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Methods for Determining

the Depth of Near-Surface Defects
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In previous work by the authors,"® it was demonstrated that the presence of near-surface
defects could be detected reliably, even though the defect echo was contained within the
near-surface echo. The algorithm consists of examining the variation in the composite
(near-surface plus defect) response after it has been decopvolved from a near-surface
response known to be defect-free. This paper presents two algorithms that have been
developed subsequent to the work presented in ref. (6) for estimating the depth of a
near-surface defect, given that its presence has already been detected. One algorithm uses
complex frequency domain techniques, and the other uses time domain analysis. Both
procedures operate on the surface-plus-defect signal, using reference signals containing
surface-only and defect-only responses. The defect signal is extracted from the composite
signal. Defect depth is then computed from the time difference between the centers of the
front-surface and extracted defect responses. A mean absolute depth error of 0.015 in. was
obtained by applying the algorithms to experimental data containing depths from 0.020 to
0.130 in. below the near-surface.
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INTRODUCTION

A common ultrasonic method for measuring the
depth of a defect in metal is to insonify the defect
with a pulsed transducer in the longitudinal mode
and aligned perpendicular to the surface of the test
piece, and to compute the distance between the
surface and the defect from the time difference
between the surface and defect responses. When
observing a very shallow defect, however, the front
surface response overlaps significantly the response
from the defect, and it becomes impractical to esti-
mate the occurrence times of the surface and defect
signals by peak detection.

! Adaptronics, Inc., Westgate Research Park, 1750 Old Meadow
Road, McLean, Virginia 22102.
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In previous work by Adaptronics,” > > ® it was

demonstrated that the presence of near-surface de-
fects could be detected reliably. The algorithm devel-
oped is as follows. The power spectrum of the test
signal’s front surface response is divided (decon-
volved) by the power spectrum of a reference front
surface response taken with the same transducer on
a section of the same type of material known to have
no near-surface defect. If the test piece has no
defect, the front surface power spectrum will resem-
ble closely that of the reference, and the decon-
volved spectrum will approach unity for all frequen-
cies. If a defect is present, a significant variation
from unity appears. If the variance of the decon-
volved spectrum exceeds a threshold, a defect is
detected. In the following derivations, it is desired to
estimate the depth of the near-surface defect, given
that its presence has already been detected.
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DEFINITION OF NEAR-SURFACE DEFECTS

With the transducers used in this work, the time
width 7,, of the front surface responses, as measured
between the points where the amplitude reached
10% of its maximum, is approximately

T,=12ps n
Given a longitudinal wave velocity in stainless steel,
v=0.221in./ps 2

and a roundtrip length / equal to twice the defect
depth §,

1=28 3)

the minimum depth g, for which there is adequate

time separation between the surface and defect re-
sponses, is given by

;26
T =2 = 'min v
=l 2 @)
or
T,
smin=%=0.13in. (5)

Near-surface defects are defined in this work to be
those less than 0.13 in. deep.

A NEAR-SURFACE DEFECT MODEL

Two approaches are developed here for estimat-
ing the depth of a near-surface defect. [Other work
can be found in refs. (4, 8, 9), for example.] One uses
complex frequency domain techniques, and the other
uses time domain analysis. Both procedures operate
on the surface-plus-defect signal, using reference
signals containing surface-only and defect-only re-
sponses. First, s(¢) is defined as the front surface
time response from the piece under test, d(¢) is the
defect response, and x(¢) is the surface-plus-defect
response. Only x(¢) is measurable directly because
s(¢) and d(¢) are merged within each other.

Given a reference block with a defect of known
size, orientation, and depth greater than 0.13 in., a
reference surface signal s5,(¢) and a reference defect
signal d,(t) are obtained with the same transducer as
used with the test piece. Ideally, the reference defect
would approximate a point source, for the same
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reasons discussed in ref. (9). A small, one-half inch
deep, flat-bottom hole, such as shown in Fig. 1,
would serve well for this purpose. The reference
signals 5,(¢) and d,(¢) are time shifted such that their
centers, as determined by an appropriate signal-
center location algorithm, occur at 1=0 (Fig. 1). The
objective of the following derivation is to obtain an
estimate of defect depth, given x(¢), 5,(t), and d (¢).

It is assumed that the superposition principle
holds for ultrasonic waves and thus that the surface-
plus-defect response is equal to the sum of the
surface and defect responses:

x(t)=s(t)+d(1) (6)

It is further assumed that the surface responses from
the test and reference pieces are nearly identical and
that the defect responses from the test and reference
pieces strongly resemble each other. The differences
between the respective signals are primarily ampli-
tude variation and time shifting:

s(t)=as,(1—1,) (7)
and
d(t)=~a,d (1—1,) (8)

where the a, and a, are the amplitude scale factors
and ¢, and ¢, are the time shift parameters for the
surface and defect signals. Since ultrasonic signals
are generally amplified to give full-scale voltages for
the front surface responses, the magnitudes of s(7)
and s,(¢) will be about the same, and a, will there-
fore be approximately unity. The defect scale factor
a, will generally indicate the relative reflectivity of
the test defect as compared to the reference defect.
By substitution of Approximations (7) and (8)
into Eq. (6), a model of the test signal x(¢) may be
constructed from the reference responses:

x(1)=a,s,(1—1,) +a,d,(1~1,) ©)

The objective in the model solution is to obtain
estimates of the four parameters a,, a,, ¢, and ¢,
and from the ¢’s the depth can be found. Complex
Fourier transforms are obtained from the three mea-
surable time signals:

X(f )ex(t) (10)
S(f)e=s(1) (11)
D(f)<d(1) (12)
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Fig. 1. Reference block and resulting transducer reference time waveforms to be used for
near-surface defect depth estimation.

Taking the transform of Approximation (9) and in-
voking linearity and the time shift operator on the
two terms of the right-hand side yields

X(f)=ae S (f)+aze™ 2D (f) (13)

Since the amplitude of the defect response is small
by comparison to the front surface response, the
surface parameters a, and 7, are estimated first.

Equation (13) is divided through (or deconvolved)
by §,(f):

‘;\:8:; = Z:(f)zase_jz”f’!+ade_jz”f’f'M (14)

5(f)

For convenience, the ratio X(f)/S.(f) is de-
fined as Z ( f). Because the magnitude of the defect
(second) term is small with respect to the surface
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(first) term, it is treated as if it were noise. Estimates
for a_ and ¢, are found by ignoring the defect term
and equating separately the magnitude and phase
portions of Approximation (14):

| Z,(f)l=a, (15)

and
A[Z,(f)] = o (f)=—2nf, (16)

The angle of Z( f) is defined as ¢,( f). The solution
for the angle in Eq. (16) is complicated by the
existence of multiple solutions (¢, ¢ +27, ¢ x4m,...).
A large portion of any ambiguity is removed by
differentiating ¢( f) with respect to f to obtain

_—__d[%(f)] ~-—2xt (17)

df g

Since the Fourier transform is sampled at uniform
intervals Af, it is convenient to define

A, (f)=o(f) o (f~AS) (18)
in which case Eq. (17) becomes

Ao (f) _
T aag s (19)

The differential angles in Eq. (19) are less ambigu-
ous than the total angles of Eq. (16).

Equations (15) and (19) hold for all frequencies,
so each complex frequency component of the Fourier
transform yields a separate estimate for both the
amplitude and phase parameters. The best overall
surface parameter estimates d, and 7, are weighted
averages of the individual frequency estimates, where
the averaging of the separate frequency estimates
significantly reduces the effects of the “noise” from
the defect term:

2w (NZL)]
a,=-L (20)
2w(f)
f
and
o 2Dl
alt=y Sl f) e
s
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The weights w,(f) are chosen to emphasize the
individual estimates where the amplitudes of S f),
which is the denominator in Eq. (14), are large and
thus where the relative noise is small. Conversely,
the weights de-emphasize points where S,( f) is small
and where the relative noise is therefore high. The
weighting function that yields a least-mean-square
error for the surface amplitude scale factor 4, is

w(f)=1S(/)I? (22)
Using these weights, the a_ and ¢, estimates of
Eq. (20) and (21) become
ISz
g=-L (23)
28I

S

and

28NN f)

P et )
=\ 277

24
218N ey

S

It is important to note that division by zero, which
may occur in the computation of Z(f) if 4, is
calculated from Eq. (20), will not occur if the weight-
ing of Eq. (22) is used and 4, is calculated from Eq.
(23).

Now given the surface parameter estimates 4
and tA:, this data may be used in the near-surface
defect model, Approximation (13), to obtain the
defect parameter estimates @, and 7, The front
surface term is shifted to the left side, and the
equation is divided through (deconvolved) by the
defect reference spectrum D,( f):

X —4 —jZWff.,S ~ )
(f) aD:f(f) r(f) 2 Zd(f):ade“_ﬂwf!d

(25)

For convenience, the left-hand term is defined as
Z,(f). The defect parameter estimates d, and tAd are
found from Z,(f), just as the surface parameter
estimates were found from Z( f):

Swa( INZa(F)
dy=-L (26)
. g wy(f)
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and

%Wd(f)A‘i)d(f)
a=\ 2mays

27)
2 wa(f)

S

Since the denominator of Z,( f) in Eq. (25)is D.(f),
the weighting function for a least-mean-square error
on the defect amplitude scale factor 4, is

wy(f)=ID(f)I? (28)

and the 4, and tAd"estimates of Eqs. (26) and (27)
become

S IDF) | X(f)—d,e S, f)]
d,=" (29)
> D f)I?

f

and

2 D) Bey(f)
s

La=\ 3747

(30)
Ef: |D.(f)I?

This completes the estimates of all four near-surface
defect model parameters.

It is possible to obtain refined estimates of the
four parameters by reiterating the solution. In the
first iteration the front-surface parameters were
estimated under the assumption that the defect term
of Eq. (14) was totally noise. In the second iteration,
the majority of that term may be subtracted out,
based upon the first pass estimates of a, and ¢,, so
the noise will be reduced and the surface parameters
can be better estimated. With the improved surface
parameter estimates, the defect parameter estimates
can also be improved.

MODEL SOLUTION IN THE TIME DOMAIN

The time domain solution to the near-surface
defect model of Eq. (9) involves first computing a
weighted correlation function between x(¢) and s,(f)
to time align the two signals:

Cr)= 2 w(1)s,(1)s(t—1) (31)
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The value of 7 for which C(7) is a maximum is the
estimate ¢:

(=1 [C.(7)=max] (32)

While a constant weighting function would provide
adequate results, it is known a priori (a) that any
defect response would exist in the latter half of the
front-surface response, and (b) that the front-surface
response has a finite time. Therefore a weighting
function should emphasize the first part of the
surface response, deemphasize the regions where de-
fect “noise” is known to exist, and deemphasize the
regions where the front surface signal is known not
to exist. Such a weighting function, shown in
Fig. 2, is

t+ T
w.(t)=14+cos W—(—Q

ws

for -7, —T,<t<T, —T,, and

w.(1)=0, elsewhere (33)

where the width and offset times 7, and T; were
selected for this work based on the width 7, [Eq. (1)]
of the typical front-surface responses:

T,=T,/2=0.65ps (34)
and
T,=0.20 us (35)

Once the reference front-surface signal s,(¢) is
time aligned with the test signal x(¢), s,(¢) is ampli-
tude scaled to match x(¢). The amplitude scale
parameter a, is derived from the model equation (9)
by dividing through by s,(t—tAS) and treating the
defect term as noise:

a::;% (36)

Each time point gives an estimate of a,, and the best
overall estimate is a weighted sum:

w x(1)
; s(t)s,(t—[s)

a,= (37)
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Fig. 2. Correlation weighting function for time alignment of front-surface reference with
near-surface defect signal.

Since s5,(t—1,) is in the denominator, a least-mean-
square error weighting function is

ws(t)=s,2(t—tl) (38)

but for the same reasons that the cosine weighting
was used in estimating the surface occurrence time

t,, it should be used here in estimating the surface
amplitude a,. Thus the overall weighting function
becomes

m(t+Ty)
T.

5

w,(t)={l—cos }sf(t—t;) (39)

Now the surface amplitude estimate 4, from Egs.




Determining the Depth of Near-Surface Defects

(37) and (39) becomes

T To

‘ 1+ T -

% ] {l—cos m(t+ 1) = 0)}}s,(t—ts)x(t)

IS t=—1I,—1yp s

a —1

’ I-To 1+ T -
g ] {l—cos _—_77( 7 o) }sf(t—t:)

t=—T.—Tp s

(40)

Note that, in going from Eq. (37) to (39), the divi-
sion by a possible zero in s,(f— t;) was eliminated.

Now given the surface parameters 7, and d,, the
defect signal can be isolated. From the model equa-
tion (9), the front-surface signal is subtracted out,
yielding a difference signal d(r):

x(t)—ags(t—1,) = d(t)~aud,(1—1,) (41)

Since the defect signal now stands alone, a peak
detection or signal-center location algorithm may be
used to estimate the defect occurrence time 7, A
signal-center location algorithm is given in the Ap-
pendix.

If the residual noise from front surface subtrac-
tion is too large for peak detection or if the defect
amplitude parameter d, is desired, the defect time
parameter ¢, should be found using the correlation

Cd(T)=2wcd(t)dr(t)d(t_T) (42)

where the defect correlation weights are again a
cosine function, but this time with smaller width (to
correspond to the shorter time responses of the
defects) and no time offset:

wcd(t)=1+cos{w—t] -T,,<t<T,,
Toa (43)
w.,(1)=0 elsewhere
where
T,,=0.30 ps (44)

The defect time estimate 7, is that time where the
correlation function C,(7) is a maximum

t;=1 [Cy(r)=max] (45)
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The defect amplitude coefficient a, is now solved
from Eq. (4]):

x(t)y—ags,(1—1,)

=2 ~a, 46
iy (46)

and the best overall estimate is

2 wy(1)z,(1)
dy= e (47)
2 wa(1)

where

wd(t)={1—-cos{;—t}]d,z(t—fd) (48)

wd

which minimizes noise and provides the least-mean-
square error estimate d,. Combining Eqgs. (48) and
(47) yields

(49)

which completes the estimates of all four near-surface
defect model parameters.

It is possible, as with the frequency domain
solution, to obtain refined estimates of the four
parameters by reiterating the solution. The front-
surface parameters may be improved if a large per-
centage of the defect, which acts as noise, is
eliminated. However, the weighting function of Eq.
(33) is designed to reduce the defect noise a priori, so
reiteration should not be necessary to obtain best
results.

DEPTH ESTIMATE FROM MODEL
PARAMETER ESTIMATES

Finally, the defect depth & is estimated from the
difference between the occurrence times of the front-
surface and defect signals:

5= 1&# (50)
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Some information about the defect size may be
inferred from the reflectivity coefficient 4, and
knowledge of the reference defect.

ADVANTAGES OF THE TIME DOMAIN
APPROACH

The time and frequency domain solutions to the
model of Approximation (9) are analogous in many
respects. The front-surface parameters are estimated
first, while treating the defect response as noise, and
then the defect parameters are estimated with the
use of the front-surface parameters. Where complex
division (deconvolution) is used in the frequency
domain, correlation methods are used in the time
domain.

The time domain solution has several ad-
vantages over the frequency domain solution:

1. The time domain solution does not require a
reference defect signal. The time of defect
occurrence can be determined from signal-
center location algorithms (such as given in
the Appendix), once the front-surface re-
sponse is removed, eliminating the need for

. correlation against a reference defect.

2. A priori knowledge that the defect exists to-
ward the right side of the front-surface re-
sponse allows the use of a weighting function
to minimize the impact of the defect signal in
locating the front-surface occurrence time.

3. A priori knowledge that the front-surface and
defect responses are limited in their time
duration allows the use of a weighting func-
tion to minimize the impact of waveform
noise outside the time window of the signal.

4. The time domain solution is more intuitive,

PRACTICAL APPLICATION OF THE THEORY

The front-surface response is quite repeatable;
the human eye can easily and consistently dis-
tinguish one transducer from another and most of
the characteristic shape features of the waveform
remain much the same from shot to shot. However,
in subtracting one front-surface response from
another, in either the frequency or the time domains,
the variations become significant because the magni-
tude of the difference is large with respect to the
magnitude of the defect which is being sought.
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It is believed that the major source of variation
1s due to amplifier saturation during the front-surface
response. This conflicts with the initial model as-
sumptions made above that the surface responses
are identical. Thus after the front-surface response is
subtracted out of the surface-plus-defect response,
the defect is often still masked by the front-surface
residual, and location of the defect through peak
detection methods remains inadequate. For practical
operation, it is recommended that the amplifier gain
be reduced well below saturation for the detection
and location of near-surface defects. Successive shots
with higher gain may be used for analysis of the
deeper regions of the material.

Despite the front-surface saturation, it was de-
sirable to demonstrate the theory on experimental
data, and the following method was developed to
compensate for shot-to-shot variation. The reference
front-surface response, for a given transducer and a
given material, is redefined to be an average of
several (in this work, four) individual front-surface
responses. Also, the standard deviation of the several
responses is computed. An example of the individual
front-surface responses along with the average and
standard deviation is shown in Fig. 3. The experi-
mental data are described in ref. (1). Figure 4 shows
the averages and standard deviations for transducers
1 and 2 on stainless steel and Inconel. It can be seen
from the standard deviation curves that the greatest
variations in front-surface responses occur when the
transducer amplifier is coming out of saturation.

The average reference, after time alignment and
amplitude matching with the test signal, is sub-
tracted from the test signal. The resulting difference
signal contains the defect signal and residual front-
surface noise. The large majority of the front-surface
noise, however, exists in the form of spikes, which
occur where the standard deviation of the average
reference is high. The method for reducing the noise
is to attenuate the difference signal in proportion to
the standard deviation. The fundamental notion is
that those large magnitudes in the difference signal
which occur where there is expected variation be-
tween front-surface responses should be ignored,
and that the remaining signal constitutes the defect.
Thus a modified difference signal 4’(¢) is computed
from d(¢) [see Eq. (41)]:

d'(1) =w,(1)d(1) (50)

where w_ (1) is the system attenuation weight due to
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Fig. 3. Four individual front-surface time responses, the average, and the standard deviation [experimental data
described in ref. (1)].
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AVERAGE TIME RESPONSES

Cleveland, Barron, and Mucciardi

STANDARD DEVIATIONS
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Fig. 4. The average front-surface reference time responses and standard deviations for two transducers and two

materials.
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F
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Fig. 5. Block diagram of near-surface defect depth estimation procedure.

the reference standard deviation. The system at-
tenuation function used in this work was

ld(1)|

wy(t)= ———"——
|d(1)|+o(1—1,)

(51)

The weighting function is small when the standard
deviation is large, and it approaches unity when the
standard deviation is small.

If Eq. (51) is substituted into Eq. (50) and
rearranged, an alternative interpretation arises:

o(t—1,)

d'(1)=d(1)—d(1) -
|d(t)|—a(1—1,)

(52)

In this form the modified difference signal may be

viewed as equal to the original difference less a

percentage of the original difference, where the per-
centage subtracted out is small if ¢ is small and large
if o is large. Also, since it is known that the defect
does not exist above the surface, any difference
signal prior to /=0 is known not to result from the

defect, so a”(t—tl) is also set to zero for all ¢ less
than ¢

d(t—1)=0 (1<1,) (53)

The peak detection algorithm is used on the mod-
ified difference signal d’(¢) to find the defect occur-
rence time estimate tﬂd. A block diagram of the depth
estimation method is shown in Fig. 5.

SIMULATION RESULTS

The time domain solution for the estimation of
near-surface defect depths was programmed and
evaluated on 24 pulse-echo longitudinal shots of
defects less than 0.13 in. deep. The 24 defects were
all side-drilled holes. The peak detector acquired the
defect signal within the residual front-surface noise
22 out of the 24 times, and the depth estimation
produced a mean absolute depth error of 0.015 in.
With respect to the total 0.130-in. range, the average
error was 12%, and with respect to the true defect
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PROPERLY DETECTED PEAK

Tl, SS304

Depth: True .060, Estimated .055
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v
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Test Response

x(t) n

x(t)

Difference = Test Response - Aligned Average Reference Response

d(t) d(t)
A AN T NN
VoV 2.56 Us 256 us
Reference Standard Deviation
g(t) o(t)
: /\ﬂ[\l A oA : ‘ € ‘,\/\,qj\\.f\_{\j\/\/\«-_ : -t
2.56 Us 2.56 us
Modified Difference
Residual Front
Surface Noise
d“ (¢ a“(t PN
(®) Trgi ::fect ) True Defect
g Signal
— et
A A /\ L . /\ VAN /\ t
1 vV i - = P T N ‘TJ T
2.56 Us 2.56 Us
Detection Point '
Detection Point

Fig. 6. Examples of processed near-surface defect time signals.’
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Table 1. Summary of Results in Estimating the Depths of
Near-Surface Defects?

Mean Mean Number
Category absolute percentage of
error (in.) error® waveforms
Overall Data Base? 0.015 25% 24
Transducer 18 0.018 30% 12
Transducer 2 0.011 20% 12
Stainless Steel 0.008 13% 12
Inconel® 0.021 371% 12
True Mean Mean Mean Number
depth estimates  absolute percentage of
(in.) depth (in.) error (in.) error® waveforms
0.020% 0.035 0.015 75% 2
0.040 0.034 0.007 18% 4
0.050 0.038 0.012 24% 2
0.060 0.043 0.017 28% 4
0.080 0.062 0.017 21% 4
01006  0.082 0.020 20% 4
0.125 0.112 0.013 10% 4

“From ref. (1).

®Data includes peak detection errors in acquiring the
defect signal.

“Percentage error is in terms of true defect depth.

depths, the average percentage error was 25%. These
results are tabulated in Table I along with a more
detailed breakdown of error according to trans-
ducer, material type, and true defect depth.

The two cases where the peak detector missed
the defects and acquired spurious noise spikes were
the transducer 1 shots of the 0.020- and 0.100-in.
deep holes in Inconel. The resulting depth estimates
were 0.041 and 0.027 in., respectively, giving errors
of 105% and 73%. These errors adversely affect the
T! and Inconel results, as seen in Table I, and
explain most of the performance variation between
transducers and metals. Representative examples of
the time responses for correctly and incorrectly
acquired signals are shown in Fig. 6.

CONCLUSIONS

The time domain algorithm has been shown to
yield good estimates of defect depth as well as to
recover the defect signal from the overlapped front-
surface response. The authors are currently develop-
ing a joint time and frequency domain solution that
combines the best features of each and, also, pro-
vides for more than one iteration, as discussed above.
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This combined algorithm will be reported in a future
paper. Both algorithms can be implemented in a
computer to provide a signal processing basis for
automatic processing.
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APPENDIX: LOCATION OF SIGNALS
THROUGH CENTER OF MASS TECHNIQUES

When processing waveforms, it is often desira-
ble to establish the time of occurrence for a signal of
interest. The information may be useful to determine
the time of one event with respect to another or to
set the parameters of a time window so that the
signal may be centered and isolated before further
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Fig. Al. Disadvantages of peak detection methods for signal location.

processing. A procedure is discussed here for locat-
ing signals through center-of-mass techniques. It is
assumed (a) that the duration of a signal is limited
and known within a factor of two or three, and (b)
that the existence of the signal may be adequately
recognized by its amplitude, which is greater than
the surrounding noise. No other attempt is made
here to distinguish between signal and noise.

A common approach to signal location is peak
detection; the time at which the waveform reaches
its maximum amplitude is defined to be the signal
center. For oscillatory signals, such as exist in ultra-
sonics, this method can produce highly inconsistent
results for two reasons. First, as shown in Fig. Al(a),
if two peaks have the same or very nearly the same
amplitude, there is ambiguity as to the location time.



Determining the Depth of Near-Surface Defects
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Fig. A2. Procedure for finding signal center of mass.

In two experimentally identical waveforms, the rela-
tive peak amplitudes may shift infinitesimally, but
the occurrence times would shift dramatically. Sec-
ond, as shown in Fig. Al(b), the existence of a noise
spike which happened to peak above the signal
would totally disrupt the results. Another disad-
vantage of peak detection arises with asymmetric
signals. As demonstrated in Fig. Al(c), it may be
more desirable to define the occurrence time to be at

the center of the signal rather than toward the end
where the peak amplitude occurred.

The following procedure significantly reduces
the above problems. First, the original waveform
x(t) is rectified or squared to give an always positive
signal f(7), which may be viewed as a mass distribu-
tion along the time axis. Next, a window of length T,
where T is approximately one to three times the
length of the signal, is moved along the waveform.
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The center of the signal ¢, is defined to be that point
in time for which the window, under the mass dis-
tribution f(¢), balances in the middle. At any point
in time, the mass moment M(¢) about the center of
the window is

M(l)=f_+T::2’Tf(l+T)d’r (A1)

where 7 is the time distance from a mass point to the
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center of the window. If the window is to the left of
the signal, the predominance of the signal mass is in
the right half of the window and the moment M(¢)
will be positive. Similarly, when the window is to the
right of the signal, M(r) is negative. At the signal
center, or the balance point, M(¢) is zero. Thus the
signal center ¢, is found by searching the moment
curve M(z) for the zero crossing point. The proce-
dure is illustrated in Fig. A2,




