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Minimax Redundancy for the
Class of Memoryless Sources

Qun Xie and Andrew R. Barron,Member, IEEE

Abstract—Let Xn = (X1; � � � ; Xn) be a memoryless source
with unknown distribution on a finite alphabet of size k. We
identify the asymptotic minimax coding redundancy for this
class of sources, and provide a sequence of asymptotically mini-
max codes. Equivalently, we determine the limiting behavior of
the minimax relative entropy minQ maxP D(PX kQX ),
where the maximum is over all independent and identically
distributed (i.i.d.) source distributions and the minimum is over
all joint distributions. We show in this paper that the mini-
max redundancy minus ((k � 1)=2) log (n=(2�e)) converges to
log det I(���) d��� = log (�(1=2)k=�(k=2)), where I(���) is the
Fisher information and the integral is over the whole probability
simplex. The Bayes strategy using Jeffreys’ prior is shown to be
asymptotically maximin but not asymptotically minimax in our
setting. The boundary risk using Jeffreys’ prior is higher than
that of interior points. We provide a sequence of modifications of
Jeffreys’ prior that put some prior mass near the boundaries of
the probability simplex to pull down that risk to the asymptotic
minimax level in the limit.

Index Terms—Universal noiseless coding, minimax redundan-
cy, minimax total relative entropy risk, Jeffreys’ prior, asymptotic
least favorable prior.

I. INTRODUCTION

W E start with a general discussion. Suppose we have
a parameterized discrete memoryless source. That is,

we have a parametric family of probability mass functions
on a discrete finite set , which

generate independent identically distributed (i.i.d.) random
variables . Our goal is to code such data
with nearly minimal expected codelength, in a minimax sense
to be defined later, when we have no information about the
generating parameterother than it belongs to the set. This
is universal coding, first systematically treated by Davisson
[10]. Of particular interest is the case that the family consists
of all (i.i.d.) distributions on the alphabet.

It is known that the expected codelength is lower-bounded
by the entropy of the distribution. When the trueis known,
this bound can be achieved within one bit. Whenis unknown,
and if we use a mass function on and bits
to code data string , then it induces a redundancy in the
expected length of , where is the joint density
of , and is the Kullback
divergence (relative entropy). (Here we ignore the rounding
of up to an integer required for the coding
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interpretations, which changes the redundancy by at most one
bit from what is identified here.)

Moreover, we may link the above setup with game theory
and statistics. Suppose nature picks afrom and a statisti-
cian chooses a distribution on as his best guess of .
The loss is measured by the total relative entropy .
Then for finite and prior on the best strategy
to minimize the average risk

is the mixture density

(called the Bayes procedure), and the resulting average risk
is the Shannon mutual information (see [8], [10]).
Suppose is compact and that depends continuously
on for every . Then the minimax value

is equal to the maximin value

which is the capacity of the channel . This equality
of the minimax and maximin values can be found in Davisson
and Leon–Garcia [11] using [13], and is attributed there to
Gallager [15]; see [17] for a recent generalization. Moreover,
there is a unique minimax procedure and it is realized by a
Bayes procedure. Indeed, there exists a least favorable prior

(also called a capacity achieving prior), for which the
corresponding procedure

is both maximin and minimax (see the discussion following
Lemma 5 in the Appendix). The problem of choosing a prior
to maximize arises in Bayesian statistics as the
reference prior method (Bernardo [6]).

Another interpretation of this game is prediction with a
cumulative relative entropy loss. Indeed the minimax problem
for the total relative entropy is the same as the minimax
estimation problem with cumulative relative entropy loss
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where the probability function is estimated using a sequence
based on for (see [8], [9]).

Consequences of this prediction interpretation are developed
in [3], [18], and [19].

We are interested to know the behavior of the minimax
redundancy

as

Krichevsky and Trofimov [20] and Davissonet al. [12] show
that it is for the family of all
distributions on an alphabet of size(dimension ),
and they also provide bounds on the term. In a more
general parametric setting, Rissanen [22] shows that for any
code, is an asymptotic lower bound
on the redundancy for almost all in the family, and [21]
gives a redundancy of for particular codes
based on the minimum description length principle. Barron
[1] and Clarke and Barron [8] determine the constant in
the redundancy for codes based on
mixtures. When regularity conditions are satisfied, including
the finiteness of the determinant of Fisher information ,
and the restriction of to a compact subset of the interior
of , Clarke and Barron [9] show that the code based on the
mixture with respect to Jeffreys’ prior is asymptotically max-
imin and that the maximin and the minimax redundancy minus

both converge to
However, the restriction to sets interior to left open the
question of the constant in the case of the whole simplex of
probabilities on a finite-alphabet case.

In this paper, we allow the distribution to be any
probability on a finite alphabet . We assume
that puts mass on letter , for . The
parameter space is the simplex

all

or equivalently,

all

where

The Fisher information determinant is
, which is infinite when any equals . The Dirichlet

distribution has density proportional to
on for positive. Jeffreys’ prior is the

one proportional to the square root of the determinant of the
Fisher information matrix. In the present context, it coincides
with Dirichlet density.

Let the minimax value for sample size and
alphabet size be defined by

As we shall see has a limit . A sequence of priors
is said to be asymptotically least favorable (or capacity

achieving) if

converges to , and the corresponding procedures (based on
) are said to be asymptotically maximin. A sequence of

procedures is said to be asymptotically minimax if

converges to .
Our main result is the following.
Theorem: The asymptotic minimax and maximin redun-

dancy satisfy

Moreover, Jeffreys’ prior is asymptotically least favorable
(capacity achieving). The corresponding procedure is asymp-
totically maximin but not asymptotically minimax. A sequence
of Bayes procedures using modifications of Jeffreys’ prior is
exhibited to be asymptotically maximin and asymptotically
minimax.

Remark 1: The first equality is free, since minimax equals
maximin for each . The novel part is the identification of the
limit and specification of sequences of minimax and maximin
procedures.

Remark 2: For finite , the maximin procedure is
also minimax, on the other hand, the asymptotically maximin
Jeffreys’ procedure is not asymptotically minimax on. The
boundary risk using Bayes strategy with Jeffreys’ prior is
higher than that of interior points, asymptotically. However,
after modifying Jeffreys’ prior, we find an asymptotically min-
imax sequence. The redundancy minus
converges, uniformly for , to

as what we would expect from Clarke and Barron [9].
Remark 3: Previously, the best upper and lower bounds

on the asymptotic minimax value were based on the values
achieved using the Dirichlet prior, see [12],
[20], and more recently [25]. Now that we know that this prior
is not asymptotically minimax on the whole simplex, we see
that the gap between the lower and upper values previously
obtained can be closed only by modifying the sequence of
procedures.

The outline for the remainder of the paper is as follows.
Section II contains some notations and definitions, mostly for
the Bernoulli family case , and the proof for the this
case is presented in Section III. It begins by studying the
asymptotic behavior of the redundancy using Jeffreys’ prior,
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which in turn implies that the asymptotic lower value is at least
. Then we proceed to show that the asymptotic upper

value is not greater than by providing a sequence of
modifications of Jeffreys’ prior. From these two results we
conclude that the asymptotic value is and furthermore
Jeffreys’ prior is asymptotically least favorable. However,
it is not asymptotically minimax because the redundancy at
the boundary is higher than . The extension to higher
dimensions is straightforward, as we will show in Section IV.
In the Appendix, we include some propositions and lemmas
used in the main analysis.

II. NOTATIONS AND DEFINITIONS

For the family of Bernoulli distributions

the Fisher information is and
Jeffreys’ prior density function is calculated to be

, the Beta density. Denote
, where all ’s are independent

with the Bernoulli distribution. Let

be the joint probability mass of given , let

be the mixture with Jeffreys’ prior, and let be any
joint probability mass function on . We use base
when writing .

For , define the lower value (the maximin value) as

where the maximum is taken over all probability measures
on , and

is the mixture density of with prior . We call
the asymptotic lower value.

Similarly, the upper value (the minimax value) is defined as

and the asymptotic upper value is . We
remind the reader that . We maintain the distinction
in the notation to focus attention in the proof on obtaining
lower and upper bounds, respectively (which will coincide
asymptotically as we will see).

For the case the maximin and minimax values
and and their limits are defined similarly.

III. PROOF OF THEMAIN THEOREM FOR

Before we go to the formal proof of the main theorem,
we give a lemma on the pointwise-asymptotic behavior of

in the Bernoulli case. It is useful in the main proof
and may also be of interest itself. The proof for the following
lemma may be found in the Appendix (at the end of the proof
of Proposition 1).

Lemma 1: For any , there exists a such that for
the following holds uniformly over :

Remark 4: The analysis we give shows that the bound holds
with , corresponding to the bound

Similar inequalities with error for
have recently been obtained by Suzuki [25].

This lemma extends the range ofwhere the pointwise
asymptotics is demonstrated from the case of intervals

, with fixed (from [9]) to the case of intervals
. For instance, with we find that the

difference between and
is bounded by uniformly in . As
we shall see the asymptotics do not hold uniformly on .
In essence, Lemma 1 holds because the posterior distribution
of given is asymptotically normal when is bounded
away from and , or when moves at some certain rate
to either of these points. But if the rate is too fast, it will
destroy the posterior normality. We will show later that when

is on the boundary, the limiting value is higher than that
of any fixed interior point. For with fixed,

may have a limiting value
between those achieved at the boundary and at interior points,
though we cannot identify this value yet.

We now proceed to the proof of the main theorem for the
case.

A. Lower Value

Proof: By definition, we need to show that

It suffices to prove that

for some where

is Jeffreys’ prior on . In fact, from Lemma 1, given
any , there exists a such that for and
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Hence

(1)

where the last inequality is from

The same bound holds for the integral from to .
Therefore, we have that the liminf of

is at least . But is arbitrary, thus .
What we have demonstrated will show that Jeffreys’ prior

is asymptotically least favorable once we have confirmed that
cannot exceed (see Section III-C below).
Remark 5: An alternative demonstration that

follows from the weaker result of [9]. In particular, if we
restrict , then

uniformly in , where is the mixture
with Jeffreys’ prior on . Letting establishes

. However, that reasoning uses a sequence of priors
depending on and does not identify a fixed prior that is
asymptotically least favorable on . The proof we have
given above permits identification of an asymptotically least
favorable prior. It does not require use of [9] so the proof in
the present paper is self-contained.

B. Upper Value

We show that by upper-bounding the
risk achieved in the limit by certain procedures. For any given

, define a prior (which is a modification of Jeffreys’
prior) on by

where is the distribution that puts unit mass at the point,
the quantity is as in Lemma 1, the masssatisfies

, and is Jeffreys’ prior. We also require
. The Bayes procedure with respect to the prior uses

By definition

Use the procedure and partition into three intervals
to get

(2)

We next show that for large, an upperbound for the
supremum over also upper-bounds that over

and , hence is not larger than
.

When

(3)

(4)

where inequality (3) holds since is decreasing in
when
When , the same inequality holds.
When , from Lemma 1

(5)

for all .
Now it is seen that (5) eventually will exceed (4) when

increases, as we intended to show. From (2),
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for all large and hence

Therefore, upon taking the infimum over and
, we obtain that .

Hence, we have proved that for , the game
has a limiting minimax value in agreement with the value

as in [9], despite the violation of conditions
they require. The limiting minimax value is achieved asymp-
totically by a sequence of modifications of Jeffreys’ prior,
indexed by and . Checking the steps in the above proof,
we see that the above modification works with , ,
and, say, , and .

C. Jeffreys’ Prior is Asymptotically Least Favorable

Since , to prove that Jeffreys’ prior is
asymptotically least favorable, we need

which is already shown in Section III-A. Moreover, a choice
of in Lemma 1 together with the fact that

is bounded by a constant over
(see Lemma 4 in the Appendix) shows that

converges to the asymptotic maximin value at rate .

D. Jeffreys’ Prior is Not Asymptotically Minimax

To see that Jeffreys’ prior is not asymptotically minimax
we use the fact, recently studied in Suzuki [25], that the
value of is largest at the boundary and remains
asymptotically larger at the boundary than in the interior.

Indeed, at any interior point in , the asymptotic value
of satisfies

due to Proposition 1 in the Appendix. Hence

as , for any interior point .
When is on the boundary of , take for example,

then using the mixture based on Jeffreys’ prior, as in
Suzuki [25], we have

where we omit the proof of the negligibility of the residual
errors from Stirling’s approximations.

Therefore con-
verges to instead of . The limit has a higher
value at boundary . The scenario is the same on the
other boundary point . This completes the proof of the
theorem.

Remark 6: Davissonet al. [12, inequality (61)] obtained
as an upper bound

on the redundancy for all in . Suzuki [25, Theorem 3]
points out that this bound is achieved at the endpoint using
Jeffreys’ prior. Our analysis shows the perhaps surprising
conclusion that it is the lower value of risk achieved by
Jeffreys’ prior in the interior that matches the asymptotic
minimax value.

Remark 7: After the submission of this paper, we have de-
veloped other modifications of Jeffreys’ prior that are asymp-
totically minimax. For instance, in place of the small mass
points put near the boundary, one can also use a small
Beta component with mixed with the main
Beta component. Further developments on these
priors are in the manuscript [4] which addresses minimal worst
case redundancy over all sequences.

IV. EXTENSION TO CASES

For the case of an alphabet of sizewe recall from Section
I that the parameter space is the -dimensional simplex

and that Jeffreys’ prior density is given by the
Dirichlet density

Here

is the Dirichlet integral. In terms of Gamma functions the
Dirichlet function may be expressed as

(6)

It follows that

We will first show that using
Jeffreys’ prior, in Part 1, then
using modifications of Jeffreys’ prior, in Part 2. Consequently,

and Jeffreys’ prior is asymp-
totically least favorable (Part 3). The higher asymptotic value
of at the boundary of is demonstrated in Part 4.

Part 1. Asymptotic Lower Value

This is parallel to Section III-A of the case, except
that is replaced by , Lemma 1 is replaced by Proposition
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1 of the Appendix, and inequality (1) is replaced by the
following argument. With the Dirichlet prior
the marginal distribution of is Beta , thus
the contribution of to the integral of is
bounded by

Thus as in the previous case, the interior region in which all
provides the desired bound and the Bayes risk does

not drop below the target level by more
than order .

Part 2. Asymptotic Upper Value

Proof: For any , let be the intersection of
with the probability simplex , for

, where is chosen as in Proposition 1
in the Appendix. We first define a probability measure
concentrated on with density function (with respect to

, the Lebesgue measure
on )

Then we define a prior on (which is a modification of the
original Jeffreys’ prior) as

For this prior, the Bayes procedure to minimize

uses

where

is the number of occurances of the symbolin the sequence
, and

where the last equality is by the substitution
(for , ), .

Define (for and
. Now observe that

(7)

We will find an upper bound for by show-
ing that it upper-bounds all the suprema over

For , we have

(8)

where the last inequality is by Proposition 1 of the Appendix.
For , say , that is,

(9)

We now construct a set of multinomial variables
with parameters from

Multinomial , by randomly
reassigning the occurrences of the outcome to

with probabilities

respectively. That is, given , we obtain new counts
for , where Multinomial
. Hence Multinomial , condi-

tionally for each value of and hence unconditionally. Now
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since and by the property of the Dirichlet integral
that it decreases in any parameter, we have

(10)

Also observe that

(11)

Applying (10) and (11) to (9), we obtain

where is the procedure based on Jeffreys’ prior on the
reduced -dimensional probability simplex and

. Now a course upper bound on is
sufficient for this lower-dimensional piece. Lemma 4 gives

(12)

for all and some constant . Observe that
in (12) provides a smaller multiplier of the factor than
achieved in the middle region (see term (8)). Consequently,
for all large

uniformly in . Let go to and then go to . The
proof is completed.

Part 3. Jeffreys’ Prior is Asymptotically Least Favorable

As shown in Part 1, the Bayes average risk using Jeffreys’
prior converges to the value, now identified to be the asymp-
totically maximin value. Thus Jeffreys’ prior is asymptotically
least favorable.

Part 4. Jeffreys’ Prior is not Asymptotically Minimax

On the -dimensional simplex, the asymptotic maximum re-
dundancy of the procedure based on Jeffreys’ prior is achieved
at vertex points, and it is higher asymptotically than in the
interior or on any face of the simplex. Here we quantify the
asymptotic redundancy within each dimensional face.

From Proposition 1 of the Appendix, for anywith
for , we have

as

For a vertex point such as , as shown by
Suzuki [25]

(13)

which is asymptotically larger than in the interior by the
amount of .

More generally, for a face point such as
, where and

for , we have ((14) and (15) at the
top of the following page) where and

is the mixture density with Jeffreys’ prior on the-
dimensional simplex. Stirling’s formula yields the following
approximation:

(16)

From (15) and (16), and expanding using Propo-
sition 1 of the Appendix, we have

(17)

(18)

Comparing (18) with (13), we see that the asymptotic redun-
dancy at a on a face (i.e., ) of the simplex is less
than the risk at vertex points (i.e., ) by the amount of

. In the interior we have nonzero
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(14)

(15)

coordinates, and the asymptotic value is less than at a vertex
by the amount , as we have seen.

Remark 8: Using Davissonet al. [12, inequality (61)],
Suzuki [25, Theorem 3] proves that for each, the value
of is maximized at the vertices. Here we have
determined the asymptotic gap between vertex, face, and
interior points.

APPENDIX

Proposition 1. Pointwise Asymptotic Behavior of
: For an interior point of the simplex ,

i.e., for , the following holds.

(19)

In particular, for any , if we take , then for
and for , the last quantity is

less than . For , when , the above
quantity is less than .

Proof: The bound is invariant to the choice of base of
the logarithm. It suffices to prove the bound with the choice
of the natural logarithm. By definition, and letting

for

we have

(20)

Now applying the relationship between Dirichlet integrals and
Gamma functions (6) and Stirling’s approximation refined
by Robbins [23], and shown to be valid for real in
Whittaker and Watson [26, p. 253],

with

(21)

we may rewrite the middle term of (20)

(22)

where and are residuals from Stirling’s approximations
to and , respectively.



654 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 43, NO. 2, MARCH 1997

We now upper- and lower-bound terms (A), (B), and (C)
in (22) separately.

For the deterministic term (B), we have

(23)

For term (C), we apply Lemma 2 of this Appendix to get

(24)

where is a bound for .
For term (A), we first rewrite each summand in (A),

(25)

Term (A ) is well-controlled: from Lemma 3 of this Appendix,
we have

(26)

Now we lower-bound the (A) term in (25)

where the first inequality holds because

for

and the second one holds because , a
useful lemma ([2, Lemma 2]) which is also used in the proof
of Lemma 2. Now observe that term (A) is upper-bounded
by since

for

Consequently,

(27)

Combining (26) and (27) then summing the result overyields
a bound for term (A)

(28)

Now we incorporate (23), (24), and (28) into a bound for

In particular, if we take , then for and
for , the last quantity is less than. This

completes the proof of Proposition 1.
When , we may take . In fact, Lemma 1

follows from the proposition by setting

to get an error bound of uniformly over .
(Recall that we used basefor the logarithm in Lemma 1.)

Lemma 2. Negligibility of Residuals:Let be the residual
from Stirling’s approximation to , where
Binomial . Then for any , when

Consequently, using that , we have

Proof: As before, assume as the base of the logarithm
in the proof. We first prove the lower bound part. From
Stirling’s approximation (21) with , the residual

satisfies

(29)

Thus

where the second inequality is from a simple inequality
verified by calculus

for . Here we have plugged in .
The upper bound is more direct. Again using (29), we have

Thus we have completed the proof of Lemma 2.
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Lemma 3. Local Property of : Let
Binomial . For

Proof: Base for the logarithm is still assumed in the
proof. We begin with the lower bound part. By Taylor’s
expansion of around

where is between and . Replace with and with
, then take expectation with respect to to get

where for the last inequality we used

For the upper bound part, we need the following inequality:
for , ,

(30)

To prove (30), we substitute with , then it reduces
to show that for all

and this simplified inequality is readily verifiable by using

Now replace with Binomial and with in
(30) and take expectation to get

when . Thus we have proved Lemma 3.

We recall in the next lemma a bound of the form
on the redundancy of the code based on the

Dirichlet prior; see [12], [20], and [24]. (Such
a bound without precise determination of the constant plays
a role in our analysis of the minimax asymptotics with the
modified Jeffreys’ prior in the vicinity of lower-dimensional
faces of the simplex.)

Lemma 4. A Uniform Upper Bound for : There
is a constant such that for all , , we have

Moreover, for all sequences

Proof: We still use as the logarithm base in the proof.
Let be the maximum-likelihood estimator of, that is,

for . Then

(31)

By Stirling’s formula,

Constant

Incorporation of the above inequality in (31) yields

This completes the proof of Lemma 4.
The following Lemma is verified by standard decision

theory.
Lemma 5. Maximin Procedure is Minimax:Under relative

entropy loss, if the game has a value, if there is a minimax
procedure, and if there is a least favorable prior, then the
minimax procedure is unique, and the procedure corresponding
to any least favorable prior is minimax.
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Proof: Suppose that is a parametric family,
is any least favorable prior, and is any minimax

procedure. By [8, Proposition 3.A]

is the unique Bayes procedure with respect to the prior.
To prove the lemma, it suffices to show that , that
is, is Bayes with respect to the prior . Thus the desired
equation is

(32)

Let the minimax value be and maximin value be . Since
is a least favorable prior, we have

Also since is minimax, we have

Now observe that

and that

Finally, since , we obtain the desired conclusion. This
completes the proof of Lemma 5.

Note that the conclusion holds for any loss for which the
Bayes procedure given a prior is unique.

Remark 9: The conditions of this lemma are satisfied in our
context. Indeed, it is known that with relative entropy loss,
the game has value and there exists a minimax procedure,
see, e.g., Haussler [17]. Next sinceis finite, one may view

as a point in a bounded set of dimension
(contained within the probability simplex) and view

a Bayes mixture , as a point in the closure
of the convex hull of this set, so from convex set theory any
such mixture may be represented as a convex combination
using not more than points . Imposing one more convex
combination constraint we may at the same time represent the
Bayes risk value

as a finite convex combination of the values , using
not more than points to represent both and the
Bayes risk; see, e.g., [7, p. 310], [14, p. 96], [16, p. 96], or
[5]. That is, for any prior (even a continuous prior) there

exist and with
such that

and

(using the counts as sufficient statistics reduces the
cardinality bound to ). If also is compact
and is continuous in for each , then

is a continuous function of in
the compact set and hence there exists a point

that achieves the maximum Bayes
risk. That is, there exists a least favorable prior. This
confirms the conditions of Lemma 5 under the continuity
and compactness conditions of the family when is
discrete, and justifies the claim that there exist least favorable
priors yielding a unique maximin and minimax procedure.
Since these exact considerations are not essential to our
asymptotics, we have relegated Lemma 5 and this discussion
to the Appendix.
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