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Minimax Redundancy for the
Class of Memoryless Sources

Qun Xie and Andrew R. Barronylember, IEEE

Abstract—Let X" = (X;, ---, X,,) be a memoryless source interpretations, which changes the redundancy by at most one
with unknown distribution on a finite alphabet of size #. We pijt from what is identified here.)

identify the asymptotic minimax coding redundancy for this Moreover, we may link the above setup with game theory

class of sources, and provide a sequence of asymptotically mini- L . o
max codes. Equivalently, we determine the limiting behavior of and statistics. Suppose nature pick lom © and a statisti-

the minimax relative entropy ming,, maxp,, D(Px»[|Qx»), Cian chooses a distributiop, on X™ as his best guess @f.
where the maximum is over all independent and identically The loss is measured by the total relative entrdpipy||gn. ).
distributed (i.i.d.) source distributions and the minimum is over Then for finiten, and prior W (d@) on © the best strategy,,
all joint distributions. We show in this paper that the mini- T ;

max redundancy minus ((k — 1)/2) log (n/(2me)) converges to to minimize the average fisk
log [ +/det I(8)df = log (I'(1/2)*/T'(k/2)), where I(8) is the n 0
Fisher information and the integral is over the whole probability D(pg|lgn)W (d6)
simplex. The Bayes strategy using Jeffreys’ prior is shown to be

asymptotically maximin but not asymptotically minimax in our  is the mixture density

setting. The boundary risk using Jeffreys’ prior is higher than

that of |r,1ter_|or points. We provide a sequence of modifications of m¥ (") = /pg(a:")W(dG)
Jeffreys’ prior that put some prior mass near the boundaries of

the probability simplex to pull down that risk to the asymptotic

minimax level in the limit. (called the Bayes procedure), and the resulting average risk

is the Shannon mutual informatial{©®; X™) (see [8], [10]).
Suppose® is compact and thapy(xz) depends continuously
on é € © for everyz € X. Then the minimax value

Index Terms—Universal noiseless coding, minimax redundan-
¢y, minimax total relative entropy risk, Jeffreys’ prior, asymptotic
least favorable prior.

min max D(py
nin 1max D(pg||¢.)
I. INTRODUCTION

. . . is equal to the maximin value
E start with a general discussion. Suppose we have

a parameterized discrete memoryless source. That is, max /D(pg”mW)W(da)
we have a parametric family of probability mass functions w "

{pe(x): 8 € ® C R} on a discrete finite sef, which \hich is the capacity of the chann®l — X™. This equality
generate independent identically distributed (i.i.d.) randogt the minimax and maximin values can be found in Davisson
variables Xy, X, -+, X,,. Our goal is to code such datagng |eon—Garcia [11] using [13], and is attributed there to
with nearly minimal expected codelength, in a minimax sengga|jager [15]; see [17] for a recent generalization. Moreover,
to be defined later, when we have no information about thgere is a unique minimax procedure and it is realized by a
generating parametérother than it belongs to the sét This  Bayes procedure. Indeed, there exists a least favorable prior

is universal coding, first systematically treated by Davissqiy+ (also called a capacity achieving prior), for which the
[10]. Of particular interest is the case that the family consisgyrresponding procedure

of all (i.i.d.) distributions on the alphabét.

It is known that the expected codelength is lower-bounded my(z™) = /pg(x")W;(dG)
by the entropy of the distribution. When the tr@és known,
this bound can be achieved within one bit. Wifaa unknown, is both maximin and minimax (see the discussion following
and if we use a mass functian on X and—log ¢,(z") bits Lemma 5 in the Appendix). The problem of choosing a prior
to code data string™, then it induces a redundancy in theo maximize I(9; X™) arises in Bayesian statistics as the
expected length oD (py||¢.), Wherepy is the joint density reference prior method (Bernardo [6]).
of X" = (X, Xy, .-+, X;,), and D(:||-) is the Kullback  Another interpretation of this game is prediction with a
divergence (relative entropy). (Here we ignore the roundingimulative relative entropy loss. Indeed the minimax problem
of —logg.(z™) up to an integer required for the codingfor the total relative entropy is the same as the minimax
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where the probability functiopy is estimated using a sequencéis we shall sed’, has a limitV = V' (k). A sequence of priors
P based onX™ for n’ = 0,---,n — 1 (see [8], [9]). W, is said to be asymptotically least favorable (or capacity
Consequences of this prediction interpretation are developszhieving) if
in [3], [18], and [19].
We are interested to know the behavior of the minimax /D(pZHm,‘f/”)Wn(dG) —((k=1)/2) log(n/(27e))
redundancy
converges td/, and the corresponding procedures (based on
Iglin If}gg( D(pgllgn) asn — oo. m}) are said to be asymptotically maximin. A sequence of
proceduresy, is said to be asymptotically minimax if
Krichevsky and Trofimov [20] and Davissaet al. [12] show .
that it is ((k — 1)/2) log n + O(1) for the family of all max D(pg|lgn) = ((k = 1)/2) log (n/(2m¢))
distributions on an alphabet of size(dimensiond = k& — 1),
and they also provide bounds on ti¥1) term. In a more converges toV. _
general parametric setting, Rissanen [22] shows that for anyOur maer result is the f(_)llow_m_g. .
code, (d/2) log n — o(log n) is an asymptotic lower bound Theorem: The asymptotic minimax and maximin redun-

on the redundancy for almost dl in the family, and [21] dancy satisfy

gives a redundancy @f//2) log n+O(1) for particular codes ) " k-1 n

based on the minimum description length principle. Barropit2, <I{11in PR D(pgllgn) ~ 9 log %)

[1] and Clarke and Barron [8] determine the constant in E—1 n
the redundancyd/2) log n + ¢ + o(1) for codes based on = lim_ <wl}la>é / D(pg |1gn)W (dB) — —— log ﬂ)
mixtures. When regularity conditions are satisfied, including Onk © 7
the finiteness of the determinant of Fisher informatid#), — log I'1/2) ]

and the restriction of to a compact subset' of the interior I'(k/2)

of ©, Clarke and Barron [9] show that the code based on thgyreover, Jeffreys' prior is asymptotically least favorable
mixture with respect to Jeffreys’ prior is asymptotically maxicapacity achieving). The corresponding procedure is asymp-
imin and that the maximin and the minimax redundancy miny§iicajly maximin but not asymptotically minimax. A sequence
(d/2) log (n/(2me)) both converge tdog [, \/det 1(6)df. of Bayes procedures using modifications of Jeffreys’ prior is

However, the restriction to sets interior @ left open the eypibited to be asymptotically maximin and asymptotically
question of the constant in the case of the whole simplex g

> inimax.
probabilities on a finite-alphabet case. Remark 1: The first equality is free, since minimax equals

In this paper, we allow the distributioms to be any maximin for each. The novel part is the identification of the
probability on afinite alphabe¥ = {ay, -- -, a}. We assume jimit and specification of sequences of minimax and maximin
that pg puts mass9_i on Iet_ter{ai}, fori =1,.--, k. The procedures.
parameter space is the simplex Remark 2: For finite n, the maximin procedurdV,, is

k—1 also minimax, on the other hand, the asymptotically maximin

Si_1=1{0=(61, -+, Op_1): Z 6; <1, all §; > 0} Jeffreys’ procedure is not asymptotically minimax &n The

o1 boundary risk using Bayes strategy, with Jeffreys’ prior is
higher than that of interior points, asymptotically. However,

or equivalently, after modifying Jeffreys’ prior, we find an asymptotically min-

k imax sequence. The redundancy mind§2) log(n/(2re))
Sp={0=(6, -, 6p): Zgi =1, all §; > 0} converges, uniformly fod € ©, to
=1
log / Vet 1(8) df = log (I(1/2)* JT(k/2))
where o
e =1— (1 + - +0p_1). as what we would expect from Clarke and Barron [9].
Remark 3: Previously, the best upper and lower bounds

The Fisher information determinant is/(6; - 6, - --- . ON the asymptotic minimax value were based on the values
6)), which is infinite when any¥; equals0. The Dirichlet achieved using the Dirichlefl/2, ---, 1/2) prior, see [12],
(A1, -+, A) distribution has density proportional " ~* - [20], and more recently [25]. Now that we know that this prior
.gzk—l on® for Ay, - - -, Ay positive. Jeffreys’ prior is the IS not asymptotically minimax on the whole simplex, we see

one proportional to the square root of the determinant of tHat the gap between the lower and upper values previously
Fisher information matrix. In the present context, it coincide@Ptained can be closed only by modifying the sequence of

with Dirichlet (1/2, ---, 1/2) density. procedures.
Let the minimax valueV,, = V,,(k) for sample size» and The outline for the remainder of the paper is as follows.
alphabet size: be defined by Section Il contains some notations and definitions, mostly for
the Bernoulli family cas€k = 2), and the proof for the this

V., = min max D(p}|an) — k-1 log —* case is presented in Section Ill. It begins by studying the
dn

2 2me’ asymptotic behavior of the redundancy using Jeffreys’ prior,
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which in turn implies that the asymptotic lower value is at least [ll. PROOF OF THEMAIN THEOREM FORE = 2

log w. Then we proceed to show that the asymptotic UpPergefore we go to the formal proof of the main theorem,
value is not greater thatog 7 by providing a sequence of ;e give a lemma on the pointwise-asymptotic behavior of
modifications of Jeffreys’ prior. From these two results W) ,n ||, ) in the Bernoulli case. It is useful in the main proof
conclude that the asymptotic valueligg = and furthermore 54" may also be of interest itself. The proof for the following

Jeffreys’ prior is asymptotically least favorable. Howeveljgmma may be found in the Appendix (at the end of the proof
it is not asymptotically minimax because the redundancy gf Proposition 1).
the boundary is higher thalog 7. The extension to higher ) emma 1: For anye > 0, there exists a(e) such that for
dimensions is _stralght_forward, as we will sh(_)w in Section IV, < o.. the following holds uniformly ovef € [¢/n, 1—c/n]:
In the Appendix, we include some propositions and lemmas
used in the main analysis. w1 n
i r —— — log < e.
D(pgllmy) = 5 log 5 — —log | <e

IIl. NOTATIONS AND DEFINITIONS Remark 4: The analysis we give shows that the bound holds

For the family of Bernoulli distributions with ¢(e) = 5/, corresponding to the bound
{pe(x) = 6°(1 = 6)*: 2 € {0, 1}, 6 € [0, 1]} |D(pg|Imy) — (1/2)1log (n/(2re)) — log 7|
the Fisher information isI(6) = (#(1 — 6))~* and < 5/(n min (6, 1 —6)).

Jeffreys’ prior density functionw*(#) is calculated to be Similar ine . ;

s . _ qualities with erroO(1/(no)) for6 <8 <1-6
0 :/2(1 = 0)"'/%/m, the Be;a(1/2,”1/2') densﬁ;(;. Der:jote have recently been obtained by Suzuki [25].

A" = (X1, Xy, .-+, Xp), where all Xi's are independent 15 jemma extends the range 6fwhere the pointwise
with the Bernoulli(6) distribution. Let asymptotics is demonstrated from the case of interjéls —

pR(a™) = 65 (1 — g)yn— = 6], with 6 fixed (from [9]) to the case of intervals/(ne), 1 —

5/(ne)]. For instance, withe = 1/4/n we find that the

be the joint probability mass ak™ given ¢, let difference betwee®(py||m?) and(1/2) log n/(2r¢)+log 7
1 is bounded byl/+/n uniformly in [5/v/n, 1 — 5/y/n]. As

my(z™) = / pg (@™)w*(0) db we shall see the asymptotics do not hold uniformly[or].

0 L In essence, Lemma 1 holds because the posterior distribution
— gl / 921;7-—1/2(1 _ 9)71—238{-1/2 4o of # given X™ is asymptotically normal whe# is bounded
0 away from0 and 1, or when# moves at some certain rate

to either of these points. But if the rate is too fast, it will
destroy the posterior normality. We will show later that when
# is on the boundary, the limiting value is higher than that
of any fixed interior point. Ford = c¢y/n with ¢y fixed,
D(pg|Imy) — (1/2) log n/(2me) may have a limiting value
between those achieved at the boundary and at interior points,

be the mixture with Jeffreys’ prior, and lef,(z™) be any
joint probability mass function o0, 1}". We use base
when writing log.

Forn > 1, define the lower value (the maximin value) as

1
1 n
V  — max mi D(p? W — Z log —
= Max mln/o (p3 g )W (dB) 210g 5o

W g though we cannot identify this value yet.
1 W 1 n We now proceed to the proof of the main theorem for the
= max /0 D(pf llm, YW (d6) — 5 log o k = 2 case.

where the maximum is taken over all probability measeés A | gwer Valuey > log 7

on [0,1], and -
Proof: By definition, we need to show that

mY(z™) = 1 e s 1 .
Y= | Wi tim, sup [ (DGl ) = (1/2) log (n/(2re) W (d8)

is the mixture density opy («™) with prior W(d#). We call > log .
V =lim, .V, the asymptotic lower value. -
Similarly, the upper value (the minimax value) is defined d$ suffices to prove that
— . " 1 n 1—c¢/n
Vo= i D llan) = 5 108 50 [ Dwlmiyt €)ds = (1/2) log n/(2r)
and the asymptotic upper value 1§ = lim, .o, V,. We > log m — on(1)

remind the reader that,, = V,,. We maintain the distinction
in the notation to focus attention in the proof on obtainin
lower and upper bounds, respectively (which will coincide w* () = 9—1/2(1 _ 9)—1/2/7r
asymptotically as we will see).

For thek > 2 case the maximin and minimax valugs, (k) is Jeffreys’ prior on[0,1]. In fact, from Lemma 1, given
andV (k) and their limits are defined similarly. any ¢ > 0, there exists az(e) such that forn > 2¢ and

8)r somec > 0 where
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€ [¢/n, 1 —¢/n]

D(pg||m}) > log m+ = log % —e.
Hence

l—c¢/n

/c/n

n * 1 n *
(Dt - 5 tog 52 Jur ©)as

1—c¢/n
> log 7 — 6) df
_/c/n (log 7 — £)u* (6)
2(10g7r—5)<1—% nic> 1)

where the last inequality is from
c/n c/n
/ =121 —0)"2dp < (1 - c/n)_l/Q/ 9~1/2 dp
0 0

)—1/2'2(C)1/2'

n
The same bound holds for the integral fram- ¢/n to 1.
Therefore, we have that the liminf of

C

n

/0 [D@g |lmy,) — (1/2) log (n/(2re))w*(6) do

is at leastlog m — . But ¢ is arbitrary, thusV’ > log .

What we have demonstrated will show that Jeffreys’ prior
is asymptotically least favorable once we have confirmed that

V cannot exceedog 7 (see Section I1I-C below).

Remark 5: An alternative demonstration thaf > log =
follows from the weaker result of [9]. In particular, if we
restrictd € [6, 1 — 6], then

) —(1/2) log n/(2me)

1— (5
_>/ ~1/2(1 — 6)=1/2 g

D(pg [lmi, s

uniformly in 6 € [5, 1 — 6], where m, ; is the mixture
with Jeffreys’ prior on[é, 1 — 4]. Lettmg § — 0 establishes

649

0 < n < 1/2, andw*(s) is Jeffreys’ prior. We also require
n > 2¢. The Bayes procedure with respect to the pHgy uses

") =npd(z ")

+(1—-21) / PR (@™ (s) ds.

By definition

n

11
— log —.
2 g’27re

V, =min max D(pg||¢.) —
gn  6€[0,1]

Use the procedure:?, and partition[0, 1] into three intervals
to get

— 1 n
n < max D — log —
Vi < max (pglms,) = 5 log 5 —
= max ¢ max_D(py||m;), max D(py||ms),
{ s DRI, o DGl
. 1 n
a D(pg|lms;) ¢ — = log —. 2
s Dl | - jlog 3. @

We next show that for large, an upperbound/,, for the
supremum ovelfc/n, 1 — ¢/n] also upper-bounds that over
[0, ¢/n] and [1 — ¢/n, 1], hencelim,,V,, is not larger than
lim,, M,,.

When 6 € [0, ¢/n]

D(pg||ms) = By log 3:(( ))
< Eylog c/i(X)")

1
= log E + nD(p9||pc/n)

1

< IOg 5 + nD(pOHPC/n) (3)
1

= log E—l—nlog 1= c/n

< log 1 + 2¢ 4
n

V > log 7. However, that reasoning uses a sequence of prig¥§ere inequality (3) holds sincB(ps|lp,,,,) is decreasing in
depending ond and does not identify a fixed prior that isf whené < [0, ¢/n].

asymptotically least favorable o), 1]. The proof we have

When# € [1 — ¢/n, 1], the same inequality holds.

given above permits identification of an asymptotically least When 6 € [¢/n, 1 — ¢/n], from Lemma 1

favorable prior. It does not require use of [9] so the proof in

the present paper is self-contained.

B. Upper ValueV < log m
We show thatV,, < log 7 + 0,,(1) by upper-bounding the

risk achieved in the limit by certain procedures. For any given
e > 0, define a prior (which is a modification of Jeffreys’

prior) on [0,1] by

W (ds) = 08e/n(ds) + 161—cn(ds) + (L — 20)w*(s) ds
whereé, is the distribution that puts unit mass at the paint

the quantityc = c(¢) is as in Lemma 1, the magssatisfies

" . pn XTL
D} |ims,) < Ep los 4
(1-2n) / Po(X" ) (5) ds
1 n *
=log - —~ o T D(pg|Imy,)
1 1 n
< low N S
< log -2 +log m + 5 log e +¢e (5

for all n > 2c.
Now it is seen that (5) eventually will exceed (4) when
increases, as we intended to show. From (2),

V,<log1/(1-2n)+logw+e
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for all large n and hence where we omit the proof of the negligibility of the residual
— ) ) errors from Stirling’s approximations.
V < log(1/(1 = 2n)) +log 7 +=. Therefore D(p?||m? ) — (1/2) log (n/(2r¢)) — log 7 con-
Therefore, upon taking the infimum ovér< » < 1/2 and verges to(1/2) log(2¢) instead of0. The limit has a higher
e > 0, we obtain thatV < log . value at boundaryy = 1. The scenario is the same on the
Hence, we have proved that f@&t € [0, 1], the game other boundary poinf = 0. This completes the proof of the
has a limiting minimax value in agreement with the valutheorem.
log [ \/1(6)df as in [9], despite the violation of conditions Remark 6: Davissonet al. [12, inequality (61)] obtained
they require. The limiting minimax value is achieved asymp- log (I'(n + 1/2)I'(1/2)/(I'(n 4+ 1)7)) as an upper bound
totically by a sequence of modifications of Jeffreys’ priorpn the redundancy for al in [0, 1]. Suzuki [25, Theorem 3]
indexed byr,, ande,. Checking the steps in the above proofpoints out that this bound is achieved at the endpoint using
we see that the above modification works with— 0, €,, — 0, Jeffreys’ prior. Our analysis shows the perhaps surprising

and, sayy, > (2¢/(nm))Y4, ande,, > 10/ log (nx/(2¢)). conclusion that it is the lower value of risk achieved by
Jeffreys’ prior in the interior that matches the asymptotic
C. Jeffreys’ Prior is Asymptotically Least Favorable minimax value.
Since V. = log m, to prove that Jeffreys’ prions* is Remark 7: After t_he sgbmission of this paper, we have de-
asymptotically least favorable, we need vel_oped oth(_ar mod|f|ca¥|ons of Je_ffreys’ prior that are asymp-
L totically minimax. For instance, in place of the small mass
lim,, U D(pg||m)w*(6) df — (1/2) log (n/(2me)) points put near the boundary, one can also use a small
0 Bet&(«r, @) component withow < 1/2 mixed with the main

>logm Betg1/2, 1/2) component. Further developments on these
grlors are in the manuscript [4] which addresses minimal worst

which is already shown in Section IlI-A. Moreover, a choic
case redundancy over all sequeneés

of g, = 1/4/n in Lemma 1 together with the fact that
|D(py|lmy) — 1/2 log n| is bounded by a constant over

6 € [0, 1] (see Lemma 4 in the Appendix) shows that IV. EXTENSION TO &k > 3 CASES
1 For the case of an alphabet of sizeve recall from Section
/ D(pg||m7,)w*(0) 6 — (1/2) log (n/(27e)) | that the parameter space is the— 1)-dimensional simplex
© = S,_; and that Jeffreys’ prior density is given by the
converges to the asymptotic maximin value at rbt¢/n. Dirichlet (1/2, ---, 1/2) density
D. Jeffreys’ Prior is Not Asymptotically Minimax w* (@) = 91_1/2 cee -9,:1/2/Dk(1/2, e, 1/2).

To see that Jeffreys’ prior is not asymptotically minimaxye e
we use the fact, recently studied in Suzuki [25], that the
value of D(py||m;,) is largest at the boundary and remains Dj(\y, -+, Ax) :/ gt T ey - dyy
asymptotically larger at the boundary than in the interior. o

Indeed, at any interior poiritin (0, 1), the asymptotic value is the Dirichlet integral. In terms of Gamma functions the

of D(pg|lmy,) satisfies Dirichlet function may be expressed as
TR P ‘ 5 INOYIRREREI N O
D@ lmy) = B log one —logm < nd(1 - ) DA, - Ax) = () ‘ ( ). (6)
due to Proposition 1 in the Appendix. Hence F(Z Ai)

" N 1 n )
D(pg|lm;,) — 5 log e log m— 0 It follows that

asn — oo, for any interior point8. k
When# is on the boundary db), 1], takef = 1 for example, /@ vdet (1(6))db = Dr(1/2,---,1/2) = I(1/2)" /T (k/2).
then using the mixturen? based on Jeffreys’ prior, as in o )
Suzuki [25], we have We will first show thatV (k) > log (I'(1/2)* /I'(k/2)) using
Jeffreys’ prior, in Part 1, the’ (k) < log (I'(1/2)*/I'(k/2))
D(p?||m},) = F1 log using modifications of Jeffreys’ prior, in Part 2. Consequently,
/ sTY2(1—5)"Y 2 ds V(k) = log (I'(1/2)*/T'(k/2)) and Jeffreys’ prior is asymp-
1 L totically least favorable (Part 3). The higher asymptotic value
= _log I'(n Tne 5)1;(5) of D(pg||m},) at the boundary 0© is demonstrated in Part 4.
w

low (n+3)r-e /2 1 Part 1. Asymptotic Lower Value
-8 ( T 1)tz e—n—l N V(k) > log (L(1/2)%/T'(k/2))

This is parallel to Section IlI-A of thé& = 2 case, except
that 6 is replaced byd, Lemma 1 is replaced by Proposition

%

~5 log — + log 7+ = 10g(26)
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1 of the Appendix, and inequality (1) is replaced by thés the number of occurances of the symhgin the sequence
following argument. With the Dirichlet1/2, ---, 1/2) prior 2™, and

the marginal distribution o#; is Betgd1/2, (k — 1)/2), thus N

the contribution of{#; < c¢/n} to the integral ofw*(6) is mi(z")

bounded by =/ P (x™)pi(0) d; 8
c/n c/n i
=1/201 _ 9 \(k=3)/2 gp. —1/2 gg. _ —1/2,— -
A L N IR e S T
DQ(%’ %) B DQ(%’ %) - 7 -1/2 —1/2,-1/2 -1/2
2(c/n)1/? _(91 e 0 0,7 dif
2 D (45, T+ 5, T+ 5, T+ 3)
Thus as in the previous case, the interior region in which all Dk—l(%v T %)

6; > c/n provides the desired bound and the Bayes risk dog$,are the last equality is by the substltun@p 6,(1—c/n)
not drop below the target levidg (I'(1/2)* /T'(k/2)) by more (for j # i, 5 < k), b = X s s

= y
than orderl/+/n. Define R; = {6: nb; < cf» (for i =1,---, k) and

R = © — UR;. Now observe that
Part 2. Asymptotic Upper Value

V(k) < log (I'(1/2)%/T(k/2)) sup D(pg|lgn) = max {sup D(pgllgn), -,

Proof: For anye > 0, let L; be the intersection of %€© R
[6:0, = ¢/n} with the probability simplex®, for i = sup D(p}lgn), sup D(ngqn)}_ @
1,---, k, wherec = ¢(e) is chosen as in Proposition 1 Rk R

in the Appendix. We first define a probability measuyrg We will find an upper bound fosupce D(p9||qn) by Show-

concentrated onL; with densny function (with respect to .
ing that it upper-bounds all the suprema o¥&r, -, Ry, R.
di@=dby ---db;—1-db;irq -+ dby_1, the Lebesgue measure For 6 ¢ R, we have

on R’“—Q)
T 9Tk
®) T el A G e PR () D(pg|lgn) < Ep log m
1i(0) = :
—1/2 —1/2,-1/2 —1/2
/L 07 022607 6.1 di6 :1og1L+D(pg||m )
: —€
- : i P 1 L(Hk k-1
Then we define a prior o® (which is a modification of the <log —— +log —2%~ +——+eloge
original Jeffreys’ prior) as - l—e F(%) Zme
. ®)
£
=7 > 1i(8) dib + (1 — e)w*(8) dé. where the last inequality is by Proposition 1 of the Appendix.
=1 Foré € R;, sayi = 1, that is,0 < 6; < ¢/n
For this prior, the Bayes procedure to minimize py(X™)
D(pgllgn) < Eg log EF e
[ Dwsllaw;de "
uses = log - + nb; log 6,
ny __ n & k
wa”) = [ 5 @WiB) £3 06, Lo 6, +1og Dya(d -0, 1)
k j=2
£
=% Z / Jui(6)di6 —EBglog Dy 1(To+ 35, -, T +3). (9
s s We now construct a set of multinomial variabl&s, - - -, 17.)
+{1l-¢) /@p‘*(“j Jw(6) db with parameters(n, 62/(1 — 61), ---, 6/(1 — 61)) from
‘ (Ty, - -+, Tx) ~Multinomial (n, 61, ---, 63), by randomly
HF(T + 1 reassigning the7; occurrences of the outcoméa;} to
k 3 2 . .
€ im1 {az}, - -+, {ax} with probabilities
=5 2 e+ =) L(n+5)
i=1 mT 0 =0:/(1=61), -, 6/(1—61)
where

respectively. That is, givefi}, we obtain new countg’]f =

T;4+¢& forj=2,---, k where(&, - -+, &) ~ Multinomial

1= Z 1(x;=a;} (11, 8'). Hence(Ts, -+, T}) ~Multinomial (n, §'), condi-
] tionally for each value off; and hence unconditionally. Now
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sinceT; > T; and by the property of the Dirichlet integralPart 4. Jeffreys’ Prior is not Asymptotically Minimax

that it decreases in any parameter, we have On thek-dimensional simplex, the asymptotic maximum re-

dundancy of the procedure based on Jeffreys’ prior is achieved

. 1 1
Eg log Dy—1(To+ 5, -+, T+ 3) at vertex points, and it is higher asymptotically than in the

> Eg log Dy—1(T3+ %, -+, Ty + 3). (10) interior or on any face of the simplex. Here we quantify the
asymptotic redundancy within each dimensional face.
Also observe that From Proposition 1 of the Appendix, for afywith 6; > 0
for¢ =1, .-+, k, we have
k k 9. 9. (l)k
Z”@'log@j:z:(” g los 1 nilty = P, e L)
et = 1—6; 1—6; D(pg||m},) 5 log - log T (4) — 0 asn — oo.
6; For a vertex point such as = (1, 0, ---, 0), as shown by
g les(1- 91))] (1= 61) Suzuki [25]
k .
¢ 5 . r(3)*/r()
<> nio 9 "y (11)  D(pglimy,) = log
i L / 07207 0 e, - db s
Applying (10) and (11) to (9), we obtain ~ log L(n+%) log INEL
) . , P+ HIG) T3 0(d)
(p0||qn)<10g—+2n log —2 (k=1 n RYEL
1-6; 1-6, ~ 5 log 27re+10g F(%)
+10ng 1(57"',%) k_11 Y 13
—Ee,long (T + 35, T+ 3) + 08 ¢ (13)
e F +Z . 6, log 6, which is asymptotically larger than in the interior by the
=08 1—-6, ®1-0, amount of ((k — 1)/2) log 2e. _
- - More generally, for a face point such a8 =
— By log Dy 1(T3+3, -+, T+ 3) (61, -+,6L,0,---,0), wherel < L < k-1 and
o Dy (L, 5 6, > 0forj =1,---, L, we have ((14) and (15) at the
top of the following page) wheré” = (61, -+, 0r) and

k n ok
= log s + D(py ||m;") mi* is the mixture density with Jeffreys’ prior on the-

dimensional simplex. Stirling’s formula yields the following
wherem;* is the procedure based on Jeffreys’ prior on thgpproximation:

reduced(k — 2)-dimensional probability simplex;_, and
6 < S;_,. Now a course upper bound aB(py ||m%*) is T(n+%) k-L
sufficient for this lower-dimensional piece. Lemma 4 gives log T(n+ L) T log n 4 o(1). (16)

2

n *k k—2
D(pg||my") <

log — + Cj_1 (12) From (15) and (16), and expanditi(p}; ||m;;*) using Propo-
2me sition 1 of the Appendix, we have

for all @ € © and some constau,_;. Observe thatk—2)/2

in (12) provides a smaller multiplier of thieg » factor than D(pge |lm; )
achieved in the middle regioR (see term (8)). Consequently, [ L- 1 1 F(%)L
for all large n =\ 8 2— +log (L)
k=1 n r(LH* 1 k L(3)
D(p? T o — < log —2 . + 10 n +lo +o(1 a7
(pgllan) 5 log - < log (%) + log % g S r(k) (1)
. : k-1 (T(5)*
uniformly in @ € ©. Letn go to oo and thens go to 0. The = T log 2— + log Qk
proof is completed. F(i)
L —
+ log (2¢) + o(1). (18)

Part 3. Jeffreys’ Prior is Asymptotically Least Favorable

As shown in Part 1, the Bayes average risk using Jeffrey@omparing (18) with (13), we see that the asymptotic redun-
prior converges to the valué, now identified to be the asymp-dancy at & on a face (i.e.]l < L < k) of the simplex is less
totically maximin value. Thus Jeffreys’ prior is asymptoticallythan the risk at vertex points (i.el; = 1) by the amount of
least favorable. ((L —1)/2) log(2¢). In the interior we havd, = k nonzero
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g ... 9T
(g lims) = Eo log Ti—1/2 gTL—1/2 —1/2]L —1?2 1 1
/9 TR e R e gk JDi(3, -, 3)dby -+ By
Eq | O - 0 Dk(
= Lyg l0g
D(Ty+3) - D(T + 1) " L/r
eTl B
=F lo
(61,-+-,01) 108
(P +4) - o +3 /r n+8)) /Du(d, o, 3)
Di(3, -+, 5)0(n +3)
+log 1 1 L 1\ k=L (14)
L5 )+ 3)0(3)
Do+ §)0(4)
D(pge |lmy) + log Ay (15)
’ L(n+3)T(5)
coordinates, and the asymptotic value is less than at a vertex k
by the amount{(k — 1)/2) log (2¢), as we have seen. = Z nb; n 6
Remark 8: Using Davissonet al. [12, inequality (61)], . .
Suzuki [25, Theorem 3] proves that for eaeh the value —Egln Dp(Ti+ 5, Ti + 3)
of D(pj||m7) is maximized at the vertices. Here we have +In Dp(5, -+, 5). (20)

determined the asymptotic gap between vertex, face, and
interior points. Now applying the relationship between Dirichlet integrals and

Gamma functions (6) and Stirling’s approximation refined
by Robbins [23], and shown to be valid for real> 0 in

APPENDIX Whittaker and Watson [26, p. 253],
Proposition 1. Pointwise Asymptotic Behavior of oe1/2
D(pg||my,): For an interior pointd of the simplex s}, [(z) = V2ra®=2e™*(1 4 7)
e.,0; >0fori=1,..., k, the following holds. with
. 1/12z _
. k_ll o : F(%)k Irl <e 1 (21)
(pglm;,) = —5— log o —log T (k) we may rewrite the middle term of (20)
_ k EglnDk(Tl—i-l,"',Tk-i-l)
4@ ;291>10g6 ) ;
n
=1 [I(ver(@ +4)")
In particular, for anye > 0, if we takec = 2k/e, then for =Epln X
n > kcandnb; > cfor ¢ =1, ---, k, the last quantity is /2 (n + & )N+(k 1)/2
less thane log e. For k = 2, whene = 10/(3e), the above k
quantity is less tham log e. H (147
Proof: The bound is invariant to the choice of base of Eolg L
the logarithm. It suffices to prove the bound with the choice T Lo I 1470
of the natural logarithm. By definition, and letting (A)
n fk Y
— i -1
T= Loy forj=1,k :’“2 In 27+ EoTi n(Ti + 3)
1
we have (B)
n * pg(Xn) ! k-1 k \
D =F = — - =~
k ©
=Y nb;Iné, - - ~
=1
147
9T1—1/2 eTk—l/Q 40 1:[( )
s 1 k + E0 In 17 (22)
— Eg ln =21 + 70
/ o7 9;1/2 a6 wherer; andrq are residuals from Stirling’s approximations
Sk—1 to I'(T; + 1/2) andT'(n + k/2), respectively.
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We now upper- and lower-bound terms (A), (B), and (C)Now we incorporate (23), (24), and (28) into a bound for
in (22) separately. D(pg||m:)
For the deterministic term (B), we have

k-1 n F(l)k
k=1 i k=1 M\ D@ lms) = == In o —In —&
‘(n—i— 5 )111 <n+2>—<nlnn+ 7 lnn+2>‘ ‘ 2 ore (%)
- k
< k(k 1)' (23) < k(k—1) n 3 Z 1
4n - 3n 2n i 0;
For term (C), we apply Lemma 2 of this Appendix to get B
& In particular, if we takec = 2k/e, then forn > ke and
H (1 +7:) nd; > cfori =1, ..., k, the last quantity is less than This
L < Bl L completes the proof of Proposition 1.
N Z 3n6; 6n = ¢ R o Whenk = 2, we may takec = 10/(3¢). In fact, Lemma 1
=t N follows from the proposition by setting
1 1
D A T o(e) = (10/3)e" log 20 < 5/
where1/(6n) is a bound forlog (1 + o). to get an error bound ef uniformly over[c(e)/n, 1 —c(e)/n].
For term (A), we first rewrite each summand in (A), (Recall that we used bagkfor the logarithm in Lemma 1.)
(A2) Lemma 2. Negligibility of Residuald-et » be the residual
(A1) - ~ ~ from Stirling’s approximation tol'(7T" + 1/2), whereT ~
Fo T n (5 + 1) _erEe T In <1 41 ) Binomial(n, #). Then for anye > 0, whené ¢ {0, 1}
i T 2 - i T i 21—; .
1
25 - o < log N oe
(25) 6T+310g6_log(1+7)_12T+610ge
Term (A;) is well-controlled: from Lemma 3 of this Appendix, )
we have Consequently, using thads(1/(T + 1)) < 1/(n#), we have
1 1-6,; 1 1 1
- < E i i) — 91 91 - < . - 3 3 - N 3
18nf; = o(T; InT;) —nb; lnn 5 S 6 oy logegEglog(l—H)SGne log e.
26
(26) Proof: As before, assume as the base of the logarithm
Now we lower-bound the (4 term in (25) in the proof. We first prove the lower bound part. From

—— 1 . 1 - 1 . 1 1 Stirlin_g'§ approximation (21) withe = T+ 1/2, the residual
9,4 10 + 2—Tz Z57 0, m =5~ b, r satisfies
where the first inequality holds because [r| < exp 1y 1. (29)
- 12T+ 6
zlog(1+1/(22))>1/2—1/(22+2) forz >0

Thus
and the second one holds becali%€1/(T+1)) < 1/(nf), a
useful lemma ([2, Lemma 2]) which is al_so used in the proof In(1+7) > In <2 —exp 1 )
of Lemma 2. Now observe that term {Ais upper-bounded 12T+ 6
by 1/2 since < < 2 ))
>In|exp | ————
zlog(1+1/(2x)) <1/2 forz>0. . 127+ 6
Consequently, T T 6r+3
L S EpT; In <1 + ! ) < 1_ (27) where the second inequality is from a simple inequality
2 2nb; 21 2 verified by calculus
Combining (26) and (27) then summing the result awgelds 52 s
a bound for term (A) 2-eltze
25 1 1 for 0 < s < 1/3. Here we have plugged in=1/(67 + 3).
~ 180 Z 5 S Z Ey. T; In <E + 5) The upper bound is more direct. Again using (29), we have
i=1 i=1
: ln(1 <1 L
~ " nbi Innb; — (k- %) n(l+7)< n(‘”q’m)
ikzl _ 1
512%- (28) 12T + 6
nia v Thus we have completed the proof of Lemma 2.



XIE AND BARRON: MINIMAX REDUNDANCY FOR THE CLASS OF MEMORYLESS SOURCES 655

Lemma 3. Local Property dby(T" log T): Let T ~ We recall in the next lemma a bound of the foritk —
Binomial(n, #). For nf > 2 1)/2)logn+O(1) on the redundancy of the code based on the
1-6 Dirichlet (1/2,---,1/2) prior; see [12], [20], and [24]. (Such
2 log ¢ a bound without precise determination of the constant plays
a role in our analysis of the minimax asymptotics with the
< o log e. modified Jeffreys’ prior in the vicinity of lower-dimensional

Proof: Basec for the logarithm is still assumed in thefaces of the simplex.)

- . Lemma 4. A Uniform Upper Bound f@(pj||m}): There
roof. We begin with the lower bound part. By Taylor 611""n
gxpansion ofyglln yW{:lI’OUI’Idi* W und p y &y SIS a constant’;, such that for alld € 5., n > 1, we have

— o < : — : —
1500 log e < Ey(T log T) — nb log né

-1
ylny=zlnz+y—2)(1+ Iln z2) D(py||Im}) < 5 log n + Cy.
1 ,1 1 5 1
+ §(y - z) P (y—2) — Moreover, for all sequence¥™
1 42 X)) k-1
+ 5 (y — 2) 7 log (X7 S 2 log n + Cy.
>zlnz+(y—2)(1+1n z) Proof: We still usee as the logarithm base in the proof.
1o el 1o ef 1 Let & be the maximum-likelihood estimator &, that is,
+5W-2" -+ (y-2) 7 - .
2 z 6 z 6; = T;/n for i = 1, ..., k. Then
wherey, is betweeny and z. Replacey with 7" and z with o n (X
n#, then take expectation with respect &y to get In M <ln Po\ )
1 1 my (X™) my(X™)
Eg(TInT) >nblund + 3 Varg(T) - — k
n

+%E0(T—n9)3'<— E ) 1;{(%) |

9)2 =In
L, B Di(Ti+ %, T + /D%, -+ 3)
=nflnnb+ —— + = Eg(T —nb)>- n
2 6 ( ) (nd)? :ZTilnTi—nlnn
Spflung+if_ L =t
=nymn 2 4808 3
where for the last inequality we used HF(T; + %) (L
Eo(T —nb)® = —nb(1 — 36 4 267). —In = ~— +1In (ik) . (31)
o . L(n+3) r'(3)
For the upper bound part, we need the following inequality: o
fory >0, 2 > 0 By Stirling’s formula,
ny<zlnz4+{(y—2)(1+1n=z k
ylunys (y2 )( s ) . HF(TF"%) N
LW -2 (-2 (30) 1. inl k-1 1
2z 622 323 In F(n—i—k) T In 2”+Z Ti In <Ti+§)+
To prove (30), we substitutg with (# + 1)z, then it reduces 2 =1
to show that for allt > -1 k-1 k b 1+47;
—|n+— ) In(n+= —Z In
R A 2 2) < 1479
(t+1)1n(t+1)§t+5—g+§ ) =1
and this simplified inequality is readily verifiable by using > Z T; In T3+ —<n+k%1> In n
log(t+1) < ¢t —1t2/2+¢3/3. i=1
Now replacey with 7" ~ Binomial(n, #) and z with 6 in — Constant(k)
(30) and take expectation to get Incorporation of the above inequality in (31) yields
ETlnT<n91n(n9)+1_9 1 =30 4267 (X" k-1
? = 2 6nd In p"*( n) < == Inn+G.
1+3n6(1—6) my(X") 2
3(nh)? This completes the proof of Lemma 4.
<6 Tn (nf) + 1-6 1= 30 The following Lemma is verified by standard decision
=numin 2 6n0 theory.
n 1 n 1-46 Lemma 5. Maximin Procedure is MinimaXJnder relative
6nb nd entropy loss, if the game has a value, if there is a minimax
1-46 1 procedure, and if there is a least favorable prior, then the
<nbln(nh)+ ——+ — . X . .
2 nd minimax procedure is unique, and the procedure corresponding

whennf > 2. Thus we have proved Lemma 3. to any least favorable prior is minimax.
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Proof: Suppose thafps: 8 € ©} is a parametric family, existéy, ---, 6y and (wy, ---, wy) € Sy with J < |X|" +1
W* is any least favorable prior, an@* is any minimax such that
procedure. By [8, Proposition 3.A]

J
m" (z") = z" 8) = w;ipg, ("
5 = [ ()= [ s W) =3 i o)

is the unique Bayes procedure with respect to the piior. and
To prove the lemma, it suffices to show that = m"", that J
is, Q* is Bayes with respect to the prid¥*. Thus the desired / D(pglmn)W(df) = Z w; D(pg|[mn)
equation is =1
(using the count&?, - - -, T} as sufficient statistics reduces the

T . N cardinality bound taJ < ("ﬁjl) + 2). If also © is compact
/D(Pe||Q YW (df) = inf / D(B[|@w™(d6). - (32) and p,(z) is continuous inf for eachz, then

Let the minimax value b& and maximin value b& . Since J J
W* is a least favorable prior, we have > wiD <P37-|| > ij&)
i=1 j=1
lgf/ D(P||Q*)W™(df) = V. is a continuous function of(6y, ---, 6y, wy, ---, wy) in
the compact se®’ x S; and hence there exists a point
Also since@* is minimax, we have 05, ---, 0%, wi, -+, wY) that achieves the maximum Bayes
risk. That is, there exists a least favorable prior. This
sup D(F5|Q") = V. confirms the conditions of Lemma 5 under the continuity
o

and compactness conditions of the famjy when X is
discrete, and justifies the claim that there exist least favorable
priors yielding a unigue maximin and minimax procedure.
Since these exact considerations are not essential to our

/ D(Fel|@*)W™(df) = igf / D(Bs||@Q)W™(db) = V. asymptotics, we have relegated Lemma 5 and this discussion
to the Appendix.

Now observe that

and that
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