds on risk of Bayes predictive density estimators have been developed as will

be discussed below. The present paper gives a simple and natural method to extend the previous

information-theoretic bounds for penalized likelihood from the countable to uncountable F case.

Early advocates of penalized likelihood estimation with penalty on the roughness (or irregularity)

of the density include Good and Gaskins (1971), de Montricher, Tapia and Thompson (1975), and

Silverman (1982). Reproducing kernel Hilbert space penalties are championed in Wahba (1990).

Statistical rate results for quadratic penalties in Hilbert space settings corresponding to weighted

`2 norms on coefficients in function expansions (including Sobolev-type penalties equal to squared

L2 norms of derivatives) are developed in Cox and O’Sullivan (1990) based on functional analysis

tools. Later developments in this direction are in Cucker and Smale (2001). Empirical process

techniques built around metric entropy calculations yield rate results for penalties designed for a

wide variety of function classes in Shen (1998). Related theory for constrained maximum likelihood

in nonparametric settings is in Nemirovski, Polyak and Tysbakov (1985) and for minimum contrast

estimators and sieves in Birgé and Massart (1993,1998).

The use of `1 penalization of log-likelihoods is a currently popular approach, see Park and Hastie

(2007). The penalty is applied to coefficients in linear models for f , coinciding with a generalized
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linear model pf (u) for the data, where the terms of the linear model are members of a dictionary of

candidates. For special cases, see Koh, Kim and Boyd (2007), Banerjee, Ghaoui and d’Aspermont

(2007), Friedman, Hastie and Tibshirani (2007b), or Zhang, Wahba et al (2005). That work has fo-

cussed on algorithmic development, related to work for penalized least squares in Tibshirani’s 1996

Lasso, Chen and Donoho’s 1994,1999 basis pursuit, the LARS algorithm (Efron et al 2004), coor-

dinate algorithms (Friedman et al 2007a) and relaxed greedy algorithms (Jones 1992, Barron 1993,

Lee, Bartlett and Williamson 1996, Barron and Cheang 2001, Zhang 2003, and Barron, Cohen, et

al 2008). A new algorithmic result is established at the end of this paper.

Recently there is activity to analyze risk of `1 penalized procedures. Some of it, requiring restric-

tions on the correlation of dictionary members, focusses on whether the procedure performs as well

as the best subset selection rule, as in the work on `1 penalized least squares regression in Bunea,

Tsybakov and Wegkamp (2006,2007a), on `1 penalized empirical L2 criteria for density estimation

in Bunea, Tsybakov and Wegkamp (2007b), and `1 penalized logistic regression in Meier, van de

Geer and Bühlmann (2008). For general dictionaries without correlation conditions, it is natural to

ask whether an `1 penalized criterion performs as well as the best tradeoff between approximation

error and `1 norm of coefficients. This is examined for `1 penalized least squares in manuscripts

by Zhang (2007) and by Huang, Cheang and Barron (2008) and for `1 penalized likelihood in the

present paper. Risk bounds for penalized likelihood should capture the corresponding tradeoff of

Kullback-Leibler approximation error and the penalty, as is available for Bayes predictive estima-

tors. This motivates our analysis of the risk of penalized likelihood estimators and demonstration

that the `1 penalty satisfies the information-theoretic requirements for the results we seek.

Extending information-theoretic risk results to penalized likelihood with an uncountable family

F , the main tool developed in Section 3 is that of a variable-complexity cover. Such covers allow

for variable penalty levels. The distortion used in measuring closeness to the cover is based on

discrepancies between log-likelihood and its theoretical analog rather than based on the metrics of

traditional metric entropy. In brief, a valid penalty pen(f) is one for which for each f in F there is

a representer in the cover for which pen(f) is not less than its complexity plus distortion.

The theory is simplified compared to alternatives that would glue together bounds for subclasses

with their separate metric entropy (fixed complexity) covering properties. Indeed, it is not necessary

to organizeF to come from a list of function subclasses. Nevertheless, to relate to past work, various

subclasses Fs may arise, corresponding to functions of various regularity s, quantified by number

of derivatives or by weighted norms of coefficients in function expansions.
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Often F is arranged as a union of families Fm of functions of similar characteristics, e.g., para-

metric families Fm = {fθ,m : θ ∈ Rdm} of given parameter dimension dm. For instance, consider

linear combinations of a dictionary H of functions. Such fθ(x) =
∑

h∈H θhh(x) are specified

by the coefficients θ = (θh : h ∈ H). The set of linear combinations F is the union of models

Fm for subsets m of H in which the fθ,m(x) =
∑

h∈m θhh(x). These families have dimension

dm = card(m) when the functions in m are linearly independent.

The data are assumed to come from a sample space over which distributions indexed by f are

provided. For our most general statements, other than a measure space, no particular structure need

be assumed for this space. It is traditional to think of data in the form of a finite length string

U = Un = (U1, U2, . . . , Un), consisting of a sequence of outcomes X1, X2, . . . , Xn or outcome

pairs (Xi, Yi)n
i=1. We write U for the sample space and PU |f (or sometimes more briefly Pf if clear

from the context) for the distributions on U . Likewise EU |f or sometimes more briefly Ef denotes

the expected value. When being explicit about sample size, we index by n, as in PUn|f or P
(n)
f .

For lossless data compression, the space U is countable, such as a discretization of an underlying

continuous space, pf (u) is the probability mass function, and q(u), satisfying Kraft’s inequality∑
u∈U q(u) ≤ 1, is a coding distribution with codelengths log2 1/q(u) in bits. Then the pointwise

coding redundancy is log 1/q(u) − log 1/pf (u), the difference between the actual codelength and

the codelength we would have had if f were given. Following past MDL work, we allow continuous

sample spaces and density functions relative to a given reference measure, yet, we refer to the log

density ratio as a redundancy. See Barron (1985) for a limiting code redundancy interpretation of

the absolutely continuous case involving fine discretizations.

Thus our setting is that the distributions PU |f have density functions p(u|f) = pf (u) relative to

a fixed reference measure on U . The likelihood function likelihood(f) is pf (U) at specified data

U . When the sample space is a sequence space the reference measure is assumed to be a product of

measures on the individual spaces. For the special case of i.i.d. modeling, there is a space U for the

individual outcomes with distributions P
(1)
f = Pf and then U is taken to be the product space Un

and PUn|f = Pn
f is taken to be the product measure with joint density pf (un) =

∏n
i=1 pf (ui).

The object of universal data compression and universal modeling in general is the choice of

a single distribution q(u), u ∈ U , such that the redundancy log 1/q(u) − log 1/pf (u) is kept not

larger than need be (measured either pointwise or in expectation over u and either on the average or

in worst case over f ) for functions in each class of interest.
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As discussed in Rissanen (1989), Barron, Rissanen and Yu (1998) and Grünwald (2007), mini-

mum description-length methods choose q in one of several interrelated ways: by Bayes mixtures,

by predictive models, by two-stage codes, or by normalized maximum-likelihood codes. We discuss

some aspects of these with an eye toward redundancy and resolvability bounds on risk.

Our treatment of penalized likelihood gives general information-theoretic penalty formulation

in sections 2 and 3, with risk bounds given for squared Hellinger and related distances, and then

application to `1 penalties in sections 4 and 5. To put these results into an information-theoretic

context, we first review below redundancy and resolvability bounds for mixture models and their

implications for the risk of predictive estimators. These risk bounds are for the stronger Kullback-

Leiber loss. This material shows that tools are already in place for dealing with uncountable families

by mixture models, and their associated predictive interpretations. Then penalized likelihood is

studied because of its familiarity and comparative ease of computation.

1.1. Mixture models. These models for U use a prior distribution w on F leading to a mixture

density q(u) = qw(u) =
∫

pf (u)w(df). For instance with F a union of families Fm, the prior may

be built from a probability w(m) and a distribution onFm for each m. IfFm is given parametrically

the prior may originate on the parameters yielding q(u|m) = qwm(u) =
∫

pfθ,m
(u)w(dθ|m), and

an overall mixture q(u) =
∑

m w(m)q(u|m). A mixture distribution has average case optimal

redundancy, averaging over u according to pf (u) and averaging over functions according to the

prior. These mixture densities are the same objects used in Bayesian model selection and Bayesian

prediction. However, a difference is that with MDL we use data compression thinking to guide the

choice of the prior weights to achieve operationally desirable properties.

We discuss tools for redundancy and resolvability bounds for mixtures and the bounds they yield

on risk. First we recall results for parametric families in which the aim is to uniformly control the

redundancy.

The expected redundancy of the mixture qwm takes the form Ef [log p(U |f)/qwm(U)] which we

recognize as the Kullback-Leibler divergence between the mixture and the target. In a well-studied

problem, initiated in the characterization of communication channel capacity and extended to mini-

max redundancy of universal data compression (Gallager 1968,1974, Davisson 1973, Davisson and

Leon-Garcia 1980, Haussler 1997, Clarke and Barron 1990,1994 and Xie and Barron 1997) the min-

imax procedure yielding the smallest worst case expected redundancy in each Fm corresponds to a
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choice of prior wm yielding the largest minimum average redundancy, interpretable as a maximum

Shannon mutual information I(f ;U), and suitable approximate forms for the optimal wm, called

the least favorable prior or capacity achieving prior, are available in an asymptotic setting. Indeed,

for smooth parametric families with a Fisher information I(θ|m), an asymptotically optimal prior

is proportional to |I(θ|m)|1/2 with a sequence of boundary modifications, and the resulting redun-

dancy behaves asymptotically like dm
2 log n plus a specified constant determined by the logarithm

of the integral of this root Fisher information. There are finite sample bounds of the same form but

with slightly larger constants, from examination of the resolvability of mixtures we come to shortly.

Building on the work of Shtarkov (1987), the theory of pointwise minimax redundancy identi-

fies what is the smallest constant penalty that can be added to log 1/p(U |f̂m), where f̂m = fθ̂,m is

the maximizer of the likelihood, such that the result retains a data-compression interpretation. This

problem has been studied in an asymptotic setting in Rissanen (1996), Barron, Rissanen and Yu

(1998), Takeuchi et al (1997a,1997b,1998,2007), and Xie and Barron (2000). One of the conclu-

sions, in the cases studied there, is that the same value dm
2 log n

2π +log
∫
|I(θ|m)|1/2dθ characterizes

this smallest constant penalty asymptotically. That theory provides data compression justification

for a penalty with main term proportional to the dimension dm. Certain mixture procedures have

asymptotically minimax pointwise redundancy and are shown to be close to the exact optimal nor-

malized maximum likelihood. These mixtures use the same Fisher information based prior with

boundary modification, with an additional modification required for non-exponential family cases,

that puts some small mass on an enlargement of the family. That there are solutions of mixture form

is of interest for our subsequent discussion of predictive distributions.

Choosing weights w(m) to assign to the families can also be addressed from an information-

theoretic standpoint, thinking of log 1/w(m) as a codelength. Indeed, since the MDL parameter

cost, approximately dm
2 log n, is determined by the dimension dm, it is customary to set log 1/w(m)

using the log-cardinality of models of the same dimension (one can not do much better than that for

most such models). For example, for models which correspond to subsets m of size d chosen out

of p candidate terms in a dictionary, the log 1/w(m) can be set to be log
(
p
d

)
, plus a comparatively

small additional description length for the dimension d. Often p is large compared to the sample

size n, while the critical dimensions d which lead to the best resolvability are small compared to

n, so this log 1/w(m) of order dm log p/dm substantially adds to dm
2 log n in the total description

length. Use of dm
2 log n alone is not in accord with the total minimum description length principle

in such cases in which the contribution from log 1/w(m) is comparable or larger.
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1.2. Index of resolvability of mixtures. We now come to a bound on expected redundancy of

mixtures developed in Barron (1998), which is shown to bound an associated statistical risk. Recall

the Kullback divergence D(PU ||QU ) = E log p(U)/q(U) is the total expected redundancy if data

U are described using q(u) but the governing measure has a density p(u). Suppose this density

has the form pf∗(u), sometimes abbreviated p∗(u). A tool in the examination of the redundancy is

Dn(f∗, f) = D(PU |f∗ ||PU |f ) which measures how well f approximates a hypothetical f∗. In the

i.i.d. modeling case this divergence takes the form Dn(f∗, f) = nD(f∗, f) where D(f∗, f) is the

divergence between the single observation distributions D(Pf∗ ||Pf ). It is an important characteris-

tic of mixtures that the divergence of a mixture from a product measure is considerably smaller than

the order n divergence between pairs of distributions in the family.

Indeed, the resolvability bound on expected redundancy of mixtures is given as follows. Let the

distribution QU be a general mixture with density q(u) =
∫

p(u|f)W (df) formed from a prior W .

Let B be any measurable subset of functions in F . Then, as in Barron (1998), by restriction of the

integral to B followed by Jensen’s inequality, the redundancy of the mixture Q is bounded by the

sum of the maximum divergence of distributions in B from the target f∗ and the log reciprocal prior

probability of B, and thus, minimizing over any collection of such subsets B,

D(PU |f∗ ||QU ) ≤ min
B

{
max
f∈B

Dn(f∗, f) + log
1

W (B)

}
.

In i.i.d. modeling, we divide by n to obtain the following redundancy rate bound. This shows the

redundancy of mixture codes controlled by an index of resolvability, expressing the tradeoff between

the accuracy of approximating sets and their log prior probability relative to the sample size,

(1/n)D(PUn|f∗ ||QUn
) ≤ min

B

{
max
f∈B

D(f∗, f) +
log 1/W (B)

n

}
.

When the B = {f} are singleton sets, the right side is the same as the index of resolvability

given in Barron and Cover (1991), used there for two-stage codes, as will be discussed further.

The optimal sets for the resolvability bound for mixture codes take the form of Kullback balls

Br,f∗ = {f : D(f∗, f) ≤ r2}, yielding

(1/n)D(PUn|f∗ ||QUn
) ≤ min

r≥0

{
r2 +

log 1/W (Br,f∗)
n

}
.

As illustrated in Barron (1998) with suitable choices of prior, it provides the usual (dm/2)(log n)/n

behavior of redundancy rate in finite-dimensional families, and rates of the form (1/n)ρ for positive

ρ < 1 for various infinite-dimensional families of functions. Similar characterization arises from

a stronger Bayes resolvability bound D(PU |f∗ ||QU ) ≤ − log
∫

e−Dn(f∗,f)W (df) as developed in

Barron (1988,1998), Haussler and Barron (1993), and Zhang (2006).
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1.3. Implications for predictive risk. For predictive models the data are presumed to arise in

a sequence UN = (Un)N
n=1 and the joint distribution q(UN ) (for universal modeling or coding)

is formed by gluing together predictive distributions q(un|un−1), that is, by multiplying together

these conditional densities for n = 1, 2, . . . , N . In the i.i.d. modeling case, given f , the density for

Un given the past is p(un|f). Predictive distributions are often created in the form p(un|f̂n−1) by

plugging in an estimate f̂n−1 based on the past un−1 = (ui)n−1
i=1 . Nevertheless, predictive distribu-

tion need not be restricted to be of such a plug-in form. Indeed, averaging with respect to a prior

w, a one-step-ahead predictive redundancy is optimized by a Bayes predictive density q(un|un−1).

The one-step-ahead predictive redundancy is EfD(PUn|f ||QUn|Un−1
), which we recognize to be the

Kullback risk of the predictive density, based on a sample of size n− 1, as an estimate of the target

density p(un|f). Here and in what follows, it is to be understood that if the variables are not i.i.d.

given f , the target becomes the conditional density p(un|un−1, f). The model built by multiplying

the Bayes predictive densities together is the mixture qw(u). Correspondingly, by the chain rule, the

total codelength and its redundancy yield the same values, respectively, as the mixture codelength

and redundancy discussed in (1) above. Indeed, the total redundancy of the predictive model is

D(PUN |f ||QUN
) =

N∑
n=1

EfD(PUn|f ||QUn|Un−1
),

which is the cumulative Kullback risk. Dividing by N we see in particular that the Cesàro average

of the risks of the predictive distributions is bounded by the index of resolvability discussed above.

This chain rule property has been put to use for related conclusions. For example, it is the basis

of the analysis of negligibility of superefficiency in Barron and Hengartner (1998). That work shows

for d-dimensional families that d
2n is the asymptotically efficient level of individual Kullback risk

based on samples of size n. Indeed, summing across sample sizes n = 1, 2, . . . , N , it corresponds to

a total Kullback risk (total redundancy) of d
2 log N , which cannot be improved upon asymptotically

(except in a negligible set of parameters) according to Rissanen’s (1984) award winning result.

The predictive interpretation also plays a critical role for non-finite dimensional families Fs in

identifying the efficient rates of estimation (also in Barron and Hengartner 1998) and in establishing

the minimax rates of estimation (in Yang and Barron 1999 and Haussler and Opper 1997). For these

cases typical individual risk rates are of the form some constant times (1/n)ρ for some positive rate

ρ ≤ 1. At the heart of that analysis, one observes that taking the Cesàro average Kullback risk across

sample sizes up to N recovers the same form (1/N)ρ (albeit with a different constant multiplier).

The idea is that minimax rates for total expected redundancy is somewhat easier to directly analyze

than individual Kullback risk, though they are related by the chain rule given above.
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1.4. Two-stage codes. We turn our attention to models based on two-stage codes, also called

two-part codes. We recall some previous results here, and give in the next sections some simple

generalizations to penalized likelihoods. Two-stage codes were used in the original formulation

of the MDL principle by Rissanen (1978,1983) and in the analysis of Barron and Cover (1991).

One works with a countable set F̃ of possible functions, perhaps obtained by discretization of

the underlying family F . A key ingredient in building the total two-stage description length are

assignments of complexities Ln(f), for f ∈ F , satisfying the Kraft inequality
∑

f∈F 2−Ln(f) ≤ 1,

given the size n of the sample.

These complexities typically have the form of a codelength for the model class m (of the form

L(m) = log 1/w(m) as discussed above), plus a codelength L(f |m) or L(θ|m) for the parameters

that determine the functions in Fm, which may be discretized to a grid of precision δ for each coor-

dinate, each of which is described using about log 1/δ bits. Under, respectively, first or second order

smoothness conditions on how the likelihood depends on the parameters, the codelength for the pa-

rameters comes out best if the precision δ is of order 1
n or 1√

n
, leading to L(f |m) of approximately

dm log n or dm
2 log n, respectively, for functions in smooth families Fm.

We are not forced to always have such growing parameter complexities. Indeed, as suggested

by Cover and developed in Barron (1985) and Barron and Cover (1991), one may consider a more

general notion of parameter complexity inspired by Kolmogorov. That work shows when any com-

putable parameter value govern the data, ultimately a shorter total codelength obtains with it than

for all other competitors and the true parameter value is discovered with probability one. Neverthe-

less, for any coding scheme, in second order smooth families with parameters in Rdm , except for a

null set of Lebesgue measure 0 as shown by Rissanen (1984,1986), the redundancy will not be of

smaller order than dm
2 log n. The implication for parameter coding is that for most parameters the

representor in the code will need to have complexity of order not smaller than dm
2 log n.

For each function f and data U , one has a two-stage codelength Ln(f) + log 1/pf (U) corre-

sponding to the bits of description of f followed by the bits of the Shannon code for U given f .

Then the minimum total two-stage codelength takes the form

min
f∈F̃

{
log

1
pf (U)

+ Ln(f)
}

.

The minimizer f̂ (breaking ties by choosing one of minimal Ln(f)) is called the minimum com-

plexity estimator in the density estimation setting of Barron and Cover (1991) and it is called the

complexity regularization estimator for regression and classification problems in Barron (1990).
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Typical behavior of the minimal two stage codelength is revealed by investigating what happens

when the data Un are distributed according to pf∗(un) for various possible f∗. As we have noted,

eventually exact discovery is possible when f∗ is in F̃ , but its complexity, as will be ultimately

revealed by the data, may be too great for full specification of f∗ to be the suitable description with

moderate sample sizes. It is helpful to have the notion of a surrogate function f∗n in the list F̃ ,

appropriate to the current sample size n, in place of f∗ which is not necessarily in the countable

F̃ . The appropriateness of such an f∗n is judged by whether it captures expected compression and

estimation properties of the target.

The redundancy rate of the two-stage description (defined as 1
n times the expected difference

between the total codelength and the target log 1/pf∗(Un)) is shown in Barron and Cover (1991) to

be not more than the index of resolvability defined by

Rn(f∗) = min
f∈F̃

{
1
n

D(PUn|f∗ ||PUn|f ) +
1
n

Ln(f)
}

.

For i.i.d. modeling it takes the form

Rn(f∗) = min
f∈F̃

{
D(f∗, f) +

Ln(f)
n

}
,

capturing the ideal tradeoff in error of approximation of f∗ and the complexity relative to the sample

size. The function f∗n which achieves this minimum is the population counterpart to the sample-

based f̂ . It best resolves the target for the given sample size. Since f̂ is the sample-based minimizer,

one has an inequality between the pointwise redundancy and a pointwise version of the resolvability

log
pf∗(U)
pf̂ (U)

+ Ln(f̂) ≤ log
pf∗(U)
pf∗n(U)

+ Ln(f∗n).

The resolvability bound on the expected redundancy is recognized as the result of taking the expec-

tation of this pointwise inequality.

This Rn(f∗) also bounds the statistical risk of f̂ , as we recall and develop further in Section 2,

with a simplified proof and with extension in Section 3 to uncountableF . The heart of our statistical

analysis will be the demonstration that the loss function we examine is smaller in expectation and

stochastically not much more than the pointwise redundancy.

Returning to the form of the estimator, we note that when F̃ is a union of sets F̃m, the com-

plexities may take the form L(m, f) = L(m) + L(f |m) for the description of m followed by the

description of f given m. Thus, in fact, though it is customary to refer to two-stage coding, there
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are actually three-stages with minimum total

min
m

min
f∈F̃m

{
L(m) + L(f |m) + log

1
pf (U)

}
.

The associated minimizer m̂ (again breaking ties by choosing the simplest such m) provides a model

selection in accordance with the MDL principle. Likewise the resolvability takes the form

Rn(f∗) = min
m

min
f∈F̃m

{
D(f∗, f) +

L(m, f)
n

}
.

Again the ideal model selection, best resolving the target, is the choice m∗
n achieving the minimum,

and the performance of the sample based MDL selection m̂ is captured by the resolvability provided

by m∗
n.

Two-stage codes in parametric families are closely related to average-case optimal mixture-

codes. Indeed, in second order smooth families of dimension d, Laplace approximation, as in

Barron (1985) or the references to pointwise redundancy given above, shows that log mixture like-

lihood is approximately the maximum log-likelihood minus the log ratio between the square root of

the determinant of empirical total Fisher information and the prior density, plus d
2 log 2π. Two-stage

codes can achieve the same form (although with a slightly suboptimal constant) provided one uses

more elaborate parameter quantizations based on local diagonalization of the Fisher information

with a rectangular grid in the locally transformed parameter space, as explained in Barron (1985),

rather than merely using a rectangular grid in the original parameters. To avoid such complications

and to have exact average-case optimality, when it is computationally feasible, it is preferable to use

mixture models in such smooth families rather than two-stage codes.

Nevertheless, in many estimation settings, it is common to proceed by a penalized likelihood

(or penalized squared error) criterion, and it is the intent of the present paper to address associated

information-theoretic and statistical properties of such procedures.

To recap, we have seen in the minimum description-length principle that there are close connec-

tions between compression and statistical estimation.

The connections of information theory and statistics have additional foundations. While it is

well-known that information-theoretic quantities determine fundamental limits of what is possible

in communications, it is also true that corresponding information-theoretic quantities determine

fundamental limits of what is possible in statistical estimation, as we recall in the next subsection.
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1.5. Information-theoretic determination of minimax rates. In Haussler and Opper (1997) and

Yang and Barron (1999) the problem of minimax rates of function estimation are shown to have an

information-theoretic characterization. Suppose we have a loss function `(f∗, f) which is a squared

metric locally equivalent to Kullback divergence D(f∗, f) (i.e., they agree to within a constant

factor in a suitable subset of the function space), and assume that the data Un = (U1, . . . , Un)

are i.i.d. from pf∗ with an f∗ in a given function class Fs. Here we use the subscript s to remind

ourselves that we are referring to function subclasses that permit control on the quantities of interest

that characterize minimax rates (that is, finite metric entropy or finite capacity). In the language

of information theory the family of distributions (PUn|f , f ∈ Fs) is a channel with inputs f and

outputs Un.

Three quantities are shown to be important in the study of the statistical procedures: these are

the Kolmogorov metric entropy, the Shannon channel capacity, and the minimax risk of Wald’s

statistical decision theory. The metric entropy Hε = Hε(Fs) is defined by

Hε(Fs) = inf
F̃

{
log card(F̃) : inf

f̃∈F̃
`(f, f̃) ≤ ε2, ∀f ∈ Fs

}
,

for which a critical εn = εn(Fs) is one for which ε2n is of the same order as Hεn/n. Shannon’s

channel capacity Cn = Cn(Fs) is

Cn = max
W

I(f ;Un)/n

where the maximum is over distributions W restricted to Fs and I(f ;U) is Shannon’s mutual

information for the channel, equal also to the Bayes average (w.r.t. W ) of the redundancy of the

mixture code. Finally, the minimax risk rn = rn(Fs) is

rn = inf
f̂

sup
f∈Fs

Ef `(f, f̂),

where the infimum is over all estimators based on the sample of size n. Suppose also that we are

not in a finite-dimensional setting (where the metric entropy is order of a multiple of log 1/ε), but

rather we are in an infinite-dimensional setting, where the metric entropy is of order at least (1/ε)γ

for some positive γ. Then from Haussler and Opper (1997) and Yang and Barron (1999), as also

presented by Lafferty (2007), we have the equivalence of these quantities.

Theorem 1.1. The minimax estimation rate equals the channel capacity rate equals the metric

entropy rate at the critical precision. That is,

rn ∼ Cn ∼
Hεn

n
∼ ε2n,

where ∼ means that the two sides agree to within constant factors.
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In modern statistical practice it is rarely the case that one designs an estimator solely around

one function class of bounded metric entropy. Indeed, even if one knew, in advance of seeing

the data, how one wants to characterize regularity of the function (e.g. through a certain norm on

coefficients), one usually does not have advance knowledge of an appropriate size of that norm,

though such knowledge would be required for such metric entropy control. Instead, one creates

an estimate that adapts, that is, it simultaneously gives the right levels of risk for various function

subclasses. Penalized likelihood estimators provide a means by which to achieve such aims.

We say that the countable set F̃ together with its variable complexities provides an adaptive

cover of each of several function subclasses Fs, if for each of the subclasses there is a subset of

functions in F̃ that have complexity bounded by a multiple of Hεn and that cover the subclass

to within precision εn. Then application of the index of resolvability shows that the minimum

complexity estimator is simultaneously minimax rate optimal for each such subclass. In this setting

the role of Theorem 1.1 is to give the lower bounds showing that the achieved rates are indeed best

possible.

As discussed in Yang and Barron (1998,1999), Barron, Birgé and Massart (1999), and Barron,

Cohen, Dahmen and DeVore (2008), such adaptation (sometimes to within log-factors of the right

rates) is shown to come for free for a variety of function classes when the models consist of subsets

of basis functions from suitable dictionaries and the penalties are given by the dimension (times a

log-factor).

The resolvability bounds go beyond such asymptotic rate considerations to give finite sample

performance characterization specific to properties of the target f∗, not required to be tied to the

worst case for functions in various classes.

2. RISK AND RESOLVABILITY FOR COUNTABLE F̃

Here we recall risk bounds for penalized likelihood with a countable F̃ . Henceforth we use

base e exponentials and logarithms to simplify the mathematics (the units for coding interpretations

become nats rather than bits).

In setting our loss function, we will have need of another measure of divergence. Analogous

to the Kullback-Leibler divergence we have already discussed, for pairs of probability distributions
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P and P̃ on a measurable space, we consider the Bhattacharyya, Hellinger, Chernoff, Rényi di-

vergence (Bhattacharyya 1943, Cramér 1946, Chernoff 1952, Rényi 1960) given by d(P, P̃ ) =

2 log 1/
∫

(p(u)p̃(u))1/2 where p and p̃, respectively, are the densities of P and P̃ with respect to

a reference measure that dominates the distributions and with respect to which the integrals are

taken. Writing D(P ||P̃ ) = −2E log(p̃(U)/p(U))1/2 and employing Jensen’s inequality shows

that D(P ||P̃ ) ≥ d(P, P̃ ).

On a sequence space Un, if Pn and P̃n are n-fold products of the measures P and P̃ , then

d(Pn, P̃n) = nd(P, P̃ ) and D(Pn, P̃n) = nD(P, P̃ ). Analogous to notation used above, we use

dn(f∗, f) to denote the divergence between the joint distributions PU |f∗ and PU |f , and likewise

d(f∗, f) to be the divergence between the distributions PU1|f∗ and PU1|f .

We take this divergence to be our loss function in examination of the accuracy of penalized

likelihood estimators. One reason is its close connection to familiar distances such as the L1 distance

between the densities and the Hellinger distance (it upper bounds the square of the L1 distance and

the square of the Hellinger distance with which it is equivalent as explained below). Another is that

d(P, P̃ ), like the squared Hellinger distance, is locally equivalent to one-half the Kullback-Leibler

divergence when log p(u)/p̃(u) is upper-bounded by a constant. Thirdly, it evaluates to familiar

quantities in special cases, e.g., for two normals of mean µ and µ̃ and variance 1, this d(P, P̃ ) is
1
4(µ− µ̃)2. Most important though for our present purposes is the cleanness with which it allows us

to examine the risk, without putting any conditions on the density functions pf (u).

The integral used in the divergence is called the Hellinger affinity A(P, P̃ ) =
∫

p1/2p̃1/2. It is

related to the squared Hellinger distance H2(P, P̃ ) =
∫

(p(u)1/2 − p̃(u)1/2)2 by A = 1 − 1
2H2

and hence the divergence d(P, P̃ ) = −2 log A = −2 log(1 − 1
2H2) is not less than H2(P, P̃ ). In

thinking about the affinity note that it is less than or equal to 1 with equality only when P = P̃ . We

let An(f∗, f) denote the Hellinger affinity between the joint distributions PU |f∗ and PU |f . Its role

in part of our analysis will be as a normalizer, equaling the expectation of [pf (U)/pf∗(U)]1/2 for

each fixed f .

The following result from Jonathan Li’s 1999 Yale thesis is a simplification of a conclusion from

Barron and Cover (1991). It is also presented in Kolaczyk and Nowak (2004) and in Grünwald

(2007). We repeat it here because it is a stepping stone for the extensions we give in this paper.
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Theorem 2.1. Resolvability bound on risk (Li 1999). For a countable F̃ , and Ln(f) = 2Ln(f)

satisfying
∑

e−Ln(f) ≤ 1, let f̂ be the estimator achieving

min
f∈F̃

{
log

1
pf (Un)

+ Ln(f)
}

.

Then, for any target function f∗ and for all sample sizes, the expected divergence of f̂ from f∗ is

bounded by the index of resolvability

Edn(f∗, f̂) ≤ min
f∈F̃

{Dn(f∗, f) + Ln(f) }.

In particular with i.i.d. modeling, the risk satisfies

Ed(f∗, f̂) ≤ min
f∈F̃

{
D(f∗, f) +

Ln(f)
n

}
.

Proof of Theorem 2.1: We have

2 log
1

An(f∗, f̂)
= 2 log

(pf̂ (U)/pf∗(U))1/2e−L(f̂)

An(f∗, f̂)

 + log
pf∗(U)
pf̂ (U)

+ Ln(f̂).

Inside the first part on the right side the ratio is evaluated at f̂ . We replace it by the sum of such

ratios over all f ∈ F̃ obtaining the bound

≤ 2 log
∑
f∈F̃

[
(pf (U)/pf∗(U))1/2e−L(f)

An(f∗, f)

]
+ log

pf∗(U)
pf̂ (U)

+ Ln(f̂).

Now we take the expected value for U distributed according to PU |f∗ . For the expectation of the

first part, by Jensen, obtaining a further upper bound, we may bring the expectation inside the log

and then bring it also inside the sum. There we note for each fixed f that E(pf (U)/pf∗(U))1/2 =

An(Pf∗ , Pf ), so there is a cancelation of the ratio. Then all that is left inside the log is
∑

e−L(f)

which by assumption is not more than 1. Thus the expected value of the first part is bounded by 0.

What then remains is the expectation of the pointwise redundancy, which being less than the value

at f∗n, is bounded by the index of resolvability, which completes the proof for the general case.

Dividing through by n gives the conclusion for the i.i.d. case.

If log pf∗(u)/pf (u) ≤ B for all u in U , then by Yang and Barron (1998), Lemma 4, we have

d(f∗, f) ≤ D(f∗||f) ≤ CB d(f∗, f),

for a constant CB given there that is less than 2 + B. Consequently, we have the following.

Corollary 2.2. If, in the i.i.d. case, the log density ratios are bounded by a constant B, that is, if

| log pf∗(u)/pf (u)| ≤ B for all f ∈ F̃ , then there is a constant CB ≤ 2+B such that the Kullback
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risk satisfies

ED(f∗, f̂) ≤ CB min
f∈F̃

{
D(f∗, f) +

Ln(f)
n

}
.

Remarks.

We comment that the presence of the factor 2 in the penalty L(f) = 2L(f) is a byproduct

of using the Chernoff-Rényi divergence with parameter 1/2. As in the original Barron and Cover

(1991) bound, one may replace the 2 with any multiplier strictly bigger than 1, though the best

bound there occurs with the factor 2. See Zhang (2006, Thm. 4.1) or Grünwald (2007, Ch. 15) for

analogous risk bounds for Chernoff-Rényi divergences with parameter λ between 0 and 1.

Producing an exact minimizer of the complexity penalized estimator can be computationally

difficult, but an approximate minimizer is still amenable to analysis by the above method. For in-

stance in Li (1999) and Li and Barron (2000) a version of a greedy algorithm is given for estimating

densities by sums of m components from a given dictionary of possible component densities (e.g.

Gaussian mixtures). Analysis there shows that with m steps the complexity penalized likelihood is

within order 1/m of the optimum.

Refinements of the risk bound in Li’s thesis deal with the case that the distribution of the data is

not near any of the Pf . In this case he extends the result to bound the distance of the estimate from

a reversed information projection of the distribution onto a convex hull of the Pf .

Some implications of resolvability bounds on risk are discussed in Barron and Cover (1991).

Corresponding results for complexity penalized least squares and other bounded loss functions were

developed in Barron (1990). Applications to neural nets were developed in Barron (1991,1994), pro-

viding risk bounds for estimation of linear combinations of a dictionary, by penalized least squares

with a penalty that incorporates aspects of the `0 and `1 norms of the coefficients, but restricted to a

countable set (that restriction is lifted by Huang, Cheang and Barron (2008) and the developments

we give in the next section). Analogous resolvability bounds for regression and log-density esti-

mation by neural nets in a weakly dependent setting were given in Modha and Masry (1996a,b).

For mixture density estimation (including Gaussian mixtures), direct implications of Theorem 2.1

using resolvability calculations are given in Li (1999) and Li and Barron (2000) and, building in part

on those developments, Rakhlin, Panchenko, and Murherjee (2005) give related risk results using

bounds for Rademacher averages of convex hulls.
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Kolaczyk and Nowak (2004,2005), and Willett and Nowak (2005) give implications of Li’s the-

orem for multiscale wavelet image estimation and Poisson intensity function estimation. In some

of their investigations the data are functions (e.g. of continuous time or location) but the theory

nevertheless applies as they make clear in their settings. Indeed, as we have indicated, the structure

of the data U (other than that there be a dominating measure for the candidate distributions) is not

essential for the validity of the general bounds.

The proof of Theorem 2.1 given here is essentially the same as in Li’s Thesis. One slight differ-

ence is that along the way we have pointed out that the expected redundancy of the two-stage code

is also a bound on the risk. This is also noted by Grünwald (2007) and, as he emphasizes, it even

more closely relates the risk and coding notions. The resolvability form is more useful in obtaining

bounds that exhibit the tradeoff between approximation accuracy and dimension or complexity.

To be specific, the proof of Theorem 2.1 compares the loss dn(f∗, f̂) with the pointwise redun-

dancy rn = log pf∗(U)/pf̂ (U)+Ln(f̂) and shows that the difference is a random variable of mean

bounded by 0. In a similar manner one can obtain a measure of concentration of this difference.

Theorem 2.3. Tightness of the relationship between loss and redundancy: The difference between

the loss dn(f∗, f̂) and the pointwise redundancy rn is stochastically less than an exponential ran-

dom variable of mean 2.

Proof of Theorem 2.3: As shown in the proof of Theorem 2.1 the difference in question is bounded

by

2 log
∑
f∈F̃

[
(pf (U)/pf∗(U))1/2e−L(f)

An(f∗, f)

]
.

The probability that this exceeds any positive τ is bounded first by dividing through by 2, then

exponentiating and using Markov’s inequality, yielding e−τ/2 times an expectation shown in the

proof of Theorem 2.1 to be not more than 1. This completes the proof of Theorem 2.3.

Further remarks:

In the i.i.d. case we measure the loss by the individual divergence obtained by dividing through

by n. Consequently, in this case the difference between the loss d(f∗, f̂) and pointwise redundancy

rate is stochastically less than an exponential of mean 2/n. It is exponentially unlikely (probability

not more than e−nτ/2) to be greater than any positive τ .
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The original bound of Barron and Cover (1991) also proceeded by a tail probability calculation,

though it was noticeably more elaborate than given here. An advantage of that original proof is its

change of measure from the one at f∗ to the one at f∗n, showing that questions about the behavior

when f∗ is true can indeed be resolved by the behavior one would have if one thought of the

distribution as being governed by the f∗n which best resolves f∗ at the given sample size.

Remember that in this section we assumed that the space F̃ of candidate fits is countable. From

both statistics and engineering standpoints, it is awkward to have to force a user of this theory to

construct a discretization of his space of functions in order to use this penalized likelihood result.

We overcome this difficulty in the next section.

3. RISK AND RESOLVABILITY FOR UNCOUNTABLE F

We come to the main new contributions of the paper. We consider estimators f̂ that maximize

pf (U)e−pen(f) or, equivalently, that achieve the following minimum:

min
f∈F

{
log

1
pf (U)

+ pen(f)
}

.

Since the log ratio separates, for any target p∗, this sample minimization is equivalent to the follow-

ing,

min
f∈F

{
log

p∗(U)
pf (U)

+ pen(f)
}

.

We want to know for proposed penalties pen(f), f ∈ F , when it will be the case that f̂ has risk

controlled by the population-based counterpart:

min
f∈F

{
E log

p∗(U)
pf (U)

+ pen(f)
}

,

where the expectation is with respect to p∗(U). One may specialize to p∗ = pf∗ in the family. In

general, it need not be a member of the family {pf : f ∈ F}, though when such a bound holds, it is

only useful when the target is approximated by such densities.

There are two related aspects to the question of whether such a bound holds. One concerns

whether the optimal sample quantities suitably mirror the population quantities even for such pos-

sibly larger F , and the other is to capture what is essential for the penalty.
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A quantity that may be considered in examining this matter is the discrepancy between sample

and population values, defined by,

log
p∗(U)
pf (U)

− E log
p∗(U)
pf (U)

.

Perhaps it is ideally centered, yielding mean 0 when defined in this way, with subtraction of the

Kullback divergence. However, control of this discrepancy, at least by the techniques of which we

are aware, would require control of higher order moments, particularly the variance, which, in order

to produce bounds on Kullback risk (using, e.g., Bernstein-type bounds), would require conditions

relating the variance of the log density ratios to the expected log ratio. Furthermore Bernstein-type

bounds would entail a finite moment generating function of the log-likelihood ratio for generating

function parameters in an open neighborhood of 0. Though such development is possible, e.g., if

the log densities ratios are bounded, it is not as clean an approach as what follows.

Instead, we use the following discrepancy which is of similar spirit to the above and easier to

control in the desired manner,

log
p∗(U)
pf (U)

− 2 log
1

E(pf (U)/p∗(U))1/2
.

This discrepancy does not subtract off as large a value, so it is not mean centered, but that is not

necessarily an obstacle if we are willing to use the Hellinger risk, as the control needed of the dis-

crepancy is one-sided in character. No moment conditions will be needed in this analysis other than

working with the expected square-roots that give the Hellinger affinities, which are automatically

bounded by 1. Note that this expected square root is a value of the moment generating function of

the log-likelihood ratio log pf (U)/p∗(U) and that its logarithm is a value of its cumulant generating

function, but only evaluated at the specific positive value 1/2.

In Theorem 2.1, the penalty L(f) = 2L(f) is used to show that if it is added to the discrepancy,

then uniformly for f in the countable F̃ (i.e. even with a data-based f̂ in place of a fixed f ) we have

that the expectation of the penalized discrepancy is positive.

This leads us to consider, in the uncountable case, penalties which exhibit a similar discrepancy

control. We say that a collection F with a penalty pen(f) for f ∈ F has a variable–complexity

variable–discrepancy cover suitable for p∗ if there exists a countable F̃ and L(f̃) = 2L(f̃) satisfy-

ing
∑

f̃ e−L(f̃) ≤ 1, such that the following condition (∗) holds for all U :

inf
f̃∈F̃

{
log

p∗(U)
pf̃ (U)

− 2 log
1

E(pf̃ (U)/p∗(U))1/2
+ L(f̃)

}
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≤ inf
f∈F

{
log

p∗(U)
pf (U)

− 2 log
1

E(pf (U)/p∗(U))1/2
+ pen(f)

}
. (∗)

This condition captures the aim that the penalty in the uncountable case mirrors an information-

theoretically valid penalty in the countable case. We drop reference to dependence of the penalty on

the sample size, but since the bounds we develop hold for any size data, there is no harm in allowing

any of the quantities involved to change with n. In brief, the above condition will give what we

want because the minimum over the countable f̃ is shown to have non-negative expectation and so

the minimum over all f in F will also.

Equivalent to condition (∗) is that there be a F̃ and L(f̃) with
∑

e−L(f̃) ≤ 1 such that for every

f in F the penalty satisfies

pen(f) ≥ min
f̃∈F̃

{
log

pf (U)
pf̃ (U)

− 2 log
E(pf (U)/p∗(U))1/2

E(pf̃ (U)/p∗(U))1/2
+ 2L(f̃)

}
.

That is, the penalty exceeds the minimum complexity plus discrepancy difference. The log ratios

separate so the minimizing f̃ does not depend on f . Nevertheless, the following characterization

(∗∗) is convenient. For each f in F there is an associated representor f̃ in F̃ for which

pen(f) ≥ { log
pf (U)
pf̃ (U)

− 2 log
E(pf (U)/p∗(U))1/2

E(pf̃ (U)/p∗(U))1/2
+ 2L(f̃) }. (∗∗)

The idea is that if f̃ is close to f then the discrepancy difference is small. Then we use the complex-

ity of such f̃ along with the discrepancy difference to assess whether a penalty pen(f) is suitable.

The countable set F̃ of possible representors is taken to be non-stochastic. Nevertheless, the min-

imizer in F̃ will depend on the data and accordingly we allow the representor f̃ of f to also have

such dependence. With this freedom, in cases of interest, the variable complexity cover condition

indeed holds for all U , though it would suffice for our purposes that (*) hold in expectation.

One strategy to verify the condition would be to create a metric-based cover of F with a metric

chosen such that for each f and its representor f̃ one has | log pf (U)/pf̃ (U)| plus the difference in

the divergences arranged if possible to be less than a distance between f and f̃ . Some examples

where this can be done are in Barron and Cover (1991). Such covers give a metric entropy flavor,

though the L(f̃) provides variable complexity rather than the fixed log-cardinality of metric entropy.

The present theory and applications show such covering by metric balls is not an essential ingredient.

Condition (∗∗) specifies that there be a cover with variable distortion plus complexity rather than

a fixed distance and fixed cardinality. This is analogous to the distortion plus rate tradeoff in Shan-

non’s rate-distortion theory. In our treatment, the distortion is the discrepancy difference (which
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does not need to be a metric), the codebook is the cover F̃ , the codelengths are the complexities

L(f̃). Valid penalties pen(f) exceed the minimal sum of distortion plus complexity.

An alternative perspective on formulation of conditions for penalized likelihood is in Shen

(1998). He begins with an argument that the estimator is likely to have a penalty value in the

set {f : pen(f) ≤ Cpen(f∗)}, with C near 1. Under certain conditions, this set is compact with

metric entropy properties using the Hellinger metric with a bracketing condition, permitting appeal

to uniform large deviation properties of log likelihood ratios from Wong and Shen (1995) (which

do require relationship between the variance and mean of the log-likelihood ratios) and to results on

constrained maximum likelihood in nonparametric classes from Nemirovskii, Polyak and Tsybakov

(1985). Presumably, one could also appeal then to results in Birgé and Massart (1993,1998) on what

they call minimum contrast estimation. In these papers one can indeed see application to various

function classes, including some that go beyond the traditional Sobolev type. However, for that

machinery one inevitably has a number of typically unspecified, possibly large constants that arise

giving a certain asymptotic rate flavor to the conclusions. Unlike Shen’s method, we don’t assume

that the target f∗ must have a finite penalty. What matters is that there be functions f close to f∗

that do. Moreover, in seeking risk bounds of the form inf{D(f∗, f) + pen(f)/n} with constants

equal to 1, we are striving to make the results of practical interest in non-asymptotic settings.

The ideas we develop here have parallels with other empirical measures of loss, such as the av-

erage squared error in regression problems, explored in the concurrently developed paper for which

some of us are coauthors (Huang, Cheang and Barron 2008), building on earlier work with Cheang

originating with his 1998 Yale thesis. In particular, that work does center by subtracting the expected

loss in defining the discrepancies and does force uniform boundedness of the fits so that variances of

the squared errors are proportional to the mean squared errors. The idea of bridging from the count-

able to the uncountable classes by the assumption that the penalty exceeds a complexity penalized

discrepancy difference originates with Cong Huang in this regression work. Its use is simpler here

in dealing with densities, because we use a milder loss function that allow arbitrary densities.

Our main theorem, generalizing Theorem 2.1 to uncountable F , is the following.

Theorem 3.1. Consider F and penn(f) satisfying the discrepancy plus complexity requirement (∗)
and the estimator f̂ achieving the optimum penalized likelihood

min
f∈F

{
log

1
pf (U)

+ penn(f)
}

.
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If the data U are distributed according to PU |f∗ , then

Edn(f∗, f̂) ≤ min
f∈F

{
E log

pf∗(U)
pf (U)

+ penn(f)
}

.

In particular, for i.i.d. modeling,

Ed(f∗, f̂) ≤ min
f∈F

{
D(f∗, f) +

penn(f)
n

}
.

Proof of Theorem 3.1. From the characterization (∗∗), at f = f̂ in F there is an associated f̃ in F̃

for which

2 log
1

An(Pf∗ , Pf̂ )
≤ 2 log

(pf̃ (U)/pf∗(U))1/2e−L(f̃)

An(Pf∗ , Pf̃ )

 +

[
log

pf∗(U)
pf̂ (U)

+ pen(f̂)

]
.

The first part of the right side has expectation not more than 0 by the same analysis as in Theorem

2.1 (replacing the ratio inside the log, which is there evaluated at a random f̃ , by its sum over all of

F̃ and bringing the expectation inside the log by Jensen’s inequality). The expectation of the second

part is an expected minimum which is bounded by the minimum expectation. This completes the

proof.

In like manner we have the following.

Corollary 3.2. For F and penn(f) satisfying the discrepancy-complexity requirement, the differ-

ence between the loss dn(f∗, f̂) and the pointwise redundancy rn = log pf∗(U)/pf̂ (U) + penn(f̂)

is stochastically less than an exponential random variable of mean 2.

Proof of Corollary 3.2. An interpretation of this assertion is that at a particular f = f̂ the penalized

discrepancy log pf∗(U)/pf (U) − 2 log 1/An(f∗, f) + penn(f) is stochastically greater than −Z

where Z is an exponential random variable of mean 2. The requirement on the penalty enforces

that uniformly in F this penalized discrepancy exceeds a minimum complexity penalized discrep-

ancy from the countable class case, which as in the proof of Theorem 2.2 is already seen to be

stochastically greater than such a random variable. This completes the proof.

Remark: We complete this section with a further comment on the tool for verification of the re-

quirement on the penalty. Consider the case that f models the log density function of independent

random variables X1, . . . , Xn, in the sense that for some reference density p0(x) we have

pf (x) =
p0(x) e f(x)

cf
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where cf is the normalizing constant. Examining the difference in discrepancies at f and a repre-

senting f̃ we see that both p0(x) and cf cancel out. What remains for our penalty requirement is

that for each f in F there is a f̃ in a countable F̃ with complexities L(f̃) for which

pen(f) ≥ 2L(f̃) +
n∑

i=1

(f(Xi)− f̃(Xi)) + 2n log E exp
{

1
2(f̃(X)− f(X))

}

where the expectation is with respect to a distribution for X constructed to have density which is

the normalized pointwise affinity pa(x) = [pf∗(x)pf (x)]1/2/A(f∗, f).

In the final section we illustrate how to demonstrate the existence of such representors f̃ using

an `1 penalty on coefficients in representation of f in the linear span of a dictionary of candidate

basis functions.

4. INFORMATION-THEORETIC VALIDITY OF THE `1 PENALTY

Let F be the linear span of a dictionary H of functions. Thus any f in F is of the form f(x) =

fθ(x) =
∑

h θhh(x) where the coefficients are denoted θ = (θh : h ∈ H). We assume that the

functions in the dictionary are bounded. We want to show that a weighted `1 norm of the coefficients

||θ||1 =
∑

h |θh|ah can be used to formulate a valid penalty. In the discussion below we leave the

weights ah free for us to determine what might be the most appropriate. With a little compromise we

will settle upon ah = ‖h‖∞. With f = fθ we denote Vf = ‖θ‖1, with the understanding that when

it happens that there are multiple θ representing the same f one takes Vf = min{‖θ‖1 : fθ = f}.

As suggested by the notion of the total variation which corresponds to the case that H consists of

indicators of half-spaces, with the definition of Vf extended to a closure of F , this Vf is called the

variation of f with respect to H. We will show that certain multiples of Vf are valid penalties.

The dictionary H is a finite set of p candidate terms, typically much larger than the sample size.

(One can also work with an infinite H together with an empirical cover as explored in Section 5.)

As we shall see, the codelengths of our representors will arise via a variable number of terms times

the log cardinality of the dictionary (one could allow variable complexity of members h, but for

simplicity that too will not be explored at this time). Accordingly, for sensible risk bounds, it is

only the logarithm of p, and not p itself, that we need to be small compared to the sample size n.
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A valid penalty will be seen to be a multiple of Vf , by arranging the number of terms in the

representor to be proportional to Vf and by showing that a representor with that many terms suitably

controls the discrepancy difference. We proceed now to give the specifics.

The countable set F̃ of representors is taken to be the set of all functions of the form f̃(x) =

V 1
K

∑K
k=1 hk(x)/ahk

for terms hk in H∪−H∪{0}, where the number of terms K is in {1, 2, . . .}
and the nonnegative multipliers V will be determined from K in a manner we will specify later. We

let p be the cardinality of H ∪−H ∪ {0}, allowing for h or −h or 0 to be a term in f̃ for each h in

H.

The main part of the codelength L(f̃) is K log p nats to describe the choices of h1, . . . , hK . The

other part is for the description of K and it is negligible in comparison, but to include it simply,

we may use a possibly crude codelength for the integer K such as K log 2 (or more standard code-

lengths for integers may be used, e.g, of size slightly larger than log K). Adding these contributions

of K log 2 for the description of K and of K log p for the description of f̃ given K, we have

L(f̃) = K log(2p).

Some shortening of this codelength is possible, taking advantage of the fact that the order of the

terms h1, . . . , hK does not matter and that repeats are allowed, as will be briefly addressed in Section

5. For simplicity we take advantage of the present form linear in K in the current section.

To establish the existence of a representor f̃ of f with the properties we want, we consider a

distribution on choices of h1, h2, . . . , hK in which each is selected independently, where hk is h

with probability |θh|ah/V (with a sign flip if θh is negative). Here K = Kf = dVf/δe is set to

equal Vf/δ rounded up to the nearest integer, where Vf =
∑

h |θh|ah, where a small value for δ will

be specified later. Moreover, we set V = Kδ, which is Vf rounded up to the nearest point in a grid

of spacings δ. When Vf is strictly less than V there is leftover an event of probability 1− Vf/V in

which hk is set to 0.

As f varies, so does the complexity of its representors. Yet for any one f , with K = Kf , each

of the possibilities for the terms hk produces a possible representor f̃ with the same complexity

Kf log 2p.

Now the critical property of our random choice of f̃(x) representing f(x) is that, for each x,

it is a sample average of i.i.d. choices V hk(x)/ahk
. Each of these terms has expectation f(x) and
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variance v(x) = vf (x) given by

V
∑

h

|θh|h2(x)/ah − f2(x)

which is not more than V
∑

h |θh|||h||2∞/ah.

As the sample average of K such independent terms, f̃(x) has expectation f(x) and variance

(1/K) times the variance given for a single draw. We will also need expectations of exponentials

of f̃(x) which is made possible by the representation of such an exponential of sums as the product

of the exponentials of the independent summands.

The existence argument proceeds as follows. The quantity we need to bound to set a valid penalty

is the minimum over F̃ of the complexity-penalized discrepancy difference:

2L(f̃) +
n∑

i=1

(f(Xi)− f̃(Xi)) + 2n log
∫

p(x) exp{1
2(f̃(x)− f(x))}

where p(x) = pa(x) is a probability density function as specified in the preceding section. The

minimizing f̃ gives a value that is not more than the expectation over random f̃ obtained by the

sample average of randomly selected hk. We condition on the data X1, . . . Xn. The terms f(Xi)−
f̃(Xi) have expectation 0 so it remains to bound the expectation of the log term. The expected log

is less than or equal to the log of the expectation and we bring that expectation inside the integral.

So, indeed, at each x we are to examine the expectation of the exponential of 1
2 [f̃(x) − f(x)].

By the independence and identical distribution of the K summands that comprise the exponent,

the expectation is equal to the Kth power of the expectation of exp{ 1
2K [V h(x)/ah − f(x)]} for a

randomly drawn h.

We now take advantage of classical lemmas of Bernstein and Hoeffding, easily verified by using

the series expansion of the exponential. If T is a random variable satisfying the Bernstein moment

condition E|T−µ|m ≤ m!
2 σ2(BERN)m−2 for m ≥ 2, where µ = ET , and σ2 = E|T−µ|2, then for

K > BERN, we have E exp{ 1
K (T −µ)} ≤ exp{ σ2

2K2
1

1−BERN/K }. Here BERN is called the Bernstein

constant. (Classically, the symbol h is used for the Bernstein constant, but we can’t use that here

since h means our random function.) If T has range bounded by B, then the Bernstein constant is

bounded by B. Actually, in the case of bounded range, we have the stronger moment conditions

E|T − µ|m ≤ σ2Bm−2 for m ≥ 2 and E exp{ 1
K (T − µ)} ≤ exp{ σ2

2K2 eB/K} holding for all

positive K. Likewise in this case one has the Hoeffding bound E exp{ 1
K (T − µ)} ≤ exp{ B2

8K2 }.
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Let R(x) = maxh h(x)/ah − minh h(x)/ah be the range of h(x)/ah as h varies for the given

x. Strictly speaking we only need the max and min for h that appear in the linear combination

f(x) =
∑

h θhh(x) we are currently working to represent. For a uniform bound on the range use

2 maxh ||h||∞/ah. Then at the given x, we may use Bernstein’s Lemma with the T = 1
2V h(x)/ah,

a random variable, induced by the random h, having mean 1
2f(x), variance 1

4vf (x) and Bernstein

constant bounded by the range V
2 R(x). This range divided by K is equal to δR(x)/2 in our setting.

Then at the given x, using the Bernstein-like inequality or the Hoeffding inequality gives that the

expectation of exp{1
2(f̃(x)− f(x))} is bounded by exp{v(x)

8K eδR(x)/2} or by exp{ (V R(x))2

32K }.

The next step is to bound 2n times the log of the integral of either of these exponential bounds

with respect to a probability density p(x). This involves the cumulant generating function of the ex-

ponent. In the first case, that is approximately the cumulant generating function for v(x)/8K, which

should be near the mean of v(x)/8K with respect to pa(x). Bringing the integral with respect to

this density inside the sum defining v(x), it would give n
4K [V

∑
h |θh|||h||22/ah − ||f ||22] as the ap-

proximation to the remaining part of the discrepancy difference, where here ||h||22 =
∫

pa(x)h2(x)

is the squared L2(Pa) norm. Recalling that V is near Vf =
∑

h |θh|ah, it suggests via the Cauchy-

Schwartz inequality that the best weights ah would take the form ah = ||h||2. But with pa unknown,

use of ||h||2 in forming the penalty is not feasible. An empirical version with ||h||22 replaced by

(1/n)
∑n

i=1 h2(Xi) may be considered for practical use, though the present theory does not yet

provide means with which to support it.

Instead, we may bound v(x) with V
∑

h |θh|||h||2∞/ah. This is near Vf
∑

h |θh|||h||2∞/ah, with

Vf =
∑

h |θh|ah, which is optimized with the weights ah = ||h||∞. With this choice of weights

our bound on the variance is V Vf . Moreover, conveniently, this choice of ah makes the range

R(x) of h(x)/||h||∞ bounded by 2. We are left then with an upper bound on (v(x)/8K)eδR(x)/2,

and hence an upper bound on its cumulant generating function, given by (VfV/8K)eδ which is
1
8Vfδeδ. Now multiplying by 2n, our bound on the discrepancy difference is 1

4n Vf δeδ. Here one

may alternatively use the Hoeffding bound, noting that the quantity (V R(x))2

32K , now equal to V 2

8K or

equivalently 1
8V δ, when multiplied by 2n yields a discrepancy difference bound of

1
4n V δ,

where V is not more than Vf + δ.

The form of the discrepancy difference bound above is to our liking, because it is proportional

to Vf as desired. Now twice the complexity plus the discrepancy bound has size 2K log(2p) +
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1
4nVfδ + 1

4nδ2, which, with our choice of K = dVf/δe not more than Vf/δ + 1, shows that a

penalty of the form

penn(f) ≥ λVf + C

is valid as long as λ is at least 2
δ log(2p) + 1

4nδ and C = 2 log(2p) + 1
4nδ2. We set δ = (8 log 2p

n )1/2

as it optimizes the bound on λ producing a critical value λ∗n equal to (2n log 2p)1/2 and a value of

C = 4 log(2p). We note that the presence of the constant term C = 4 log(2p) in the penalty does

not affect the optimization that produces the penalized likelihood estimator, that is, the estimator is

the same as if we used a pure `1 penalty equal to λVf . Nevertheless, for application of our theory

giving risk bounds, the C found here is part of our bound.

We summarize the conclusion with the following Theorem. The setting is as above with the

density model pf (x) with exponent f(x). The estimate is chosen with f in the linear span of the

dictionary H. The data are i.i.d. according to pf∗(x).

Theorem 4.1. The `1 penalized likelihood estimator f̂ = fθ̂ achieving

min
θ

{
log

1
pfθ

(Xn)
+ λn||θ||1

}
,

or, equivalently,

min
f

{
log

1
pf (Xn)

+ λn Vf

}
,

has risk Ed(f∗, f̂) bounded for every sample size by

Rn(f∗) ≤ inf
f∈F

{
D(f∗, f) +

λnVf

n

}
+

4 log 2p

n

provided λn
n ≥

[
2 log(2p)

n

]1/2
.

In particular, if f∗ has finite variation Vf∗ then for all n,

Ed(f∗, f̂) ≤ Rn(f∗) ≤
λnVf∗

n
+

4 log 2p

n
.

Note that the last term 4 log 2p
n , is typically negligible compared the main term, which is near[

2 log 2p

n

]1/2

Vf∗ .

Not only does this result exhibit
[

log p
n

]1/2
as the rate of convergence, but also it gives clean finite

sample bounds.
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Even if Vf∗ is finite, the best resolvability can occur with simpler functions. In fact, until n is

large compared to V 2
f∗ log p, the index of resolvability will favor approximating functions f∗n with

smaller variation.

5. REFINED RESOLVABILITY FOR `1 PENALIZED LOG LIKELIHOOD

Three directions of refinement of this risk conclusion for `1 penalized log likelihood are pre-

sented briefly here, using the techniques introduced above. These parallel corresponding refine-

ments for `1 penalized least squares in Huang et al (2008). This section may be skipped by those

who only want the overview and who want to move to the computation results of Section 6. The

present material is for readers who want to see some of the nuances of statistical rates of density

estimation using `1 controls.

One refinement is that a valid codelength bound for f̃ can take the form K log(4emax{p/K, 1})
which is smaller when K > 2e. This leads to an improvement in the risk conclusion in which λ∗n

is as above but with 4emax{p/
√

n, 1} in place of 2p inside the log factor so that the log factor

may be replaced by a constant when p is small, not more than a multiple of
√

n. The idea of this

improvement originates in the setting of Bunea et al (2007a). This improved codelength and risk

conclusion follows directly from the above argument using Huang et al (2008), Lemmas 8.5 and 8.6

so we omit the detail. This refinement does not improve the order of the bound when the dictionary

size p is a larger order power of n.

Secondly, we consider infinite dictionaries with a finite metric dimension property, and show

that a suitable cover of the dictionary has size about nd/2 where d is the metric dimension of the

dictionary. Then analogous conclusions obtain with log p replaced by (d/2) log n, so that if f∗ has

finite variation with respect to the dictionary then the risk is of order bounded by
[

d log n
n

]1/2
. Thus

the performance of the `1 penalized log-likelihood estimator is in agreement with what was obtained

previously for other estimators in Barron (1991,1994), Modha and Masry (1996a,b), Lee, Bartlett,

and Williamson (1996), Juditsky and Nemirovski (2000), Barron, Cohen, Dahmann and Devore

(2008); where a noteworthy feature is that unlike standard derivative-based regularity conditions

which lead to rates that degrade with dimension, the variation condition with respect to a finite-

dimensional dictionary has rate of statistical risk at least as good as the power 1/2.
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To explain, suppose a libraryH has the properties that ‖h‖∞ ≤ b and there are positive constants

c and d such that for each positive ε ≤ b there is a finite L∞ cover H̃ of size Mε ≤ (c/ε)d. Here

the cover property is that for each h in H there is a representor h̃ in H̃ with ‖h − h̃‖∞ ≤ ε.

Then d is called the metric dimension of H. (As shown in Barron (1991,1994) this property holds

for the dictionary of Lipshitz sigmoidal functions in d variables used in single hidden layer neural

networks and related classes of sinusoidal functions; see Barron, Birgé and Massart (1999) for other

examples.) Again with F the linear span of H, functions take the form f(x) =
∑

h∈H θhh(x) in F
and we consider optimization of the `1 penalized log likelihood.

To adapt the above proof, we use the unweighted `1 norm ‖θ‖1 =
∑

h∈H |θh|, multiplying by

b2 in the bound on the v(x) to account ah equal to 1 rather than ‖h‖∞, and let Vf is the infimum

of such ‖θ‖1 among representations satisfying fθ = f . To obtain a representor f̃ , we again draw

h1, . . . , hK independently, with distribution that yields h with probability |θh|/V , with K = Kf

and V as before. The new step is to replace each such hj with its representor h̃j in H̃, which changes

the value of each f̃(x) by at most V ε. Thus the discrepancy studied above
n∑

i=1

(f(Xi)− f̃(Xi)) + 2n log
∫

p(x) exp{1
2(f̃(x)− f(x))}

is increased by at most 2nV ε, while the complexity is the same as before with the cardinality

p replaced by Mε. This yields a complexity penalized discrepancy bound of 2Kf log(2Mε) +
1
4nb2(Vf + δ)δ + 2n(Vf + δ)ε, where the three terms correspond to the three parts of the above

analysis: namely, the complexity, the discrepancy, and the contribution of the cover of the dictionary.

Consequently, we have validity of the penalty penn(f) = λnVf + C, with λn at least λ∗n =
2
δ log(2Mε)+ 1

4nb2δ+2nε and C = 2 log(2Mε)+ 1
4nb2δ2 +2nδε. Setting δ = 1

b

[
8
n log(2Mε)

]1/2

produces the best such λ∗n equal to b [2n log(2Mε)]
1/2 + 2nε. With Mε replaced by the bound

(c/ε)d, to balance the two terms in λ∗n we set ε = b
√

d/n, valid for d ≤ n. Then Mε is within

a constant factor of (n/d)d/2 and we have the desired risk conclusion in a slightly improved form.

Indeed, for any sequence of dictionaries and sample sizes with d/n small, λ∗n
n is near b

[
d
n log n

d

]1/2

and C
n is near 2

[
d
n log n

d

]
. To summarize, with λn not less than this λ∗n for dictionaries of finite

metric dimension, we have the resolvability bound on risk of the `1 penalized likelihood estimator:

Ed(f∗, f̂) ≤ Rn(f∗) ≤ inf
f∈F

{
D(f∗, f) +

λnVf

n

}
+

C

n
.

A feature of this analysis of resolvability of densities is that the constructed variable-complexity

cover F̃ is not data-dependent. This necessitated our appeal to L∞ covering properties of the
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dictionary in constructing the set of representors F̃ . Results for least squares in Lee, Bartlett, and

Williamson (1996) and for penalized least squares in Huang et al (2008) allow for data-dependent

covers (depending on observed and hypothetical input data), and accordingly allow for empirical

L1 or L2 covering properties of the dictionary, thus allowing traditional step sigmoids in the neural

net case. It is not clear whether there is a method to allow data-dependent covers in risk analysis for

density estimation by penalized likelihood.

Thirdly, an improved method of approximation with probabilistic proof originates in the L2 case

in Makovoz (1996), with a stratified sampling interpretation in Huang et al (2008). It yields an

improvement in which V 2/K is replaced by ε2
0V

2/(K −K0) where ε0 is the distance attained by

the best covering of the dictionary of size K0 < K. We find it allows a somewhat smaller λn and

improved risk bounds for `1 penalized log-likelihood estimators of order
[

d
n log n

d

] 1
2
+ 1

2d+2 , which

remains near the rate 1/2 when the dimension d is large. This conclusion is in agreement with what

is achieved by other estimators in Yang and Barron (1999) and close to the lower bound on optimal

rates given there. Similar implications for classification problems using convex hulls of a dictionary

are in Koltchinskii and Panchenko (2005). The refined conclusion for `1 penalized least squares is

given in Huang et al (2008) using empirical L2 covering properties based on Makovoz’s result.

Adapting the stratified sampling argument to `1 penalized log likelihood and the use of L∞ cov-

ering properties proceeds as follows. Partition H into K0 disjoint cells c. Let v(c) ≥
∑

h∈c |θh| and

fc(x) = 1
v(c)

∑
h∈c θhh(x) which decomposes f(x) =

∑
h∈H θhh(x) as f(x) =

∑
c v(c)fc(x).

Consider positive integers K(c). A convenient choice is v(c) = ηK(c) with K(c) = d
∑

h∈c |θh|/η e.
For each cell c draw hc,k, for k = 1, 2, . . . ,K(c), independently with outcome h with probability

θh/v(c) for h in c (and outcome 0 with any leftover probability due to v(c) possibly larger than∑
h∈c |θc|). Form the within cell sample averages fc,K(x) = 1

K(c)

∑K(c)
k=1 hc,k(x) and the random

representor f̃(x) =
∑

c v(c)fc,K(x), which is seen to be an equally weighted average when v(c) is

proportional to K(c). Now with ah = 1 we proceed as in the analysis in the previous section, with

the following exception.

For each x, the expectation, with respect to the distribution of the random terms, of exp{1
2 [f̃(x)−

f(x)]} is again straightforward by the independence of the terms hc,k, but now they are not all

identically distributed. This expectation becomes the product across the cells c of the K(c) power of

the expectation of exp{1
2

v(c)
K(c) [hc,1(x)−fc(x)]}. By the Hoeffding bound each of these expectations

is not more than exp{ 1
32

(
v(c)
K(c)

)2
Rc(x)}, where Rc(x) = maxh∈c h(x) − minh∈c h(x) is the
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range of h(x) for h ∈ c for each x. With midc(x) = [minh∈c(x) + maxh∈c(x)]/2 equal to

the midrange function we recognize that it is the choice of function representing cell c optimizing

maxh∈c |h(x) − midc(x)|, equal to the half-range Rc(x)/2. Then we bound Rc(x) by ‖Rc‖∞ =

2 maxh∈c ‖h−midc‖∞, which is not more than 2ε0 if the partition is arranged to correspond to the

best L∞ cover ofH of size K0. Accordingly, the expectation of 2n log
∫

pa(x) exp{1
2 [f̃(x)−f(x)]}

is not more than 1
4n

∑
c

v(c)2

K(c) ε
2
0. Choosing v(c)/K(c) = η to equal δ/ε0 and V =

∑
c v(c), this is

1
4nV δε0, improving on the previous bound by the presence of the factor ε0.

The other difference with the previous analysis is that with K(c) equal to
∑

h∈c |θh|/η rounded

up to an integer, the sum of these counts over the K0 cells is a total count of K = Kf between Vf/η

and Vf/η + K0. Likewise, V = Kη is between Vf and Vf + K0η, with η = δ/ε0.

So the complexity penalized discrepancy bound is now 2Kf log(2Mε) + 1
4nV δε0 + 2nV ε.

Using the indicated bounds on K and V , and setting δ =
[

8
n log(2Mε)

]1/2, it is not more than

λ∗nVf + C, with λ∗n = ε0 [2n log(2Mε)]
1/2 + 2nε the same as before but with the smaller ε0 in

place of b, which is the source of the improved rate. One sees that a good choice for the relationship

between the precisions is ε = ε0/
√

n, with which C = K0 [4 log(2Mε) + 2nδε/ε0] becomes

C = K0

[
4 log(2Mε) + (8 log(2Mε))1/2

]
, the same order as before but with the multiplication by

K0 ≥ 1. Again the resolvability is inff∈F
{

D(f∗, f) + λ∗nVf

n + C
n

}
, with the improved λ∗n and the

inflated C. In particular, in the finite metric dimension case with K0 of order (1/ε0)d, setting ε0 of

order
[

d
n log n

d

] 1
2d+2 one finds that both λ∗n/n and C/n are of order

[
d
n log n

d

]1
2+

1
2d+2 , providing

the claimed improvement in rate.

This completes our story of the risk of penalized log likelihood. Common penalties for functions

in uncountable sets F may be used, such as the `1 norm of the coefficients of f , which may, at first

glance, not look like a complexity penalty. Nevertheless, variable cover arguments show that the `1

penalty does have the property we require. For suitable multipliers λ, the `1 penalized discrepancy

exceeds the complexity penalized discrepancy, and hence inherits its clean risk properties.

6. A NOTE ON COMPUTATION

Building on past work on relaxed greedy algorithms, we consider successively optimizing the `1

penalized likelihood one term at a time, optimizing choices of α, β and h in the update

f̂k(x) = (1− α)f̂k−1(x) + βh(x)
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for each k = 1, 2, . . .. The result is that it solves the `1 penalized likelihood optimization, with

a guarantee that after k steps we have a k component mixture within order 1/k of the optimum.

Indeed, one initializes with f̂0(x) = 0 and v0 = 0. Then for each step k, ones optimizes α, β, and

h to provide the the kth term hk(x). At each iteration one loops through the dictionary trying each

h ∈ H, solving for the best associated scalars 0 ≤ α ≤ 1 and β ∈ R, and picks the h that best

improves the `1 penalized log-likelihood, using vk = (1− α)vk−1 + |β| ahk
as the updated bound

on the variation of f̂k. This is a case of what we call an `1 penalized greedy pursuit. This algorithm

solves the penalized log-likelihood problem, with an explicit guarantee on how close we are to the

optimum after k steps. Indeed, for any given data set X and for all k ≥ 1,

1
n

[
log

1
pf̂k

(X)
+ λvk

]
≤ inf

f

{
1
n

[
log

1
pf (X)

+ λVf

]
+

2V 2
f

k + 1

}
,

where the infimum is over functions in the linear span of the dictionary, and the variation corre-

sponds to the weighted `1 norm ‖θ‖1 =
∑

h∈H |θh|ah, with ah set to be not less than ‖h‖∞. This

inequality shows that f̂k has penalized log-likelihood within order 1/k of the optimum.

This computation bound for `1 penalized log-likelihood is developed in the Yale Thesis research

of one of us, Xi Luo, adapting some ideas from the corresponding algorithmic theory for `1 pe-

nalized least squares from Huang et al (2008). The proof of this computation bound and the risk

analysis given above have many aspects in common. So it is insightful to give the proof here.

It is equivalent to show for each f in the linear span that

1
n

[
log

pf (Xn)
pf̂k

(Xn)
+ λ(vk − Vf )

]
≤

2V 2
f

k + 1
.

The left side of this desired inequality which we shall call ek is built from the difference in the

criterion values at f̂k and an arbitrary f . It can be expressed as

ek =
1
n

n∑
i=1

[f(Xi)− f̂k(Xi)] + log
∫

pf (x) exp{f̂k(x)− f(x)} + λ[vk − Vf ],

where the integral arising from the ratio of the normalizers for pf̂k
and pf . Without loss of generality,

making H closed under sign change, we restrict to positive β. This ek is evaluated with f̂k(x) =

(1 − α)f̂k−1(x) + βh(x) and vk = (1 − α)vk−1 + βah, at the optimized α, β and h, so we have

that it is as least as good as at an arbitrary h with β = αv/ah where v = Vf . Thus for any h we

have that ek is not more than

1
n

n∑
i=1

[f(Xi)−ᾱf̂k−1(Xi)−αvh(Xi)/ah]+log
∫

pf (x)e[ᾱf̂k−1(x)+αvh(x)/ah−f(x)] + ᾱλ[vk−1−v],
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where ᾱ = (1− α). Reinterpret the integral using the expectation of eα[vh(x)/ah−f(x)] with respect

to p(x) = eᾱ[fk−1(x)−f(x)]pf (x)/c, where c is its normalizing constant. Accordingly, we add and

subtract log c = log
∫

eᾱ[fk−1(x)−f(x)]pf (x) which, by Jensen’s inequality using ᾱ ≤ 1, is not

more than ᾱ log
∫

e[fk−1(x)−f(x)]pf (x). Recognizing that this last integral is what arises in ek−1

and distributing f between the terms with coefficients ᾱ and α, we obtain that ek is not more than

(1− α)ek + α
1
n

n∑
i=1

[f(Xi)− vh(Xi)/ah] + log
∫

eα[vh(x)/ah−f(x)]p(x).

This inequality holds for all h so it holds in expectation with a random selection in which each h

is drawn with probability ah|θh|/v where the θh are the coefficients in the representation f(x) =∑
h∈H θhh(x) with v =

∑
h |θh|ah = Vf . We may bring this expectation for random h inside the

logarithm, and then inside the integral, obtaining an upper bound by Jensen’s inequality. Now for

each x and random h the quantities [vh(x)/ah − f(x)] have mean zero and have range of length

not more than 2v since ah ≥ ‖h‖∞. So by Hoeffding’s moment generating function bound, the

expectation for random h of eα[vh(x)/ah−f(x)] is not more than eα2v2/2. Thus

ek ≤ (1− α)ek−1 + α2V 2
f

for all 0≤α≤1, in particular with α = 2/(k + 1), and e0 ≤ 2V 2
f , so by induction the result holds

ek ≤
2V 2

f

k + 1
.

This computation bound as well as its regression counterpart in Huang, Cheang and Barron

(2008) holds even for λ = 0, which shows its relationship to past relaxed greedy algorithm work

(by Jones 1992, Barron 1993, Lee, Bartlett and Williamson 1996, Cheang 1998, Cheang and Barron

2001, Li and Barron 2000, Zhang 2003 and Barron, Cohen, Dahmen, and DeVore 2008). These

previous results remind us that explicit control on the `1 norm of the estimator is not necessary for

similar conclusions. Instead, one can incorporate a penalty on the the number of terms k rather

than their `1 norm and have fast computations by traditional relaxed greedy pursuit algorithms with

λ = 0. The conclusion in the cited work is that it yields estimators which perform well as captured

by risk bounds based on the best tradeoff between the accuracy of functions in the linear span and

their `1 norm of coefficients. The result stated here for `1 penalized log-likelihood and in Huang

et al (2008) for regression, takes the matter a step further to show that with suitable positive λ the

greedy pursuit algorithm solves the `1 penalized problem.

This computation analysis comfortably fits with our risk results. Indeed, the proof of our main

risk conclusion (Theorem 3.1) involves the penalized likelihood ratio log pf∗ (X)

pf̂ (X) + pen(f̂). Instead

33



of the exact penalized likelihood estimator f̂ , substitute its k term greedy fit f̂k, Then the compu-

tation bound of the current section shows that this penalized likelihood ratio is not more than its

corresponding value at any f , with addition of 2V 2
f /(k + 1). Accordingly, its risk is not more than

Ed(f∗, f̂k) ≤ min
f∈F

{
D(f∗, f) +

λnVf

n
+

2V 2
f

k + 1

}
+

C

n
.

Finally, we note an intrinsic connection between the computation analysis and the information-

theoretic validity of the penalty for statistical risk. Indeed, inspecting the proof of the computation

bound we see that it can be adapted to show that V 2/(K+1) bounds the discrepancy divided by n of

an associated greedily obtained fK , which may be used as a representor of f , rather than the sample

average f̃ used in Section 4. Moreover with prescription of αk and βk, one again can describe

such fK using K log(2p) bits. Accordingly, the same analysis used to demonstrate the computation

bound also demonstrates the information-theoretic validity of the `1 penalty.

The key step in our results is demonstration of approximation, computation, or covering proper-

ties, by showing that they hold on the average for certain distributions on the dictionary of possibili-

ties. As a reviewer notes, as information-theorists we are predisposed to look for opportunity to pro-

vide such an argument by Shannon’s pioneering work. One can see other specific precursors for the

probabilistic proof argument used here. For the purposes of demonstrating information-theoretically

valid penalties for log-likelihood for Rissanen’s MDL criterion, the idea for the probabilistic argu-

ment came in part from its use in the least squares setting, showing approximation bounds by greedy

algorithms, in the line of research initiated by Jones.
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