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Abstract. This paper presents the study of a Bayesian estimation procedure for single-hidden-
layer neural networks using ℓ1 controlled neuron weight vectors. We study the structure of the
posterior density and provide a representation that makes it amenable to rapid sampling via
Markov Chain Monte Carlo (MCMC), and to statistical risk guarantees. Let the neural network
have 𝐾 neurons with internal weights of dimension 𝑑 and fix the outer weights. Thus there are
𝐾𝑑 parameters overall. With 𝑁 data observations, use a gain parameter or inverse temperature
of 𝛽 in the posterior density for the internal weights.

The posterior is intrinsically multimodal and not naturally suited to rapid mixing of dir-
ect MCMC algorithms. For a continuous uniform prior on the ℓ1 ball, we demonstrate that the
posterior density can be written as a mixture density with suitably defined auxiliary random vari-
ables, where the mixture components are log-concave. Furthermore, when the total number of
model parameters 𝐾𝑑 is large enough that 𝐾𝑑 ≥𝐶 (𝛽𝑁)2, the mixing distribution of the auxiliary
random variables is also log-concave. Thus, neuron parameters can be sampled from the pos-
terior by only sampling log-concave densities. The authors refer to the pairing of weights with
such auxiliary random variables as a log-concave coupling.

For a discrete uniform prior restricted to a grid, we study the statistical risk (generalization
error) of procedures based on the posterior. Using an inverse temperature that is a fractional
power of 1/𝑁 namely 𝛽 = 𝐶 [(log 𝑑)/𝑁]1/4, we demonstrate that notions of squared error are on
the 4th root order 𝑂 ( [(log 𝑑)/𝑁]1/4). If one further assumes independent Gaussian data with a
variance 𝜎2 that matches the inverse temperature, 𝛽 = 1/𝜎2, we show that the expected Kullback
divergence decays as an improved cube root power 𝑂 ( [(log 𝑑)/𝑁]1/3).

We extend these risk results to the continuous uniform prior as well. With polynomial time
sampling algorithms for log-concave target densities, this represents a polynomial time training
method for neural networks with statistical risk control.
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1. Introduction

Single-hidden-layer artificial neural networks provide a flexible class of parameterized
functions for data fitting applications. Specifically, denote a single-hidden-layer neural
network as the parameterized function

𝑓𝑤(𝑥) = 𝑓 (𝑤, 𝑥) =
𝐾∑︁
𝑘=1

𝑐𝑘𝜓(𝑤𝑘 · 𝑥), (1.1)

with 𝐾 neurons, activation function 𝜓, and interior weights 𝑤𝑘 ∈ R𝑑 . Fix a positive
scaling 𝑉 and let the exterior weights 𝑐𝑘 be positive or negative values 𝑐𝑘 ∈ {−𝑉

𝐾
, 𝑉
𝐾
}.

Thus, 𝑓𝑤(𝑥) is a convex combination of 𝐾 signed neurons scaled by 𝑉 . Constant and
linear terms 𝑐0 + 𝑤0 · 𝑥 may be added in the definition of 𝑓𝑤(𝑥) to achieve additional
flexibility, though we will not address that matter explicitly.

We are interested in potentially wide networks where K may be large. The study
of deep nets (i.e. multi-layered) nets is a separate topic not addressed in this work, as
we focus on the single-hidden-layer class.

The approximation ability of these networks has been studied for many years,
which we briefly review here. Restrict input vectors 𝑥 ∈ R𝑑 as having bounded entries,
𝑥 ∈ [−1, 1]𝑑 . The early work of [4] showed that moderately wide single-hidden-layer
networks with sigmoid activation functions can accurately approximate target func-
tions with a condition on the Fourier components of the target function. For a sigmoid
activation function and𝐾 neurons, the squared error with the target function was shown
to be on the order of 𝑂 ( 1

𝐾
).

These original results put no restrictions on how large the components of the
internal weight vectors 𝑤𝑘 can be. To facilitate computation, we wish to work only with
weight vectors 𝑤𝑘 with bounded ℓ1 norm, ∥𝑤𝑘 ∥1 ≤ 1. Denote the set of signed neurons
with ℓ1 controlled interior weights as the collection of functions ℎ : [−1, 1]𝑑 → R

Ψ = {ℎ : ℎ(𝑥) = ±𝜓(𝑤 · 𝑥), ∥𝑤∥1 ≤ 1}. (1.2)
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The closed convex hull of Ψ includes functions 𝑓 which can be written as a possibly
infinite mixture of signed neurons, and functions which are the limit of a sequence
of such mixtures. Specializing the results of [3],[4],[26], networks of the form (1.1)
provide accurate approximation for functions 𝑓 with 𝑓

𝑉
in the closure of the convex hull

of Ψ. The infimum of such 𝑉 is called the variation 𝑉 𝑓 of the function 𝑓 with respect
to the dictionary Ψ. In [26] a variant of the condition on the Fourier components of 𝑓
is also given that would allow 𝑓 to have finite variation 𝑉 𝑓 and hence to be accurately
approximated using convex combinations of elements of Ψ scaled by the variation,
with bounded ℓ1 norm on the weights. For target functions 𝑓 of this form and any
probability distribution 𝑃𝑋 on [−1, 1]𝑑 , using a squared ReLU activation function,
there exists a network 𝑓𝑤∗ of the form (1.1) with added constant and linear terms, with
𝐾 neurons with ℓ1 controlled internal weights such that [26]

∥ 𝑓𝑤∗ − 𝑓 ∥2 ≤
𝑉2
𝑓

𝐾
, (1.3)

where ∥ · ∥2 is the 𝐿2(𝑃𝑋) norm.
The approximation with bound (1.3) is an existence result, a useful ingredient in

neural net analysis. Yet, by itself, it does not imply anything about the estimation ability
of training algorithms based on a finite set of 𝑁 data points (𝑥𝑖 , 𝑦𝑖)𝑁𝑖=1 independently
and identically distributed (iid) from a data distribution 𝑃𝑋,𝑌 . Currently, the best known
results show that for a bounded target function | 𝑓 | ≤ 𝑏, finding the set of neuron para-
meters that minimize the empirical squared error,

�̂� = argmin∥𝑤𝑘 ∥1≤1,𝑘∈{1, · · ·𝐾 }

𝑁∑︁
𝑖=1

(𝑦𝑖 − 𝑓𝑤(𝑥𝑖))2, (1.4)

with a network width 𝐾 = 𝑂 ( [𝑁/log(𝑑)]1/2) yields a statistical risk control of the
order [8]

𝐸 [∥ 𝑓�̂� − 𝑓 ∥2] = 𝑂 (
( log(𝑑)

𝑁

) 1
2 ), (1.5)

provided there is sub-Gaussian control of the distribution of the response𝑌 . The expect-
ation here is with respect to the training data, while the norm square provides the
expectation for the loss at an independent new input vector. Analogous deep net con-
clusions are also in [7], [8].

There has been much research to understand theoretically the optimization of neural
networks via gradient based methods [11, 17, 25, 31, 41]. These approaches work by
comparing the network to a certain infinite width limit under initialization and scaling
assumptions (called the neural tangent kernel, NTK) where the network becomes lin-
ear around its initialization point. They also utilize a scaling of 1/

√
𝐾 on their outer
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weights rather than the 1/𝐾 scaling we use. A consequence of this NTK regime is the
internal weights 𝑤𝑘 become random objects not dependent on the data, and then train-
ing the outer weights (which we call 𝑐𝑘) is a linear regression problem. We instead fix
the outer weights 𝑐𝑘 and explicitly train the interior weights 𝑤𝑘 to fit the data.

When choosing network size for favorable statistical risk, we prefer to work with
𝐾 < 𝑁 . Indeed, our later results will show 𝐾 = 𝑂 [(𝑁/log(𝑑))1/4] is an appropriate
size for statistical risk control. Then, even in the single-hidden-layer case, no known
optimization algorithm is able to solve this optimization problem in a polynomial num-
ber of iterations in 𝑁 and 𝑑. Instead, we move away from an optimization approach to
choosing neuron parameters and use a Bayesian method of estimation placing a pos-
terior distribution on neuron parameters. Nevertheless, for statistical risk analysis of
the Bayes estimator, we retain the commonly adopted frequentist statistical learning
framework.

Bayesian neural networks have been studied for many years [12, 19, 37], although
specific mixing time bounds for Markov Chain Monte Carlo (MCMC) to guaran-
tee polynomial time complexity have been a barrier to their implementation. Recent
approaches have studied the simplification of the posterior in the NTK regime, res-
ulting in the posterior being near the posterior associated with a Gaussian process
prior [22, 23]. These approaches require 𝐾/𝑁 → ∞ to achieve that simplification of
the posterior density. The bounded 𝐾/𝑁 setting is shown in [22,23] to be distinct with
potentially more flexible non-Gaussian process behavior. Indeed, such flexibility arises
in our model where the internal weights are adapted by the posterior.

We quantify when sampling can be accomplished in polynomial time using MCMC,
as well as statistical risk guarantees for the resulting posterior distribution. We will not
achieve the optimal square root rate with our Bayesian methods, in fact we will get a
fourth root power in the most general case, but we give up some of the accuracy for
the sake of computational ability. That is, we adopt a sampling problem we can solve
instead of an optimization problem we cannot.

Say we have data consisting of 𝑁 input and response pairs (𝑥𝑖 , 𝑦𝑖)𝑁𝑖=1. Define a prior
distribution 𝑃0 on neuron parameters and a gain or inverse temperature 𝛽 > 0. Define
a sequence of posterior densities trained on subsets of the data 𝑥𝑛, 𝑦𝑛 ≡ (𝑥𝑖 , 𝑦𝑖)𝑛𝑖=1 for
every 𝑛 ≤ 𝑁 by

𝑝𝑛 (𝑤 |𝑥𝑛, 𝑦𝑛) ∝ 𝑝0(𝑤)𝑒−
𝛽

2
∑𝑛
𝑖=1 (𝑦𝑖− 𝑓 (𝑤,𝑥𝑖 ) )2

, (1.6)

and the associated posterior mean at a given 𝑥 value

𝜇𝑛 (𝑥) = 𝐸𝑃𝑛 [ 𝑓 (𝑥, 𝑤) |𝑥𝑛, 𝑦𝑛] . (1.7)
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Define the posterior predictive density as

𝑝𝑛 (𝑦 |𝑥, 𝑥𝑛, 𝑦𝑛) = 𝐸𝑃𝑛 [ 𝑒
− 𝛽2 (𝑦− 𝑓 (𝑥,𝑤) )2√︃

2𝜋 1
𝛽

|𝑥𝑛, 𝑦𝑛] . (1.8)

Define the Cesàro average posterior as the average of the different posteriors,

𝑞avg(𝑤 |𝑥𝑁 , 𝑦𝑁 ) = 1
𝑁 + 1

𝑁∑︁
𝑛=0

𝑝𝑛 (𝑤 |𝑥𝑛, 𝑦𝑛). (1.9)

Also define the Cesàro average of the posterior means and the Cesàro average predictive
density

�̂�(𝑥) = 1
𝑁 + 1

𝑁∑︁
𝑛=0

𝜇𝑛 (𝑥), (1.10)

and

𝑞avg(𝑦 |𝑥, 𝑥𝑁 , 𝑦𝑁 ) = 1
𝑁 + 1

𝑁∑︁
𝑛=0

𝑝𝑛 (𝑦 |𝑥, 𝑥𝑛, 𝑦𝑛). (1.11)

The estimation ability of these posterior densities is measured by their performance
according to a choice of risk control. We consider two classes of risk control: arbitrary
sequence regret and predictive risk control for iid data.

For arbitrary sequence regret, let (𝑥𝑖 , 𝑦𝑖)𝑁𝑖=1 be an arbitrary sequence of inputs and
response values with no assumption on the underlying data relationship between 𝑥𝑖 and
𝑦𝑖 . Consider 𝑔 as an arbitrary competitor function we wish to measure our Bayesian
posteriors against. The average squared error regret is defined as

𝑅
square
𝑁

=
1
𝑁

𝑁∑︁
𝑛=1

1
2
[
(𝑦𝑛 − 𝜇𝑛−1(𝑥𝑛))2 − (𝑦𝑛 − 𝑔(𝑥𝑛))2] . (1.12)

We demonstrate bounds on this regret of the order 𝑂 ( [(log 𝑑)/𝑁]1/4) for a discrete
uniform prior. This bound requires control on the maximum magnitude of the obser-
vations in the sequence max𝑛≤𝑁 |𝑦𝑛 |, as well as a bounded function 𝑔. This is not as
good as the square root bound of optimization, but the posterior means can be com-
puted by sampling, as we demonstrate. As such, for any competitor 𝑔 in the class of
neural networks, including the optimal fit for the data sequence, the sequence of pos-
terior densities achieves average performance arbitrarily close to the competitor if the
data size 𝑁 is sufficiently large relative to log 𝑑.

Another form of risk control relies on further assumptions about the incoming
data. Assume (𝑥𝑖 , 𝑦𝑖)𝑁𝑖=1 come iid from a data distribution 𝑃𝑋,𝑌 with the conditional
mean of 𝑌 being a function 𝐸 [𝑌 |𝑋] = 𝑔(𝑋) and having conditional variance bound
𝜎2. Let 𝑋𝑁+1 = 𝑋 be a new data point independently drawn from the same input data
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distribution. We define our statistical loss function (squared generalization error) as
half the squared error averaged with respect to the distribution of the new 𝑋 ,

∥𝑔 − �̂�∥2 =

∫
1
2
(𝑔(𝑥) − �̂�(𝑥))2𝑃𝑋 (𝑑𝑥). (1.13)

The corresponding notion of statistical risk is half the expected squared error with the
expectation taken with respect to the training data and the new observation,

𝐸 [∥𝑔 − �̂�∥2] . (1.14)

We demonstrate mean squared risk control of the order 𝑂 ( [(log 𝑑)/𝑁]1/4) for a
discrete uniform prior. This bound requires no moment control on 𝑌 higher than the
variance. These regret and risk bounds require a gain 𝛽 of the order𝑂 ( [log(𝑑)/𝑁]1/4),
which is atypical to most Bayesian posterior problems where the 𝛽would not be a value
decaying in 𝑁 but rather a fixed constant. However, in this formulation we do not have
to match the 𝛽 to the inverse variance 1/𝜎2 and we still have the fourth root risk bound.

If we further assume the data is iid Gaussian with𝑌 |𝑋 = 𝑥 having the Normal(𝑔(𝑥),𝜎2)
distribution, and the reciprocal variance of the data matches our gain 𝛽 = 1/𝜎2, we
can give bounds on Kullback risk. For the expected Kullback divergence between the
Cesàro predictive density and the data generating density, we demonstrate a bound of
𝑂 ( [(log 𝑑)/𝑁]1/3) for the discrete uniform prior.

Our statistical risk analysis is first presented for a discrete uniform prior on an ℓ1
controlled grid. This allows explicit control on the number of points in the support of the
distribution, and control of the minimum probability of a single point. Using a coupled
Dirichlet-Multinomial distribution to link the continuous and discrete prior cases, we
are able to extend some of the discrete prior risk results to the desired continuous prior
setting. When the target function has variation not more than the specified V with
respect to the dictionary of neurons (i.e. 𝑓 /𝑉 lives in the closure of the convex hull),
the continuous prior inherits risk control of the same order as the discrete prior for iid
data.

The barrier to implementing the Bayesian approaches defined above is being able
to sample from the densities 𝑝𝑛 (𝑤 |𝑥𝑛, 𝑦𝑛) and thus compute posterior averages 𝜇𝑛 (𝑥)
as well as predictive probabilities 𝑝𝑛 (𝑦 |𝑥, 𝑥𝑛, 𝑦𝑛) which are defined by expectations
with respect to 𝑝𝑛 (𝑤 |𝑥𝑛, 𝑦𝑛). The densities 𝑝𝑛 (𝑤 |𝑥𝑛, 𝑦𝑛) will be high-dimensional and
multi-modal densities with no immediately evident structure that would make sampling
possible.

The neural network model has 𝐾𝑑 parameters and we have 𝑁 data observations. A
natural method to compute the required posterior averages would be a MCMC sampling
algorithm. However, an MCMC method is only useful if it provably gives accurate
sampling in a low polynomial number of iterations in𝐾, 𝑑, 𝑁 . Any exponential depend-
ence on the parameters of the problem is not practically useful.
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The most common sufficient condition for proving rapid mixing of MCMC meth-
ods is log-concavity of the target density [1, 2, 16, 33]. As such, we want to find a
representation of the problem built from log-concave densities, so that we may restrict
our computation task to only require sampling from log-concave densities.

We show that with the use of an auxiliary random variable 𝜉, the posterior densities
𝑝𝑛 (𝑤 |𝑥𝑛, 𝑦𝑛) can be re-written as a mixture density (also called a measure decompos-
ition in the language of [36])

𝑝𝑛 (𝑤 |𝑥𝑛, 𝑦𝑛) =
∫

𝑝𝑛 (𝑤 |𝜉, 𝑥𝑛, 𝑦𝑛)𝑝𝑛 (𝜉 |𝑥𝑛, 𝑦𝑛)𝑑𝜉, (1.15)

using a reverse conditional density 𝑝𝑛 (𝑤 |𝜉) = 𝑝𝑛 (𝑤 |𝜉, 𝑥𝑛, 𝑦𝑛) and an induced marginal
density 𝑝𝑛 (𝜉) = 𝑝𝑛 (𝜉 |𝑥𝑛, 𝑦𝑛). When considering a fixed input and response sequence,
we will drop the 𝑥𝑛 and 𝑦𝑛 conditioning notation. For a certain choice of priors and
relationships between 𝑑, 𝐾, 𝑁, 𝛽, we show the reverse conditional is a log-concave
density, and the induced marginal for 𝜉 is also a log-concave density. We call such a joint
distribution 𝑝𝑛 (𝑤, 𝜉) that preserves the target marginal 𝑝𝑛 (𝑤) and has a log-concave
marginal distribution 𝑝𝑛 (𝜉) and a log-concave conditional distribution 𝑝𝑛 (𝑤 |𝜉) a log-
concave coupling. As such, samples for𝑤 from the posterior can be produced by merely
sampling from log-concave densities: that is, we sample from the density of 𝜉 followed
by sampling from the density of 𝑤 given 𝜉.

For a continuous uniform prior on the ℓ1 ball, we demonstrate the mixture is a log-
concave coupling terms when the total number of parameters 𝐾𝑑 is large enough such
that

𝐾𝑑 ≥ 𝐶 (𝛽𝑁)2, (1.16)

for a given constant 𝐶 that depends only on the range of data values and the scaling 𝑉
of the network.

We presume access to a sampling algorithm able to produce accurate samples from
a log-concave density in a number of iterations proportional to a low polynomial power
of the number of model parameters [16,28,29,32,33]. We leave the specific choice of
this algorithm in our setting (e.g. Metropolis Adjusted Langevin Diffusion (MALA),
Hamiltonian Monte Carlo, etc.) as well as the tuning of parameters as a technical study
for future work, and treat the sampling algorithm as a black box method available to
the user. Then one can sample a value for 𝜉 from its marginal, and a value 𝑤 |𝜉 from
its reverse conditional, resulting in a true draw from the posterior distribution for 𝑤.
With access to polynomial time sampling algorithms for log-concave densities, using
the continuous uniform prior on the ℓ1 ball, and appropriately scaled choices of 𝛽, 𝐾, 𝑑
and 𝑁 , this represents a polynomial time training algorithm for single-hidden-layer
neural networks with statistical risk control of the order 𝑂 ( [log(𝑑)/𝑁]1/4).
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The remainder of the paper is organized as follows. In Section 2 and 3 we lay out
the specifics of our Bayesian model. In Section 4 we summarize the main conclusions
of the paper. Details of the log-concave coupling are given in Section 5. Statistical risk
control is discussed in Sections 6, 7. Further discussion with existing literature is given
in Section 8, and conclusions in Section 9.

2. Notation

Here we present the mathematical notation used in the paper.

• Capital 𝑃 refers to a probability distribution, while lowercase 𝑝 is its probability
mass or density function.

• 𝑓 ′ (·) refers to the derivative of a scalar function 𝑓 .

• ∇ is the gradient operator and ∇2 is the Hessian operator, producing a matrix of
second derivatives.

• {1, . . . , 𝑁} is the set of whole numbers between 1 and N.

• [𝑎, 𝑏] is the interval of real values between 𝑎 and 𝑏.

• 𝑢 · 𝑣 is the Euclidean inner product between two vectors.

• 𝑎T,XT refers to the transpose of a vector or matrix, so quadratic forms of a vector
𝑎 with the matrix X will be written as 𝑎TX𝑎.

• ∥𝑤∥ 𝑝 refers to the ℓ𝑝 norm, ∥𝑤∥ 𝑝 = (∑ 𝑗 (𝑤 𝑗) 𝑝)
1
𝑝 .

• The ℓ1 ball is denoted as 𝑆𝑑1 = {𝑤 ∈ R𝑑 : ∥𝑤∥1 ≤ 1}.
• The 𝐾 fold Cartesian product of this set is (𝑆𝑑1 )

𝐾 .

• For variables in a sequence, superscripts indicate the set of variables 𝑋𝑛 = (𝑋𝑖)𝑛𝑖=1.

• For a data sequence (𝑥𝑖 , 𝑦𝑖)𝑁𝑖=1, given a function 𝑓 associate it with the vector with
coordinates equal to the function outputs 𝑓𝑖 = 𝑓 (𝑥𝑖). For any two vectors of length
𝑁 define the empirical squared norm and inner product

∥ℎ1 − ℎ2∥2
𝑁 =

𝑁∑︁
𝑖=1

(ℎ1,𝑖 − ℎ2,𝑖)2 ⟨ℎ1, ℎ2⟩𝑁 =

𝑁∑︁
𝑖=1

ℎ1,𝑖ℎ2,𝑖

• Logarithms in the paper are natural logarithms.

3. Bayesian Model

Consider input and response pairs (𝑥𝑖 , 𝑦𝑖)𝑁𝑖=1 where the 𝑥𝑖 input vectors are 𝑑 dimen-
sional and the response values 𝑦𝑖 are real valued. Consider the 𝑥𝑖 as being bounded by
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1 in each coordinate, |𝑥𝑖, 𝑗 | ≤ 1 for all 𝑖 ∈ {1, . . . , 𝑁}, 𝑗 ∈ {1, . . . , 𝑑}. Further, assume
𝑥𝑖,1 = 1 for all 𝑖 ∈ {1, . . . , 𝑁} so an intercept term is naturally included in the data
definition. Accordingly, this requires 𝑑 ≥ 2. Denote X as the 𝑁 by 𝑑 data matrix which
uses the 𝑥𝑖 as its rows.

Recall the definition of a single-hidden-layer neural network in equation (1.1).
We restrict the class of neuron activation functions we consider to have two bounded
derivatives with𝜓(0) = 0, |𝜓(𝑧) | ≤ 𝑎0, |𝜓′ (𝑧) | ≤ 𝑎1 and |𝜓′′ (𝑧) | ≤ 𝑎2 for all 𝑧 ∈ [−1,1].
We assume 𝑎0, 𝑎1, 𝑎2 ≥ 1. This includes for example the squared ReLU activation
function 𝜓(𝑧) = 𝑎(𝑧+)2 or the scaled tanh activation function 𝜓(𝑧) = 𝑎 tanh(𝑐𝑧).

Fix a positive 𝑉 and let the exterior weights 𝑐𝑘 be positive or negative values 𝑐𝑘 ∈
{−𝑉

𝐾
, 𝑉
𝐾
}. Thus, 𝑓𝑤(𝑥) is a convex combination of 𝐾 signed neurons scaled by𝑉 . Note,

if 𝜓 is odd symmetric as in the case of the tanh activation function, the 𝑐𝑘 can be all set
to positive 𝑉

𝐾
. For non-symmetric activation functions, we can use twice the variation

�̃� = 2𝑉 and use twice the number of neurons �̃� = 2𝐾 . For the first 𝐾 neurons set
𝑐𝑘 =

𝑉
𝐾

and for the second set of 𝐾 neurons set 𝑐𝑘 = −𝑉
𝐾

. Under such a structure using
2𝐾 neurons, any size 𝐾 network of variation𝑉 with any number of positive or negative
signed neurons can be constructed from the wider network by setting 𝐾 of the neurons
to be active and the other 𝐾 to be inactive and have weight vector 0. In either case, we
consider the outer weights 𝑐𝑘 as being fixed values, and it is only necessary to train
the interior weights 𝑤𝑘 of the network.

Define 𝑃0 as a prior measure on R𝐾𝑑 , with density 𝑝0 with respect to a reference
measure 𝜂 (e.g. Lebesgue or counting measure). We will discuss a couple of choices of
the prior shortly. For each index 𝑖 ∈ {1, . . . , 𝑁} define the residual of a neural network
as

res𝑖 (𝑤) = 𝑦𝑖 −
𝐾∑︁
𝑘=1

𝑐𝑘𝜓(𝑤𝑘 · 𝑥𝑖). (3.1)

For any subset of the data 𝑛 ≤ 𝑁 , define the 𝑛-fold loss function as half the sum of
squares of the first 𝑛 residuals

ℓ𝑛 (𝑤) =
1
2

𝑛∑︁
𝑖=1

(res𝑖 (𝑤))2. (3.2)

For any gain parameter 𝛽 > 0, we define the 𝑛-th posterior density (with respect to 𝜂)
and the associated posterior mean

𝑝𝑛 (𝑤) =
𝑝0(𝑤)𝑒−𝛽ℓ𝑛 (𝑤)∫

𝑒−𝛽ℓ𝑛 (𝑤) 𝑝0(𝑤)𝜂(𝑑𝑤)
(3.3)

𝜇𝑛 (𝑥) = 𝐸𝑃𝑛 [ 𝑓 (𝑤, 𝑥)], (3.4)
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where 𝐸𝑃𝑛 [·] denotes expectation with respect to the indicated distribution. Note our
posterior densities 𝑝𝑛 (𝑤) are defined by the data points 𝑥𝑛, 𝑦𝑛 we condition on, so we
will also denote them as 𝑝𝑛 (𝑤 |𝑥𝑛, 𝑦𝑛). For a given weight vector𝑤, define the predictive
density 𝑝(𝑦 |𝑥,𝑤) to be Normal( 𝑓 (𝑥,𝑤), 1

𝛽
). Define the 𝑛-th posterior predictive density

as

𝑝𝑛 (𝑦 |𝑥) = 𝐸𝑃𝑛 [𝑝(𝑦 |𝑥, 𝑤)] . (3.5)

Note that these predictive densities are also conditioned on the 𝑥𝑛, 𝑦𝑛 data that define
the posterior. Define also the Cesàro average posterior, mean, and predictive density
as in equations (1.9), (1.10), and (1.11).

3.1. Choice of Prior

We consider two priors in the paper. The first prior we will consider is uniform on the
set (𝑆𝑑1 )

𝐾 . That is, independently each weight vector 𝑤𝑘 is iid uniform on the set of
weight vectors with ℓ1 norm less than 1. This has the density function

𝑝0(𝑤) =
𝐾∏
𝑘=1

(
1{∥𝑤𝑘 ∥1 ≤ 1} 1

Vol(𝑆𝑑1 )

)
. (3.6)

with respect to Lebesgue measure. Note that the absolute values of each vector |𝑤𝑘 |
are uniform on the simplex, which is also a symmetric Dirichlet distribution in 𝑑 + 1
dimensions with the all 1’s parameter vector.

We will also consider a discrete version of this density. For some positive integer
𝑀 ≤ 𝑑, consider the discrete set which is the intersection of 𝑆𝑑1 with the lattice of points
of equal spacing 1

𝑀
. Define this set as 𝑆𝑑1,𝑀 ,

𝑆𝑑1,𝑀 = {𝑤 : 𝑀𝑤 ∈ {−𝑀, 𝑀}𝑑 , ∥𝑤∥1 ≤ 1}, (3.7)

That is, each coordinate 𝑤𝑘, 𝑗 can only be integer multiples of the grid size 1
𝑀

and we
force the ℓ1 norm to be less than or equal to 1. We consider the prior under which 𝑤𝑘
is independent uniform on the discrete set 𝑆𝑑1,𝑀 . This has probability mass function

𝑝0(𝑤) =
𝐾∏
𝑘=1

(
1{𝑤𝑘 ∈ 𝑆𝑑1,𝑀 } 1

|𝑆𝑑1,𝑀 |

)
. (3.8)

with respect to counting measure in (𝑆𝑑1,𝑀 )𝐾 . When 𝑑 is large one may choose a smaller
order 𝑀 to arrange sparsity in the weight vector, as at most 𝑀 of the 𝑑 coordinates can
be non-zero. Furthermore, we have a bound on the cardinality of the support set |𝑆𝑑

𝑀
| ≤

(2𝑑 + 1)𝑀 which will prove useful in future statistical risk analysis. Most notably,
log |𝑆𝑑

𝑀
| only grows logarithmically in the dimension 𝑑 of the weight vectors.
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We can also consider both of these priors as specific marginals of a joint coupled
Dirichlet and Multinomial distribution. We arrange a continuous vector 𝑤cont ∈ (𝑆𝑑1 )

𝐾

and a discrete vector 𝑤disc ∈ (𝑆𝑑1,𝑀 )𝐾 . Say the signs of each coordinate 𝑤cont
𝑘, 𝑗

are
distributed independent Rademacher. Then, for each index 𝑘 , the absolute values vec-
tors ( |𝑤cont

𝑘
|, |𝑤disc

𝑘
|) are independent and distributed as follows. |𝑤cont

𝑘
| is uniform

on the 𝑑 + 1 dimensional simplex, which is symmetric Dirichlet using the all 1’s
parameter vector. Then |𝑤disc

𝑘
| conditioned on |𝑤cont

𝑘
| is distributed as 1/𝑀 times a

Multinomial(𝑀, |𝑤cont |) distribution. This results in 𝑤cont and 𝑤disc being marginally
uniform on (𝑆𝑑1 )

𝐾 and (𝑆𝑑1,𝑀 )𝐾 respectively, but being coupled via this joint distribu-
tion.

The continuous prior will be used to prove the log-concave coupling form of our
target density, but the finite size of the support of the discrete prior will prove useful
for statistical risk control. In the paper, we first prove statistical risk control of the
discrete prior, and then extend this to the continuous prior using this joint Dirichlet
and Multinomial construction.

4. Summary of Main Results

Our results are two-fold; demonstration of a log-concave mixture form using a con-
tinuous uniform prior, and risk control for the discrete uniform prior. We then extend
the risk control to the continuous prior as well.

4.1. Log-Concave Coupling

The log-concave coupling result is as follows:

Theorem 1. Let the neural network have inner weight dimension 𝑑 ≥ 2 and 𝐾 ≥ 2
neurons with 𝑁 data observations (𝑥𝑖 , 𝑦𝑖)𝑁𝑖=1. Assume 𝛽𝑁 ≥ 2. Define the values

𝐶𝑁 = max
𝑛∈{1,𝑁 }

|𝑦𝑛 | + 𝑎0𝑉 (4.1)

𝐴1 = 2𝑎1 + 4
√︂

3
2
𝑎2 (4.2)

𝐴2 =

(
1 + 1

√
𝜋

)√︄
2𝑎2

√︂
3
2

(4.3)

𝐴3 = 4
√︂

3
2𝑒
𝑎2(𝐶𝑁𝑉)

3
2 [𝐴1 + 𝐴2(𝐶𝑁𝑉)

1
2 ] . (4.4)
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Define a value

𝛿 = min
( 1
300

,

√︂
2𝜋
11

𝐾

𝑎2𝛽𝐶𝑁𝑉

)
. (4.5)

Let 𝑑 and 𝐾 satisfy

𝐾 [log(2𝐾𝑑/𝛿)] ≤ 𝛽𝑁 (4.6)
and

𝐾𝑑 ≥ 𝐴3(𝛽𝑁)2. (4.7)

Using a continuous uniform prior on (𝑆𝑑1 )
𝐾 , for each 𝑛 ≤ 𝑁 the posterior distribution

𝑝𝑛 (𝑤) can be written as a mixture distribution with an auxiliary random variable 𝜉,

𝑝𝑛 (𝑤) =
∫

𝑝𝑛 (𝑤 |𝜉)𝑝𝑛 (𝜉)𝑑𝜉, (4.8)

where 𝑝𝑛 (𝑤 |𝜉) is a log-concave density for each 𝜉, and 𝑝𝑛 (𝜉) is a log-concave density.
If equation (4.7) is a strict inequality, 𝑝(𝜉) is strictly log-concave.

Further details on the proof of this theorem and choice of the auxiliary random
variable 𝜉 are presented in Section 5.

4.2. Statistical Risk Control for the Discrete Prior

Consider (𝑥𝑖 , 𝑦𝑖)𝑁𝑖=1 as an arbitrary sequence of inputs and response values. Let 𝑔 be
a competitor function to which we want to compare our performance. The individual
squared error regret is defined as

𝑟
square
𝑛 =

1
2
[
(𝑦𝑛 − 𝜇𝑛−1(𝑥𝑛))2 − (𝑦𝑛 − 𝑔(𝑥𝑛))2] , (4.9)

and average squared regret is defined as

𝑅
square
𝑁

=
1
𝑁

𝑁∑︁
𝑛=1

𝑟
square
𝑛 . (4.10)

Theorem 2. Let 𝑔 be a target function with absolute value bounded by 𝑏 and let �̃� be
its projection into the closure of the convex hull of signed neurons scaled by 𝑉 . Let
𝑃0 be the uniform prior on the discrete set (𝑆𝑑1,𝑀 )𝐾 . Assume the neuron activation
function is odd symmetric and set all outer weights as 𝑐𝑘 = 𝑉

𝐾
. For any data sequence

(𝑥𝑖 , 𝑦𝑖)𝑁𝑖=1 with all 𝑥𝑖 ∈ [−1, 1]𝑑 , define

𝜖𝑛 = 𝑦𝑛 − 𝑔(𝑥𝑛) 𝜖𝑛 = 𝑦𝑛 − �̃�(𝑥𝑛). (4.11)
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Then average squared regret is upper bound by

𝑅
square
𝑁

≤ 𝑀𝐾 log(2𝑑 + 1)
𝛽𝑁

+
𝑎2

0𝑉
2

2𝐾
+

(𝑉𝐶𝑁𝑎2 +𝑉2𝑎2
1)

2𝑀
(4.12)

+ 2𝛽
(𝑎0𝑉 + 𝑏

2
𝐶𝑁 +

(𝑎0𝑉 + 𝑏
2

)2)2
+ 1

2
1
𝑁

𝑁∑︁
𝑛=1

(𝜖2
𝑛 − 𝜖2

𝑛). (4.13)

In particular, if 𝑔 lives in the closure of the convex hull of signed neurons scaled by 𝑉
we may set 𝑔 = �̃� and 𝜖 = 𝜖 . With specific choice of 𝛽, 𝑀, 𝐾 , we can achieve an upper
bound

𝑅
square
𝑁

≤ 4
(
𝑎0𝑉 (

𝑎0𝑉 + 𝑏
2

)
) 1

2
(
(𝐶𝑁 + 𝑎0𝑉 + 𝑏

2
)2(

𝑎2𝑉𝐶𝑁 + 𝑎2
1𝑉

2

2
)
) 1

4
( log(2𝑑 + 1)

𝑁

) 1
4
.

(4.14)

Further details on the proof of this result can be found in Section 6.3. This theorem
places no further assumptions on the data sequence. For Theorem 2 all that is needed
of the 𝑔 and the network functions are the vectors inR𝑁 of the function evaluated at the
specified inputs values 𝑥1, ..., 𝑥𝑁 . Then the convex hull is a subset ofR𝑁 and its closure
and the projection �̃� is taken in the Euclidean sense. Note any network could be used
in place of �̃� here, but the projection is by definition the minimizer of the euclidean
distance. In contrast, for control of risk of more general points in [−1, 1]𝑑 , we treat the
networks and comparator g as functions and use the 𝐿2(𝑃𝑋) projection for �̃�.

With more specific assumptions, we can have bounds on the risk of generalization.
Suppose (𝑋𝑖 , 𝑌𝑖) are iid from a distribution with 𝑌 having conditional mean 𝑔(𝑋)
and conditional variance bounded by 𝜎2. Then we can recover the arbitrary sequence
bounds for mean squared risk.

Theorem 3. Let 𝑔 be a target function with absolute value bounded by 𝑏 and let �̃� be
its 𝐿2(𝑃𝑋) projection into the closure of the convex hull of signed neurons scaled by𝑉 .
Let 𝑃0 be the uniform prior on the discrete set (𝑆𝑑1,𝑀 )𝐾 . Assume the neuron activation
function is odd symmetric and set all outer weights as 𝑐𝑘 = 𝑉

𝐾
. Let (𝑋𝑖 ,𝑌𝑖)𝑁𝑖=1 be training

data iid with conditional mean 𝑔(𝑋𝑖) and conditional variance 𝜎2
𝑋𝑖

, with variance
bounded by max𝑥∈[−1,1]𝑑 𝜎

2
𝑥 ≤ 𝜎2. Assume the support of the data distribution 𝑃𝑋 is

in [−1, 1]𝑑 . Then the statistical risk of the Cesàro mean �̂� as an estimator of 𝑔 is upper
bounded as,

𝐸 [∥𝑔 − �̂�∥2] ≤ 𝑀𝐾 log(2𝑑 + 1)
𝛽(𝑁 + 1) +

𝑎2
0𝑉

2

2𝐾
+

(𝑉 (𝑎0𝑉 + 𝑏)𝑎2 +𝑉2𝑎2
1)

2𝑀
(4.15)

+ 2𝛽( 𝑎0𝑉 + 𝑏
2

)2(𝜎 + 𝑎0𝑉 + 𝑏
2

)2 + ∥𝑔 − �̃�∥2. (4.16)
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With specific choice of 𝛽, 𝑀, 𝐾 we can have a bound on the mean squared risk of the
form

4
(
𝑎0𝑉 (

𝑎0𝑉 + 𝑏
2

) (𝜎 + 𝑎0𝑉 + 𝑏
2

)
) 1

2
(𝑉 (𝑎0𝑉 + 𝑏)𝑎2 +𝑉2𝑎2

1
2

) 1
4
( log(2𝑑 + 1)

𝑁

) 1
4

(4.17)

+ ∥𝑔 − �̃�∥2. (4.18)

Further assume that the data is normally distributed with constant variance, that
is 𝑝(𝑦𝑖 |𝑥𝑖) is the Normal(𝑔(𝑥𝑖), 𝜎2) density (i.e. the typical independent Gaussian
errors model), and that the gain of the Bayesian model 𝛽 matches the inverse variance,
𝛽 = 1/𝜎2. Then we can have a bound on expected Kullback divergence.

Theorem 4. Let 𝑔 be a target function with absolute value bounded by 𝑏 and let �̃� be its
projection into the closure of the convex hull of signed neurons scaled by 𝑉 . Let 𝑃0 be
the uniform prior on the discrete set (𝑆𝑑1,𝑀 )𝐾 . Assume the neuron activation function
is odd symmetric and set all outer weights as 𝑐𝑘 = 𝑉

𝐾
. Assuming the data distribution

has 𝑌 |𝑋 ∼ Normal(𝑔(𝑋), 1
𝛽
) we bound the expected Kullback divergence as,

𝐸 [𝐷 (𝑃𝑌 |𝑋∥𝑄avg
𝑌 |𝑋,𝑋𝑁 ,𝑌𝑁 )] ≤

𝑀𝐾 log(2𝑑 + 1)
𝑁 + 1

+ 𝛽
𝑎2

0𝑉
2

2𝐾
+ 𝛽

𝑉 (𝑎0𝑉 + 𝑏)𝑎2 +𝑉2𝑎2
1

2𝑀
(4.19)

+ 𝛽∥𝑔 − �̃�∥2. (4.20)

With specific choice of 𝑀 and 𝐾 , we can achieve a bound of the form,

3( 𝛽
2
) 2

3 (𝑎0𝑉)
2
3 (𝑉 (𝑎0𝑉 + 𝑏)𝑎2 +𝑉2𝑎2

1)
1
3

( log(2𝑑 + 1)
𝑁 + 1

) 1
3 + 𝛽∥𝑔 − �̃�∥2. (4.21)

Further details such as specific constants and proofs for the risk results can be
found in Section 6.4. Note that 𝛽∥𝑔 − �̃�∥2 is the expected Kullback divergence between
normals with mean functions 𝑔 and �̃� and variance 1/𝛽. So the theorem bounds the
additional Kullback risk beyond this value.

4.3. Statistical Risk Control for the Continuous Prior

Finally, we can extend the risk control of the discrete prior to the continuous prior,
but pay a price of twice the risk. If the term ∥𝑔 − �̃�∥2 is not too large, then we do
not mind paying twice its cost in our final bound. For target functions 𝑔 with well
controlled Fourier components, the previously discussed representation result shows
that (adjusted by a constant and linear term), it is in the convex hull of 𝑉Ψ for suitable
variation 𝑉 , and hence ∥𝑔 − �̃�∥2 is zero.
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Theorem 5. Let 𝑔 be a target function with absolute value bounded by 𝑏 and let �̃� be its
projection into the closure of the convex hull of signed neurons scaled by 𝑉 . Let 𝑃0 be
the uniform prior on the continuous set (𝑆𝑑1 )

𝐾 . Assume the neuron activation function
is odd symmetric and set all outer weights as 𝑐𝑘 = 𝑉

𝐾
. Let (𝑥𝑖 , 𝑦𝑖)𝑁𝑖=1 be training data

iid with conditional mean 𝑔(𝑥𝑖) and conditional variance 𝜎2
𝑥𝑖

with variance bound
𝜎2
𝑥𝑖
≤ 𝜎2. Assume the data distribution 𝑃𝑋 has support in [−1, 1]𝑑 . Then statistical

risk is upper bound by

𝐸 [∥𝑔 − �̂�∥2] ≤ 2
𝑀𝐾 log(2𝑑 + 1)

𝛽(𝑁 + 1) +
𝑎2

0𝑉
2

𝐾
+

3𝑎2𝑉 (𝑎0𝑉 + 𝑏) + 2𝑉2𝑎2
1

𝑀
(4.22)

+ 4𝛽( 𝑎0𝑉 + 𝑏
2

)2(𝜎 + 𝑎0𝑉 + 𝑏
2

)2 + 2∥𝑔 − �̃�∥2 (4.23)

+𝑂 ( 1
𝑀𝐾

) (4.24)

Note with proper choice of parameters 𝑀, 𝐾, 𝛽 this can be shown to be of the order

𝐸 [∥𝑔 − �̂�∥2] ≤ 2∥𝑔 − �̃�∥2 +𝑂 (
( log(𝑑)

𝑁

) 1
4 )

Further details on this result are found in Section 7, making use of the joint Dirichlet
and Multinomial form of the prior.

Remark 1. Note these results are stated for odd-symmetric neurons (e.g. sigmoids).
Similar results for non-odd symmetric neurons (e.g. squared ReLU) can be derived
with factors of 2 in some of the constants, but the order of dependence in 𝑑 and 𝑁 is
the same. The signs of the outer weights 𝑐𝑘 must also be handled more specifically.
Further discussion on symmetric vs non-symmetric neurons is found in Section 6.

5. Posterior Densities and Log-Concave Coupling

5.1. Posterior Density

Consider the log-likelihood of the posterior densities 𝑝𝑛 (𝑤) as defined in equation
(3.3), with the continuous uniform prior on (𝑆𝑑1 )

𝐾 . The log likelihood and score of the
posterior within the constrained set are

log 𝑝𝑛 (𝑤) ∝ −𝛽ℓ𝑛 (𝑤) (5.1)

∇𝑤𝑘 log 𝑝𝑛 (𝑤) = 𝛽

𝑛∑︁
𝑖=1

res𝑖 (𝑤) (𝑐𝑘𝜓′ (𝑤𝑘 · 𝑥𝑖)𝑥𝑖). (5.2)

Denote the Hessian as 𝐻𝑛 (𝑤) ≡ ∇2 log 𝑝𝑛 (𝑤). The density 𝑝𝑛 (𝑤) is log-concave if
𝐻𝑛 (𝑤) is negative definite for all choices of 𝑤. For any vector 𝑎 ∈ R𝐾𝑑 , with blocks
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𝑎𝑘 ∈ R𝑑 , the quadratic form 𝑎T𝐻𝑛 (𝑤)𝑎 can be expressed as

− 𝛽
𝑛∑︁
𝑖=1

( 𝐾∑︁
𝑘=1

𝑐𝑘𝜓
′ (𝑤𝑘 · 𝑥𝑖)𝑎𝑘 · 𝑥𝑖

)2
(5.3)

+ 𝛽
𝑛∑︁
𝑖=1

res𝑖 (𝑤)
𝐾∑︁
𝑘=1

𝑐𝑘𝜓
′′ (𝑤𝑘 · 𝑥𝑖) (𝑎𝑘 · 𝑥𝑖)2. (5.4)

It is clear that for any vector 𝑎 the first line (5.3) is a negative term, but term (5.4) may
be positive. The scalar values 𝑐𝑘𝜓′′ (𝑤𝑘 · 𝑥𝑖) could be either a positive or negative value
for each 𝑘 and 𝑖, while the residuals res𝑖 (𝑤) can also be positive or negative signed.
Thus, the Hessian is not a negative definite matrix in general and 𝑝𝑛 (𝑤) may not be a
log-concave density.

The term (5.4) is capturing how the non-linearity of 𝜓, which provides the benefit
of neural networks over linear regression, is complicating matters. If 𝜓 were linear,
𝜓′′ (𝑧) = 0 for all 𝑧 and we would have a simple linear regression problem. However,
since 𝜓 has second derivative contributions, this term must be addressed.

For each data index 𝑖 ∈ {1, . . . , 𝑛} and each neuron index 𝑘 ∈ {1, . . . , 𝐾} we intro-
duce a coupling with an auxiliary random variable 𝜉𝑖,𝑘 . The goal of this auxiliary
random variable is to force the corresponding individual 𝑖, 𝑘 terms in (5.4) to be neg-
ative. Define the values

𝐶𝑛 = max
𝑖≤𝑛

|𝑦𝑖 | + 𝑎0𝑉 (5.5)

𝜌𝑛 = 𝜌𝑛,𝐾 = 𝑎2
𝛽𝐶𝑛𝑉

𝐾
. (5.6)

We will consider our posterior densities with one fixed value of 𝑛 at a time. Likewise
think of 𝐾 as fixed, so we will refer to these values as constants in our discussion. We
will work with 𝜌 = 𝜌𝑛,𝐾 when it is clear we are talking about a fixed 𝑛 and 𝐾 value.

Ultimately we will use bounded auxiliary random variables to yield the desired log-
concave coupling. But to motivate the construction first consider tentatively a simpler
unbounded construction.

Conditioning on a weight vector 𝑤, define the forward coupling as conditionally
independent random variables 𝜉𝑖,𝑘 which are normal with mean 𝑤𝑘 · 𝑥𝑖 and variance
1
𝜌
,

𝜉𝑖,𝑘 ∼ Normal(𝑤𝑘 · 𝑥𝑖 ,
1
𝜌
). (5.7)

This then defines a forward conditional density (or coupling)

𝑝𝑛 (𝜉 |𝑤) ∝ 𝑒−
𝜌

2
∑
𝑖,𝑘 ( 𝜉𝑖,𝑘−𝑥𝑖 ·𝑤𝑘 )2

, (5.8)
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and a joint density for 𝑤, 𝜉,

𝑝𝑛 (𝑤, 𝜉) = 𝑝𝑛 (𝑤)𝑝𝑛 (𝜉 |𝑤). (5.9)

Via Bayes’ rule, this joint density also has expression using the induced marginal on
the auxiliary 𝜉 random vector and the reverse conditional density on 𝑤 |𝜉,

𝑝𝑛 (𝑤, 𝜉) = 𝑝𝑛 (𝜉)𝑝𝑛 (𝑤 |𝜉). (5.10)

As we will show, this choice of forward coupling provides a negative definite correction
to the log likelihood of 𝑝𝑛 (𝑤 |𝜉) compared to what we had with 𝑝𝑛 (𝑤), resulting in a
negative definite reverse conditional density.

5.2. Reverse Conditional Density 𝒑𝒏 (𝒘 |𝝃)

First, we allow for 𝜉𝑖,𝑘 to take arbitrary real values arising from the conditional normal
distribution.

Theorem 6. Under the continuous uniform prior and 𝜉𝑖,𝑘 ∼ Normal(𝑥𝑖 · 𝑤𝑘 , 1/𝜌) for
the given choice of 𝜌, the reverse conditional density 𝑝𝑛 (𝑤 |𝜉) is log-concave for the
given 𝜉 coupling.

Proof. The log likelihood for 𝑝𝑛 (𝑤 |𝜉) is given by

log 𝑝𝑛 (𝑤 |𝜉) = − 𝛽ℓ𝑛 (𝑤) + 𝐵𝑛 (𝜉) (5.11)

−
𝑛∑︁
𝑖=1

𝐾∑︁
𝑘=1

𝜌

2
(𝜉𝑖,𝑘 − 𝑤𝑘 · 𝑥𝑖)2, (5.12)

for some function 𝐵𝑛 (𝜉) which does not depend on 𝑤 and is only required to make the
density integrate to 1. The term (5.12) is a negative quadratic in 𝑤which treats each 𝑤𝑘
as an independent normal random variable. Thus, the additional Hessian contribution
will be a (𝐾𝑑) × (𝐾𝑑) negative definite block diagonal matrix with 𝑑 × 𝑑 blocks of
the form 𝜌

∑𝑛
𝑖=1 𝑥𝑖𝑥

T
𝑖
. Denote the Hessian as 𝐻𝑛 (𝑤 |𝜉) ≡ ∇2 log 𝑝𝑛 (𝑤 |𝜉). For any vector

𝑎 ∈ R𝐾𝑑 , with blocks 𝑎𝑘 ∈ R𝑑 , the quadratic form 𝑎T𝐻𝑛 (𝑤 |𝜉)𝑎 can be expressed as

− 𝛽
𝑛∑︁
𝑖=1

( 𝐾∑︁
𝑘=1

𝜓′ (𝑤𝑘 · 𝑥𝑖)𝑎𝑘 · 𝑥𝑖
)2

(5.13)

+
𝐾∑︁
𝑘=1

𝑛∑︁
𝑖=1

(𝑎𝑘 · 𝑥𝑖)2 [𝛽res𝑖 (𝑤)𝑐𝑘𝜓′′ (𝑤𝑘 · 𝑥𝑖) − 𝜌] . (5.14)

By the assumptions on the second derivative of 𝜓 and the definition of 𝜌 we have

max
𝑖,𝑘

(𝛽res𝑖 (𝑤)𝑐𝑘𝜓′′ (𝑤𝑘 · 𝑥𝑖) − 𝜌) ≤ 0. (5.15)
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So all the terms in the sum in (5.14) are negative. Thus, the Hessian of the log likelihood
of 𝑝𝑛 (𝑤 |𝜉) is negative definite and 𝑝𝑛 (𝑤 |𝜉) is a log-concave density.

While this proof offers a simple way to make a conditional density 𝑝𝑛 (𝑤 |𝜉) which
is log-concave, we also wish to study if there is log-concavity of the induced marginal
of 𝑝𝑛 (𝜉). The joint log likelihood for 𝑝𝑛 (𝑤, 𝜉) contains a bilinear term in 𝜉, 𝑤 from
expanding the quadratic,

𝐾∑︁
𝑘=1

𝑑∑︁
𝑗=1

𝑤𝑘, 𝑗

𝑛∑︁
𝑖=1

𝜉𝑖,𝑘𝑥𝑖, 𝑗 . (5.16)

We want some control on how large this term can become, so we restrict the allowed
support of 𝜉. We define a slightly larger 𝜌 = 𝜌𝑛,𝐾 value than before,

𝜌𝑛,𝐾 =

√︂
3
2
𝑎2
𝛽𝐶𝑛𝑉

𝐾
. (5.17)

For a positive 𝛿 ≤ 1/16, we also define a constrained set,

𝐵 =

{
𝜉𝑖,𝑘 : max

𝑗 ,𝑘
|
𝑛∑︁
𝑖=1

𝑥𝑖, 𝑗𝜉𝑖,𝑘 | ≤ 𝑛 +
√︂

2 log( 2𝐾𝑑
𝛿

)
√︂
𝑛

𝜌

}
. (5.18)

We then define our forward conditional distribution for 𝑝∗𝑛 (𝜉 |𝑤) = 𝑝𝑛 (𝜉 |𝑤, 𝐵) as the
normal distribution restricted to the set 𝐵,

𝑝∗𝑛 (𝜉 |𝑤) = 𝑝𝑛 (𝜉 |𝑤, 𝐵) =
1𝐵 (𝜉)𝑝𝑛 (𝜉 |𝑤)
𝑃𝑛 (𝜉 ∈ 𝐵|𝑤) (5.19)

= 1𝐵 (𝜉)
∏𝑛
𝑖=1

∏𝐾
𝑘=1

( 𝜌
2𝜋

) 1
2 𝑒−

𝜌

2 ( 𝜉𝑖,𝑘−𝑥𝑖 ·𝑤𝑘 )
2∫

𝐵

∏𝑛
𝑖=1

∏𝐾
𝑘=1

( 𝜌
2𝜋

) 1
2 𝑒−

𝜌

2 ( 𝜉𝑖,𝑘−𝑥𝑖 ·𝑤𝑘 )2
𝑑𝜉

. (5.20)

Under this constrained density, the term (5.16) will be bounded for any choice of 𝜉 ∈ 𝐵
and 𝑤𝑘 ∈ [−1, 1]𝑑 , which will be a useful property in later proofs.

The denominator of this fraction is the normalizing constant of the density as a
result of the restricting set 𝐵. Denote the log normalizing constant as 𝑍 (𝑤) = 𝑃𝑛 (𝜉 ∈
𝐵|𝑤)

𝑍 (𝑤) = log
∫
𝐵

𝑛∏
𝑖=1

𝐾∏
𝑘=1

( 𝜌
2𝜋

) 1
2 𝑒−

𝜌

2 ( 𝜉𝑖,𝑘−𝑥𝑖 ·𝑤𝑘 )
2
𝑑𝜉. (5.21)

An equivalent expression for the forward coupling is then

𝑝∗𝑛 (𝜉 |𝑤) = 1𝐵 (𝜉)
( 𝜌
2𝜋

) 𝑁𝐾2 𝑒−
𝜌

2
∑
𝑖,𝑘 ( 𝜉𝑖,𝑘−𝑥𝑖 ·𝑤𝑘 )2−𝑍 (𝑤) . (5.22)
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This construction also yields for 𝜉 ∈ 𝐵 the induced marginal density 𝑝∗𝑛 (𝜉) with respect
to Lebesgue measure,

𝑝∗𝑛 (𝜉) =
∫

𝑝𝑛 (𝑤)𝑝∗𝑛 (𝜉 |𝑤)𝜂(𝑑𝑤) =
1𝐵 (𝜉)

∫
𝑝𝑛 (𝑤)𝑒−

𝜌

2
∑
𝑖,𝑘 ( 𝜉𝑖,𝑘−𝑥𝑖 ·𝑤𝑘 )2−𝑍 (𝑤)𝜂(𝑑𝑤)∫

𝐵

∫
𝑝𝑛 (𝑤)𝑒−

𝜌

2
∑
𝑖,𝑘 ( 𝜉𝑖,𝑘−𝑥𝑖 ·𝑤𝑘 )2−𝑍 (𝑤)𝜂(𝑑𝑤)𝑑𝜉

,

(5.23)

and the reverse conditional density 𝑝∗𝑛 (𝑤 |𝜉) with respect to reference measure 𝜂,

𝑝∗𝑛 (𝑤 |𝜉) =
𝑝𝑛 (𝑤)𝑝∗𝑛 (𝑤 |𝜉)

𝑝∗𝑛 (𝜉))
=

𝑝𝑛 (𝑤)𝑒−
𝜌

2
∑
𝑖,𝑘 ( 𝜉𝑖,𝑘−𝑥𝑖 ·𝑤𝑘 )2−𝑍 (𝑤)∫

𝑝𝑛 (𝑤)𝑒−
𝜌

2
∑
𝑖,𝑘 ( 𝜉𝑖,𝑘−𝑥𝑖 ·𝑤𝑘 )2−𝑍 (𝑤)𝜂(𝑑𝑤)

. (5.24)

Note these densities differ from the 𝑝𝑛 (𝑤 |𝜉) and 𝑝𝑛 (𝜉) defined before without restrict-
ing to the set 𝐵 due to the presence of the 𝑍 (𝑤) function. We then show that for 𝜉 ∈ 𝐵
the density 𝑝∗𝑛 (𝑤 |𝜉) is a very similar density to 𝑝𝑛 (𝑤 |𝜉) and also log-concave.

The restriction of 𝜉 to the set 𝐵 is the restriction to a very likely set under the
unconstrained coupling, in particular we have the following:

Lemma 1. For any weight vector 𝑤 with ∥𝑤𝑘 ∥1 ≤ 1 the set 𝐵 in (5.18) has probability
under 𝑝(𝑤 |𝜉) at least

𝑃(𝑤 ∈ 𝐵|𝜉) ≤ 1 − 𝛿√︁
2 log(2𝐾𝑑/𝛿)

Proof. See Appendix, Section 10.1.

Furthermore, the function 𝑍 (𝑤) is nearly constant, having small first and second
derivative. Therefore, the function has little impact on the log-likelihood.

Lemma 2. For any specified vector 𝑎 ∈ 𝑅𝐾𝑑 , define the value

�̃�2 =

∑𝑛
𝑖=1

∑𝐾
𝑘=1(𝑎𝑘 · 𝑥𝑖)2

𝜌
. (5.25)

For positive values 𝛿 ≤ 1/16 with 𝐾𝑑 ≥ 4, we then have upper bounds,

|𝑎 · ∇𝑍 (𝑤) | ≤ 𝜌�̃�

1 − 𝛿
𝛿

√
2𝜋

(5.26)

and

|𝑎T(∇2𝑍 (𝑤))𝑎 | ≤ 𝜌2�̃�2
√

2𝜋
𝛿

1 − 𝛿

(
2
√︁

2 log(1/𝛿) + 𝜌2�̃�2
√

2𝜋
𝛿

1 − 𝛿

)
. (5.27)

Note both bounds go to 0 as 𝛿→ 0, and thus can be made arbitrarily small for a certain
choice of 𝛿.
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Proof. See Appendix, Section 10.1.

Thus, with restriction to the set 𝐵, whose size is determined by 𝛿, and a slightly
larger 𝜌, we can give a similar result to Theorem 6. Note this result is for 𝑝∗𝑛 (𝑤 |𝜉)
which is distinct from 𝑝𝑛 (𝑤 |𝜉) due to the presence of the 𝑍 (𝑤) function in the log
likelihood and the restriction to 𝜉 ∈ 𝐵.

Theorem 7. Define the notation

𝐻1(𝛿) =
2

√
2𝜋

𝛿

1 − 𝛿

√︂
2 log

2
𝛿

(5.28)

𝐻2(𝛿) =
(
𝑎2
𝛽𝐶𝑛𝑉

𝐾

)2 1
2𝜋

𝛿2

(1 − 𝛿)2 . (5.29)

Assume a sufficiently small 𝛿 ≤ 1
16 that satisfies

𝐻1(𝛿) ≤
1

100
(5.30)

𝐻2(𝛿) ≤
1
10
. (5.31)

For the continuous uniform prior, with 𝜉 restricted to the set 𝐵 defined by 𝛿, and 𝜌 as
in equation (5.17), the reverse conditional density 𝑝∗𝑛 (𝑤 |𝜉) is a log-concave density in
𝑤, for any 𝜉 in 𝐵.

Proof. See Appendix, Section 10.2.

Corollary 1. A positive 𝛿 which satisfies,

𝛿 ≤ min
( 1
300

,

√︂
2𝜋
11

𝐾

𝑎2𝛽𝐶𝑁𝑉

)
, (5.32)

will satisfy conditions (5.30), (5.31).

The pairing of a normal forward coupling to 𝑝∗𝑛 (𝜉 |𝑤) with a target density 𝑝𝑛 (𝑤)
to produce a reverse conditional 𝑝∗𝑛 (𝑤 |𝜉) which is log-concave is not a new idea. As we
will later discuss, the same concept is used in proximal sampling methods and diffusion
models. However, in this work we go further in stating that the induced marginal on
𝑝∗𝑛 (𝜉) is itself log-concave, which we call a log-concave coupling.
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5.3. Marginal Density 𝒑∗𝒏 (𝝃)

Lemma 3. The score and Hessian of the induced marginal density for 𝑝∗𝑛 (𝜉) for 𝜉 ∈ 𝐵
are expressed as

𝜕𝜉𝑖,𝑘 log 𝑝∗𝑛 (𝜉) = − 𝜌 𝜉𝑖,𝑘 + 𝜌 𝑥𝑖 · 𝐸𝑃∗
𝑛
[𝑤𝑘 |𝜉] (5.33)

𝜕𝜉𝑖1 ,𝑘1 , 𝜉𝑖2 ,𝑘2
log 𝑝∗𝑛 (𝜉) = − 𝜌1{(𝑖1, 𝑘1) = (𝑖2, 𝑘2)} (5.34)

+ 𝜌2Cov𝑃∗
𝑛
[𝑤𝑘1 · 𝑥𝑖1 , 𝑤𝑘2 · 𝑥𝑖2 |𝜉] . (5.35)

Equivalently in vector form using the 𝑛 by 𝑑 data matrix X,

∇ log 𝑝∗𝑛 (𝜉) = 𝜌

(
− 𝜉 + 𝐸𝑃∗

𝑛

[X𝑤1· · ·
X𝑤𝐾

|𝜉
] )

(5.36)

∇2 log 𝑝∗𝑛 (𝜉) = 𝜌

(
− 𝐼 + 𝜌 Cov𝑃∗

𝑛

[X𝑤1· · ·
X𝑤𝐾

|𝜉
] )
. (5.37)

Proof. The stated results are a consequence of simple calculus, but we will derive them
using a statistical interpretation that avoids tedious calculations.

The log likelihood of the induced marginal for 𝑝∗𝑛 (𝜉) is equal to the log of the joint
density with 𝑤 integrated out,

log 𝑝∗𝑛 (𝜉) = log
( ∫

𝑝𝑛 (𝑤)𝑝∗𝑛 (𝜉 |𝑤)𝜂(𝑑𝑤)
)
. (5.38)

Rearranging the log likelihood of the Gaussian forward conditional, this can be expressed
as a quadratic term in 𝜉 and a term which represents a cumulant generating function
plus a constant. Recall 𝑍 (𝑤) as defined in equation (5.21). Denote the function

ℎ(𝑤) = −𝛽ℓ𝑛 (𝑤) −
𝜌

2

𝑛∑︁
𝑖=1

𝐾∑︁
𝑘=1

(𝑤𝑘 · 𝑥𝑖)2 − 𝑍 (𝑤), (5.39)

which is the part of the log likelihood of the joint density which does not depend on 𝜉.
The marginal pdf can then be expressed as

log 𝑝∗𝑛 (𝜉) = − 𝜌
2
∥𝜉∥2

2 (5.40)

+ log
( ∫

𝑝0(𝑤)𝑒ℎ (𝑤)𝑒𝜌
∑𝑛
𝑖=1

∑𝐾
𝑘=1 𝜉𝑖,𝑘𝑤𝑘 ·𝑥𝑖𝜂(𝑑𝑤)

)
+ 𝐶, (5.41)

for some constant 𝐶 which makes the density integrate to 1. Note that 𝜉 is restricted
to have support only on the set 𝐵, so there is an indicator of the set 𝐵 we do not write
in the expression for simplicity.

It is clear the term (5.41) is the cumulant generating function of the random variable
𝑢(𝑤) defined by

𝑢(𝑤) = 𝜉 ·
(X𝑤1· · ·
X𝑤𝐾

)
, (5.42)



22 C. McDonald and A. R. Barron

when 𝑤 is distributed according to the density proportional to 𝑝0(𝑤)𝑒ℎ (𝑤) . Thus, the
gradient in 𝜉 is the mean of the vector and the second derivative is the covariance, as
are standard properties of derivatives of cumulant generating functions. The density
being integrated is a tilting of the log likelihood defined by ℎ(𝑤), and this tilted density
is the reverse conditional 𝑝∗𝑛 (𝑤 |𝜉).

We highlight two important consequences of this result.

Corollary 2. The score ∇ log 𝑝∗𝑛 (𝜉) is expressed implicitly as a linear transformation
of the expected value of the log-concave reverse conditional 𝑝∗𝑛 (𝑤 |𝜉).

Proof. This is a simple consequence of (5.33) or (5.36).

Remark 2. Therefore, while we do not have an explicit closed form expression for the
score of the marginal density, it can be estimated using an MCMC method and thus
is readily available for use. In particular, to run an MCMC algorithm such as MALA
on the marginal density 𝑝∗𝑛 (𝜉), the score is needed. Any time the score needs to be
evaluated, it can be computed via its own MCMC algorithm for 𝑝∗𝑛 (𝑤 |𝜉) as needed
and then utilized in the sampling algorithm for 𝜉 itself.

Corollary 3. The density 𝑝∗𝑛 (𝜉) is log-concave if for any unit vector 𝑎 ∈ R𝑛𝐾 , with
blocks 𝑎𝑘 ∈ R𝑛, the variance of a particular linear combination of w, namely

𝑣(𝑤) =
𝐾∑︁
𝑘=1

𝑎T
𝑘X𝑤𝑘 , (5.43)

with respect to the reverse conditional 𝑝∗𝑛 (𝑤 |𝜉) is less than 1/𝜌 ,

Var𝑃∗
𝑛
[𝑣(𝑤) |𝜉] ≤ 1/𝜌, (5.44)

for 𝜉 in the convex support set 𝐵.

Proof. This is a simple consequence of (5.37).

Therefore, to show that 𝑝∗𝑛 (𝜉) is log-concave we must provide an upper bound on
the covariance of 𝑤 using the reverse conditional density 𝑝∗𝑛 (𝑤 |𝜉). Note that such con-
ditional expectation and conditional covariance representations would also hold using
𝑝𝑛 (𝜉), which is defined without conditioning on the set 𝐵 and thus does not include
the 𝑍 (𝑤) in the joint likelihood. However, the restrictions imposed on maximum inner
products by the definition of 𝐵 will prove useful in upper bounding the reverse condi-
tional covariance.
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5.4. Conditional Covariance Control

The log-likelihood for 𝑝∗𝑛 (𝑤 |𝜉) is the log likelihood of the prior density plus an addi-
tional concave term. Under a log-concave prior, one would expect that adding a concave
term to the exponent of an already log-concave density should result in less variance
in every direction. Thus one can conjecture the prior covariance would be more than
the conditional covariance for any conditioning value,

Cov𝑃0 [𝑤] ≻ Cov𝑃∗
𝑛
[𝑤 |𝜉] ∀𝜉 ∈ 𝐵. (5.45)

Under a Gaussian prior, such a statement would follow easily from the Brascamp-Lieb
inequality [10, Proposition 2.1]. However, a the uniform prior on a convex set, this
method does not directly apply.

The covariance matrix of the uniform prior on (𝑆𝑑1 )
𝐾 is diagonal with entries

Var𝑃0 (𝑤𝑘, 𝑗) = 𝑑

(𝑑+1)2 (𝑑+2) ≤ 1
𝑑2 which follows from properties of the Dirichlet dis-

tribution. Thus, under conjecture (5.45) we would expect a bound of the form

𝜌Var𝑃∗
𝑛
[𝑣(𝑤) |𝜉] ≤

√︂
3
2
𝑎2
𝛽𝐶𝑛𝑉

𝐾𝑑2

𝑑∑︁
𝑗=1

𝐾∑︁
𝑘=1

𝑛∑︁
𝑖=1

(𝑎𝑖,𝑘𝑥𝑖, 𝑗)2 (5.46)

≤
√︂

3
2
𝑎2
𝛽𝐶𝑛𝑉

𝐾𝑑

𝐾∑︁
𝑘=1

∥𝑎𝑘 ∥2
1 (5.47)

≤
√︂

3
2
𝑎2
𝛽𝑛𝐶𝑛𝑉

𝐾𝑑

𝐾∑︁
𝑘=1

∥𝑎𝑘 ∥2
2 (5.48)

=

√︂
3
2
𝑎2𝐶𝑛𝑉

𝛽𝑛

𝐾𝑑
(5.49)

≤
√︂

3
2
𝑎2
𝐶𝑁𝑉𝛽𝑁

𝐾𝑑
. (5.50)

Thus for 𝐾𝑑 > 𝐶 (𝛽𝑁) for some value 𝐶 we would have log-concavity of the mar-
ginal. However, we are unable to prove this conjecture is true. Instead, using a different
approach we will conclude for a specified 𝐶,

𝐾𝑑 ≥ 𝐶 (𝛽𝑁)2 (5.51)

results in log-concavity of the marginal density.
Instead of recreating an inequality like (5.45), we must take a different approach

to upper bound the variance in any direction. Denote the function,

ℎ𝑛𝜉 (𝑤) = −𝛽ℓ𝑛 (𝑤) −
𝑛∑︁
𝑖=1

𝐾∑︁
𝑘=1

𝜌

2
(𝜉𝑖,𝑘 − 𝑤𝑘 · 𝑥𝑖)2 − 𝑍 (𝑤). (5.52)
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Denote the function shifted by its mean under the prior as

ℎ̃𝑛𝜉 (𝑤) = ℎ𝑛𝜉 (𝑤) − 𝐸𝑃0 [ℎ𝑛𝜉 (𝑤)] . (5.53)

Define its cumulant generating function with respect to the prior as

Γ𝑛𝜉 (𝜏) = log 𝐸𝑃0 [𝑒
𝜏ℎ̃𝑛
𝜉
(𝑤) ] . (5.54)

Lemma 4. For any integer ℓ ≥ 1 and for any vector 𝑎 ∈ R𝐾𝑑 we have the upper bound

Var𝑃∗
𝑛
(𝑎 · 𝑤 |𝜉) ≤

(
𝐸𝑃0 [(𝑎 · 𝑤)2ℓ]

) 1
ℓ

𝑒
ℓ−1
ℓ

Γ𝑛
𝜉
( ℓ
ℓ−1 )−Γ

𝑛
𝜉
(1)
. (5.55)

Proof. The variance of the inner product 𝑎 · 𝑤 is less than its expected square. The
reverse conditional density 𝑝∗𝑛 (𝑤 |𝜉) can be expressed as

𝑝∗𝑛 (𝑤 |𝜉) = 𝑒
ℎ̃𝑛
𝜉
(𝑤)−Γ𝑛

𝜉
(1)
𝑝0(𝑤). (5.56)

We then apply a Hölder’s inequality to the integral expression with parameters 𝑝 and
𝑞 such that 1

𝑝
+ 1
𝑞
= 1

Var𝑃∗
𝑛
(𝑎 · 𝑤 |𝜉) ≤ 𝐸𝑃0 [(𝑎 · 𝑤)2𝑒

ℎ̃𝑛
𝜉
(𝑤)−Γ𝑛

𝜉
(1) ] (5.57)

≤
(
𝐸𝑃0 [(𝑎 · 𝑤)2𝑝]

) 1
𝑝
(
𝐸𝑃0 [𝑒

𝑞ℎ̃𝑛
𝜉
(𝑤)−𝑞Γ𝑛

𝜉
(1) ]

) 1
𝑞

. (5.58)

Let 𝑝 = ℓ and 𝑞 = ℓ
ℓ−1 . The second factor can be written as

𝑒
ℓ−1
ℓ

Γ𝑛
𝜉
( ℓ
ℓ−1 )−Γ

𝑛
𝜉
(1)
. (5.59)

We then study the moments of the prior density and the behavior of the Γ𝑛
𝜉
(𝜏)

function separately.

Lemma 5. For any unit vector 𝑎 ∈ R𝑛𝐾 , with blocks 𝑎𝑘 ∈ R𝑛,

𝐸𝑃0 [(
𝐾∑︁
𝑘=1

𝑎T
𝑘X𝑤𝑘)

2ℓ] 1
ℓ ≤ 4ℓ𝑛

√
𝑒 𝑑

. (5.60)

Proof. See Appendix, Section 10.3.

Lemma 6. Denote the constants

𝐴1 = 2𝑎1 + 4
√︂

3
2
𝑎2 (5.61)

𝐴2 =

(
1 + 1

√
𝜋

)√︄
2𝑎2

√︂
3
2
. (5.62)
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Assume positive 𝛿 ≤ 1
16 , 𝑑 ≥ 2, 𝐾 ≥ 2. For any positive integer ℓ ≥ 1 and any 𝜉 from

the constrained set 𝐵, we have

ℓ − 1
ℓ

Γ𝑛𝜉 (
ℓ

ℓ − 1
) − Γ𝑛𝜉 (1) ≤ 𝐴1

𝐶𝑛𝑉𝛽𝑛

ℓ
+ 𝐴2

√︁
𝐶𝑛𝑉𝛽𝑛

ℓ

(√︂
log( 2𝐾𝑑

𝛿
)
√
𝐾

)
. (5.63)

Proof. See Appendix, Section 10.3.

We summarize the conclusions of Lemmas 4,5,6 as follows. Ignoring certain con-
stant factors, we have an upper bound on the variance in (5.44) for any choice of ℓ,

𝑛ℓ

𝑑
exp

( 𝛽𝑛 +√︃
𝛽𝑛𝐾 log( 2𝐾𝑑

𝛿
)

ℓ

)
. (5.64)

Ignoring for now the integer constraint, the optimal continuous choice of ℓ to minimize
the expression is the numerator in the exponent. With this choice of ℓ, we would have
bound

𝛽𝑛2 + 𝑛 3
2

√︃
𝛽𝐾log( 2𝐾𝑑

𝛿
)

𝑑
. (5.65)

Multiplying this by 𝜌 ∝ 𝛽

𝐾
and upper bounding with 𝑛 ≤ 𝑁 , we would have the bound

(𝛽𝑁)2

𝐾𝑑

(
1 +

[𝐾 log
(

2𝐾𝑑
𝛿

)
𝛽𝑁

] 1
2
)
. (5.66)

If 𝐾 log(2𝐾𝑑/𝛿) ≤ 𝛽𝑁 , then we have a 𝑂 ( (𝛽𝑁 )2

𝐾𝑑
) bound. With a choice of 𝑑 and 𝐾

large enough, we can make this expression be less than 1. We make this statement more
precise in the following theorem.

Theorem 8. Assume 𝛿 ≤ 1
16 , 𝑑 ≥ 2, 𝐾 ≥ 2, 𝛽𝑁 ≥ 2. Further assume that

𝐾 log
(2𝐾𝑑
𝛿

)
≤ 𝛽𝑁, (5.67)

which is essentially a condition than 𝐾 not be too large (that is, 𝐾 is less than some
multiple of 𝛽𝑁).

Define 𝐴1, 𝐴2 as in (5.61), (5.62) and define the constant

𝐴3 = 4
√︂

3
2𝑒
𝑎2(𝐶𝑁𝑉)

3
2 [𝐴1 + 𝐴2(𝐶𝑁𝑉)

1
2 ] . (5.68)

Let 𝑑 and 𝐾 satisfy

𝐾𝑑 ≥ 𝐴3(𝛽𝑁)2. (5.69)

Then for all 𝑛 ≤ 𝑁 , the marginal density for 𝑝∗𝑛 (𝜉) is log-concave under the continuous
uniform prior. If equation (5.69) is a strict inequality, the density is strictly log-concave.
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A relevant 𝛿 may be 1/𝐾𝑑 or a power thereof, though a small constant value such
as say 1/300 is also acceptable (to satisfy Corollary 1 for example).

Proof. Fix any 𝑛 ≤ 𝑁 . By Corollary 3, the Hessian of log 𝑝∗𝑛 (𝜉) is log-concave when
for any unit vector 𝑎, we have

𝜌Var𝑃∗
𝑛
[
𝐾∑︁
𝑘=1

𝑎T
𝑘X𝑤𝑘 |𝜉] ≤ 1. (5.70)

By Lemma 4, 5, 6 we have an upper bound for this variance for any scalar ℓ > 1 and
𝜉 ∈ 𝐵. Recall 𝐴1, 𝐴2 as defined in expressions (5.61), (5.62). Fix the choice,

ℓ∗ = 𝐴1𝐶𝑛𝑉𝛽𝑛 + 𝐴2

√︂
𝐶𝑛𝑉𝐾𝛽𝑛 log( 2𝐾𝑑

𝛿
). (5.71)

This gives upper bound on 𝜌 times the variance,√︂
3
2
𝑎2
𝛽𝐶𝑛𝑉

𝐾

4𝑛
√
𝑒𝑑
ℓ∗ (5.72)

=4
√︂

3
2𝑒
𝐴1𝑎2

(𝐶𝑛𝑉𝛽𝑛)2

𝐾𝑑
(5.73)

+4
√︂

3
2𝑒
𝐴2𝑎2

(𝐶𝑛𝑉𝛽𝑛)
3
2
√
𝐾

𝐾𝑑

√︂
log( 2𝐾𝑑

𝛿
) (5.74)

≤4
√︂

3
2𝑒
𝑎2

(𝛽𝑁)2

𝐾𝑑

[
𝐴2(𝐶𝑁𝑉)2 + 𝐴1(𝐶𝑁𝑉)

3
2

(𝐾 (log( 2𝐾𝑑
𝛿

)
𝛽𝑁

) 1
2
]
. (5.75)

By assumption,

𝐾 log( 2𝐾𝑑
𝛿

)
𝛽𝑁

≤ 1, (5.76)

so we have upper bound on (5.70),

4
√︂

3
2𝑒
𝑎2(𝐶𝑁𝑉)

3
2 [𝐴1 + 𝐴2(𝐶𝑁𝑉)

1
2 ] (𝛽𝑁)

2

𝐾𝑑
. (5.77)

If𝐾𝑑 satisfies condition (5.69), then 𝜌 times the variance is less than 1 in expression
(5.70). By Corollary 3, this implies log-concavity of the induced marginal density on
𝜉.

Remark 3. Note that ℓ as used in the proof via the Hölder Inequality must be an integer.
Whereas the ℓ∗ in equation (5.71) is the optimal continuous value. We would have to
round up or down to the nearest integer. This would result in ℓ∗ ± 𝜖 for a number |𝜖 | < 1
in equation (5.72) instead of ℓ∗. This would give an additional term 𝛽𝑁/(𝐾𝑑) in the
expression (5.77), yet this is a lower order dependence that (𝛽𝑁)2/(𝐾𝑑), so it would
still be controlled.
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Remark 4. Note the interior weight dimension 𝑑 can be made artificially larger by
repeating the input vectors. Say the original input vectors 𝑥𝑖 have a default dimension
of 𝑑. Define new input vectors by repeating the data 𝐿 times

𝑥𝑖 = (𝑥𝑖 , · · · , 𝑥𝑖) ∈ R𝑑𝐿 . (5.78)

We can then consider X̃ as our data matrix with row dimension 𝑑 = 𝐿𝑑.
The span of the new data matrix under ℓ1 controlled input vectors, {𝑧 = X̃𝑤, ∥𝑤∥1 ≤

1}, is the same as the original matrix. So we have the same approximation ability
of the network. This can also equivalently be considered as inducing some different
prior on the original 𝑤𝑘 weight vectors of dimension 𝑑 that is more concentrated than
uniform. However, it is more convenient to consider a uniform prior in a higher 𝑑 =

𝐿𝑑 dimensional space. This is introducing even more multi-modality into the original
density 𝑝𝑛 (𝑤) as multiple longer weight vectors yield the same output in the neural
network. Yet by our proceeding theorems we have shown the density can be decomposed
into a log-concave mixture.

6. Risk Bounds

6.1. Introductory Concepts in Risk Control

For risk control, we want to compare the performance of our Bayesian posterior to the
best possible approximation in the model class. Note our previous sampling results
are for the continuous uniform prior on (𝑆𝑑1 )

𝐾 . When bounding posterior risk, we will
first provide bounds for the discrete uniform prior on (𝑆𝑑1,𝑀 )𝐾 . To recall, the discrete
prior forces coordinate values to be whole number multiples of 1

𝑀
for an integer 𝑀 .

The finite size of the support of the discrete prior makes it easier to analyze under our
approach, which relies on the prior probability of any single point being not too small.
In Section 7, we will extend these risk results to the continuous uniform prior as well.

Consider (𝑥𝑖 , 𝑦𝑖)𝑁𝑖=1 as an arbitrary sequence of inputs and response values. Let
𝑝𝑛 (𝑤 |𝑥𝑛, 𝑦𝑛) be the posterior density trained on data up to index 𝑛 with gain 𝛽. Recall
the definitions of posterior mean and predictive density

𝜇𝑛 (𝑥) = 𝐸𝑃𝑛 [ 𝑓 (𝑥, 𝑤) |𝑥𝑛, 𝑦𝑛] (6.1)

𝑝𝑛 (𝑦 |𝑥, 𝑥𝑛, 𝑦𝑛) = 𝐸𝑃𝑛 [
√
𝛽

√
2𝜋
𝑒−

𝛽

2 (𝑦− 𝑓 (𝑥,𝑤) )2 |𝑥𝑛, 𝑦𝑛] . (6.2)

Let 𝑔 be a competitor function we want to compare our performance to. Define its
predictive density 𝑞(𝑦 |𝑥) as Normal(𝑔(𝑥), 1

𝛽
). The individual squared error regret is
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defined as

𝑟
square
𝑛 =

1
2

[
(𝑦𝑛 − 𝜇𝑛−1(𝑥𝑛))2 − (𝑦𝑛 − 𝑔(𝑥𝑛))2

]
. (6.3)

We also define the randomized regret and log regret as

𝑟 rand
𝑛 =

1
2

[
𝐸𝑃𝑛−1 [(𝑦𝑛 − 𝑓 (𝑥𝑛, 𝑤))2] − (𝑦𝑛 − 𝑔(𝑥𝑛))2

]
(6.4)

𝑟
log
𝑛 =

1
𝛽

[
log

1
𝑝𝑛−1(𝑦𝑛 |𝑥𝑛, 𝑥𝑛−1, 𝑦𝑛−1)

− log
1

𝑞(𝑦𝑛 |𝑥𝑛)

]
. (6.5)

We then have the following ordering of the regrets [34].

Lemma 7. Assume 𝑓𝑤, 𝑔 are bounded in absolute value by 𝑏 𝑓 , 𝑏𝑔. Define

𝜖𝑛 = 𝑦𝑛 − 𝑔(𝑥𝑛) 𝑏 =
𝑏 𝑓 + 𝑏𝑔

2
𝜆𝑛 = 𝑏 |𝜖𝑛 | + 𝑏2. (6.6)

Then we have

𝑟
log
𝑛 ≤ 𝑟rand

𝑛 (6.7)

𝑟
square
𝑛 ≤ 𝑟rand

𝑛 ≤ 𝑟 log
𝑛 + 2𝛽𝜆2

𝑛. (6.8)

Proof. 𝑟square
𝑛 ≤ 𝑟 rand

𝑛 and 𝑟 log
𝑛 ≤ 𝑟 rand

𝑛 by Jensen’s inequality. Consider

1
2
[(𝑦𝑛 − 𝑓 (𝑥𝑛, 𝑤))2 − (𝑦𝑛 − 𝑔(𝑥𝑛))2], (6.9)

as a random variable in 𝑤. Then 𝑟 rand
𝑛 is its expected value and 𝑟 log

𝑛 is 1
𝛽

times its
cumulant generating function at 𝛽. Note that by a difference in squares identity,

1
2
[(𝑦𝑛 − 𝑓 (𝑥𝑛, 𝑤))2 − (𝑦𝑛 − 𝑔(𝑥𝑛))2] = (𝑔(𝑥𝑛) − 𝑓 (𝑥𝑛, 𝑤)) (𝜖𝑛 +

𝑔(𝑥𝑛) − 𝑓 (𝑥𝑛, 𝑤)
2

)
(6.10)

≤ 2𝑏( |𝜖𝑛 | + 𝑏) (6.11)
= 2𝜆𝑛. (6.12)

By second order Taylor expansion, the cumulant generating function of a bounded
random matches the mean to within half the range squared. Thus, we have

𝑟 rand
𝑛 ≤ 𝑟 log

𝑛 + 2𝛽𝜆2
𝑛. (6.13)
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Define the averaged quantities as

𝑅
square
𝑁

=
1
𝑁

𝑁∑︁
𝑛=1

𝑟
square
𝑛 𝑅rand

𝑁 =
1
𝑁

𝑁∑︁
𝑛=1

𝑟 rand
𝑛 (6.14)

𝑅
log
𝑁

=
1
𝑁

𝑁∑︁
𝑛=1

𝑟
log
𝑛 Λ2

𝑁 =
1
𝑁

𝑁∑︁
𝑛=1

𝜆2
𝑛. (6.15)

The average regrets follow the same ordering as the pointwise components,

𝑅
square
𝑁

≤ 𝑅rand
𝑁 ≤ 𝑅log

𝑁
+ 2𝛽Λ2

𝑁 . (6.16)

The easiest of the regrets to bound is the log regret as it has a telescoping cancellation
of log terms.

Lemma 8. The average log regret is upper bound as

𝑅
log
𝑁

≤ − 1
𝛽𝑁

log 𝐸𝑃0 [𝑒−
𝛽

2
∑𝑁
𝑛=1 (𝑦𝑛− 𝑓 (𝑥𝑛 ,𝑤) )2] − 1

2
1
𝑁

𝑁∑︁
𝑛=1

(𝑦𝑛 − 𝑔(𝑥𝑛))2. (6.17)

Proof. Denote the Bayes factor as

𝑍𝑛 = 𝐸𝑃0 [
𝑒−

𝛽

2
∑𝑛
𝑖=1 (𝑦𝑖− 𝑓 (𝑥𝑖 ,𝑤) )2

(2𝜋/𝛽) 𝑛2
] . (6.18)

The predictive density for 𝑝𝑛−1 is then the ratio of 𝑍𝑛 to 𝑍𝑛−1,

𝑝𝑛−1(𝑦𝑛 |𝑥𝑛, 𝑥𝑛−1, 𝑦𝑛−1) = 𝑍𝑛

𝑍𝑛−1
. (6.19)

Note this result requires reciprocal variance in our predictive density to match the 𝛽
gain used in the definition of our Bayesian model. The sum of logs then becomes a
telescoping product of canceling terms.

− 1
𝑁

𝑁∑︁
𝑛=1

log 𝑝𝑛−1(𝑦𝑛 |𝑥𝑛, 𝑥𝑛−1, 𝑦𝑛−1) (6.20)

= − 1
𝑁

log
𝑁∏
𝑛=1

𝑍𝑛

𝑍𝑛−1
(6.21)

= − 1
𝑁

log
𝑍𝑁

𝑍0
(6.22)

= − 1
2

log
( 𝛽
2𝜋

)
− 1
𝑁

log 𝐸𝑃0 [𝑒−
𝛽

2
∑𝑁
𝑛=1 (𝑦𝑛− 𝑓 (𝑥𝑛 ,𝑤) )2] . (6.23)

The 𝛽/2𝜋 terms appear in both 𝑝 and 𝑞, and cancel.
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The key term for bounding risk performance will ultimately depend on a cumulant
generating function of loss using the prior,

− 1
𝛽𝑁

log 𝐸𝑃0 [𝑒−
𝛽

2
∑𝑁
𝑛=1 (𝑦𝑛− 𝑓 (𝑥𝑛 ,𝑤) )2] . (6.24)

Providing upper bounds on this term is the main driving force of risk control. With this
key expression controlled by a choice of prior, various notions of risk such as expected
Kullback divergence, mean squared risk, and arbitrary sequence regret can be deduced.

One way to upper bound this cumulant generating function is through the index
of resolvability [5] approach, which relies on the prior probability of a set of good
approximators.

Lemma 9 (Index of Resolvability). Let the prior distribution 𝑃0 have support 𝑆 and
let 𝐴 be any measurable subset of 𝑆. Then we have upper bound

− 1
𝛽𝑁

log 𝐸𝑃0 [𝑒−
𝛽

2
∑𝑁
𝑛=1 (𝑦𝑛− 𝑓 (𝑥𝑛 ,𝑤) )2] ≤ − log 𝑃0(𝐴)

𝛽𝑁
+ max
𝑤∈𝐴

1
𝑁

𝑁∑︁
𝑛=1

1
2
(𝑦𝑛 − 𝑓 (𝑥𝑛, 𝑤))2.

(6.25)

Proof. The proof of this approach is quite simple. The integral on the full space is
more than the integral on a subset, thus restricting to a set 𝐴 upper bounds the negative
log integral,

− 1
𝛽𝑁

log 𝐸𝑃0 [𝑒−
𝛽

2
∑𝑁
𝑛=1 (𝑦𝑛− 𝑓 (𝑥𝑛 ,𝑤) )2] ≤ − 1

𝛽𝑁
log

∫
𝐴

𝑒−
𝛽

2
∑𝑁
𝑛=1 (𝑦𝑛− 𝑓 (𝑥𝑛 ,𝑤) )2

𝑃0(𝑑𝑤).

(6.26)

Multiply and divide by the prior probability of the set 𝑃0(𝐴).

− log 𝑃0(𝐴)
𝛽𝑁

− 1
𝛽𝑁

log 𝐸𝑃0 [𝑒−
𝛽

2
∑𝑁
𝑛=1 (𝑦𝑛− 𝑓 (𝑥𝑛 ,𝑤) )2 |𝑤 ∈ 𝐴] . (6.27)

Then upper bound the conditional mean by the largest value of the object in the expo-
nent for 𝑤 in 𝐴.

This philosophy makes risk control quite clear. First, there must exist at least one
point in the support of the prior which produces a good fit for the data. Second, the
prior must place enough probability around this point (or rather, at this point in the
case of discrete priors) so that the prior probability of the set 𝐴 is not exponentially
small in 𝑁 . Then both terms of the index of resolvability are controlled.

Note that our finite width neural networks can approximate functions well when the
target function lives in𝑉 times the convex hull of signed neurons. For a given input data
𝑥𝑁 = (𝑥𝑖)𝑁𝑖=1 and for each weight vector 𝑤 ∈ 𝑆𝑑1 , consider the vector in R𝑁 of a single
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neuron evaluated at the 𝑤 · 𝑥𝑖 points for 𝑖 ∈ 1, · · · , 𝑁 . Let the subset of R𝑁 denoted
Hull𝑁 (𝑉Ψ) be the closure of the set of convex combinations of𝑉 times signed neurons
in Ψ evaluated at 𝑥𝑁 . This is (the closure of) the set of single hidden layer neural
networks with variation at most 𝑉 , evaluated at the given data. For a vector of target
function values (𝑔(𝑥𝑖))𝑁𝑖=1, or more generally any vector of values 𝑔 = (𝑔1, · · · , 𝑔𝑁 ),
we denote its projection as

�̃� = argmin 𝑓 ∈Hull𝑁 (𝑉Ψ) ∥𝑔 − 𝑓 ∥𝑁 . (6.28)

Note �̃� is the vector of numerical values �̃� = (�̃�1, · · · , �̃�𝑁 ) ∈ R𝑁 , which may be inter-
preted as the vector of outputs of some network evaluated at the 𝑥𝑖 points, not the
network itself that would give rise to these outputs.

We will also have consideration of Hull(𝑉Ψ) defined as the 𝐿2(𝑃𝑋) closure of the
set of convex combinations of 𝑉 times signed neurons in Ψ as functions on [−1, 1]𝑑 .
The 𝐿2(𝑃𝑋) projection of a function 𝑔 defined as �̃�, the corresponding minimizer of
∥𝑔 − 𝑓 ∥2 within Hull(𝑉Ψ), is then a function itself not a vector of specific output
values.

For the arbitrary sequence regret bounds the best comparator �̃� is the Euclidean
projection into Hull𝑁 (𝑉Ψ), and for the statistical mean square risk bounds it is the
𝐿2(𝑃𝑋) projection into Hull(𝑉Ψ).

We now review results for functions 𝑔 in𝑉 times the convex hull of Ψ, concerning
how well a finite width network can approximate them.

6.2. Approximation Ability of Single-Hidden-Layer Neural Networks

First, we recall some known results about the approximation ability of neural networks.
We have the following established approximation result from previous work [26].

Lemma 10. Let 𝑥1, · · · , 𝑥𝑁 be given, with each 𝑥𝑖 ∈ [−1, 1]𝑑 . Assume ℎ is a target
function with variation𝑉 , that is ℎ

𝑉
lives in the closure of the convex hull of neurons with

ℓ1 controlled weight vectors evaluated at the 𝑥𝑖 . Then there exists a finite width network
with 𝐾 neurons and some choice of continuous neurons weights 𝑤∗

1, · · · , 𝑤
∗
𝐾
∈ (𝑆𝑑1 )

𝐾

and outer weights 𝑐1, · · · 𝑐𝐾 ∈ {−𝑉
𝐾
, 𝑉
𝐾
}𝐾 such that

𝑁∑︁
𝑖=1

( 𝑓 (𝑥𝑖 , 𝑤∗) − ℎ(𝑥𝑖))2 ≤ 𝑁
𝑎2

0𝑉
2

𝐾
. (6.29)

We can slightly modify this result to focus on discrete neuron weight vectors in
𝑆𝑑1,𝑀 as opposed to the full continuous space.

Lemma 11. Let 𝑥1, · · · , 𝑥𝑁 be given with each 𝑥𝑖 ∈ [−1, 1]𝑑 . Assume ℎ lives in the
closure of the convex hull of signed neurons scaled by𝑉 . Then for any sequence (𝑦𝑖)𝑁𝑖=1,
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there exists a choice of 𝐾 discrete-valued interior weights (𝑤∗
1, · · · , 𝑤

∗
𝐾
) ∈ (𝑆𝑑1,𝑀 )𝐾

and signed outer weights 𝑐𝑘 ∈ {−𝑉
𝐾
, 𝑉
𝐾
} such that the regret compared to ℎ is bound

by

𝑁∑︁
𝑖=1

(
𝑦𝑖 −

𝐾∑︁
𝑘=1

𝑐𝑘𝜓(𝑥𝑖 · 𝑤∗
𝑘)
)2

− (𝑦𝑖 − ℎ(𝑥𝑖))2 ≤ 𝑁
𝑎2

0𝑉
2

𝐾
+ 𝑁

(𝑉𝐶𝑁𝑎2 +𝑉2𝑎2
1)

𝑀
,

(6.30)

where 𝑎0, 𝑎1, 𝑎2 are the bounds on𝜓 and its derivatives, and𝐶𝑁 =max𝑛≤𝑁 |𝑦𝑛 | + 𝑎0𝑉 .

Proof. Fix 𝑥1, · · · , 𝑥𝑛 and ℎ(𝑥1), · · · , ℎ(𝑥𝑁 ) (or more generally ℎ1, · · · , ℎ𝑁 ). Since ℎ
lives in the closure of the convex hull of signed neurons scaled by 𝑉 , for every 𝜖 > 0
there exists some finite width neural network with continuous-valued weight vectors
𝑤ℓ ∈ 𝑆𝑑1 and outer weights 𝑐ℓ with

∑
ℓ |𝑐ℓ | = 1 such that

ℎ̃(𝑥) = 𝑉
∑︁
ℓ

𝑐ℓ𝜓(𝑥 · 𝑤ℓ),
𝑁∑︁
𝑖=1

(ℎ(𝑥𝑖) − ℎ̃(𝑥𝑖))2 ≤ 𝜖 . (6.31)

Let 𝐿 be a random draw of neuron index where 𝐿 = ℓ with probability |𝑐ℓ |. Define
𝑤cont = 𝑤𝐿 as the continuous neuron vector at the selected random index 𝐿, and 𝑠cont =

sign(𝑐𝐿) as the sign of the outer weight.
Given a continuous vector 𝑤cont of dimension 𝑑, we then make a random discrete

vector as follows. Define a 𝑑 + 1 coordinate,𝑤cont
𝑑+1 = 1− ∥𝑤cont

1:𝑑 ∥1, to have a 𝑑 + 1 length
vector which sums to 1. Consider a random index 𝐽 ∈ {1, · · · 𝑑 + 1} where 𝐽 = 𝑗 with
probability |𝑤cont

𝑗
|. Given 𝑤cont, this defines a distribution on {1, · · · , 𝑑 + 1}. Draw

𝑀 iid random indices 𝐽1, · · · , 𝐽𝑀 from this distribution and define the counts of each
index

𝑚 𝑗 =

𝑀∑︁
𝑖=1

1{𝐽𝑖 = 𝑗}. (6.32)

We then define the discrete vector 𝑤disc ∈ 𝑆𝑑1,𝑀 with coordinate values

𝑤disc
𝑗 = sign(𝑤cont

𝑗 )
𝑚 𝑗

𝑀
. (6.33)

Consider then 𝐾 iid draws of random indexes 𝐿1, · · · 𝐿𝐾 , as well as corresponding
signs 𝑠𝑘 = sign(𝑐𝐿𝑘 ). For each 𝐿𝑘 consider 𝑀 iid drawn indexes 𝐽𝑘1 , · · · , 𝐽

𝑘
𝑀

. This also
defines continuous vectors 𝑤cont

𝑘
and discrete vectors 𝑤disc

𝑘
. Denote the neural network

using a random set of weights and signs,

𝑓 (𝑥, 𝑤, 𝑠) =
𝐾∑︁
𝑘=1

𝑉

𝐾
𝑠𝑘𝜓(𝑥 · 𝑤𝑘). (6.34)
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Recall the empirical norm and inner product definitions ∥ · ∥2
𝑁
, ⟨·, ·⟩𝑁 from the notation

section. Consider the expected regret using random discrete neuron weights.

𝐸

[
∥𝑦 − 𝑓 (·, 𝑤disc, 𝑠)∥2

𝑁 − ∥𝑦 − ℎ∥2
𝑁

]
. (6.35)

Note this expectation is with respect to the previously defined distribution for 𝑤disc,
𝑤cont, and 𝑠. The data (𝑥𝑖 , 𝑦𝑖)𝑁𝑖=1 are fixed.

Add and subtract the norm using continuous weight vectors, noting that the discrete
and continuous vectors of the same index are dependent via the construction,

𝐸

[
∥𝑦 − 𝑓 (·, 𝑤cont, 𝑠)∥2

𝑁 − ∥𝑦 − ℎ∥2
𝑁

]
(6.36)

+𝐸
[
∥𝑦 − 𝑓 (·, 𝑤disc, 𝑠)∥2

𝑁 − ∥𝑦 − 𝑓 (·, 𝑤cont, 𝑠)∥2
𝑁

]
. (6.37)

Note that using continuous weight vectors the expected value of the random neural
network is exactly ℎ̃,

𝐸 [𝑉
𝐾

𝐾∑︁
𝑘=1

𝑠𝑘𝜓(𝑥𝑖 · 𝑤cont
𝑘 )] =

𝑁∑︁
𝑖=1

ℎ̃(𝑥𝑖). (6.38)

Thus using a bias variance decomposition we have the bound on expression (6.36),

𝐸

[
∥𝑦 − 𝑓 (·, 𝑤cont, 𝑠)∥2

𝑁 − ∥𝑦 − ℎ∥2
𝑁

]
(6.39)

=

𝑁∑︁
𝑛=1

Var( 𝑓 (𝑥𝑖 , 𝑤cont, 𝑠))2 + ∥𝑦 − ℎ̃∥2
𝑁 − ∥𝑦 − ℎ∥2

𝑁 (6.40)

≤𝑁
𝑎2

0𝑉
2

𝐾
+ 2∥𝑦 − ℎ∥𝑁 ∥ℎ − ℎ̃∥𝑁 + ∥ ℎ̃ − ℎ∥2

𝑁 (6.41)

=𝑁
𝑎2

0𝑉
2

𝐾
+ 2

√
𝑁𝐶𝑁

√
𝜖 + 𝜖 . (6.42)

Where we have used that 𝑓 (𝑥, 𝑤cont, 𝑠) is an average of 𝐾 iid terms each bounded by
𝑎𝑜𝑉 , so its variance is less than 𝑎2

0𝑉
2/𝐾 .

For expression (6.37), perform a second order Taylor expansion of ∥𝑦 − 𝑓 (·, 𝑤disc, 𝑠)∥2
𝑁

as a function of 𝑤disc centered at 𝑤cont. For any other vector �̃�, denote the expressions

res𝑖 (𝑤, 𝑠) = 𝑦𝑖 −
𝐾∑︁
𝑘=1

𝑠𝑘
𝑉

𝐾
𝜓(𝑥𝑖 · 𝑤𝑘) (6.43)

𝑎𝑖,𝑘 = − 𝑠𝑘
2𝑉
𝐾

res𝑖 (𝑤cont, 𝑠)𝜓′ (𝑥𝑖 · 𝑤cont
𝑘 ) (6.44)

𝑏𝑖,𝑘,𝑘′ (�̃�, 𝑠) = − 𝑠𝑘
2𝑉
𝐾

res𝑖 (�̃�, 𝑠)𝜓′′ (𝑥𝑖 · �̃�𝑘)𝛿𝑘=𝑘′

+ 2𝑠𝑘𝑠𝑘′
𝑉2

𝐾2𝜓
′ (𝑥𝑖 · �̃�𝑘)𝜓′ (𝑥𝑖 · �̃�𝑘′). (6.45)
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Then for any continuous-valued vector 𝑤cont and discrete-valued vector 𝑤disc, there
exists some vector �̃� (in fact along the line between 𝑤disc and 𝑤cont) such that the
second order expansion is exact using that �̃� in the second derivative terms,

∥𝑦 − 𝑓 (·, 𝑤disc, 𝑠)∥2
𝑁 (6.46)

=∥𝑦 − 𝑓 (·, 𝑤cont, 𝑠)∥2
𝑁 +

𝑁∑︁
𝑖=1

𝐾∑︁
𝑘=1

𝑎𝑖,𝑘 (𝑥𝑖 · (𝑤disc
𝑘 − 𝑤cont

𝑘 )) (6.47)

+1
2

𝑛∑︁
𝑖=1

𝐾∑︁
𝑘,𝑘′=1

𝑏𝑖,𝑘,𝑘′ (�̃�, 𝑠) (𝑥𝑖 · (𝑤disc
𝑘 − 𝑤cont

𝑘 )) (𝑥𝑖 · (𝑤disc
𝑘′ − 𝑤cont

𝑘′ )). (6.48)

Expanding the terms we have the expression,

𝐸

[
∥𝑦 − 𝑓 (·, 𝑤disc, 𝑠)∥2

𝑁 − ∥𝑦 − 𝑓 (·, 𝑤cont, 𝑠)∥2
𝑁

]
(6.49)

=

𝑁∑︁
𝑖=1

𝐾∑︁
𝑘=1

𝑎𝑖,𝑘𝐸 [𝑥𝑖 · (𝑤disc
𝑘 − 𝑤cont

𝑘 )] (6.50)

−𝑉
𝐾

𝑁∑︁
𝑖=1

𝐾∑︁
𝑘=1

𝐸

[
res𝑖 (�̃�, 𝑠)𝜓′′ (𝑥𝑖 · �̃�𝑘) (𝑥𝑖 · (𝑤disc

𝑘 − 𝑤cont
𝑘 ))2

]
(6.51)

+
𝑁∑︁
𝑖=1

𝐸

[( 𝐾∑︁
𝑘=1

𝑠𝑘
𝑉

𝐾
𝜓′ (�̃�𝑘) (𝑥𝑖 · (𝑤disc

𝑘 − 𝑤cont
𝑘 ))

)2]
. (6.52)

By construction of the distribution, 𝐸 [𝑤disc
𝑘

|𝑤cont
𝑘

] = 𝑤cont
𝑘

so the first order term (6.50)
is mean 0. Note that for each 𝑖, |res𝑖 (�̃�, 𝑠) | ≤ 𝐶𝑁 , 𝜓′ (·) ≤ 𝑎1, 𝜓

′′ (·) ≤ 𝑎2 so we have
upper bound

= (𝑉𝐶𝑁𝑎2 +𝑉2𝑎2
1)

𝑁∑︁
𝑖=1

𝐾∑︁
𝑘=1

1
𝐾
𝐸 [(𝑥𝑖 · (𝑤disc

𝑘 − 𝑤cont
𝑘 ))2] (6.53)

= (𝑉𝐶𝑁𝑎2 +𝑉2𝑎2
1)

𝑁∑︁
𝑖=1

𝐸 [Var[𝑥𝑖 · 𝑤disc
1 |𝑤cont

1 ]], (6.54)

since the distribution of (𝑤disc
𝑘
, 𝑤cont

𝑘
) is the same for 𝑘 = 1, · · · , 𝐾 .

For a fixed choice of continuous 𝑤cont
1 , let 𝑥𝑖,𝑑+1 = 0 and consider 𝑥𝑖 as a 𝑑 + 1

dimension vector. Then 𝑥𝑖 · 𝑤disc
1 is the inner product of 𝑥𝑖 with a vector defined by

counts of the independent random indexes 𝐽1
1 , · · · , 𝐽

1
𝑀

. Therefore, the inner product



Rapid Bayesian Computation and Estimation for Neural Networks via Log-Concave Coupling 35

can equivalently be written as an average of𝑀 iid random variables using these indexes,

Var[𝑥𝑖 · 𝑤disc
1 |𝑤cont

1 ] = Var[ 1
𝑀

𝑀∑︁
𝑡=1

𝑥𝑖,𝐽1
𝑡
|𝑤cont

1 ] (6.55)

=
1
𝑀

Var[𝑥𝑖,𝐽1
1
|𝑤cont

1 ] (6.56)

≤ 1
𝑀
, (6.57)

since the |𝑥𝑖, 𝑗 | are all bounded by 1.
The support of the product measure on discrete weights and outer signs is (𝑆𝑑1,𝑀 )𝐾 ×

{−1, 1}𝐾 . There must be at least one element of the support that has a regret equal to
or lower than the average regret. Then taking 𝜖 → 0 completes the proof.

Remark 5. We make a note here about odd symmetric activation functions, such as as
the 𝑡𝑎𝑛ℎ function, and non-odd symmetric functions, such as the ReLU squared. For
our established approximators in the convex hull, the signs of the outer weights 𝑐𝑟 are
not known to us in defining our model. Yet in our Bayesian model we fix the signs of
our outer neuron scalings 𝑐𝑘 as specific signed values, and they are not modeled as
flexible in the posterior distribution.

For odd symmetric activation functions, we can consider all signed outer weights
to be positive, and any negative outer scalings could be equivalently generated by using
negative inner weight vectors. Thus, we can consider all 𝑐𝑘 = 𝑉

𝑘
in our model and the

signed discussion in the previous proof becomes irrelevant.
For non-odd symmetric activation functions, if we use double the variation �̃� = 2𝑉

and double the number of neurons �̃� = 2𝐾 , fix the first 𝐾 outer weights to be positive
and the second 𝐾 to be negative. Then by setting half of inner the weights to be the zero
vector, any selection of 𝐾 inner weights and 𝐾 signed outer weights can be generated
by the model twice as wide. In essence, a non-odd symmetric activation function uses
twice the variation and twice the number of neurons to ensure any signed network of
size 𝐾 and variation 𝑉 can be generated by a certain choice of interior weights alone
and fixed outer weights.

6.3. Arbitrary Sequence Risk Control

We now apply these results to a specific choice of prior. The discrete uniform prior
on (𝑆𝑑1,𝑀 )𝐾 is a uniform distribution with less than (2𝑑 + 1)𝑀𝐾 possible values. As
such, the negative prior log probability of a single point only grows logarithmically
in the dimension. By Lemma 11, for any target function of the given variation, the set
(𝑆𝑑1,𝑀 )𝐾 contains at least one choice of parameters that is a good approximation to the
function. This yields the following result.
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Theorem 9 (Odd-Symmetric Neurons). Let 𝑔 be a target function and let ℎ be any
element of the closure of the convex hull of signed neurons scaled by 𝑉 . Let 𝑃0 be the
uniform prior on (𝑆𝑑1,𝑀 )𝐾 . Assume the neuron activation function is odd symmetric and
set all outer weights as 𝑐𝑘 = 𝑉

𝐾
. For any data sequence (𝑥𝑖 , 𝑦𝑖)𝑁𝑖=1 with all 𝑥𝑖 ∈ [−1,1]𝑑 ,

define the terms

𝜖𝑛 = 𝑦𝑛 − 𝑔(𝑥𝑛) 𝜖𝑛 = 𝑦𝑛 − ℎ(𝑥𝑛). (6.58)

Then the average log regret of the sequence of posterior predictive distributions is
upper bounded by

𝑅
log
𝑁

≤ 𝑀𝐾 log(2𝑑 + 1)
𝛽𝑁

+
𝑎2

0𝑉
2

2𝐾
+

(𝑉𝐶𝑁𝑎2 +𝑉2𝑎2
1)

2𝑀
+ 1

2
1
𝑁

𝑁∑︁
𝑛=1

(𝜖2
𝑛 − 𝜖2

𝑛). (6.59)

In particular, ℎ may be the Hull𝑁 (𝑉Ψ) projection of 𝑔, which is denoted �̃�.

Proof. Recall the definition

∥ℎ1 − ℎ2∥2
𝑁 =

𝑁∑︁
𝑛=1

(ℎ1(𝑥𝑖) − ℎ2(𝑥𝑖))2 ⟨ℎ1, ℎ2⟩𝑁 =

𝑁∑︁
𝑖=1

ℎ1(𝑥𝑖)ℎ2(𝑥𝑖), (6.60)

for functions of the 𝑥𝑖 sequence. By Lemmas 8 and 9, for any set 𝐴 of discrete neuron
values, we can upper bound the average log regret as

− log 𝑃0(𝐴)
𝛽𝑁

+ 1
2𝑁

max
𝑤∈𝐴

((∥𝑦 − 𝑓𝑤∥2
𝑁 − ∥𝑦 − 𝑔∥2

𝑁 ) (6.61)

= − log 𝑃0(𝐴)
𝛽𝑁

+ 1
2𝑁

max
𝑤∈𝐴

((∥𝑦 − 𝑓𝑤∥2 − ∥𝑦 − ℎ∥2
𝑁 ) +

1
2𝑁

(∥𝑦 − ℎ∥2
𝑁 − ∥𝑦 − 𝑔∥2

𝑁 ).

(6.62)

By Lemma 11, there exists a single discrete point with bounded regret from ℎ. Select 𝐴
as the singleton set at this point. We then consider the number of points in the support
of the prior.

Let 𝑤 be a vector of length 𝑑 with ℓ1 norm less than or equal to 1. To make a vector
with only positive entries, use double the coordinates and set �̃� 𝑗 = 𝑤 𝑗 if 𝑤 𝑗 > 0 and
�̃�𝑑+ 𝑗 = −𝑤 𝑗 else. Then add one more coordinate to count how far the ℓ1 norm is from
1, �̃�2𝑑+1 = 1 − ∥𝑤∥1. Thus, each 𝑤 vector can be uniquely expressed as a 2𝑑 + 1 size
vector of positive entries that sums to exactly 1.

Consider the entries of �̃� as having to be multiples of 1
𝑀

. Each �̃� vector is then a his-
togram on 2𝑑 + 1 locations where the heights at each location can be {0,1, · · · , 𝑀}/𝑀 .
An over-counting of the number of possible histograms is then (2𝑑 + 1)𝑀 . The product
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prior on 𝐾 independent weight vectors gives an additional 𝐾 power. Since the discrete
uniform prior support set has less than or equal to (2𝑑 + 1)𝑀𝐾 points,

− log 𝑃0(𝐴) ≤ (𝑀𝐾) log(2𝑑 + 1). (6.63)

Combined with the bound from Lemma 11 this completes the proof.

In general, for a non-odd symmetric activation function (e.g. squared ReLU) we
use twice the number of neurons with fixed outer weights to ensure any choice of signed
neurons of half the width can be generated. Thus, we can prove the same order bounds
but with slightly different constants. Here, we give the explicit changes, but all future
theorems will be given for the odd-symmetric case and the non-odd symmetric version
can be similarly derived.

Corollary 4 (Non-Odd Symmetric Neurons). For a neural network with non-odd sym-
metric neurons, use twice the number of neurons �̃� = 2𝐾 neurons and twice the vari-
ation �̃� = 2𝑉 . Set the first 𝐾 outer weights as positive 𝑐𝑘 = 𝑉

𝐾
and the second 𝐾 outer

weights as negative 𝑐𝑘 = −𝑉
𝐾

. Then we have the bound of

𝑅
log
𝑁

≤ 𝑀�̃� log(2𝑑 + 1)
𝛽𝑁

+
𝑎2

0�̃�
2

�̃�
+

(�̃�𝐶𝑁𝑎2 + �̃�2𝑎2
1)

2𝑀
+ 1

2
1
𝑁

𝑁∑︁
𝑛=1

(𝜖2
𝑛 − 𝜖2

𝑛). (6.64)

Proof. By Lemma 11, there exists some signed neural network of width𝐾 that achieves
the given regret bound with target function 𝑔. Our chosen network of width �̃� of fixed
signed neurons has the flexibility to generate arbitrary signed (i.e. any number propor-
tion of positive or negative signs) networks of width𝐾 = �̃�

2 . The proof then follows.

Theorem 10. Let 𝑔(𝑥) be a target function bounded by a value 𝑏 and let ℎ be any
element of the closure of the convex hull of signed neurons scaled by 𝑉 . Let 𝑃0 be the
uniform prior on (𝑆𝑑1,𝑀 )𝐾 . Assume the neuron activation function is odd symmetric and
set all outer weights as 𝑐𝑘 = 𝑉

𝐾
. For any data sequence (𝑥𝑖 , 𝑦𝑖)𝑁𝑖=1 with all 𝑥𝑖 ∈ [−1,1]𝑑 ,

the average squared regret of the posterior mean predictions is upper bounded by

𝑅
square
𝑁

≤ 𝑀𝐾 log(2𝑑 + 1)
𝛽𝑁

+
𝑎2

0𝑉
2

2𝐾
+

(𝑉𝐶𝑁𝑎2 +𝑉2𝑎2
1)

2𝑀
(6.65)

+ 2𝛽
1
𝑁

𝑁∑︁
𝑛=1

(𝑎0𝑉 + 𝑏
2

|𝜖𝑛 | +
(𝑎0𝑉 + 𝑏

2

)2)2
+ 1

2
1
𝑁

𝑁∑︁
𝑛=1

(𝜖2
𝑛 − 𝜖2

𝑛). (6.66)

Proof. Apply Lemma 7 and Theorem 9 to upper bound squared regret by log regret
and an additional 𝛽 term. Note that 𝑓𝑤 is bounded by 𝑎0𝑉 and 𝑔 is bounded by 𝑏.
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Using |𝜖𝑛 | ≤ 𝐶𝑁 provides the proof of Theorem 2. We next derive the choices of
𝛽, 𝑀, 𝐾 which optimize the bounds in Theorem 2.

Corollary 5. Replace the residuals 𝜖𝑛 with 𝐶𝑁 in expression (6.66). Denote the value

𝐵1 = (𝐶𝑁 + 𝑎0𝑉 + 𝑏
2

)2 (6.67)

Let

𝛽∗ = 𝛾1

( log(2𝑑 + 1)
𝑁

) 1
4 (6.68)

𝐾∗ = 𝛾2

( 𝑁

log(2𝑑 + 1)

) 1
4 (6.69)

𝑀∗ = 𝛾3

( 𝑁

log(2𝑑 + 1)

) 1
4
, (6.70)

where

𝛾1 =
(𝑎0𝑉)

1
2 ( 𝑎2𝑉𝐶𝑁+𝑎2

1𝑉
2

2 ) 1
4

2( 𝑎0𝑉+𝑏
2 ) 3

2 (𝐵1)
3
4

(6.71)

𝛾2 =
(𝑎0𝑉)

3
2

2( 𝑎0𝑉+𝑏
2 ) 1

2 (𝐵1)
1
4 ( 𝑎2𝑉𝐶𝑁+𝑎2

1𝑉
2

2 ) 1
4

(6.72)

𝛾3 =
( 𝑎2𝑉𝐶𝑁+𝑎2

1𝑉
2

2 ) 3
4

(𝑎0𝑉)
1
2 ( 𝑎0𝑉+𝑏

2 ) 1
2 (𝐵1)

1
4
. (6.73)

Then we have a bound on the squared regret of the form

4
(
𝑎0𝑉 (

𝑎0𝑉 + 𝑏
2

)
) 1

2
(
𝐵1(

𝑎2𝑉𝐶𝑁 + 𝑎2
1𝑉

2

2
)
) 1

4
( log(2𝑑 + 1)

𝑁

) 1
4 + 1

2
1
𝑁

𝑁∑︁
𝑛=1

(𝜖2
𝑛 − 𝜖2

𝑛).

(6.74)

In particular, if the function 𝑔 lives in the convex hull scaled by 𝑉 and ℎ is chosen to
be 𝑔, then 𝜖𝑛 = 𝜖𝑛 and we have an upper bound of

𝑅
square
𝑁

= 𝑂 ((𝐶𝑁 )
3
4

( log(2𝑑 + 1)
𝑁

) 1
4 ). (6.75)

In the algorithm 𝑀, 𝐾 must be integers. The closest integer values to the stated con-
tinuous values achieve a similar bound.

Remark 6. Equations (6.68), (6.69), (6.70) represent the choice of modeling para-
meters that optimize our derived bound in Theorem 2. However, we do not advocate
plugging in these specific parameter choices directly into the model and training only
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one model based on these values. If for example, the dependence on say 𝐾 in equa-
tion (6.65) was an improved 1

𝐾2 rather than 1
𝐾

, the given bounds would not provide the
optimal choice. We instead advocate adaptive modeling by putting a prior on a number
of possible 𝑀 , 𝐾 , 𝛽 values, say 100-1000 possible values each.

Corollary 5 shows one choice of 𝛽∗, 𝐾∗, 𝑀∗ that can achieve bounded regret. If
we include these values in our prior set, by a further index of resolvability argument
we can show using a uniform prior on a finite number of 𝑀, 𝐾, 𝛽 possible values, we
would pay a log number of possible values divided by 𝛽𝑁 price in the bound, which can
be easily controlled. We note that computationally, all different 𝑀,𝐾, 𝛽 combinations
result in different models that can be sampled in parallel and independently on different
cores at the same time and the results combined at the end. Thus, such an approach is
amenable to GPU usage and distributed computing from a practical perspective.

6.4. IID Sequence Predictive Risk Control

In the previous section, we studied risk control for arbitrary data sequences with no
assumptions on the data. We compared performance in terms of regret to a competitor
fit. Here, we assume training data iid from a data distribution and prove bounds on
predictive risk for future data pairs.

Suppose (𝑥𝑖 , 𝑦𝑖)𝑁𝑖=1 are independent with 𝑦 having conditional mean 𝐸 [𝑌 |𝑋 =

𝑥] = 𝑔(𝑥) and conditional variance Var[𝑌 |𝑋 = 𝑥] = 𝜎2
𝑥 , with bound on the variance

max𝑥 𝜎2
𝑥 ≤ 𝜎2. Recall that our neural network is trained with a gain 𝛽. In a typical set-

ting with assumed independent Gaussian errors, 𝜎2
𝑥 = 𝜎

2 for each 𝑥 value and 𝛽 would
be set as a constant matching the inverse variance 𝛽 = 1

𝜎2 . However, we would also
like to consider gains decaying in 𝑁 , such as 𝛽 = [log(𝑑)/𝑁] 1

4 . Using such a 𝛽, we can
reproduce the arbitrary regret results above and show for the Cesàro mean estimator �̂�,

𝐸 [∥𝑔 − �̂�∥2] = 𝑂 (
( log(𝑑)
𝑁 + 1

) 1
4 ). (6.76)

Note that this statistical risk bound makes no assumptions about the distribution of 𝑌
given 𝑋 aside from its mean and variance. In particular, the distribution of the data need
not be Gaussian even though we use quadratic loss to define our posterior densities.
Additionally, our sampling gain 𝛽 does not have to match any data specific value exactly
(that is 𝛽 does not depend on 𝜎2 which may not be known).

If we further assume the conditional distribution is independent normal with con-
stant variance, 𝑌 |𝑋 ∼ Normal(𝑔(𝑋), 𝜎2), and the gain 𝛽 accurately represents the
inverse variance 𝛽 = 1

𝜎2 . We can give a similar bound for Kullback risk which has
an improved 1/3 power

𝐸 [𝐷 (𝑃𝑌 |𝑋∥𝑄avg
𝑌 |𝑋,𝑋𝑁 ,𝑌𝑁 )] = 𝑂 (

( log(𝑑)
𝑁 + 1

) 1
3 ). (6.77)
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We first bound the mean squared risk without any assumptions on 𝛽 and no normality
assumptions.

Theorem 11. Let 𝑔(𝑥) be a target function with absolute value bounded by 𝑏 and let
�̃� be its 𝐿2(𝑃𝑋) projection into the closure of the convex hull of signed neurons scaled
by 𝑉 . Let 𝑃0 be the uniform prior on (𝑆𝑑1,𝑀 )𝐾 . Assume the neuron activation function
is odd symmetric and set all outer weights as 𝑐𝑘 = 𝑉

𝐾
. Let (𝑥𝑖 , 𝑦𝑖)𝑁𝑖=1 be training data

iid with conditional mean 𝑔(𝑥𝑖) and conditional variance 𝜎2
𝑥𝑖

with variance bound
𝜎2
𝑥 ≤ 𝜎2. Assume the data distribution 𝑃𝑋 has support in [−1, 1]𝑑 . Then the mean

squared statistical risk of the averaged posterior mean estimator �̂� is upper bounded
by

𝐸 [∥𝑔 − �̂�∥2] ≤ 𝑀𝐾 log(2𝑑 + 1)
𝛽(𝑁 + 1) +

𝑎2
0𝑉

2

2𝐾
+

(𝑉 (𝑎0𝑉 + 𝑏)𝑎2 +𝑉2𝑎2
1)

2𝑀
(6.78)

+ 2𝛽( 𝑎0𝑉 + 𝑏
2

)2(𝜎 + 𝑎0𝑉 + 𝑏
2

)2 + ∥𝑔 − �̃�∥2. (6.79)

Let

𝛽∗ = 𝛾1

( log(2𝑑 + 1)
𝑁 + 1

) 1
4 (6.80)

𝐾∗ = 𝛾2

( 𝑁 + 1
log(2𝑑 + 1)

) 1
4 (6.81)

𝑀∗ = 𝛾3

( 𝑁 + 1
log(2𝑑 + 1)

) 1
4
, (6.82)

where

𝛾1 =
(𝑎0𝑉)

1
2 (𝑉 (𝑎0𝑉+𝑏)𝑎2+𝑉2𝑎2

1
2 ) 1

4

2( 𝑎0𝑉+𝑏
2 ) 3

2 (𝜎 + 𝑎0𝑉+𝑏
2 ) 3

2
(6.83)

𝛾2 =
(𝑎0𝑉)

3
2

2( 𝑎0𝑉+𝑏
2 ) 1

2 (𝜎 + 𝑎0𝑉+𝑏
2 ) 1

2 (𝑉 (𝑎0𝑉+𝑏)𝑎2+𝑉2𝑎2
1

2 ) 1
4

(6.84)

𝛾3 =
(𝑉 (𝑎0𝑉+𝑏)𝑎2+𝑉2𝑎2

1
2 ) 3

4

(𝑎0𝑉)
1
2 ( 𝑎0𝑉+𝑏

2 ) 1
2 (𝜎 + 𝑎0𝑉+𝑏

2 ) 1
2
. (6.85)

Then we have a bound on the mean squared risk of the form

4
(
𝑎0𝑉 (

𝑎0𝑉 + 𝑏
2

) (𝜎 + 𝑎0𝑉 + 𝑏
2

)
) 1

2
(𝑉 (𝑎0𝑉 + 𝑏)𝑎2 +𝑉2𝑎2

1
2

) 1
4
( log(2𝑑 + 1)

𝑁

) 1
4

(6.86)

+ ∥𝑔 − �̃�∥2. (6.87)
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Proof. Note the following expectations are with respect to training data (𝑋𝑖 ,𝑌𝑖)𝑁𝑖=1 and
a new input and response pair (𝑋, 𝑌 ) = (𝑋𝑁+1, 𝑌𝑁+1) all iid from the data distribu-
tion 𝑃𝑋,𝑌 . Note that since there are many expectations with respect to different random
variables in the proof, we will make explicit use of subscripts to indicate which random
variable each expectation is with respect to. The initial expectation is for the data dis-
tribution 𝑃𝑋,𝑌 for the training data as well as the new 𝑋 point which we are evaluating
at. Bring the average of the Cesàro mean outside the square to upper bound

1
2
𝐸𝑃

𝑋𝑁+1 ,𝑌𝑁+1 [(𝑔(𝑋) − �̂�(𝑋))2] ≤ 1
2

𝑁∑︁
𝑛=0

1
𝑁 + 1

𝐸𝑃
𝑋𝑁+1 ,𝑌𝑁+1 [(𝑔(𝑋) − 𝜇𝑛 (𝑋))2]

(6.88)

=
1
2
𝐸𝑃

𝑋𝑁+1 ,𝑌𝑁+1

[ 𝑁∑︁
𝑛=0

(𝑔(𝑋𝑛+1) − 𝜇𝑛 (𝑋𝑛+1))2

𝑁 + 1

]
(6.89)

=
1
2
𝐸𝑃

𝑋𝑁+1 ,𝑌𝑁+1

[ 𝑁∑︁
𝑛=0

(𝑌𝑛+1 − 𝜇𝑛 (𝑋𝑛+1))2 − (𝑌𝑛+1 − 𝑔(𝑋𝑛+1))2

𝑁 + 1

]
, (6.90)

where we have added the𝑌 in using the fact that𝑌𝑛+1 − 𝑔(𝑋𝑛+1) is mean 0 under 𝑃𝑋,𝑌 .
This is then exactly the expectation of a squared regret. Define notation 𝑅log

𝑁+1(𝑋
𝑁+1,𝑌𝑁+1),

𝑅
square
𝑁+1 (𝑋𝑁+1,𝑌𝑁+1) as the log and squared regret relative to 𝑔 at the random (𝑋𝑖 ,𝑌𝑖)𝑁+1

𝑖=1
values. Then by Lemma 7 we have,

𝐸𝑃
𝑋𝑁+1 ,𝑌𝑁+1

[
𝑅

square
𝑁+1 (𝑋𝑁+1, 𝑌𝑁+1)

]
≤ 𝐸𝑃

𝑋𝑁+1 ,𝑌𝑁+1

[
𝑅

log
𝑁+1(𝑋

𝑁+1, 𝑌𝑁+1)
]

(6.91)

+2𝐸𝑃
𝑋𝑁+1 ,𝑌𝑁+1

[
𝛽

1
𝑁 + 1

𝑁∑︁
𝑛=0

( 𝑎0𝑉 + 𝑏
2

|𝑌𝑛+1 − 𝑔(𝑋𝑛+1) | + ( 𝑎0𝑉

2
)2)2

]
(6.92)

≤𝐸𝑃
𝑋𝑁+1 ,𝑌𝑁+1

[
𝑅

log
𝑁+1(𝑋

𝑁+1, 𝑌𝑁+1)
]
+ 2𝛽( 𝑎0𝑉 + 𝑏

2
)2(𝜎 + 𝑎0𝑉 + 𝑏

2
)2. (6.93)

Then by Lemma 8,

𝐸𝑃
𝑋𝑁+1 ,𝑌𝑁+1 [𝑅

log
𝑁+1(𝑋

𝑁+1, 𝑌𝑁+1)] ≤ −1
2

1
𝑁 + 1

𝑁∑︁
𝑛=0

𝐸𝑃
𝑋𝑁+1 ,𝑌𝑁+1 [(𝑌𝑛+1 − 𝑔(𝑋𝑛+1))2]

(6.94)

+ 1
𝛽(𝑁 + 1) 𝐸𝑃𝑋𝑁+1 ,𝑌𝑁+1 [− log

∫
𝑒−

𝛽

2
∑𝑁
𝑛=0 (𝑌𝑛+1− 𝑓 (𝑋𝑛+1 ,𝑤) )2

𝑃0(𝑑𝑤)] . (6.95)

Use the ∥ · ∥2
𝑁+1 and ⟨·, ·⟩𝑁+1 notation defined earlier. Note the outer expectation in

(6.95) is with respect to 𝑋𝑁+1,𝑌𝑁+1 from the data distribution and the inner integral is
for 𝑤 using the prior, as a consequence of our index of resolvability bound. Recall that
our prior 𝑃0 is absolutely continuous with respect to a reference 𝜂 with density 𝑝0(𝑤).
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In this proof, 𝜂 can be considered as counting measure on (𝑆𝑑1,𝑀 )𝐾 for the discrete
uniform prior, but in other instances it could be considered as Lebesgue measure.

Add and subtract 𝑔(𝑋𝑛+1) inside each of the terms in the exponent of (6.95), expand
the terms and note the cancellation of the first quadratic term,

−1
2

1
𝑁 + 1

𝐸𝑃
𝑋𝑁+1 ,𝑌𝑁+1 [∥𝑌 − 𝑔∥2

𝑁+1] (6.96)

+ 1
𝛽(𝑁 + 1) 𝐸𝑃𝑋𝑁+1 ,𝑌𝑁+1 [− log

∫
𝑝0(𝑤)𝑒−

𝛽

2 ∥𝑌−𝑔+𝑔− 𝑓𝑤 ∥2
𝑁+1𝜂(𝑑𝑤)] (6.97)

=
1

𝛽(𝑁 + 1) 𝐸𝑃𝑋𝑁+1 ,𝑌𝑁+1 [− log
∫

𝑝0(𝑤)𝑒−
𝛽

2 ∥𝑔− 𝑓𝑤 ∥2
𝑁+1−𝛽⟨𝑌−𝑔,𝑔− 𝑓𝑤 ⟩𝑁+1𝜂(𝑑𝑤)] .

(6.98)

Inside the log, multiply and divide by
∫
𝑝0(𝑤)𝑒−

𝛽

2 ∥𝑔− 𝑓𝑤 ∥2
𝑁+1𝜂(𝑑𝑤), which acts as the

normalizing constant of a density with respect to 𝜂,

𝐸𝑃
𝑋𝑁+1 ,𝑌𝑁+1 [− log

∫ (
𝑝0 (𝑤)𝑒−

𝛽
2 ∥𝑔− 𝑓𝑤 ∥2

𝑁+1∫
𝑝0 (𝑤)𝑒−

𝛽
2 ∥𝑔− 𝑓𝑤 ∥2

𝑁+1 𝜂 (𝑑𝑤)

)
𝑒−𝛽⟨𝑌−𝑔,𝑔− 𝑓𝑤 ⟩𝑁+1𝜂(𝑑𝑤)]

𝛽(𝑁 + 1) (6.99)

+
𝐸𝑃

𝑋𝑁+1 ,𝑌𝑁+1 [− log
∫
𝑝0(𝑤)𝑒−

𝛽

2 ∥𝑔− 𝑓𝑤 ∥2
𝑁+1𝜂(𝑑𝑤)]

𝛽(𝑁 + 1) . (6.100)

Interestingly, the density in equation (6.99) can be viewed as a pseudo posterior 𝑝𝑛 (𝑤 |𝑔)
using the 𝑔(𝑥𝑖) data points in place of the 𝑦𝑖 to define the likelihood. This cannot be
used for actual training since the function 𝑔 is not known to us, but is a tool for risk
analysis.

We can then bring the − log, which is a convex function, inside the integral to get
an upper bound in (6.99). This brings the inner product in the exponent down. Then
switch the order of the inner 𝑤 integral and outer 𝑌𝑁+1 |𝑋𝑁+1 expectation. Note in
this analysis, the distribution of 𝑤 is the prior distribution 𝑃0 and is independent of
the 𝑋𝑁+1, 𝑌𝑁+1 values. Under the data distribution, 𝑌𝑁+1 conditioned on 𝑋𝑁+1 is
independent of 𝑤 and mean 𝑔(𝑋𝑁+1), thus the expected value of the inner product is
0 for any choice of 𝑤. Thus expression (6.99) is less than 0.

𝐸𝑃
𝑋𝑁+1 ,𝑌𝑁+1 [− log

∫ (
𝑝0 (𝑤)𝑒−

𝛽
2 ∥𝑔− 𝑓𝑤 ∥2

𝑁+1∫
𝑝0 (𝑤)𝑒−

𝛽
2 ∥𝑔− 𝑓𝑤 ∥2

𝑁+1 𝜂 (𝑑𝑤)

)
𝑒−𝛽⟨𝑌−𝑔,𝑔− 𝑓𝑤 ⟩𝑁+1𝜂(𝑑𝑤)]

𝛽(𝑁 + 1) (6.101)

≤
𝐸𝑃

𝑋𝑁+1 [
∫ (

𝑝0 (𝑤)𝑒−
𝛽
2 ∥𝑔− 𝑓𝑤 ∥2

𝑁+1∫
𝑝0 (𝑤)𝑒−

𝛽
2 ∥𝑔− 𝑓𝑤 ∥2

𝑁+1 𝜂 (𝑑𝑤)

)
𝐸𝑃

𝑌𝑁+1 |𝑋𝑁+1 [⟨𝑌 − 𝑔, 𝑔 − 𝑓𝑤⟩𝑁+1 |𝑋𝑁+1]𝜂(𝑑𝑤)]

𝑁 + 1
(6.102)

=0. (6.103)
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Then consider expression (6.100). This term can be bounded by the logic in Lemma
11. Add and subtract ∥�̃� − 𝑔∥2

𝑁+1 in the exponent and we have the expression

𝐸𝑃
𝑋𝑁+1 [− log

∫
𝑒−

𝛽

2 ( ∥𝑔− 𝑓𝑤 ∥2
𝑁+1−∥𝑔−�̃�∥2

𝑁+1 )𝑃0(𝑑𝑤)]
𝛽(𝑁 + 1) + 1

2
𝐸𝑃

𝑋𝑁+1 [∥�̃� − 𝑔∥2
𝑁+1]

𝑁 + 1
(6.104)

=
𝐸𝑃

𝑋𝑁+1 [− log
∫
𝑒−

𝛽

2 ( ∥𝑔− 𝑓𝑤 ∥2
𝑁+1−∥𝑔−�̃�∥2

𝑁+1 )𝑃0(𝑑𝑤)]
𝛽(𝑁 + 1) +

𝐸𝑃𝑋 [(𝑔(𝑋) − �̃�(𝑋))2]
2

.

(6.105)

To bound this further, think of 𝑔(𝑥𝑖) as the “𝑦𝑖” observations in Lemma 11, and take
the ℎ to be the 𝐿2(𝑃𝑋) projection �̃� of 𝑔 into Hull(𝑉Ψ) evaluated at 𝑥1, · · · , 𝑥𝑁 . The
result of Lemma 11 would then apply. However, our 𝑔(𝑥𝑖) are now bounded which
offers an improvement. Each instance of 𝐶𝑁+1 = max1≤𝑛≤𝑁+1 |𝑦𝑛 | + 𝑎0𝑉 in the result
of Lemma 11 can be replaced with

max
1≤𝑛≤𝑁+1

|𝑔(𝑥𝑛) | + 𝑎0𝑉 ≤ 𝑎0𝑉 + 𝑏, (6.106)

which is not 𝑦 dependent. Thus, the random variable 𝑦 can have unbounded range, yet
its mean function is bounded and the range of the mean function is the relevant term
for the bound. An expression like Theorem 9 then follows replacing 𝐶𝑁 with 𝑎0𝑉 + 𝑏.
Returning to expression (6.93) and applying this bound, we have our final expression,

𝑀𝐾 log(2𝑑 + 1)
𝛽(𝑁 + 1) +

𝑎2
0𝑉

2

2𝐾
+

(𝑉 (𝑎0𝑉 + 𝑏)𝑎2 +𝑉2𝑎2
1)

2𝑀
(6.107)

+2𝛽( 𝑎0𝑉 + 𝑏
2

)2(𝜎 + 𝑎0𝑉 + 𝑏
2

)2 + 1
2
𝐸 [(𝑔(𝑋) − �̃�(𝑋))2] . (6.108)

Plugging in the stated 𝛽∗, 𝑀∗, 𝐾∗ gives the more specific bound.

A corollary of this result is not only is the risk of our estimator �̂� close to the risk
of projection �̃� (which is the minimum risk attainable by any network), but also by a
Pythagorean inequality �̂� is close to �̃� itself in squared distance.

Corollary 6. Let 𝑔 be the target function and �̃� its 𝐿2(𝑃𝑋) projection into the closure
of the convex hull of signed neurons scaled by 𝑉 . Assume the risk of the Cesàro mean
estimator is bounded by

𝐸 [∥𝑔 − �̂�∥2] ≤ ∥𝑔 − �̃�∥2 +𝑂 (
( log(𝑑)

𝑁

) 1
4 ) (6.109)

Then the distance from �̂� to the projection �̃� is bounded by this error term decaying 𝑁 ,

𝐸 [∥�̃� − �̂�∥2] = 𝑂 (
( log(𝑑)

𝑁

) 1
4 ) (6.110)
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Proof. The closure of the convex hull of signed neurons is a convex set, thus �̃� being the
projection of 𝑔 into the set provides a separating hyper-plane. This means for all points
inside the closure of the convex hull, of which �̂� is a member, we have a Pythagorean
inequality,

∥𝑔 − �̃�∥2 + ∥�̃� − �̂�∥2 ≤ ∥𝑔 − �̂�∥2, (6.111)

and thus

∥�̃� − �̂�∥2 ≤ ∥𝑔 − �̂�∥2 − ∥𝑔 − �̃�∥2. (6.112)

The conclusion follows by taking the expectation.

For a target function 𝑔, consider the distribution for𝑌 |𝑋 as Normal(𝑔(𝑋), 1
𝛽
). Con-

sider 𝑋𝑁 ,𝑌𝑁 as training data used to train our Bayesian model independent according
to 𝑃𝑋,𝑌 and a pair 𝑋𝑁+1, 𝑌𝑁+1 as a new data input and response pair from the same
distribution not in our training set. We then bound the expected Kullback divergence
between 𝑃𝑌𝑁+1 |𝑋𝑁+1 and 𝑄avg

𝑌𝑁+1 |𝑋𝑁+1 ,𝑋𝑁 ,𝑌𝑁
.

Theorem 12. Assuming the data distribution is 𝑌 |𝑋 ∼ Normal(𝑔(𝑋), 1
𝛽
) we bound

the we bound the Kullback risk of the posterior predictive distribution as

𝐸 [𝐷 (𝑃𝑌𝑁+1 |𝑋𝑁+1 ∥𝑄
avg
𝑌𝑁+1 |𝑋𝑁+1 ,𝑋𝑁 ,𝑌𝑁

)] ≤ 𝐸
[− log 𝐸𝑃0 [𝑒−

𝛽

2
∑𝑁+1
𝑖=1 ( 𝑓 (𝑋𝑖 ,𝑤)−𝑔 (𝑋𝑖 ) )2]
𝑁 + 1

]
.

(6.113)

Proof. The proof of this theorem follows much the same as the arbitrary log regret
proof, with a few changes using the iid nature of the data.

The Cesàro average predictive density is a mixture of 𝑁 + 1 predictive densities
𝑝𝑛 (𝑦𝑛+1 |𝑥𝑛+1, 𝑥

𝑛, 𝑦𝑛). Since Kullback divergence is a convex function, this is less than
the average of individual divergences

1
𝑁 + 1

𝑁∑︁
𝑛=0

𝐸 [𝐷 (𝑃𝑌𝑁+1 |𝑋𝑁+1 ∥𝑃𝑌𝑁+1 |𝑋𝑁+1 ,𝑋𝑛 ,𝑌𝑛 )] . (6.114)

We assume the training data and new data come iid from the same distribution. There-
fore, the predictive distribution for any 𝑃𝑌𝑖∗ |𝑋𝑖∗ ,𝑋𝑛 ,𝑌𝑛 is the same distribution for all
𝑖∗ > 𝑛. That is, if a Bayesian model is only trained on data up to index 𝑛, all data of
higher index is predicted the same. Thus, we have

1
𝑁 + 1

𝑁∑︁
𝑛=0

𝐸 [𝐷 (𝑃𝑌𝑁+1 |𝑋𝑁+1 ∥𝑃𝑌𝑁+1 |𝑋𝑁+1 ,𝑋𝑛 ,𝑌𝑛 )] (6.115)

=
1

𝑁 + 1

𝑁∑︁
𝑛=0

𝐸 [𝐷 (𝑃𝑌𝑛+1 |𝑋𝑛+1 ∥𝑃𝑌𝑛+1 |𝑋𝑛+1 ,𝑋𝑛 ,𝑌𝑛 )] . (6.116)
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Note that at this point we can recognize via chain rule expression (6.116) is equal to the
total Kullback divergence [5] of the product measure 𝑃𝑌𝑁+1 |𝑋𝑁+1 from the Bayes joint
distribution 𝑄𝑌𝑁+1 |𝑋𝑁+1 (·) =

∫
(∏𝑁

𝑛=0 𝑄𝑌𝑛+1 |𝑤,𝑋𝑛+1 (·))𝑃0(𝑑𝑤) where 𝑄𝑌𝑁+1 |𝑤,𝑋𝑁+1 is
Normal( 𝑓𝑤(𝑋𝑁+1), 1/𝛽),

1
𝑁 + 1

𝐸𝑃
𝑋𝑁+1 [𝐷 (𝑃𝑌𝑁+1 |𝑋𝑁+1 ∥𝑄𝑌𝑁+1 |𝑋𝑁+1)] . (6.117)

However, we will derive this result directly as well. Consider each individual term in
(6.116), we will see a similar telescoping cancellation as in the log regret proof. Denote
the Bayes factor,

𝑍𝑛 = 𝐸𝑃0 [
𝑒−

𝛽

2
∑𝑛
𝑖=1 (𝑦𝑖− 𝑓 (𝑥𝑖 ,𝑤) )2

(2𝜋/𝛽) 𝑛2
] . (6.118)

Then the predictive density 𝑝𝑛 (𝑦𝑛+1 |𝑥𝑛+1, 𝑥
𝑛, 𝑦𝑛) is the ratio of 𝑍𝑛+1 to 𝑍𝑛,

𝑝𝑛 (𝑦𝑛+1 |𝑥𝑛+1, 𝑥
𝑛, 𝑦𝑛) = 𝑍𝑛+1

𝑍𝑛
. (6.119)

For each individual Kullback term we have

𝐸 [𝐷 (𝑃𝑌𝑛+1 |𝑋𝑛+1 ∥𝑃𝑌𝑛+1 |𝑋𝑛+1 ,𝑋𝑛 ,𝑌𝑛 )] =𝐸 [−
𝛽

2
(𝑌𝑛+1 − 𝑔(𝑋𝑛+1))2 − log

𝑍𝑛+1
𝑍𝑛

] (6.120)

− 1
2

log( 2𝜋
𝛽
). (6.121)

Use notation ∥ · ∥𝑁+1, ⟨·, ·⟩𝑁+1 as before. The sum of Kullback risks divided by 𝑁 + 1
is

− 𝛽

2
𝐸 [

∥𝑌 − 𝑔∥2
𝑁+1

𝑁 + 1
] − 1

2
log( 2𝜋

𝛽
) − 1

𝑁 + 1
𝐸 [log

𝑁∏
𝑛=0

𝑍𝑛+1
𝑍𝑛

] (6.122)

= − 𝛽

2
𝐸 [

∥𝑌 − 𝑔∥2
𝑁+1

𝑁 + 1
] − 1

2
log( 2𝜋

𝛽
) − 1

𝑁 + 1
𝐸 [log

𝑍𝑁+1
𝑍0

] . (6.123)

We now proceed with an argument similar to bounding equation (6.95). Consider the
negative log of 𝑍𝑁+1. Recall the prior is absolutely continuous with respect to reference
measure 𝜂. Add and subtract 𝑔 inside the exponent and simplify

𝐸 [− log 𝑍𝑛+1] = 𝐸 [− log 𝐸𝑃0 [𝑒−
𝛽

2 ∥𝑌− 𝑓𝑤 ∥2
𝑁+1] + 𝑁 + 1

2
log( 2𝜋

𝛽
) (6.124)

= 𝐸 [− log 𝐸𝑃0 [𝑒−
𝛽

2 ∥𝑔− 𝑓𝑤 ∥2
𝑁+1] + 𝛽

2
∥𝑌 − 𝑔∥2

𝑁+1] +
𝑁 + 1

2
log( 2𝜋

𝛽
)

(6.125)

+ 𝐸 [− log
∫

𝑝0(𝑤)𝑒−
𝛽

2 ∥𝑔− 𝑓𝑤 ∥2
𝑁+1

𝐸𝑃0 [𝑒−
𝛽

2 ∥𝑔− 𝑓𝑤 ∥2
𝑁+1]

𝑒−𝛽⟨𝑌−𝑔,𝑔− 𝑓𝑤 ⟩𝑁+1𝜂(𝑑𝑤)] . (6.126)
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The second and third terms in (6.125) will cancel with the first and second terms in the
Kullback risk (6.123). Term (6.126) is the same expression as (6.99), and was shown
to be less than 0.

Theorem 13. Let 𝑔(𝑥) be a target function with absolute value bounded by 𝑏 and let �̃�
be its 𝐿2(𝑃𝑋) projection into the closure of the convex hull of signed neurons scaled by
𝑉 . Let 𝑃0 be the uniform prior on (𝑆𝑑1,𝑀 )𝐾 . Assume the neuron activation function is
odd symmetric and set all outer weights as 𝑐𝑘 = 𝑉

𝐾
. Assuming the data distribution has

𝑌 |𝑋 ∼ Normal(𝑔(𝑋), 1
𝛽
), with 𝑃𝑋 having support in [−1, 1]𝑑 . We bound the expected

Kullback divergence as

𝐸 [𝐷 (𝑃𝑌 |𝑋∥𝑄avg
𝑌 |𝑋,𝑋𝑁 ,𝑌𝑁 )] ≤

𝑀𝐾 log(2𝑑 + 1)
𝑁 + 1

+ 𝛽
𝑎2

0𝑉
2

2𝐾
+ 𝛽

𝑉 (𝑎0𝑉 + 𝑏)𝑎2 +𝑉2𝑎2
1

2𝑀
(6.127)

+ 𝛽∥𝑔 − �̃�∥2. (6.128)

In particular, with the choice

𝐾∗ =
( 𝛽2𝑉

4) 1
3 (𝑎2

0)
2
3

(𝑉 (𝑎0𝑉 + 𝑏)𝑎2 +𝑉2𝑎2
1)

1
3

( (𝑁 + 1)
log(2(𝑑 + 1))

) 1
3 (6.129)

𝑀∗ =
(((𝑎0𝑉 + 𝑏)𝑎2 +𝑉2𝑎2

1)
2
3 ( 𝛽2 )

1
3

(𝑎0𝑉)
2
3

( (𝑁 + 1)
log(2(𝑑 + 1))

) 1
3
, (6.130)

we would have a bound of

3( 𝛽
2
) 2

3 (𝑎0𝑉)
2
3 (𝑉 (𝑎0𝑉 + 𝑏)𝑎2 +𝑉2𝑎2

1)
1
3

( log(2𝑑 + 1)
𝑁 + 1

) 1
3 + 𝛽∥𝑔 − �̃�∥2. (6.131)

Proof. Add and subtract ∥𝑔 − �̃�∥2
𝑁+1 in the exponent of equation (6.113) to get the

expression

𝐸 [− log 𝐸𝑃0 [𝑒−
𝛽

2 ( ∥𝑔− 𝑓𝑤 ∥2
𝑁+1−∥𝑔−�̃�∥2

𝑁+1 ) ]]
(𝑁 + 1) + 𝛽1

2
𝐸 [∥�̃� − 𝑔∥2

𝑁+1]
𝑁 + 1

. (6.132)

This is the same expression as (6.104), scaled by a 𝛽. Doing the same analysis gives
the bound

𝑀𝐾 log(2𝑑 + 1)
(𝑁 + 1) + 𝛽

𝑎2
0𝑉

2

2𝐾
+ 𝛽

(𝑉 (𝑎0𝑉 + 𝑏)𝑎2 +𝑉2𝑎2
1)

2𝑀
+ 𝛽∥𝑔 − �̃�∥2. (6.133)

Note now that 𝛽, being the inverse variance of the data distribution, is not a design
parameter we can choose. However, 𝑀 and 𝐾 are modeling choices. Setting 𝑀∗ and
𝐾∗ as given yields the final expression.
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7. Risk Control for the Continuous Prior

Our approach to risk control relies on the log regret being an upper bound on other
forms of regret, and statistical risk being interpreted as an expected regret. The log
regret can be upper bound via the index of resolvability, which utilizes the prior prob-
ability of a good set of approximators. Our approximation results show for any element
of the closure of the convex hull of signed neurons, there is one set of neuron weights
from the discrete lattice (𝑆𝑑1,𝑀 )𝐾 that is a good approximator. Also, there are not too
many points in the lattice so under the uniform discrete prior, the probability of any
one point is more than (2𝑑 + 1)−𝑀𝐾 (importantly, not exponentially small in 𝑁).

However, our sampling results are for the continuous uniform prior on (𝑆𝑑1 )
𝐾 , under

which any single point has 0 probability. Additionally, approximation set 𝐴 such as
those that arise from small balls around any point may have probability exponentially
small in the dimension 𝑑, which we cannot afford. Thus, we would like to utilize the
finite state space of the discrete prior in an index of resolvability bound on the log
regret, but apply these results to the continuous prior.

The key to connecting these two results is recognizing a joint distribution on dis-
crete and continuous weight vectors which couples the vectors to be close together, but
the marginal prior for each variable is uniform on (𝑆𝑑)𝐾 and (𝑆𝑑1,𝑀 )𝐾 respectively.
Then the continuous and discrete priors can be considered as different marginals of
this joint distribution.

Consider 𝑃0 as a joint distribution on (𝑆𝑑1 )
𝐾 × (𝑆𝑑1,𝑀 )𝐾 , with the continuous ran-

dom vector 𝑤cont ∈ (𝑆𝑑1 )
𝐾 and the discrete random vector 𝑤disc ∈ (𝑆𝑑1,𝑀 )𝐾 . Consider

the marginal distribution on 𝑤cont as treating each 𝑤cont
𝑘

vector as independent uniform
on 𝑆𝑑1 . Consider an additional coordinate for each 𝑤cont

𝑘
vector to track it’s ℓ1 distance

from 1, 𝑤cont
𝑘,𝑑+1 = 1 −∑𝑑

𝑗=1 |𝑤cont
𝑘, 𝑗

|.
Then define the conditional distribution on 𝑤disc

𝑘
|𝑤cont
𝑘

as follows. Force the signs of
the coordinates to stay the same, sign(𝑤disc

𝑘, 𝑗
) = sign(𝑤cont

𝑘, 𝑗
), and have the absolute values

be distributed as 1/𝑀 times a Multinomial(𝑀, |𝑤cont
𝑘,1 |, · · · , |𝑤cont

𝑘,𝑑+1 |) distribution. That
is, the conditional probability mass function of the absolute values of the discrete vector
can be written as

𝑝0( |𝑤disc
𝑘 |

�� |𝑤cont
𝑘 |) = 𝑀!∏𝑑+1

𝑗=1 (𝑀 |𝑤disc
𝑘, 𝑗

|)!

𝑑+1∏
𝑗=1

|𝑤cont
𝑘, 𝑗 |

𝑀 |𝑤disc
𝑘, 𝑗

| (7.1)

Note the discrete vector’s coordinates themselves are whole number multiples of 1/𝑀 ,
thus 𝑀 times the discrete vector coordinates are whole numbers between 0 and M.
There is also a 𝑤disc

𝑘,𝑑+1 coordinate in this construction which is 1 minus the sum of the
other coordinates. Then the overall joint distribution 𝑃0 has a density (with respect to
the product of Lebesgue measure on (𝑆𝑑1 )

𝐾 and counting measure on (𝑆𝑑1,𝑀 )𝐾 ) of the
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form

𝑝0(𝑤cont, 𝑤disc) =
𝐾∏
𝑘=1

𝑝0(𝑤cont
𝑘 )𝑝0(𝑤disc

𝑘 |𝑤cont
𝑘 ) (7.2)

=

𝐾∏
𝑘=1

Uniform𝑆𝑑1
(𝑤cont
𝑘 )Multinomial𝑀, |𝑤cont

𝑘
| (𝑀 |𝑤disc

𝑘 |)
𝑑+1∏
𝑗=1

1{sign(𝑤cont
𝑘, 𝑗 ) = sign(𝑤disc

𝑘, 𝑗 )}.

(7.3)

This results in the marginal distribution for 𝑤disc to treat each 𝑤disc
𝑘

as uniform on 𝑆𝑑1,𝑀 .
This is a special case of the Dirichlet-Multinomial distribution using the all 1’s vector
in the parameter vector of the Dirichlet distribution [38, Chapter 6].

Lemma 12. Consider the joint distribution outlined in expression (7.3). The marginal
distribution on 𝑤disc treats each 𝑤disc

𝑘
as uniform on 𝑆𝑑1,𝑀 .

Proof. The signs of the continuous vector coordinates are independent and equally
likely to be ±1, which is inherited by the discrete vector. The different 𝑘 indexes are
also clearly independent due to the product structure.

Focus then on the vectors of absolute values. Note the form of the Dirichlet dis-
tribution. For a vector of positive values 𝑣1, · · · , 𝑣𝑑+1 which sum to 1, the Dirichlet
distribution with parameter vector 𝛼 is written as

𝑞𝛼 (𝑣) =
Γ(∑𝑑+1

𝑗=1 𝛼 𝑗)∏𝑑+1
𝑗=1 Γ(𝛼 𝑗)

𝑑+1∏
𝑗=1

(𝑣 𝑗)𝛼𝑗−1. (7.4)

Note the Gamma function is equal to factorial at integer values, Γ(𝑧) = (𝑧 − 1)!, for
𝑧 ∈ N.

The absolute values of the continuous vector |𝑤cont
𝑘

| are uniform on the simplex,
which is also the symmetric Dirichlet distribution in 𝑑 + 1 dimensions with all ones
parameter vector. Then, the marginal probability of the absolute values of the discrete
vector is found by integrating out this Dirichlet distribution times the Multinomial
distribution, which turns out to exactly cancel and give a constant value. This is a
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special case of the Dirichlet-Multinomial distribution.

𝑝0( |𝑤disc
𝑘 |) =

∫
𝑝0( |𝑤cont

𝑘 |)𝑝0( |𝑤disc
𝑘 |

��|𝑤cont
𝑘 |)𝑑 |𝑤cont

𝑘 | (7.5)

=

∫
Γ(𝑑 + 1)∏𝑑+1
𝑗=1 Γ(1)

𝑑+1∏
𝑗=1

( |𝑤cont
𝑘, 𝑗 |)

1−1 Γ(𝑀 + 1)∏𝑑+1
𝑗=1 Γ(𝑀 |𝑤disc

𝑘, 𝑗
| + 1)

𝑑+1∏
𝑗=1

|𝑤cont
𝑘, 𝑗 |

(𝑀 |𝑤disc
𝑘, 𝑗

+1)−1
𝑑 |𝑤cont

𝑘 |

(7.6)

=
(𝑑!) (𝑀!)
(𝑑 + 𝑀)!

∫ Γ(∑𝑑+1
𝑗=1 (𝑀 |𝑤disc

𝑘, 𝑗
| + 1))∏𝑑+1

𝑗=1 Γ(𝑀 |𝑤disc
𝑘, 𝑗

| + 1)

𝑑+1∏
𝑗=1

|𝑤cont
𝑘, 𝑗 |

(𝑀 |𝑤disc
𝑘, 𝑗

|+1)−1
𝑑 |𝑤cont | (7.7)

=
1(𝑀+𝑑
𝑀

) . (7.8)

The integral is equal to 1 as it represents the integral of a properly normalized Dirichlet
distribution in 𝑑 + 1 dimensions using parameters 𝑀 |𝑤disc

𝑘, 𝑗
| + 1.

Then we can relate expectations using either the continuous marginal or the dis-
crete marginal as integrals with respect to the same joint distribution with one variable
potentially marginalized out. The object which is used in our regret bound is the cumu-
lant generating function of the loss function using the discrete vector,

− log 𝐸𝑃0 [𝑒−
𝛽

2 ∥𝑌− 𝑓
𝑤disc ∥2

𝑁+1] . (7.9)

This object has been controlled in our previous proofs. The object we must understand
is this same expression with the continuous vector in place of the discrete,

− log 𝐸𝑃0 [𝑒−
𝛽

2 ∥𝑌− 𝑓𝑤cont ∥2
𝑁+1] . (7.10)

If we can upper bound the continuous version by an expression using the discrete
version and additional terms, we can upper bound continuous risk by an expression
using discrete risk. We have the following upper bound.

Lemma 13. Using the joint distribution defined above, the cumulant generating func-
tion using the continuous vector is less than twice the cumulant generating function
using the discrete vector plus an additional term,

− log 𝐸𝑃0 [𝑒−
𝛽

2 ∥𝑌− 𝑓𝑤cont ∥2
𝑁+1] (7.11)

≤ 2
(
− log 𝐸𝑃0 [𝑒−

𝛽

2 ∥𝑌− 𝑓
𝑤disc ∥2

𝑁+1]
)
+ log 𝐸𝑃0 [𝑒−

𝛽

2 ∥𝑌− 𝑓
𝑤disc ∥2

𝑁+1+
𝛽

2 ∥𝑌− 𝑓𝑤cont ∥2
𝑁+1] .

(7.12)
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Proof. We show that (7.11) minus (7.12) is less than 0. Collecting all log terms under
one expression, (7.11) minus (7.12) is written as

− log
(𝐸𝑃0 [𝑒−

𝛽

2 ∥𝑌− 𝑓𝑤cont ∥2
𝑁+1]𝐸𝑃0 [𝑒−

𝛽

2 ∥𝑌− 𝑓
𝑤disc ∥2

𝑁+1+
𝛽

2 ∥𝑌− 𝑓𝑤cont ∥2
𝑁+1](

𝐸𝑃0 [𝑒−
𝛽

2 ∥𝑌− 𝑓
𝑤disc ∥2

𝑁+1]
)2

)
(7.13)

Note the square in the denominator is due to the factor of 2 in (7.12). Distribute one
of these factors in the denominator to each expectation in the numerator and separate
into two log expressions,

− log 𝐸𝑃0 [
𝑒−

𝛽

2 ∥𝑌− 𝑓𝑤cont ∥2
𝑁+1

𝐸𝑃0 [𝑒−
𝛽

2 ∥𝑌− 𝑓
𝑤disc ∥2

𝑁+1]
] − log 𝐸𝑃0 [

𝑒−
𝛽

2 ∥𝑌− 𝑓
𝑤disc ∥2

𝑁+1+
𝛽

2 ∥𝑌− 𝑓𝑤cont ∥2
𝑁+1

𝐸𝑃0 [𝑒−
𝛽

2 ∥𝑌− 𝑓
𝑤disc ∥2

𝑁+1]
]

(7.14)

We wish to consider the expectation in the denominators as the normalizing constant
of a density. In the first expression, add and subtract 𝛽2 ∥𝑌 − 𝑓𝑤disc ∥2

𝑁+1 in the exponent.
Then treat each term as an expectation using a properly normalized density,

− log
∫

𝑒−
𝛽

2 ∥𝑌− 𝑓
𝑤disc ∥2

𝑁+1

𝐸𝑃0 [𝑒−
𝛽

2 ∥𝑌− 𝑓
𝑤disc ∥2

𝑁+1]
𝐸𝑃0 [𝑒−

𝛽

2 ∥𝑌− 𝑓𝑤cont ∥2
𝑁+1+

𝛽

2 ∥𝑌− 𝑓
𝑤disc ∥2

𝑁+1 |𝑤disc]𝑃0(𝑑𝑤disc)

(7.15)

− log
∫

𝑒−
𝛽

2 ∥𝑌− 𝑓
𝑤disc ∥2

𝑁+1

𝐸𝑃0 [𝑒−
𝛽

2 ∥𝑌− 𝑓
𝑤disc ∥2

𝑁+1]
𝐸𝑃0 [𝑒

𝛽

2 ∥𝑌− 𝑓𝑤cont ∥2
𝑁+1 |𝑤disc]𝑃0(𝑑𝑤disc) . (7.16)

Apply Jensen’s inequality on each term twice to bring the negative log into the inner
most expectation. This will bring the terms in the exponent down with a negative sign,
so we have upper bound∫

𝑒−
𝛽

2 ∥𝑌− 𝑓
𝑤disc ∥2

𝑁+1

𝐸𝑃0 [𝑒−
𝛽

2 ∥𝑌− 𝑓
𝑤disc ∥2

𝑁+1]
𝐸𝑃0 [

𝛽

2
∥𝑌 − 𝑓𝑤cont ∥2

𝑁+1 −
𝛽

2
∥𝑌 − 𝑓𝑤disc ∥2

𝑁+1 |𝑤
disc]𝑃0(𝑑𝑤disc)

(7.17)

+
∫

𝑒−
𝛽

2 ∥𝑌− 𝑓
𝑤disc ∥2

𝑁+1

𝐸𝑃0 [𝑒−
𝛽

2 ∥𝑌− 𝑓
𝑤disc ∥2

𝑁+1]
𝐸𝑃0 [−

𝛽

2
∥𝑌 − 𝑓𝑤cont ∥2

𝑁+1 |𝑤
disc]𝑃0(𝑑𝑤disc) . (7.18)

These expectations are then with respect to the same distribution, so we can collect
into a common integral. The norms with 𝑓𝑤cont are of opposite sign and cancel, while
the norm with 𝑓𝑤disc remains with a negative sign. Thus we have,

− 𝛽
2

∫
𝑒−

𝛽

2 ∥𝑌− 𝑓
𝑤disc ∥2

𝑁+1

𝐸𝑃0 [𝑒−
𝛽

2 ∥𝑌− 𝑓
𝑤disc ∥2

𝑁+1]
∥𝑌 − 𝑓𝑤disc ∥2

𝑁+1𝑃0(𝑑𝑤disc) ≤ 0. (7.19)
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Since the loss function is always non-negative, this expectation is always positive, and
the negative in front makes it less than or equal to 0.

For iid data, we can use this result to relate the square risk using the continuous prior
to the risk using the discrete prior which we have already controlled. An unfortunate
consequence of this method is it does not take into account the distance of the target 𝑔 to
its projection into the closure of the convex hull �̃�. Thus our risk for the continuous prior
will pay a price of twice the risk of the discrete prior, plus an additional 1/𝑀 term. Thus
the risk of the continuous prior can only be shown to be 2∥𝑔 − �̃�∥ +𝑂 ( [log(𝑑)/𝑁)1/4]).
For large data sets, this is twice the loss of the projection �̃�, whereas for the discrete
prior we have shown our Bayes estimator arbitrarily close to the projection. If 𝑔 lives
in the closure of the convex hull, this term is 0 and we perform arbitrarily close to the
projection. Future work hopes to fix this gap.

First, we show the additional term in Lemma 13 has an expected value of𝑂 (1/𝑀)
when the expectation is for iid data.

Lemma 14. Let 𝑔 be the target function bounded by 𝑏 and assume the data distribution
𝑃𝑋 is iid with data with support in [−1, 1]𝑑 . Then we have the upper bound

𝐸𝑃
𝑋𝑁+1 [log 𝐸𝑃0 [𝑒

− 𝛽2

(
∥𝑔− 𝑓

𝑤disc ∥2
𝑁+1−∥𝑔− 𝑓𝑤cont ∥2

𝑁+1

)
]] (7.20)

≤ 2𝑎2𝑉 (𝑏 + 𝑎0𝑉)
𝛽(𝑁 + 1)

𝑀
(7.21)

+ (𝑁 + 1)𝐾
2𝑀

(
𝑒4𝑎1𝛽

𝑉 (𝑏+𝑎0𝑉 )
𝐾 − 1 − 4𝑎1𝛽

𝑉 (𝑏 + 𝑎0𝑉)
𝐾

)
(7.22)

+ (𝑁 + 1)𝐾
𝑀2

(
𝑒4𝑎2𝛽

𝑉 (𝑏+𝑎0𝑉 )
𝐾 − 1 − 4𝑎2𝛽

𝑉 (𝑏 + 𝑎0𝑉)
𝐾

)
(7.23)

Note for 𝐾 of smaller order than 𝑁 the first term (7.21) is dominant and this bound is
approximately equal to 2𝑎2𝑉 (𝑏 + 𝑎0𝑉)𝛽(𝑁 + 1)/𝑀 .

Proof. See Appendix, Section 10.4 for a full proof. The proof follows from a Taylor
expansion to focus on quadratic terms in the exponent, independence in random vari-
ables to simplify the sum in the exponent into a product, and then a Bernstein inequality
to control the individual moment generating functions at each index 𝑖 and 𝑘 .

Combining these results, we can upper bound the mean squared risk of the estimator
with the continuous prior by twice the mean squared risk of the estimator based on the
discrete prior plus an additional 𝑂 ( 1

𝑀
) term.

Theorem 14. Let 𝑔(𝑥) be a target function with absolute value bounded by 𝑏 and
let �̃� be its 𝐿2(𝑃𝑋) projection into the closure of the convex hull of signed neurons
scaled by 𝑉 . Let 𝑃0 be the uniform prior on the continuous set (𝑆𝑑1 )

𝐾 . Assume the
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neuron activation function is odd symmetric and set all outer weights as 𝑐𝑘 = 𝑉
𝐾

. Let
(𝑥𝑖 , 𝑦𝑖)𝑁𝑖=1 be training data iid with conditional mean 𝑔(𝑥𝑖) and conditional variance
𝜎2
𝑥𝑖

with variance bound 𝜎2
𝑥𝑖
≤ 𝜎2. Assume the data distribution 𝑃𝑋 has support in

[−1, 1]𝑑 . Then statistical risk of the Cesàro average of the posterior means estimators
is upper bound by

𝐸 [∥𝑔 − �̂�∥2] ≤ 2
𝑀𝐾 log(2𝑑 + 1)

𝛽(𝑁 + 1) +
𝑎2

0𝑉
2

𝐾
+

3𝑎2𝑉 (𝑎0𝑉 + 𝑏) + 2𝑉2𝑎2
1

𝑀
(7.24)

+ 4𝛽( 𝑎0𝑉 + 𝑏
2

)2(𝜎 + 𝑎0𝑉 + 𝑏
2

)2 + 2∥𝑔 − �̃�∥2 (7.25)

+𝑂 ( 1
𝑀𝐾

). (7.26)

Note with proper choice of parameters 𝑀, 𝐾, 𝛽 this is shown to be of the order

𝐸 [∥𝑔 − �̂�∥2] ≤ 2∥𝑔 − �̃�∥2 +𝑂 (
( log(𝑑)

𝑁

) 1
4 ).

Proof. This proof will follow much the same as the proof of Theorem 11. Note we
are considering our posterior means as utilizing the continuous uniform prior in their
definition, which is one of the marginals of the joint distribution we have defined for
continuous and discrete values. Thus, we will write 𝑤cont and 𝑤disc inside the integrals
to indicate which variable is arising in the expectation, even though all expectations
with respect to 𝑃0 are really joint integrals for both variables at the same time, with
one potentially marginalized out.

The initial stages of the proof of Theorem 11 makes no explicit reference to the
prior, so we can follow the same steps up to equation (6.93). We then apply Lemma 8
but explicitly note we are upper bounding using the continuous marginal of the prior,
as this is the prior used to define the posterior means,

𝐸𝑃
𝑋𝑁+1 ,𝑌𝑁+1 [𝑅

log
𝑁+1(𝑋

𝑁+1, 𝑌𝑁+1)] ≤ −1
2

1
𝑁 + 1

𝑁∑︁
𝑛=0

𝐸𝑃
𝑋𝑁+1 ,𝑌𝑁+1 [(𝑌𝑛+1 − 𝑔(𝑋𝑛+1))2]

(7.27)

+ 1
𝛽(𝑁 + 1) 𝐸𝑃𝑋𝑁+1 ,𝑌𝑁+1 [− log 𝐸𝑃0 [𝑒−

𝛽

2
∑𝑁
𝑛=0 (𝑌𝑛+1− 𝑓 (𝑋𝑛+1 ,𝑤

cont ) )2]] . (7.28)

We can then again upper bound by placing 𝑔 in the exponent instead of 𝑌 , dropping
the resulting linear term via a Jensen’s inequality, which makes no explicit use of the
form of the prior. This gives us the upper bound

𝐸𝑃
𝑋𝑁+1 [− log 𝐸𝑃0 [𝑒−

𝛽

2 ( ∥𝑔− 𝑓𝑤cont ∥2
𝑁+1 ) ]]

𝛽(𝑁 + 1) . (7.29)
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By Lemma 13, we can upper bound this expression by twice its discrete counterpart
plus an additional term,

2
(𝐸𝑃

𝑋𝑁+1 [− log 𝐸𝑃0 [𝑒−
𝛽

2 ∥𝑔− 𝑓
𝑤disc ∥2

𝑁+1]]
𝛽(𝑁 + 1)

)
(7.30)

+
𝐸𝑃

𝑋𝑁+1 [log 𝐸𝑃0 [𝑒−
𝛽

2 ∥𝑔− 𝑓
𝑤disc ∥2

𝑁+1+
𝛽

2 ∥𝑔− 𝑓𝑤cont ∥2
𝑁+1]]

𝛽(𝑁 + 1) . (7.31)

Equation (7.30) is then twice the object we study in the remainder of Theorem 11
and thus inherits twice its final bound. This has the unfortunate effect of depending
on twice the minimum achievable error ∥𝑔 − �̃�∥2, meaning for large 𝑁 we are not
arbitrarily close to the projection. However, if the target function 𝑔 does live in the
closure of the Hull of signed neurons, this term is 0.

For the term (7.31), apply Lemma 14 to get a bound of the form

2
𝑎2𝑉 (𝑎0𝑉 + 𝑏)

𝑀
+𝑂 ( 1

𝑀𝐾
). (7.32)

We have incorporated this term into the similar error term appearing in the analysis of
the discrete object. This gives the factor of 3 in (7.24).

8. Discussion

The use of an auxiliary random variable to create log-concavity is not a new idea, and
has connections to existing methods. The critical structure of our sampling problem is
that our target distribution of interest can be expressed as a mixture distribution with
easy to sample components,

𝑝𝑛 (𝑤) =
∫

𝑝∗𝑛 (𝑤 |𝜉)𝑝∗𝑛 (𝜉)𝑑𝜉. (8.1)

The structure of a mixture distribution has been recognized in a number of recent
papers. For spin glass systems (Sherrington–Kirkpatrick models) of high temperature,
[9] expanded the range of known temperatures under which a Log Sobolev constant can
be established by using such a mixture structure. For a Bayesian regression problem
with a spike and slab (i.e. multi-modal) prior, [36] used the mixture structure to perform
easy MCMC sampling. Thus, it is clear this approach of a mixture distribution can be
applied to a number of sampling problems of interest. However, the posterior densities
in these problems where much simpler than ours, making explicit use of the quadratic
terms of their log-likelihoods which simplifies the analysis. Our view of a log-concave
coupling as a mixture distribution applicable to more complex target distributions via
a forward coupling is more general.
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Our method of creating the mixture is via forward coupling with a Gaussian aux-
iliary random variable 𝜉 whose mean is determined by the target variable 𝑤. This
has connections to proximal sampling algorithms and score based diffusion models. A
proximal sampling algorithm would sample from the same joint distribution for 𝑝(𝑤, 𝜉)
as we define here. However, the sampling method would be the Gibb’s sampler altern-
ating between sampling 𝑝(𝑤 |𝜉) and 𝑝(𝜉 |𝑤) which are both log-concave distributions
[13], [24]. The mixing time of this sampling procedure must then be determined. If
the original density of interest satisfies conditions such being Lipschitz and having a
specified Log Sobolev constant, mixing time bounds can be established for the Gibb’s
sampler. It remains unclear what the mixing times bounds would be for a more dif-
ficult target density such as the one we study here. We instead explicitly examine the
log-concavity of the induced marginal density 𝑝∗𝑛 (𝜉) and propose to sample 𝜉 from its
marginal, followed by a sample of 𝑤 |𝜉 from its conditional.

We highlight that the score of the marginal density ∇ log 𝑝∗𝑛 (𝜉) is not given as an
explicit formula, however it is defined as an expectation with respect to the log-concave
reverse conditional for 𝑝∗𝑛 (𝑤 |𝜉) noted in Corollary 2. Thus, the score of the marginal
can be computed as needed via its own MCMC sub-routine.

Score based diffusions propose starting with a random variable 𝑤′ from the target
density 𝑝(𝑤′), and then defining the forward SDE 𝑑𝑤𝑡 =−𝑤𝑡𝑑𝑡 +

√
2𝑑𝐵𝑡 . At every time

𝑡, this induces a joint distribution on 𝑝(𝑤′, 𝑤𝑡 ) under which the forward conditional
distribution 𝑝(𝑤𝑡 |𝑤′) is a Gaussian distribution with mean being a linear function of
𝑤′. Paired with this forward SDE is the definition of a reverse SDE that would transport
samples from a standard normal distribution to the target distribution of interest. The
drift of the reverse diffusion is defined by the scores of the marginal distribution of the
forward process ∇ log 𝑝(𝑤𝑡 ). If these scores can be computed, the target density can
be sampled from.

As is the case in our mixture model, the scores of the marginal are defined by
expectations with respect to the reverse conditional 𝑝(𝑤′ |𝑤𝑡 ). For some thresholds
𝜏1, 𝜏2, for small times 𝑡 ≤ 𝜏1 the reverse conditionals 𝑝(𝑤′ |𝑤𝑡 ) are log-concave and
easily sampled. For large times 𝑡 ≥ 𝜏2, the marginal density 𝑝(𝑤𝑡 ) is approaching a
standard normal distribution and thus will become log-concave. If 𝜏2 < 𝜏1, these two
regions overlap and the original density 𝑝(𝑤′) can be written as a log-concave mixture
of log-concave components 𝑝(𝑤′) =

∫
𝑝(𝑤′ |𝑤𝑡 )𝑝(𝑤𝑡 )𝑑𝑤𝑡 . Thus, the entire procedure

of reverse diffusion can be avoided and a one shot sample of 𝑤𝑡 from its marginal 𝑝(𝑤𝑡 )
and a sample from the reverse conditional 𝑝(𝑤′ |𝑤𝑡 ) can computed. A variation of this
idea is the core procedure we use in this paper, simplifying the processes of a reverse
diffusion into one specific and useful choice of joint measure with an auxiliary random
variable.

Here we briefly review sampling literature for log-concave densities. For each 𝑛,
our density 𝑝∗𝑛 (𝑤 |𝜉) is a weakly log-concave density constrained to a convex set, while
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𝑝∗𝑛 (𝜉) is a strongly log-concave density also restricted to a convex set. For 𝑝∗𝑛 (𝑤 |𝜉),
the log likelihood only depends on the weight vectors 𝑤 through their interaction with
the data matrix X𝑤. The vectors 𝑤 are 𝑑 dimensional with 𝑑 > 𝑁 , thus for any direction
orthogonal to the rows of the data matrix the density is flat and has 0 Hessian, hence
weakly log-concave. Nonetheless, [33] shows Ball Walk and Hit and Run algorithms
mix in polynomial time for weakly log-concave densities on a convex set. Recent results
in [29] improve upon these mixing time bounds. We also note, with different construc-
tion of the auxiliary random variable 𝜉, it may be possible to force strict log-concavity
in every direction of 𝑝∗𝑛 (𝑤 |𝜉) using a normal with a different mean and covariance
matrix for the forward coupling.

In terms of sampling the marginal 𝑝(𝜉), we have a strictly log-concave distribution
restricted to the convex set defined by 𝐵. The score ∇ log 𝑝(𝜉) is expressed as a lin-
ear transformation of 𝐸 [𝑤 |𝜉] and thus can be computed as needed. If the support set
was not restricted, we could use Metropolis Adjusted Langevin Diffusion (MALA) and
achieve rapid mixing [16]. Instead, to deal with the boundary conditions we must use
techniques such as a barrier function [40] or other adaptations of sampling algorithms
to restricted support such as Dikin Walks [28] and Hamiltonian Monte Carlo in a con-
strained space [27].

While in this work we focus on a Bayesian approach and use MCMC for sampling,
there have been a number of positive results for training neural networks by optimiza-
tion in specific instances. For classification problems with well separated classes and
with rather large (potentially overfit) single-hidden-layer networks, [11] shows that
gradient descent with large step size converges quickly to an interpolating solution on
the training data (i.e. 0 training loss). [41] demonstrates this solution still has good
generalization risk via a form of “benign overfitting”, however this comes at a cost
of being susceptible to adversarial perturbations in specific directions that flip model
outputs [17].

Another approach to understanding optimization in very large neural networks is
to compare them to certain infinite width limits via the Neural Tangent Kernel [25].
With restrictions on the initialization distribution, at an infinite width limit the network
is approximately linear around its initialization point with a fixed Gaussian kernel rep-
resentation. Gradient methods quickly converge to a near interpolating solution. These
methods generalize well for functions approximated by linear combinations of the large
weight eigenfunctions of the kernel. The authors in [14] call this linearization of the
network the “lazy regime” of training, and demonstrate models trained in this regime
can have poor generalization, compared to models trained in the more difficult non-
lazy regime. Our network with the chosen scale of parameters adapts the directions of
the internal weights to provide a more flexible span.

For very wide networks 𝐾 > 𝑁 , [31] shows neural networks satisfy a Polyak-
Łojasiewicz (PL) condition proving convergence of stochastic gradient descent to a
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global minimizer of the loss function. This is an interesting phenomenon, however
without suitable parameter controls (such as ℓ1 controls), it is not clear if generaliza-
tion properties will be favorable in this setting for general function learning.

There are also several negative results [15, 18, 20] showing that training a single-
hidden-layer network to interpolation (0 training loss) is an NP hard problem. For
example, [42] shows that for a network of width 𝐾 , interior weight dimension 𝑑, and
using the step activation function, there does not exist a polynomial time algorithm to
achieve average squared training error less than 𝜁 (𝐾𝑑)− 3

2 for an absolute constant 𝜁 .
It does not rule out in the noise free setting the possibility of computationally feasible
algorithms to achieve average squared error less than a constant times 1/𝐾 .

In this paper, the authors have presented posteriors 𝑝𝑛 (𝑤) that sample all 𝐾 neuron
weights 𝑤1, · · · , 𝑤𝐾 jointly. However, the problem can also be constructed as a Greedy
Bayes procedure sampling one neuron weight at a time based on the residuals of pre-
vious fits. The authors discuss these results in [6, 34, 35].

9. Conclusion and Future Work

In this work, we study a mixture form of the posterior density and statistical risk guar-
antees for single-hidden-layer neural nets. For a continuous uniform prior on the ℓ1
ball, we show the posterior density can be expressed as a mixture with only log-
concave components when the total number of parameters 𝐾𝑑 is large enough that
𝐾𝑑 ≥ 𝐶 (𝛽𝑁)2 for a constant 𝐶 where 𝛽 is the inverse temperature and 𝑁 is the num-
ber of data points. For a discrete uniform prior on the ℓ1 ball (that is, restricted to a
grid), we show notions of risk are on the order of𝑂 ( [(log 𝑑)/𝑁]1/4). We extend these
statistical risk control to the continuous prior as well, with a factor of 2. When the target
function is itself in the closure of the convex hull of signed neurons, the continuous
risk control is also of the same order as the discrete.

There are a number of future directions for research. The further details of sampling
must be worked out. The choice of sampling algorithm, hyper-parameter choices such
as step size and the number of MCMC iterations, as well as technical details such as
condition number have not been addressed in this work. The choice of 𝜌 we make
is in a sense the “smallest” 𝜌 that forces 𝑝(𝑤 |𝜉) to be log-concave by canceling out
any positive definite terms in the Hessian arising from non-linearity (that is, terms
dependent on the second derivative of the activation function). Larger choices of 𝜌 can
result in stronger log-concavity for the reverse conditional distribution 𝑝(𝑤 |𝜉) that can
have sampling benefits.

The Hölder inequality approach to upper bound the covariance Cov[𝑤 |𝜉] is most
likely not a tight bound. It is conjectured, for a constant 𝐴, the covariance of the prior
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could upper bound the conditional covariance 𝐴Cov𝑃0 [𝑤] ⪰ Cov[𝑤 |𝜉]. This would
require a lesser condition 𝐾𝑑 > 𝐶𝛽𝑁 to achieve log-concavity of 𝑝(𝜉).

Finally, in the risk results we prove, we have assumed the 𝑉 we use in defining
our neural network matches the variation𝑉 of our target function. However, we would
have no way of knowing what this value would be. In practice, we would place a prior
on 𝑉 from a finite set of possible values (𝑉1, . . . , 𝑉𝑀1). The log prior probability in
the index of resolvability will have an additional 𝑀1 in the numerator, for small 𝑀1
relative to 𝑁 this will not change the risk bounds much. We would also place a prior
on a finite number of 𝛽 and 𝐾 values to consider multiple different models.

For each choice of hyperparameter𝑉, 𝛽,𝐾 , we can demonstrate the mixture decom-
position of 𝑝(𝑤) as studied in this paper. Therefore, we would run the sampling separ-
ately for all choices of 𝑉, 𝛽, 𝐾 and get a different posterior mean for each choice (note
this can easily be done on different machines simultaneously or on a GPU in parallel
as there is no interaction between the different samplings at different hyperparameter
choices). Our estimate would then be a weighted average of these different means. The
weight of each choice of 𝑉, 𝛽, 𝐾 would be the associated posterior probability, pro-
portional to the normalizing constant (partition function) of 𝑝(𝑤) for that choice of
𝑉, 𝛽, 𝐾 . These would have to be computed, which amounts to computing the partition
function for a density we can sample from.

10. Appendix

10.1. Proofs for Near Constancy of 𝒁(𝒘)

In this section, we show the restriction of 𝜉 to the set 𝐵 is a highly likely event under the
base Gaussian distribution, and 𝑍 (𝑤) has small magnitude first and second derivatives.

Proof of Lemma 1:

Proof. We show that the set 𝐵 is likely for conditionally independent Gaussian dis-
tributions for each variable. This proof follows from standard Gaussian complexity
arguments.

The object we must bound is 𝑃(𝜉 ∈ 𝐵|𝑤). If the 𝜉𝑖,𝑘 given 𝑤 are independent
Normal(𝑥𝑖 · 𝑤𝑘 ,1/𝜌) we may arrange a representation using independent standard nor-
mals 𝑍𝑘 of dimension 𝑛,

𝜉𝑘 = X𝑤𝑘 +
1
√
𝜌
𝑍𝑘 . (10.1)

Each mean 𝑥𝑖 · 𝑤𝑘 is in [−1, 1] due to the weight vector having bounded ℓ1 norm and
the data entries having bounded value. Consider the complement of the event we want
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to study, we wish for this event to have probability less than 𝛿.

𝑃(max
𝑗 ,𝑘

|
𝑛∑︁
𝑖=1

𝑥𝑖, 𝑗𝜉𝑖,𝑘 | ≥ 𝑛 +
√︂

2 log
2𝐾𝑑
𝛿

√︂
𝑛

𝜌
), (10.2)

where 𝑃 is the probability using the normal distribution of 𝜉 given 𝑤. The max is upper
bound by

max
𝑗 ,𝑘

|
𝑛∑︁
𝑖=1

𝑥𝑖, 𝑗𝜉𝑖,𝑘 | ≤ 𝑛 + max
𝑗 ,𝑘

| 1
√
𝜌

𝑛∑︁
𝑖=1

𝑥𝑖, 𝑗𝑍𝑖,𝑘 |. (10.3)

Thus we can bound the larger probability event uniformly for 𝑤 ∈ (𝑆𝑑1 )
𝐾 ,

𝑃(max
𝑗 ,𝑘

|∑𝑛
𝑖=1 𝑥𝑖, 𝑗𝑍𝑖,𝑘 |√

𝑛
≥
√︂

2 log
2𝐾𝑑
𝛿

) ≤ 𝛿√︁
2 log(2𝐾𝑑/𝛿)

. (10.4)

Where the conclusion follows from a union bound and Gaussian tail bound.

Proof of Lemma 2:

Proof. We provide upper bounds on the magnitude of the first and second derivatives of
the function 𝑍 (𝑤) as defined in equation (5.21). Denote Φ as the normal CDF and 𝜑 as
the normal pdf. Throughout the proof recall that 𝑝(𝑤 |𝜉) treats each 𝜉𝑖,𝑘 as independent
normal with 𝜉𝑖,𝑘 ∼Normal(𝑥𝑖 · 𝑤𝑘 , 1

𝜌
) conditionally independent given𝑤. The gradient

of 𝑍 (𝑤) inner product with a vector 𝑎 with blocks 𝑎𝑘 is��𝑎 · ∇𝑤𝑍 (𝑤)�� = ���𝜌𝐸 [ 𝑛∑︁
𝑖=1

𝐾∑︁
𝑘=1

(𝑎𝑘 · 𝑥𝑖) (𝜉𝑖,𝑘 − 𝑥𝑖 · 𝑤𝑘)
1𝐵 (𝜉)

𝑃(𝜉 ∈ 𝐵|𝑤) |𝑤]
���. (10.5)

By Lemma 1, the set 𝐵 has probability at least 1 − 𝛿/
√︁

2 log(2𝐾𝑑/𝛿). We note the
following upper and lower bounds on the Gaussian CDF provided by the classical
results of Gordon [21], we have bounds on the Gaussian CDF

𝜑(𝑥)
𝑥 + 1

𝑥

≤ 1 −Φ(𝑥) ≤ 𝜑(𝑥)
𝑥

. (10.6)

Consider then the value

𝛿∗ = Φ(−
√︁

2 log(1/𝛿)). (10.7)

For our problem, 𝐾𝑑 ≥ 2 by construction. Then for all positive 𝛿 ≤ 1/𝑒, it can be shown
that 𝛿∗ is larger than the term which defines the probability of our set 𝐵,

𝛿√︁
2 log(2𝐾𝑑/𝛿)

≤ 𝛿∗. (10.8)
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Then consider the collections of all measurable sets 𝐷 ⊂ R𝑁𝐾 such that 𝑃(𝜉 ∈ 𝐷) ≥
1 − 𝛿∗. This collection contains our original set 𝐵 as an object in the class. Then, the
absolute value of the expected inner product in (10.5) is less than the maximum for
any set 𝐷 in this class,

max
𝐷:

𝑃 ( 𝜉 ∈𝐷 |𝑤)≥1−𝛿

𝜌
|𝐸 [∑𝑛

𝑖=1
∑𝐾
𝑘=1(𝑎𝑘 · 𝑥𝑖) (𝜉𝑖,𝑘 − 𝑥𝑖 · 𝑤𝑘)1𝐷 (𝜉) |𝑤] |

1 − 𝛿 . (10.9)

Define the value

�̃� =

√︄∑𝑛
𝑖=1

∑𝐾
𝑘=1(𝑎𝑘 · 𝑥𝑖)2

𝜌
. (10.10)

Under the normal distribution for 𝜉, the integrand in question is a scalar mean 0 normal
random variable with this variance,

𝑛∑︁
𝑖=1

𝐾∑︁
𝑘=1

(𝑎𝑘 · 𝑥𝑖) (𝜉𝑖,𝑘 − 𝑥𝑖 · 𝑤𝑘) ∼ Normal(0, �̃�2). (10.11)

The set 𝐷 which maximizes expression (10.9) is then the set which controls the size
of this integrand,

𝐷∗ = {𝜉 :
∑𝑛
𝑖=1

∑𝐾
𝑘=1(𝑎𝑘 · 𝑥𝑖) (𝜉𝑖,𝑘 − 𝑥𝑖 · 𝑤𝑘)

�̃�
≤ 𝜏}, (10.12)

for some choice of 𝜏. We can also equally consider the set 𝐷∗ where the object in the
expression being more than some negative 𝜏, due to symmetry. The proper choice of
𝜏 is

√︁
2 log(1/𝛿).We then have upper bound

|𝑎 · ∇𝑤𝑍 (𝑤) | ≤
𝜌�̃�

1 − 𝛿

��� ∫ √
2 log(1/𝛿 )

−∞
𝑧𝜑(𝑧)𝑑𝑧

��� = 𝜌�̃�𝛿
√

2𝜋1 − 𝛿
, (10.13)

using the fact that −𝑧𝜑(𝑧) = 𝜑′ (𝑧) and fundamental theorem of calculus. This yields
an upper bound on our expression of interest,

|𝑎 · ∇𝑤𝑍 (𝑤) | ≤
𝜌�̃�

1 − 𝛿
𝛿

√
2𝜋
. (10.14)

Which notably goes to 0 as 𝛿 → 0.
The Hessian is then a difference in variances,

𝑎T [∇2𝑍 (𝑤)]𝑎 = − 𝜌
𝑛∑︁
𝑖=1

𝐾∑︁
𝑘=1

(𝑥𝑖 · 𝑎𝑘)2 (10.15)

+ 𝜌2Var[
𝑛∑︁
𝑖=1

𝐾∑︁
𝑘=1

(𝑥𝑖 · 𝑎𝑘)𝜉𝑖,𝑘 |𝑤, 𝐵] . (10.16)



60 C. McDonald and A. R. Barron

Note that 𝜉𝑖,𝑘 is independent normal with variance 1/𝜌, so if we did not constrain the
set 𝐵, expressions (10.15) and (10.16) would cancel to 0. That is, (10.15) is the variance
of the linear function of 𝜉 given 𝑤 if we did not condition on the set 𝐵, and (10.16) is
the variance conditioned on the set 𝐵.

Note that the object whose variance we are taking in (10.16) is a linear function of
𝜉, and 𝜉 is a normal random variable given 𝑤with diagonal covariance matrix 1

𝜌
. By an

application of a Brascamp-Lieb inequality, see for example [10, Proposition 2.1], we
would have an upper bound on this variance by the norm of this linear vector divided
by 𝜌, which times 𝜌2 is exactly expression (10.15). Thus, the term (10.16) is less than
or equal to the absolute value of term (10.15) so an upper bound on the quadratic form
is 0, that is 𝑎T [∇2𝑍 (𝑤)]𝑎 ≤ 0.

We then compute a lower bound on the variance term in (10.16). Note a Cramer-Rao
lower bound is not applicable here since restriction to a compact set makes integration
by parts inapplicable due to boundary conditions. In particular, the expectation of the
score of a constrained distribution is not always 0.

Using a bias-variance decomposition, we can write the variance as a non-centered
expected squared difference minus a bias correction,

Var[
𝑛∑︁
𝑖=1

𝐾∑︁
𝑘=1

(𝑥𝑖 · 𝑎𝑘)𝜉𝑖,𝑘 |𝑤, 𝐵] (10.17)

= 𝐸 [
( 𝑛∑︁
𝑖=1

𝐾∑︁
𝑘=1

(𝑥𝑖 · 𝑎𝑘) (𝜉𝑖,𝑘 − 𝑥𝑖 · 𝑤𝑘)
)2
|𝑤, 𝜉 ∈ 𝐵] (10.18)

−
( 𝑛∑︁
𝑖=1

𝐾∑︁
𝑘=1

(𝑎𝑘 · 𝑥𝑖)
(
𝐸 [𝜉𝑖,𝑘 |𝑤, 𝜉 ∈ 𝐵] − 𝑥𝑖 · 𝑤𝑘

))2
(10.19)

≥ 𝐸 [
( 𝑛∑︁
𝑖=1

𝐾∑︁
𝑘=1

(𝑥𝑖 · 𝑎𝑘) (𝜉𝑖,𝑘 − 𝑥𝑖 · 𝑤𝑘)
)2 1𝐵 (𝜉)
𝑃(𝜉 ∈ 𝐵 |𝑤) |𝑤] (10.20)

− 𝜌2�̃�2

(1 − 𝛿)2
𝛿2

2𝜋
, (10.21)

where we have applied the previously derived bound on the score to expression (10.19)
to deduce expression (10.21), which is the square of the previous bond.

If we did not condition on the set 𝐵, the expression (10.20) would be the variance
of a simple normal variable with variance �̃�2. We will show restricting to 𝐵 still results
in a value very close to �̃�2.

The set 𝐵 has probability at least 1 − 𝛿/
√︁

2 log(2𝐾𝑑/𝛿). Define the value

𝛿∗∗ = 2Φ(−
√︁

2 log(1/𝛿)). (10.22)
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If 𝐾𝑑 ≥ 4, for all positive 𝛿 ≤ 1/16 we have that 𝛿∗∗ is larger than the term which
defines the set 𝐵 probability,

𝛿√︁
2 log(2𝐾𝑑/𝛿)

≤ 𝛿∗∗.

Then, the expected value of the variable in question restricted to 𝐵 is lower bound by
the minimum for any set 𝐷 with 𝑃(𝜉 ∈ 𝐷) ≥ 1 − 𝛿∗∗,

𝐸 [
( 𝑛∑︁
𝑖=1

𝐾∑︁
𝑘=1

(𝑥𝑖 · 𝑎𝑘) (𝜉𝑖,𝑘 − 𝑥𝑖 · 𝑤𝑘)
)2 1𝐵 (𝜉)
𝑃(𝜉 ∈ 𝐵|𝑤) |𝑤] (10.23)

≥ min
𝐷:

𝑃 ( 𝜉 ∈𝐷 |𝑤)≥1−𝛿∗∗

𝐸 [
( ∑𝑛

𝑖=1
∑𝐾
𝑘=1(𝑥𝑖 · 𝑎𝑘) (𝜉𝑖,𝑘 − 𝑥𝑖 · 𝑤𝑘)

)2
1𝐷 (𝜉) |𝑤]

1 − 𝛿 . (10.24)

The integrand in question, as before, is the same normal variable now squared. The
minimizing set 𝐷∗ is then the set placing an upper bound on that expression,

𝐷∗ = {𝜉 : −𝜏 ≤
∑𝑛
𝑖=1

∑𝐾
𝑘=1(𝑥𝑖 · 𝑎𝑘) (𝜉𝑖,𝑘 − 𝑥𝑖 · 𝑤𝑘)

�̃�
≤ 𝜏}, (10.25)

for some value 𝜏, the proper choice being 𝜏 =
√︁

2 log(1/𝛿).
Note this set 𝐷∗ can be deduced from the Neyman-Pearson Lemma [30, The-

orem 3.2.1], comparing the distribution where each 𝜉𝑖,𝑘 is independent normal with
mean 𝑥𝑖 · 𝑤𝑘 and variance 1

𝜌
, to the distribution which has this normal density times

(∑𝑛
𝑖=1

∑𝐾
𝑘=1(𝑥𝑖 · 𝑎𝑘) (𝜉𝑖,𝑘 − 𝑥𝑖 · 𝑤𝑘))2.(Likewise, the previous 𝐷∗ in (10.12) can be

deduced by a generalization of the Neyman-Pearson lemma in which the alternative
is a signed measure measure with the normal density times the factor

∑𝑛
𝑖=1

∑𝐾
𝑘=1(𝑎𝑖 ·

𝑤𝑘) (𝜉𝑖,𝑘 − 𝑥𝑖 · 𝑤𝑘)).
We are then integrating a squared normal on a truncated range and have lower

bound,

min
𝐷:

𝑃 ( 𝜉 ∈𝐷 |𝑤)≥1−𝛿

𝐸 [
( ∑𝑛

𝑖=1
∑𝐾
𝑘=1(𝑥𝑖 · 𝑎𝑘) (𝜉𝑖,𝑘 − 𝑥𝑖 · 𝑤𝑘)

)2
1𝐷 (𝜉) |𝑤]

1 − 𝛿 (10.26)

=
�̃�2

1 − 𝛿

∫ √
2 log(1/𝛿 )

−
√

2 log(1/𝛿 )
𝑧2𝜑(𝑧)𝑑𝑧. (10.27)

To evaluate this integral use its complement set and symmetry of the normal pdf,∫ √
2 log(1/𝛿 )

−
√

2 log(1/𝛿 )
𝑧2𝜑(𝑧)𝑑𝑧 = 1 − 2

∫ −
√

2 log(1/𝛿 )

−∞
𝑧2𝜑(𝑧)𝑑𝑧. (10.28)
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Then apply integration by parts,

−
∫ −

√
2 log(1/𝛿 )

−∞
𝑧2𝜑(𝑧)𝑑𝑧 = 𝑧𝜑(𝑧) |−

√
2 log(1/𝛿 )

−∞ −Φ(−
√︁

2 log(1/𝛿)). (10.29)

This gives a lower bound for the expression in (10.27)

�̃�2

1 − 𝛿

(
1 − 2𝛿

√
2𝜋

(
√︁

2 log(1/𝛿) + 1√︁
2 log(1/𝛿)

)
)
, (10.30)

which converges to �̃�2 as 𝛿 → 0. We then combine expressions (10.16), (10.21), and
(10.30) to give a lower bound on Hessian quadratic form,

𝑎T [∇2𝑍 (𝑤)]𝑎 ≥ −𝜌2�̃�2 + 𝜌2�̃�2( 1
1 − 𝛿 − 2𝛿

(1 − 𝛿)
√

2𝜋
(
√︁

2 log(1/𝛿) + 1√︁
2 log(1/𝛿)

))

(10.31)

− 𝜌4�̃�2

(1 − 𝛿)2
𝛿2

2𝜋
(10.32)

= − 𝜌
2�̃�2
√

2𝜋
𝛿

1 − 𝛿

(
−
√

2𝜋 + 2
√︁

2 log(1/𝛿) (1 + 1
2 log(1/𝛿) ) +

𝜌2�̃�2
√

2𝜋
𝛿

1 − 𝛿

)
(10.33)

≥ − 𝜌
2�̃�2
√

2𝜋
𝛿

1 − 𝛿

(
2
√︁

2 log(1/𝛿) + 𝜌2�̃�2
√

2𝜋
𝛿

1 − 𝛿

)
(10.34)

which converges to 0 as 𝛿 → 0.

10.2. Log-Concavity of 𝒑∗𝒏 (𝒘 |𝝃) with Conditioning on the Set 𝑩

In this section, we show the conditioning of 𝜉 given 𝑤 to the set 𝐵 does not affect the
log-concavity of the reverse conditional much.

Proof of Theorem 7

Proof. We prove the reverse conditional is log-concave when restricting 𝜉 to live in
the set 𝐵. This proof follows much the same way as Theorem 6. The log likelihood for
𝑝∗𝑛 (𝑤 |𝜉) is given by

log 𝑝∗𝑛 (𝑤 |𝜉) = − 𝛽ℓ𝑛 (𝑤) + 𝐻 (𝜉) (10.35)

−
𝑛∑︁
𝑖=1

𝐾∑︁
𝑘=1

𝜌

2
(𝜉𝑖,𝑘 − 𝑤𝑘 · 𝑥𝑖)2 (10.36)

− 𝑍 (𝑤), (10.37)

for some function 𝐻 (𝜉) which does not depend on 𝑤 and is only required to make the
density integrate to 1. The term (10.36) is a negative quadratic in 𝑤 which treats each
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𝑤𝑘 as if it were an independent normal random variable. Thus, the additional Hessian
contribution will be a (𝐾𝑑) × (𝐾𝑑) negative definite block diagonal matrix with 𝑑 × 𝑑
blocks of the form 𝜌

∑𝑛
𝑖=1 𝑥𝑖𝑥

T
𝑖
. Denote the Hessian as 𝐻𝑛 (𝑤 |𝜉) ≡ ∇2 log 𝑝∗𝑛 (𝑤 |𝜉).

For any vector 𝑎 ∈ R𝐾𝑑 , with blocks 𝑎𝑘 ∈ R𝑑 , the quadratic form 𝑎T𝐻𝑛 (𝑤 |𝜉)𝑎 can be
expressed as

− 𝛽
𝑛∑︁
𝑖=1

( 𝐾∑︁
𝑘=1

𝜓′ (𝑤𝑘 · 𝑥𝑖)𝑎𝑘 · 𝑥𝑖
)2

(10.38)

+
𝐾∑︁
𝑘=1

𝑛∑︁
𝑖=1

(𝑎𝑘 · 𝑥𝑖)2
[
𝛽res𝑖 (𝑤)𝑐𝑘𝜓′′ (𝑤𝑘 · 𝑥𝑖) − 𝜌)

]
(10.39)

+ 𝑎T(∇2𝑍 (𝑤))𝑎. (10.40)

By the assumptions on the second derivative of 𝜓 and the definition of 𝜌 in equation
(5.17) we have

max
𝑖,𝑘

(𝛽res𝑖 (𝑤)𝑐𝑘𝜓′′ (𝑤𝑘 · 𝑥𝑖) − 𝜌) ≤ −(
√︂

3
2
− 1)𝑎2

𝛽𝐶𝑛𝑉

𝐾
, (10.41)

so all the terms in the sum in (10.39) are negative. Recall the definition of �̃�2,

�̃�2 =

∑𝐾
𝑘=1

∑𝑛
𝑖=1(𝑎𝑘 · 𝑥𝑖)2

𝜌
. (10.42)

Therefore, expression (10.39) is less than

−(
√︂

3
2
− 1)

√︂
3
2

(
𝑎2
𝛽𝐶𝑛𝑉

𝐾

)2
�̃�2. (10.43)

By Lemma 2, the largest the Hessian term from the correction function 𝑍 can be is

𝑎T(∇2𝑍 (𝑤))𝑎 ≤ 𝜌2�̃�2
√

2𝜋
𝛿

1 − 𝛿

(
2
√︁

2 log(1/𝛿) + 𝜌2�̃�2
√

2𝜋
𝛿

1 − 𝛿

)
. (10.44)

Thus term (10.39) plus (10.40) is less than

− �̃�2
(
𝑎2
𝛽𝐶𝑛𝑉

𝐾

)2 (√︂3
2
− 1

) (√︂3
2

)
(10.45)

+�̃�2
(
𝑎2
𝛽𝐶𝑛𝑉

𝐾

)2 (√︂3
2

)2 2
√

2𝜋
𝛿

1 − 𝛿

√︂
2 log

𝛿

2
(10.46)

+�̃�2
(
𝑎2
𝛽𝐶𝑛𝑉

𝐾

)4 (√︂3
2

)4 1
2𝜋

𝛿2

(1 − 𝛿)2 . (10.47)
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Recall the definitions of 𝐻1 and 𝐻2 in the theorem statement,

𝐻1(𝛿) =
2

√
2𝜋

𝛿

1 − 𝛿

√︂
2 log

𝛿

2
(10.48)

𝐻2(𝛿) =
(
𝑎2
𝛽𝐶𝑛𝑉

𝐾

)2 1
2𝜋

𝛿2

(1 − 𝛿)2 . (10.49)

Simplifying expressions (10.45) to (10.47) by dividing out common terms, to have a
negative expression for the Hessian we require yields,√︂

3
2
(−1 + 𝐻1(𝛿)) +

(√︂3
2

)3
𝐻2(𝛿) ≤ −1. (10.50)

By the assumptions 𝐻1(𝛿) ≤ 1
100 , and 𝐻2(𝛿) ≤ 1

10 . Under these conditions, the inequal-
ity is satisfied√︂

3
2
(−1 + 𝐻1(𝛿)) +

(√︂3
2

)3
𝐻2(𝛿) ≤

√︂
3
2
(− 99

100
) +

(√︂3
2

)3 1
10

(10.51)

= −21
25

√︂
3
2
< −1. (10.52)

10.3. Hölder Inequality Proofs

In this section, we bound the two terms in the Hölder inequality. First, we need a
supporting lemma.

Lemma 15. For any vector 𝑥 ∈ [−1, 1]𝑑 and any integer ℓ > 0, the expected inner
product with random vector 𝑤 from the continuous uniform distribution on 𝑆𝑑1 raised
to the power 2ℓ is upper bound by,

𝐸𝑃0 [(
𝑑∑︁
𝑗=1
𝑥 𝑗𝑤 𝑗)2ℓ] ≤ 1

(𝑑)ℓ
(2ℓ)!
ℓ!

. (10.53)

Proof. The sum
∑𝑑
𝑗=1 𝑥 𝑗𝑤 𝑗 raised to the power 2ℓ can be expressed as sum using a

multi-index 𝐽 = ( 𝑗1, · · · , 𝑗2ℓ) where each 𝑗𝑖 ∈ {1, · · · , 𝑑} and there are 𝑑2ℓ terms,

𝐸 [
( 𝑑∑︁
𝑗=1
𝑥 𝑗𝑤 𝑗

)2ℓ
] =

∑︁
𝑗1 , · · · , 𝑗2ℓ

2ℓ∏
𝑖=1

(𝑥 𝑗𝑖 )𝐸 [
2ℓ∏
𝑖=1

𝑤 𝑗𝑖 ] . (10.54)

For a given multi-index vector 𝐽, let 𝑟 ( 𝑗 , 𝐽) count the number of occurrences of the
value 𝑗 in the vector, 𝑟 ( 𝑗 , 𝐽) = ∑2ℓ

𝑖=1 1{ 𝑗𝑖 = 𝑗}. Then for any multi-index we would
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have,

2ℓ∏
𝑖=1

𝑤 𝑗𝑖 =

𝑑∏
𝑗=1

𝑤
𝑟 ( 𝑗 ,𝐽 )
𝑗

. (10.55)

Abbreviate 𝑟 𝑗 = 𝑟 ( 𝑗 , 𝐽) for a fixed vector 𝐽 also note
∑𝑑
𝑗=1 𝑟 𝑗 = 2ℓ. Consider the expect-

ation 𝐸 [∏𝑑
𝑖=1 𝑤

𝑟 𝑗

𝑗
]. Due to the symmetry of the prior, if any of the 𝑟 𝑗 are odd then the

whole expectation is 0. Thus, we only consider vectors ®𝑟 = (𝑟1, · · · , 𝑟𝑑) where all
entries are even. If we fix the signs of the 𝑤 𝑗 points to live in a given orthant, then the
distribution is uniform on the 𝑑 + 1 dimensional simplex. Define 𝑤𝑑+1 = 1 −∑𝑑

𝑗=1 |𝑤 𝑗 |
then ( |𝑤1 |, · · · , |𝑤𝑑 |, 𝑤𝑑+1) has a symmetric Dirichlet (1, · · · , 1) distribution in 𝑑 + 1
dimensions. Note a general Dirichlet distribution in 𝑑 + 1 dimensions with parameter
vector ®𝛼 = (𝛼1, · · · , 𝛼𝑑+1) has a properly normalized density as

𝑝 ®𝛼 (𝑤1, · · · , 𝑤𝑑) =
Γ(∑𝑑

𝑗=1 𝛼 𝑗)∏𝑑+1
𝑗=1 Γ(𝛼 𝑗)

𝑑∏
𝑗=1

(𝑤 𝑗)𝛼𝑗−1(1 −
𝑑∑︁
𝑗=1

𝑤 𝑗)𝛼𝑑+1−1. (10.56)

Thus the expectation of
∏𝑑
𝑗=1 𝑤

𝑟 𝑗

𝑗
with respect to a symmetric Dirichlet has the form

of an un-normalized Dir(𝑟1 + 1, · · · , 𝑟𝑑 + 1, 1) distribution. Thus, the expectation is a
ratio of their normalizing constants,

𝐸 [
𝑑∏
𝑗=1

𝑤
𝑟 𝑗

𝑗
] =

Γ(𝑑 + 1)∏𝑑
𝑗=1 Γ(𝑟 𝑗 + 1)

Γ(𝑑 + 1 +∑𝑑
𝑗=1 𝑟 𝑗)

(10.57)

=
𝑑!

∏𝑑
𝑗=1 𝑟 𝑗!

(𝑑 + 2ℓ)! . (10.58)
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The number of times a specific vector ®𝑟 appears from the multi-index 𝐽 is (2ℓ )!∏𝑑
𝑗=1 𝑟 𝑗 !

thus
we have,

𝐸 [(
𝑑∑︁
𝑗=1
𝑥 𝑗𝑤 𝑗)2ℓ] =

∑︁
®𝑟 even∑
𝑗 𝑟 𝑗=2ℓ

𝑑∏
𝑗=1

(𝑥 𝑗)𝑟 𝑗
(2ℓ)!∏𝑑
𝑗=1 𝑟 𝑗!

𝐸 [
𝑑∏
𝑗=1

𝑤
𝑟 𝑗

𝑗
] (10.59)

=
(2ℓ!) (𝑑!)
(𝑑 + 2ℓ)!

∑︁
®𝑟 even∑
𝑗 𝑟 𝑗=2ℓ

𝑑∏
𝑗=1

(𝑥 𝑗)𝑟 𝑗 (10.60)

=
(2ℓ!) (𝑑!)
(𝑑 + 2ℓ)!

∑︁
®𝑟 even∑
𝑗 𝑟 𝑗=2ℓ

𝑑∏
𝑗=1

(𝑥2
𝑗)
𝑟 𝑗

2 (10.61)

≤ (2ℓ!) (𝑑!)
(𝑑 + 2ℓ)!

(𝑑 + ℓ − 1)!
ℓ!(𝑑 − 1)! (10.62)

=
(𝑑 + ℓ − 1) · · · (𝑑)
(𝑑 + 2ℓ) · · · (𝑑 + 1)

(2ℓ)!
(ℓ)! (10.63)

≤ 1
𝑑ℓ

2ℓ!
ℓ!
, (10.64)

where inequality (10.62) follows from each 𝑥2
𝑗
≤ 1 thus each term in the sum is less

than 1 and there being
(𝑑+ℓ−1

ℓ

)
terms in the sum.

Proof of Lemma 5:

Proof. We bound the first term in the Hölder inequality depending on the higher order
moments of the prior. We have unit vector 𝑎 ∈ R𝑛𝐾 with n dimensional blocks 𝑎𝑘 .
Define vectors in R𝑑 as 𝑣𝑘 = XT𝑎𝑘 and the object we study is

𝐸 [(
𝐾∑︁
𝑘=1

𝑣𝑘 · 𝑤𝑘)2ℓ] . (10.65)

Use a multinomial expansion of this power of a sum and we have expression,

𝐸 [
∑︁

𝑗1 , · · · , 𝑗𝐾∑
𝑗𝑘=2ℓ

(
2ℓ

𝑗1 · · · 𝑗𝐾

) 𝐾∏
𝑘=1

(𝑣𝑘 · 𝑤𝑘) 𝑗𝑘 ] =
∑︁

𝑗1 , · · · , 𝑗𝐾∑
𝑗𝑘=2ℓ

(
2ℓ

𝑗1 · · · 𝑗𝐾

) 𝐾∏
𝑘=1

𝐸 [(𝑣𝑘 · 𝑤𝑘) 𝑗𝑘 ],

(10.66)

since the prior treats each neuron weigh vector 𝑤𝑘 as independent and uniform on 𝑆𝑑1 .
By the symmetry of the prior, if any 𝑗𝑘 are odd the whole expression is 0 thus we only
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sum using even 𝑗𝑘 values,∑︁
𝑗1 , · · · , 𝑗𝐾∑
𝑗𝑘=ℓ

(
2ℓ

2 𝑗1 · · · 2 𝑗𝐾

) 𝐾∏
𝑘=1

𝐸 [(𝑣𝑘 · 𝑤𝑘)2 𝑗𝑘 ] . (10.67)

Each vector 𝑣𝑘 is a linear combination of the rows of the data matrix,

𝑣𝑘 =

𝑛∑︁
𝑖=1

𝑎𝑘,𝑖𝑥𝑖 . (10.68)

Define 𝑠𝑘,𝑖 = sign(𝑎𝑘,𝑖) and 𝛼𝑘,𝑖 =
|𝑎𝑘,𝑖 |
∥𝑎𝑘 ∥1

. We can then interpret the above inner product
as a scaled expectation on the data indexes,

𝑣𝑘 · 𝑤𝑘 = (∥𝑎𝑘 ∥1)
𝑛∑︁
𝑖=1

𝛼𝑘,𝑖𝑠𝑘,𝑖 𝑥𝑖 · 𝑤𝑘 . (10.69)

The average is then less than the maximum term in index 𝑖,

𝐸 [(𝑣𝑘 · 𝑤𝑘)2 𝑗𝑘 ] = (∥𝑎𝑘 ∥1)2 𝑗𝑘𝐸 [
( 𝑛∑︁
𝑖=1

𝛼𝑘,𝑖𝑠𝑘,𝑖 𝑥𝑖 · 𝑤𝑘
)2 𝑗𝑘

] (10.70)

≤ (∥𝑎𝑘 ∥1)2 𝑗𝑘
𝑛∑︁
𝑖=1

𝛼𝑘,𝑖𝐸 [
(
𝑥𝑖 · 𝑤𝑘

)2 𝑗𝑘
] (10.71)

≤ (∥𝑎𝑘 ∥1)2 𝑗𝑘 max
𝑖
𝐸 [(𝑥𝑖 · 𝑤𝑘)2 𝑗𝑘 ] (10.72)

≤ (∥𝑎𝑘 ∥1)2 𝑗𝑘 1
(𝑑) 𝑗𝑘

(2 𝑗𝑘)!
𝑗𝑘!

, (10.73)

where we have applied Lemma 15. We then plug this result into equation (10.67),

1
𝑑ℓ

(2ℓ!)
ℓ!

( ∑︁
𝑗1 , · · · , 𝑗𝐾∑
𝑗𝑘=ℓ

(
ℓ

𝑗1 · · · 𝑗𝐾

) 𝐾∏
𝑘=1

(∥𝑎𝑘 ∥1)2 𝑗𝑘
)
=

1
𝑑ℓ

(2ℓ)!
ℓ!

( 𝐾∑︁
𝑘=1

∥𝑎𝑘 ∥2
1

)ℓ
. (10.74)

For each sub block 𝑎𝑘 of dimension 𝑛we have ∥𝑎𝑘 ∥2
1 ≤ 𝑛∥𝑎𝑘 ∥

2
2 and ∥𝑎∥2 =

∑𝐾
𝑘=1 ∥𝑎𝑘 ∥2 =

1 is a unit vector which gives upper bound

𝑛ℓ (2ℓ)!
𝑑ℓℓ!

. (10.75)

Via Stirling’s bound [39],

√
2𝜋ℓ( ℓ

𝑒
)ℓ𝑒 1

12ℓ+1 ≤ ℓ! ≤
√

2𝜋ℓ( ℓ
𝑒
)ℓ𝑒 1

12ℓ . (10.76)
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Taking the ℓ root we have( 𝑛ℓ
𝑑ℓ

(2ℓ)!
ℓ!

) 1
ℓ ≤ 𝑛

𝑑

(
22ℓ+ 1

2 ( ℓ
𝑒
)ℓ𝑒 1

24ℓ −
1

12ℓ+1

) 1
ℓ (10.77)

=
22+ 1

2ℓ 𝑛ℓ

𝑑
𝑒

1
24ℓ2

− 1
12ℓ2+ℓ

−1 (10.78)

≤ 4𝑛ℓ
𝑑

√
2𝑒

1
24+

1
13 −1 (10.79)

≤ 4𝑛ℓ
√
𝑒𝑑
. (10.80)

Proof of Lemma 6:

Proof. We bound the second term in the Hölder inequality determined by the growth
rate of the cumulant generating function. By the mean value theorem, there exists some
value 𝜏 ∈ [1, ℓ

ℓ−1 ] such that

Γ𝑛𝜉 (
ℓ

ℓ − 1
) = Γ𝑛𝜉 (1) + (Γ𝑛𝜉 )′ (𝜏) [

ℓ

ℓ − 1
− 1] . (10.81)

Rearranging, we can express the difference

ℓ − 1
ℓ

Γ𝑛𝜉 (
ℓ

ℓ − 1
) − Γ𝑛𝜉 (1) = (Γ𝑛𝜉 )′ (𝜏)

1
ℓ
− 1
ℓ
Γ𝑛𝜉 (1). (10.82)

By construction, Γ𝑛
𝜉
(𝜏) is an increasing convex function with Γ𝑛

𝜉
(0) = 0. Thus Γ𝑛

𝜉
(1) >

0 and we can study the upper bound

ℓ − 1
ℓ

Γ𝑛𝜉 (
ℓ

ℓ − 1
) − Γ𝑛𝜉 (1) ≤ (Γ𝑛𝜉 )′ (𝜏)

1
ℓ
. (10.83)

Recall Γ𝑛
𝜉
(𝜏) defined in equation (5.54) is a cumulant generating function of ℎ̃𝑛

𝜉
(𝑤).

Thus, its derivative at 𝜏 is the mean of ℎ̃𝑛
𝜉
(𝑤) under the tilted distribution. The mean

is then less than the maximum difference of any two points on the constrained support
set,

(Γ𝑛𝜉 )′ (𝜏) = 𝐸 �̃� [ℎ̃𝑛𝜉 (𝑤) |𝜉] ≤ max
𝑤,𝑤0∈ (𝑆𝑑1 )𝐾

( ℎ̃𝑛𝜉 (𝑤) − ℎ̃𝑛𝜉 (𝑤0)). (10.84)

By the mean value theorem, for any choice of 𝑤, 𝑤0 ∈ (𝑆𝑑1 )
𝐾 there exists a �̃� ∈ (𝑆𝑑1 )

𝐾

along the line between 𝑤 and 𝑤0 such that

ℎ̃𝑛𝜉 (𝑤) − ℎ̃𝑛𝜉 (𝑤0) = ∇𝑤 ℎ̃𝑛𝜉 (�̃�) · (𝑤 − 𝑤0). (10.85)
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For each 𝑘 , the gradient in 𝑤𝑘 is

∇𝑤𝑘 ℎ̃𝑛𝜉 (�̃�) = 𝛽

𝑛∑︁
𝑖=1

(res𝑖 (�̃�)𝑐𝑘𝜓′ (𝑤𝑘 · 𝑥𝑖) + 𝑎2

√︂
3
2
𝐶𝑛𝑉

𝐾
)𝑥𝑖 (10.86)

+ 𝑎2

√︂
3
2
𝛽𝐶𝑛𝑉

𝐾

𝑛∑︁
𝑖=1

𝜉𝑖,𝑘𝑥𝑖 + ∇𝑤𝑘𝑍 (𝑤). (10.87)

The scalar terms in the sum in (10.86) satisfy

|res𝑖 (�̃�)𝑐𝑘𝜓′ (𝑤𝑘 · 𝑥𝑖) + 𝑎2

√︂
3
2
𝐶𝑛𝑉

𝐾
| ≤ (𝑎1 + 𝑎2

√︂
3
2
)𝐶𝑛𝑉
𝐾

, (10.88)

for each i. The vector 𝑤𝑘 − 𝑤0,𝑘 satisfies ∥𝑤𝑘 − 𝑤0,𝑘 ∥1 ≤ 2. Since each 𝑥𝑖 vector has
bounded entries between -1 and 1, the inner product with the first term is bounded as[

𝛽

𝑛∑︁
𝑖=1

(res𝑖 (�̃�)𝑐𝑘𝜓′ (𝑤𝑘 · 𝑥𝑖) −
𝐶𝑛𝑉

𝐾
)𝑥𝑖

]
· (𝑤𝑘 − 𝑤0,𝑘) ≤ 2

(
𝑎1 + 𝑎2

√︂
3
2

)𝐶𝑛𝑉𝛽𝑛
𝐾

.

(10.89)

As for the second term,[ 𝑛∑︁
𝑖=1

𝜉𝑖,𝑘𝑥𝑖

]
· (𝑤𝑘 − 𝑤0,𝑘 ) ≤ 2 max

𝑗
|
𝑛∑︁
𝑖=1

𝜉𝑖,𝑘𝑥𝑖, 𝑗 |. (10.90)

Our original restriction of 𝜉 to the set 𝐵 is specifically designed to control this term.
By definition of the set 𝐵, for all 𝑘 ,

max
𝑗

|
𝑛∑︁
𝑖=1

𝜉𝑖,𝑘𝑥𝑖, 𝑗 | ≤ 𝑛 +
√︂

2 log( 2𝐾𝑑
𝛿

)
√︂
𝑛

𝜌
(10.91)

= 𝑛 +
√︂

2 log
2𝐾𝑑
𝛿

√︄√︂
2
3

𝑛𝐾

𝑎2𝛽𝐶𝑛𝑉
. (10.92)

For the final term, 𝑍 (𝑤) is shown to have small derivative. By Lemma 2,

∑︁
𝑘

∇𝑤𝑘𝑍 (𝑤) · (𝑤𝑘 − 𝑤0,𝑘) ≤
√
𝜌

√√√
𝑛∑︁
𝑖=1

𝐾∑︁
𝑘=1

((𝑤𝑘 − 𝑤0,𝑘) · 𝑥𝑖)2 1
(1 − 𝛿)

𝛿
√

2𝜋
(10.93)

≤

√︄
4𝑎2

√︂
3
2
𝐶𝑛𝑉𝛽𝑛

𝛿
√

2𝜋
1

1 − 𝛿 . (10.94)
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Summing using index 𝑘 for terms (10.89), (10.92) and combining with term (10.94),
we can upper bound the difference in the CGF as,

2
(
𝑎1 + 𝑎2

√︂
3
2

)𝐶𝑛𝑉𝛽𝑛
ℓ

+ 𝑎2

√︂
3
2
𝛽𝐶𝑛𝑉

ℓ

(
𝑛 +

√︂
2 log

2𝐾𝑑
𝛿

√︄√︂
2
3

𝑛𝐾

𝑎2𝛽𝐶𝑛𝑉

)
(10.95)

+

√︄
4𝑎2

√︂
3
2
𝐶𝑛𝑉𝛽𝑛

𝛿
√

2𝜋
1

1 − 𝛿 (10.96)

=
𝐶𝑛𝑉𝛽𝑛

ℓ
(2𝑎1 + 4𝑎2

√︂
3
2
) +

√︁
𝐶𝑛𝑉𝛽𝑛

ℓ

√︄
2𝑎2

√︂
3
2

(√︂
log

2𝐾𝑑
𝛿

√
𝐾 + 𝛿

√
𝜋(1 − 𝛿)

)
.

(10.97)

By assumption 𝑑 ≥ 2, 𝐾 ≥ 2, 𝛿 ≤ 1
16 . For all values 0 < 𝑧 ≤ 1

2 we have the inequality

𝑧
√
𝜋(1 − 𝑧)

≤ 1
√
𝜋

√︂
log

2
𝑧
≤ 1

√
𝜋

√︂
log

2𝐾𝑑
𝑧

√
𝐾. (10.98)

This gives the final upper bound

𝐶𝑛𝑉𝛽𝑛

ℓ
(2𝑎1 + 4𝑎2

√︂
3
2
) +

√︁
𝐶𝑛𝑉𝛽𝑛

ℓ
(1 + 1

√
𝜋
)

√︄
2𝑎2

√︂
3
2

(√︂
log

2𝐾𝑑
𝛿

√
𝐾

)
. (10.99)

10.4. Bounding Additional Continuous Risk Term Lemma 14

Proof. Bring the log outside the outer expectation to provide an upper bound, since
log is a concave function,

𝐸𝑃
𝑋𝑁+1 [log 𝐸𝑃0 [𝑒

− 𝛽2

(
∥𝑔− 𝑓

𝑤disc ∥2
𝑁+1−∥𝑔− 𝑓𝑤cont ∥2

𝑁+1

)
]] (10.100)

≤ log 𝐸𝑃
𝑋𝑁+1 [𝐸𝑃0 [𝑒

− 𝛽2

(
∥𝑔− 𝑓

𝑤disc ∥2
𝑁+1−∥𝑔− 𝑓𝑤cont ∥2

𝑁+1

)
]] (10.101)

Then recall the Taylor expansion for ∥𝑔 − 𝑓𝑤disc ∥2
𝑁+1 centered at 𝑤cont, using some

vector �̃� in the second derivative terms. Note the outer weights of the network 𝑐𝑘 are
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±𝑉
𝐾

, which will will write as 𝑐𝑘 = 𝑠𝑘 𝑉𝐾 using a sign 𝑠𝑘 ∈ {−1, 1}. Define

res𝑖 (𝑤) = 𝑔(𝑥𝑖) −
𝐾∑︁
𝑘=1

𝑠𝑘
𝑉

𝐾
𝜓(𝑥𝑖 · 𝑤𝑘) (10.102)

𝑎𝑖,𝑘 = − 𝑠𝑘
2𝑉
𝐾

res𝑖 (𝑤cont, 𝑠)𝜓′ (𝑥𝑖 · 𝑤cont
𝑘 ) (10.103)

𝑏𝑖,𝑘,𝑘′ (�̃�) = − 𝑠𝑘
2𝑉
𝐾

res𝑖 (�̃�)𝜓′′ (𝑥𝑖 · �̃�𝑘)𝛿𝑘=𝑘′

+ 2𝑠𝑘𝑠𝑘′
𝑉2

𝐾2𝜓
′ (𝑥𝑖 · �̃�𝑘)𝜓′ (𝑥𝑖 · �̃�𝑘′). (10.104)

Then for any continuous-valued vector 𝑤cont and discrete-valued vector 𝑤disc, there
exists some vector �̃� (in fact along the line between 𝑤disc and 𝑤cont) such that the
second order expansion is exact using that �̃� in the second derivative terms,

− 𝛽

2

(
∥𝑔 − 𝑓 (·, 𝑤disc, 𝑠)∥2

𝑁+1 − ∥𝑔 − 𝑓 (·, 𝑤cont, 𝑠)∥2
𝑁+1

)
(10.105)

= − 𝛽

2

𝑁+1∑︁
𝑖=1

𝐾∑︁
𝑘=1

𝑎𝑖,𝑘𝑥𝑖 · (𝑤disc
𝑘 − 𝑤cont

𝑘 ) (10.106)

+ 𝛽
2
𝑉

𝐾

𝑁+1∑︁
𝑖=1

𝐾∑︁
𝑘=1

𝑠𝑘res𝑖 (�̃�, 𝑠)𝜓′′ (𝑥𝑖 · �̃�𝑘) (𝑥𝑖 · (𝑤disc
𝑘 − 𝑤cont

𝑘 ))2 (10.107)

− 𝛽
2

𝑁+1∑︁
𝑖=1

( 𝐾∑︁
𝑘=1

𝑠𝑘
𝑉

𝐾
𝜓′ (�̃�𝑘) (𝑥𝑖 · (𝑤disc

𝑘 − 𝑤cont
𝑘 ))

)2
. (10.108)

This last term (10.108) is always negative, so we can upper bound by ignoring this
term. Then each |res𝑖 (�̃�)𝜓′′ (𝑥𝑖 · �̃�𝑘) | ≤ (𝑏 + 𝑎0𝑉)𝑎2 by assumptions on bounded 𝑔
and the activation function. This gives upper bound on the difference in loss functions,

− 𝛽

2

(
∥𝑔 − 𝑓 (·, 𝑤disc, 𝑠)∥2

𝑁+1 − ∥𝑔 − 𝑓 (·, 𝑤cont, 𝑠)∥2
𝑁+1

)
(10.109)

≤ − 𝛽

2

𝑁+1∑︁
𝑖=1

𝐾∑︁
𝑘=1

𝑎𝑖,𝑘𝑥𝑖 · (𝑤disc
𝑘 − 𝑤cont

𝑘 ) (10.110)

+ 𝛽
2
𝑉

𝐾
(𝑏 + 𝑎0𝑉)𝑎2

𝑁+1∑︁
𝑖=1

𝐾∑︁
𝑘=1

(𝑥𝑖 · (𝑤disc
𝑘 − 𝑤cont

𝑘 ))2 (10.111)

Note the 𝑎𝑖,𝑘 are functions of the continuous vectors, not the discrete. Switch the order
of the expectations to have the outer expectation be with respect to 𝑤cont, and the inner
expectation with respect to 𝑤disc and 𝑋𝑁+1,

log 𝐸𝑃0 [𝐸𝑃𝑋𝑁+1 [𝐸𝑃0 [𝑒
∑
𝑖,𝑘 −

𝛽

2 𝑎𝑖,𝑘 𝑥𝑖 · (𝑤
disc
𝑘

−𝑤cont
𝑘

)+ 𝛽2
𝑎2𝑉 (𝑏+𝑎0𝑉 )

𝐾
(𝑥𝑖 · (𝑤disc

𝑘
−𝑤cont

𝑘
) )2 |𝑤cont]]] .

(10.112)
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Under the prior, the 𝑤disc
𝑘

are conditionally independent given 𝑤cont, and by assump-
tion of iid data the data distribution 𝑃𝑋 treats each index 𝑖 as independent. The inner
expectation can be written as a product of individual moment generating functions for
each 𝑖 and 𝑘 , conditioned on 𝑤cont.

log 𝐸𝑃0 [
∏
𝑖,𝑘

𝐸𝑃𝑋 [𝐸𝑃0 [𝑒−
𝛽

2 𝑎𝑖,𝑘 𝑥𝑖 · (𝑤
disc
𝑘

−𝑤cont
𝑘

)+ 𝛽2
𝑎2𝑉 (𝑏+𝑎0𝑉 )

𝐾
(𝑥𝑖 · (𝑤disc

𝑘
−𝑤cont

𝑘
) )2 |𝑤cont]]] .

(10.113)

For simplicity and to avoid odd power terms, use a Cauchy-Schwartz inequality to
upper bound the cumulant generating function of the linear and quadratic terms with
two separate expectations with a factor of 2

𝐸𝑃0 [𝑒−
𝛽

2 𝑎𝑖,𝑘 𝑥𝑖 · (𝑤
disc
𝑘

−𝑤cont
𝑘

)+ 𝛽2
𝑎2𝑉 (𝑏+𝑎0𝑉 )

𝐾
(𝑥𝑖 · (𝑤disc

𝑘
−𝑤cont

𝑘
) )2 |𝑤cont

𝑘 ] (10.114)

≤
(
𝐸𝑃0 [𝑒−𝛽𝑎𝑖,𝑘 𝑥𝑖 · (𝑤

disc
𝑘

−𝑤cont
𝑘

) |𝑤cont
𝑘 ]𝐸𝑃0 [𝑒𝛽

𝑎2𝑉 (𝑏+𝑎0𝑉 )
𝐾

(𝑥𝑖 · (𝑤disc
𝑘

−𝑤cont
𝑘

) )2 |𝑤cont
𝑘 ]

) 1
2

(10.115)

We then can upper bound these moment generating functions with a Bernstein inequal-
ity using the first, second, and fourth conditional moments of the random variable
𝑥𝑖 · (𝑤disc

𝑘
− 𝑤cont

𝑘
) conditioned on 𝑤cont

𝑘
. This bound is useful for small inputs to the

moment generating function, and can be considered a concise statement of a sub-
exponential random variable. This utilizes the Multinomial conditional distribution
which defines our prior. Note that this random variable is bounded by 2, and is mean
0. Thus with 𝑚2 being its second moment and 𝑚4 its fourth moment we have upper
bound via Bernstein inequality [43, Lemma 7.26] for any scaling 𝑡,

𝐸𝑃0 [𝑒𝑡 𝑥𝑖 · (𝑤
disc
𝑘

−𝑤cont
𝑘

) |𝑤cont
𝑘 ] ≤ exp

(
𝑡2𝑚2

𝑒2𝑡 − 1 − 2𝑡
4𝑡2

)
(10.116)

𝐸𝑃0 [𝑒𝑡 (𝑥𝑖 · (𝑤
disc
𝑘

−𝑤cont
𝑘

) )2 |𝑤cont
𝑘 ] ≤ exp

(
𝑡2(𝑚4 − 𝑚2

2)
𝑒4𝑡 − 1 − 4𝑡

16𝑡2
)
𝑒𝑡𝑚2 . (10.117)

Note that the Multinomial distribution inner product with the vector 𝑥𝑖 can be con-
sidered as a normalized sum of 𝑀 iid bounded random variables. Consider a random
index 𝐽 ∈ {1, . . . , 𝑑 + 1} where 𝐽 = 𝑗 with probability |𝑤cont

𝑘, 𝑗
|. Given 𝑤cont

𝑘
, this defines

a distribution on {1, . . . , 𝑑 + 1}. Draw 𝑀 iid random indices 𝐽1, . . . , 𝐽𝑀 from this
distribution. We can construct the Multinomial distribution with these random index
selections and write

𝑥𝑖 · (𝑤disc
𝑘 − 𝑤cont

𝑘 ) = 1
𝑀

𝑀∑︁
𝑡=1

(𝑥𝑖,𝐽𝑡 − 𝐸 [𝑥𝑖,𝐽𝑡 ]) (10.118)
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This is then an average of 𝑀 mean 0 iid random variables, each bounded by 2. One
can bound the moments by expanding the expectations,

𝑚1 = 𝐸𝑃0 [𝑥𝑖 · (𝑤disc
𝑘 − 𝑤cont

𝑘 ) |𝑤cont
𝑘 ] = 0 (10.119)

𝑚2 = 𝐸𝑃0 [(𝑥𝑖 · (𝑤disc
𝑘 − 𝑤cont

𝑘 ))2 |𝑤cont
𝑘 ] ≤ 4

𝑀
(10.120)

𝑚4 − 𝑚2
2 = 𝐸𝑃0 [((𝑥𝑖 · (𝑤disc

𝑘 − 𝑤cont
𝑘 )2 − 𝑚2)2 |𝑤cont

𝑘 ] ≤ 32
1
𝑀2 . (10.121)

Looking back at expression (10.115), we have the bound |𝑎𝑖,𝑘 | ≤ 2 𝑎1𝑉 (𝑏+𝑎0𝑉 )
𝐾

. Thus
for any 𝑥𝑖 ∈ [−1, 1]𝑑 and any 𝑤cont

𝑘
∈ 𝑆𝑑1 with

𝑡1 = 2𝑎1
𝑉 (𝑏 + 𝑎0𝑉)𝛽

𝐾
𝑡2 = 𝑎2

𝑉 (𝑏 + 𝑎0𝑉)𝛽
𝐾

, (10.122)

we have the upper bound

𝐸𝑃0 [𝑒−
𝛽

2 𝑎𝑖,𝑘 𝑥𝑖 · (𝑤
disc
𝑘

−𝑤cont
𝑘

)+ 𝛽2
𝑎2𝑉 (𝑏+𝑎0𝑉 )

𝐾
(𝑥𝑖 · (𝑤disc

𝑘
−𝑤cont

𝑘
) )2 |𝑤cont

𝑘 ] (10.123)

≤exp
(1
2
𝑚2
𝑒2𝑡1 − 1 − 2𝑡1

4

)
exp

(1
2
(𝑚4 − 𝑚2

2)
𝑒4𝑡2 − 1 − 4𝑡2

16

)
𝑒

1
2 𝑡2𝑚2 (10.124)

≤exp
( 1
2𝑀

(𝑒2𝑡1 − 1 − 2𝑡1) +
1
𝑀2 (𝑒

4𝑡2 − 1 − 4𝑡2) +
2𝑡2
𝑀

)
. (10.125)

This bound holds for all 𝑥𝑖 and 𝑤cont
𝑘

in their relevant support, thus the product in
(10.113) can be upper bounded by this object to the power (𝑁 + 1)𝐾 . The outer expect-
ation is then irrelevant and we have the final upper bound,

(𝑁 + 1)𝐾
( 1
2𝑀

(𝑒2𝑡1 − 1 − 2𝑡1) +
1
𝑀2 (𝑒

4𝑡2 − 1 − 4𝑡2) +
2𝑡2
𝑀

)
. (10.126)
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