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Abstract—We study the problems of data compression, gam-
bling and prediction of a sequence xn = x1x2...xn from an
alphabet X , in terms of regret with respect to various families of
probability distributions. It is known that the regret of the Bayes
mixture with respect to a general exponential families asymp-
totically achieves the minimax value when variants of Jeffreys
prior are used, under the condition that the maximum likelihood
estimate is in the interior of the parameter space. We discuss
a modification of Jeffreys prior which has measure outside the
given family of densities, to achieve minimax regret with respect
to non-exponential type families, e.g. curved exponential families
and mixture families. These results also provide characterization
of Rissanen’s stochastic complexity for those classes.

I. INTRODUCTION
We study the problem of data compression, gambling and

prediction of a sequence xn = x1x2...xn from a certain
alphabet X (not restricted to discrete one), in terms of regret
with respect to a general exponential family, a related curved
exponential family and also a general smooth family. In
particular, we evaluate the regret of the Bayes mixture density
and show that it asymptotically achieves their minimax values
when variants of Jeffreys prior are used. These results are
generalizations of the work by Xie and Barron [20], [21] in
the general smooth families.
This paper’s concern is the regret of a coding or prediction.

This regret is defined as the difference of the loss incurred
and the loss of an ideal coding or prediction strategy for
each sequence. A coding scheme for the sequence of length
n is equivalent to a probabilistic mass function q(xn) on
Xn. We can also use q for prediction and gambling, that
is, its conditionals q(xi+1|xi) provide a distribution for the
coding or prediction of the next symbol given the past. The
minimax regret with the target class (of probability densities)
S = {p(·|θ) : θ ∈ Θ} and a set of the sequences Wn ⊆ Xn

(denoted by r̄(Wn)) is defined as

r̄(Wn) = inf
q

sup
xn∈Wn

(
log

1

q(xn)
− log

1

p(xn|θ̂(xn))

)
,

where θ̂ = θ̂(xn) is the maximum likelihood estimate of θ
given xn. Here, the regret log(1/q(xn)) − log(1/p(xn|θ̂)) in
the data compression context is also called the (pointwise)
redundancy: the difference between the code length based
on q and the minimum of the codelength log(1/p(xn|θ))
achieved by distributions in the family. Also, log(1/q(xn))−
log(1/p(xn|θ)) is the sum of the incremental regrets of

prediction log(1/q(xi+1|xi)) − log(1/p(xi+1|xi, θ)). In this
paper, we consider minimax problems for sets of sequences
such that Wn = Xn(G) = {xn : θ̂ ∈ G}, where G is a certain
nice subset (satisfies Ḡ = G◦) of Θ.
When S is the class of discrete memoryless sources, Xie

and Barron [21] proved that the minimax regret asymptotically
equals (d/2) log(n/2π) + logCJ (G) + o(1), where d equals
the size of alphabet minus 1 and CJ (G) is the integral of the
square root of the determinant of Fisher information matrix
over G. In this paper, we discuss the generalization of the
results of [21] to the case where S is an exponential family
or the related curved exponential family.
For multi-dimensional exponential families, variants of Jef-

freys mixture are minimax, when G is a compact set included
in the interior of Θ. For curved exponential families, the
ordinary Jeffreys mixture for the concerned curved family is
not minimax, even if G is a compact set included in the interior
of Θ. However, we can obtain the minimax result by using a
sequence of prior measures whose supports are the exponential
family to which the curved family is embedded, rather than
the concerned curved family. It is remarkable that this idea
is applicable to general smooth families by the enlargement
of the original family using exponential tilting. The idea for
this enlargement in addressing minimax regret originates in
preliminarily form in [17], [4] as informally discussed in [3].
The literature [18] gives discussion in the context of Amari’s
information geometry [2]. In this paper, we discuss the formal
regularity conditions we assume and the relation between the
method for curved exponential families and that for general
smooth families. In particular, we show that our strategy works
for general mixture families.
To obtain the above minimax results, we employ the Laplace

integration method, which was used by Clarke and Barron
[6], [7] in order to evaluate the expected regret of the Bayes
procedures. Especially in [7], they succeeded to uniformly
evaluate the expected regret by the Laplace integration for a
compact subset G of Θ◦.
The normalized maximum likelihood is an alternative way

to obtain the minimax regret, which is defined as

m̂n(x
n) =

p(xn|θ̂)∫
Wn

p(xn|θ̂)dxn
.

This is known to be strictly minimax, but it is difficult
to calculate its conditionals (important for prediction prob-



lem and data compression algorithm) m̂N (xn|xn−1) =
m̂N (xn)/m̂N (xn−1) (assuming n ≤ N ). On the other hand,
we can obtain the conditionals of Bayes mixture by the integra-
tion mN (xn|xn−1) =

∫
p(xn|θ)wN (dθ|xn−1), wN (dθ|xn−1)

denote the posterior measure of θ given xn−1.

II. PRELIMINARIES
Let (X ,B, ν) be a measurable space with a reference

measure ν. Let S = {p(·|θ) : θ ∈ Θ} denote a parametric
family of probability densities over X with respect to ν. We
let p(xn|θ) denote ∏n

i=1 p(xi|θ). Also, we let ν(dxn) denote∏n
i=1 ν(dxi). Here, we are treating models for independently

identically distributed (i.i.d.) random variables. We let Pθ

denote the distribution function with density p(·|θ) and Eθ

denote expectation with respect to Pθ.
Assume that Θ ⊆ �d and Θ̄ = Θ◦ hold. That is, the

closure of Θ matches the closure of its interior. Here Ā and
A◦ respectively denote the closure and the interior of A ⊆ �k.
We introduce the empirical Fisher information given xn and

the Fisher information:

Ĵij(θ) = Ĵij(θ, x
n) =

−1

n

∂2 log p(xn|θ)
∂θi∂θj

,

J(θ) = EθĴij(θ, x
n).

The exponential family is defined as follows. [5], [1], [2]
Definition 1 (Exponential Family): Given a Borel measur-

able function T : X → �d, define

Θa ≡
{
θ : θ ∈ �d,

∫
X
exp

(
θ · T (x))ν(dx) < ∞

}
,

where θ ·T (x) denotes the inner product of θ and T (x). Define
a function ψ and a probability density p on X with respect to
ν by ψ(θ) ≡ log

∫
X exp(θ ·T (x))ν(dx) and p(x|θ) ≡ exp

(
θ ·

T (x) − ψ(θ)
)
. We refer to the set S(Θ) ≡ {p(x|θ)|θ ∈ Θ ⊆

Θa} as an exponential family of densities.
When Θa is an open set, S(Θ) is said to be a regular

exponential family. Many popular exponential families are
regular. We let J(θ) denote Fisher information matrix of θ.
For exponential families, the components of J are given by

Jij(θ) =
∂2ψ(θ)

∂θi∂θj
. (1)

For regular exponential families, define expectation parameter
η as η(θ) = Eθ(T (x)). It is known that the map : θ 	→ η
is one-to-one and analytic on Θa. Also, ηi = ∂ψ(θ)/∂θi

holds. We also use notation θ(η) as inverse function of η(θ).
Note that p(xn|θ) = exp(n(θ · t̄ − ψ(θ))) holds, where
t̄ =

∑n
t=1 T (xt)/n. (xt denotes the t-th element of sequence

xn = x1x2...xn). It is known that the maximum likelihood
estimate of η given xn equals t̄.
For a subset G of Θ, we let CJ(G) =

∫
G |J(θ)|1/2dθ. The

Jeffreys prior ([11]) over G (denoted by wG(θ)) is defined as

wG(θ) =
|J(θ)|1/2
CJ(G) .

We define the Jeffreys mixture for G (denoted by mG) as∫
G p(xn|θ)wG(θ)dθ.

We introduce the curved exponential family. Let Se =
{pe(xn|u) : u ∈ U} be the d̄-dimensional exponential family.
Using a smooth function φ : �d → �d̄, we define a subfamily
of S as follows:

Sc = {pc(·|θ) = pe(·|φ(θ)) : θ ∈ Θ},
where Θ is an open set of �d and d̄ ≥ d. This Sc is referred
to as a curved exponential family embedded in Se. We let θ̂
denote the maximum likelihood estimate of θ given xn:

θ̂ = argmax
θ∈Θ

pc(x
n|θ).

Definition 2 (Mixture Family): For i = 0, 1, . . . , d, let pi(x)
be a probability density function over X . Define

p(x|θ) =
d∑

i=0

θipi(x),

where θ ∈ Θa = {θ ∈ Rd : 0 ≤ ∑d
i=1 θi ≤ 1 and ∀i, θi ≥ 0}

and θ0 = 1 −∑d
i=1 θi. Then, the set {p(·|θ) : θ ∈ Θ ⊆ Θa}

is referred to as a mixture family of densities.

III. LOWER BOUND ON MINIMAX REGRET
Here, we give a lower bound on minimax regret with the

target class being a general smooth family. We employ the
assumptions described below.
Assumption 1: The density p(x|θ) is twice continuously

differentiable in θ for all x, and there is a function of δ(θ) > 0
so that for each i, j,

Eθ sup
θ′:|θ′−θ|≤δ(θ)

|Ĵ(θ′, x)|2

is finite and continuous as a function of θ.
Assumption 2: The Fisher information J(θ) is continuous

and coincides with the matrix of which the (i, j)-entry is

Eθ
∂ log p(x|θ)

∂θi
∂ log p(x|θ)

∂θj
.

Assumption 3: For all θ, θ′ ∈ Θ, the Kullback Leibler
divergence D(θ|θ′) is finite and for an arbitrary ε > 0, the
following holds.

inf
(θ,θ′):|θ−θ′|>ε

D(θ|θ′) > 0

Assumption 4: For an arbitrary compact set K ⊆ Θ◦, the
MLE is uniformly consistent in K.

sup
θ∈K

Pθ(|θ̂(xn)− θ| > ε) = o(1/ log n).

Remark: These 4 assumptions hold for regular exponential
families and appropriately defined mixture families.
We can prove the following.
Theorem 1: Let S = {p(·|θ) : θ ∈ Θ} be a d-dimensional

family of probability densities. We suppose that Assump-
tions 1-4 hold for S. We let K be an arbitrary subset of Θ
satisfying CJ (K) < ∞ and K̄ = K◦. The following holds.

lim inf
n→∞ (r̄n(Xn(K))− d

2
log

n

2π
) ≥ logCJ(K).

We omit the proof in this paper.



IV. MINIMAX BAYES PROCEDURES
Below we describe the asymptotically minimax Bayes pro-

cedures for each case we considered.

A. Exponential Families
We are interested in the regret of mixture strategies. The

Jeffreys mixture is the mixture by the prior proportional to
|J(θ)|1/2. We denote the Jeffreys mixture over a subset K of
Θ by mn. The value CJ(G) is the normalization constant for
the Jeffreys prior over the set G.
For the exponential family including the multinomial

Bernoulli and FSM (Finite State Machine), it is known that
a sequence of Jeffreys mixtures achieves the minimax regret
asymptotically [21], [16], [17], [19]. For the multinomial
exponential family case except for multinomial Bernoulli and
FSM, these facts are proven under the condition that G is a
compact subset included in the interior of Θ.
We briefly review outline of the proof for that case. Let

{Gn} be a sequence of subsets of Θ such that G◦
n ⊃ G. Suppose

that Gn reduces to G as n → ∞. Let mJ,n denote the Jeffreys
mixture for Gn. If the rate of that reduction is sufficiently slow,
then we have

log
p(xn|û)
mJ,n(xn)

=
d

2
log

n

2π
+ logCJ(G) + o(1), (2)

where the remainder o(1) tends to zero uniformly over all
sequences with MLE in G. This implies that the sequence
{mJ,n} is asymptotically minimax. This is verified using
the following asymptotic formula resulted by the Laplace
integration, which holds uniformly:

mJ,n(x
n)

p(xn|θ̂) ∼ |J(θ̂)|1/2
CJ(G)|Ĵ(θ̂, xn)|1/2

(2π)d/2

nd/2
.

When S is an exponential family, Ĵ(θ̂, xn) = J(θ̂) holds.
Hence, the above expression asymptotically equals the mini-
max value of regret mentioned in the former section.1

B. Curved Exponential Families
When the model S is not exponential type, the situation

differs. The Jeffreys mixture is not guaranteed to be minimax,
because the empirical Fisher information is not close to the
Fisher information at the MLE in general. Note that the
component of Ĵ(θ, xn) − J(θ) orthogonal (in terms of Fisher
metric) to the model S is its embedding exponential curvature.
When the target class is a curved exponential family, it is

easy to see this fact. Assume that Sc is embedded in a d̄-
dimensional exponential family with the natural parameter u ∈
U ⊂ �d̄ (d̄ > d):

Se = {pe(x|u) = exp(u · T (x)− ψ(u)) : u ∈ U}.
That is, we let

pc(·|θ) = pe(·|φ(θ)),
1If G is the entire space for the statistical model, we cannot define the

superset of G and need a different technique, which was established for the
cases of multinomial Bernoulli, FSM, and a certain type of one-dimensional
exponential families. See [21], [17], [19].

where φ is a (4 times differentiable) function Θ → U . Then

Ĵij(θ, x
n) = −∂2φ(θ)

∂θi∂θj
· (t̄− η(θ))

+
d̄∑

k,l=1

∂φk(θ)

∂θi

∂φl(θ)

∂θj
.
∂2ψ(u)

∂uk∂ul

∣∣∣
u=φ(θ)

.

By taking expectation of both sides, we can see the last term
is the Fisher information of Jij(θ). Hence we have

Ĵij(θ̂, x
n) = −∂2φ(θ̂)

∂θi∂θj
· (t̄− η(θ̂)) + Jij(θ̂), (3)

where we let t̄ denote (1/n)
∑n

t=1 T (xt) and η(θ) the expec-
tation parameter of Se at u = φ(θ).
First, assume that Sc is not curved in Se (in the natural

parameter space), then u = φ(θ) forms a plane in U , i.e.
the vectors ∂2φ/∂θi∂θj (i, j = 1, ..., d) are certain linear
combinations of the vectors ∂φ/∂θi (i = 1, ..., d). Then noting

∂φ

∂θi

∣∣∣∣
θ=θ̂

· (t̄− η(θ̂)) = 0,

we have
∂2φ

∂θi∂θj

∣∣∣
θ=θ̂

· (t̄− η(θ̂)) = 0.

This implies Ĵ(θ̂, xn) = J(θ̂). On the other hand, this is not
guaranteed when S is curved.
Even for the curved exponential family case, we can

modify the Jeffreys mixture to achieve the minimax regret
asymptotically. In fact, the series of the following mixtures is
asymptotically minimax with respect to regret.

m̄n(x
n) = (1− n−r)mJ,n(x

n) + n−r

∫
pe(x

n|u)w(u)du, (4)

where mJ,n is the Jeffreys mixture over Gn ⊃ G and w(u) is
a certain probability density on U .
This can be shown as follows. Let Gn,δ = {xn||x̄−η(θ̂)| ≤

δ and θ̂ ∈ G} and Gc
n,δ = {xn||x̄− η(θ̂)| > δ and θ̂ ∈ G}. If

xn ∈ Gn,δ , then ||J(θ̂)− Ĵ(θ̂, xn)|| ≤ Bδ holds, where B is a
certain positive number determined by the function φ and the
subspace G. Since J(θ) is continuous and G is compact, the
minimum eigenvalue of J(θ) is bounded below by a positive
number for all θ ∈ G. Hence we can show

sup
xn∈Gn,δ

|Ĵ(θ̂)|
|J(θ̂)| ≤ 1 + Cδ,

where C is a certain real number. Then by the Laplace
integration we have

inf
xn∈Gn,δ

m̄n(θ̂)

p(xn|θ̂) ≥ inf
xn∈Gn,δ

(1− n−r)mn(x
n)

p(xn|θ̂) (5)

≥ (1− n−r)(1 + o(1))(2π)d/2

CJ(Gn)(1 + Cδ)nd/2
,

where o(1) is a quantity converging to 0 as n goes to infinity.
To handle the sequence xn ∈ Gc

n,δ , let η̃ be the point
between x̄ and η(θ̂) such that |η̃ − η(θ̂)| = δ. Then we have



D(p̄(·|ũ)|p(·|θ̂)) ≥ Aδ2, where D(p|q) denotes Kullback-
Leibler divergence from p to q, ũ the u corresponding to η̃,
and A a certain positive number determined by S̄ andK. From
this, we can show

1

n
log

p̄(xn|ũ)
p(xn|θ̂) > Aδ2.

Hence, we have p̄(xn|ũ) > exp(Aδ2n)p(xn|θ̂). Noting this
fact, we can show

inf
xn∈Gc

n,δ

m̄n(θ̂)

p(xn|θ̂) ≥ n−r
∫
p̄(xn|u)w(u)dθ
p(xn|θ̂) > n−r−deAδ2n,

where we have evaluated
∫
p̄(xn|u)w(u)dθ by the integration

in the n−1/2-neighborhood around ũ. With letting δ = n−b

with 0 < b < 1/2, together with (5), we have

inf
xn:θ̂∈G

m̄n(θ̂)

p(xn|θ̂) ≥ (1 + o(1))(2π)d/2

CJ(K)nd/2
,

which yields an upper bound on the minimax regret.
Theorem 2: For a curved exponential family Sc, the follow-

ing holds.

inf
xn:θ̂∈G

m̄n(x
n)

p(xn|θ̂) ≥ (1 + o(1))(2π)d/2

CJ (G)nd/2
.

C. General Smooth Families
For more general smooth families we form a direct enlarge-

ment by a exponential tilting using linear combinations of
the entries of the differences V (xn|θ) = Ĵ(θ) − J(θ). Let
B = (−b/2, b/2)d×d for some b > 0. The enlargement is
formed as

p̄(xn|u) = p(xn|θ)en(β·V (xn|θ)−ψn(θ,β)), (6)

where u denotes the pair (θ, β), β is a matrix in B, and
V (xn|θ) · β denotes Tr(V (xn|θ)βt) =

∑
ij Vij(x

n|θ)βt)βij .
Then, we define the model S̄ = {p̄(·|u) : u ∈ Θ× B}.
Traditionally such a family arises as in local asymptotic

expansion of likelihood ratio, evaluated at a perturbation θ +
β of a given θ, used in demonstration of local asymptotic
normality. [10], [12], [13] In Amari’s information geometry
[1], [2] it is a local exponential family boundle.
The enlarged model S̄ plays a role of the outside exponential

family in the curved exponential family case, i.e. we employ
the mixtures

m̄n(x
n) = (1− n−r)mJ,n(x

n) + n−r

∫
p̄(xn|u)w(u)du. (7)

Specifically, the prior w(u) for S̄ is defined as the direct
product of the Jeffreys prior on S and the uniform prior on B.
Here ψn(θ, β) is the logarithm of the required normalization

factor, so that p(xn|θ, β) sums (integrates with respect to νn)
to the value 1 for every θ ∈ G and every β in a neighborhood
around 0.
In the analysis, the consideration of β in a neighborhood

of a small multiple of V (xn|θ) = Ĵ(θ̂) − J(θ̂) is sufficient

to accomplish our objectives under the assumptions addressed
below.
Assumption 5: For a certain C1 > 0, the following holds.

∀n ∈ NI, ∀θ ∈ G, ∀β ∈ B, (8)(∫
p(xn|θ) exp(nV (xn|θ) · β)νn(dxn)

)1/n

< C1.

Define a function ψn(θ, β) as

ψn(θ, β)
def
=

1

n
log

∫
p(xn|θ) exp(nV (xn|θ) · β)νn(dxn).

Define a set of good sequences G′
n,δ and a set of not good

sequences G′c
n,δ similarly as for the curved exponential family

case.

G′
n,δ = {xn : ||V (xn|θ̂)|| ≤ δ and θ̂ ∈ G},

G′c
n,δ = {xn : ||V (xn|θ̂)|| > δ and θ̂ ∈ G},

where ||A|| for A ∈ �d×d denotes the Frobenius norm defined
as ||A|| = (Tr(AAt))1/2.
We define the two neighborhoods of θ′ as

Bε(θ
′) = {θ : (θ − θ′)tJ(θ′)(θ − θ′) ≤ ε2}, (9)

B̂ε(θ
′) = {θ : (θ − θ′)tĴ(θ′)(θ − θ′) ≤ ε2}. (10)

Assumption 6: We assume a kind of equi-semicontinuity
for Ĵ(θ), that is, there exist a κ > 0 and a δ0 > 0 such that
for all small ε > 0, for all xn in G′

n,δ0 , for all θ̃ ∈ B̂ε(θ̂),
and for all θ �= θ̂,

(θ − θ̂)tĴ(θ̃)(θ − θ̂)

(θ − θ̂)tĴ(θ̂)(θ − θ̂)
≤ 1 + κε.

This is used to control the Laplace integration for mn of
our strategy for the good sequences. In fact, we can prove the
following lemma.
Lemma: 1: Under Assumptions 1-3, 5, and 6, for all δ < δ0,

the following holds.

inf
xn∈G′

n,δ

m̄n(x
n)

p(xn|θ̂) ≥ (1 + o(1))(1− n−r)

(1 + ζδ)d/2
(2π)d/2

C(Gn)nd/2
,

where ζ > 0 is determined by J(θ) and K.
The proof is done by the Laplace integration, which causes
the error term of o(1).
Assumption 7: There exists an ε > 0, such that for all xn

in Gc
n,δ , for all θ̃ in Nε(θ̂), the following holds

||V (xn|θ̃)|| ≥ ||V (xn|θ̂)||/2.
Assumption 8: There exists an ε > 0, such that for all xn

in Gc
n,δ , and for all θ̃ ∈ Nε(θ̂), 2Ĵ(θ̂)− Ĵ(θ̃) is semi-positive

definite.
These two assumptions are used to control the second term

of our strategy for the not good sequences. They require
that Ĵ(θ) does not change so rapidly in the region for the
integration. We can prove the following lemma.



Lemma: 2: Under Assumptions 1-3, 5, 7, and 8, the follow-
ing holds

inf
xn∈G′c

n,δ

m̄n(x
n)

p(xn|θ̂) ≥ n−r−d exp(Aδ2n),

where A is a certain positive constant.
Letting δ = n−b with 0 < b < 1/2, by Lemmas 1 and 2,

we can show the following Theorem.
Theorem 3: Under Assumptions 1-3 and 5-8,

inf
xn:θ̂∈G

m̄n(x
n)

p(xn|θ̂) ≥ (1 + o(1))(2π)d/2

CJ (G)nd/2
.

V. GENERAL STRATEGY APPLIED TO CURVED
EXPONENTIAL FAMILIES

To understand the property of our strategy for general
smooth families, we examine Assumptions 6-8 for the curved
exponential family. First assume that the range of T (x) is
unbounded. For the curved exponential family by (3), we have

Vij(x
n|θ̂) = −∂2φ(θ̂)

∂θi∂θj
· (t̄− η(θ̂)).

This implies that derivatives of V (xn|θ) at θ = θ̂ can be
arbitrarily large even when ||V (xn|θ̂)|| = 0. To understand it,
assume that ∂2φ/∂θi∂θj = 0 and higher order derivatives are
not 0 at θ = θ̂, and note that |t̄−η(θ̂)| can be arbitrarily large,
since the range of T (x) is unbounded. Then, Assumption 6
does not hold when the range of T (x) is unbounded.
This consideration shows that the general strategy does not

work for this situation, although the mixture (4) properly
works. One reason is in the difference betweenGn,δ andG′

n,δ .
The former is defined in terms of |t̄−η(θ̂)|, while the latter is
in terms of |Ĵ(θ̂)−J(θ̂)|, Important is that small |Ĵ(θ̂)−J(θ̂)|
does not imply small |t̄− η(θ̂)|,
We should note the difference between the enlargement

model p̄c(·|θ, β) and the outside exponential family pe(·|u).
In the situation we are considering, p̄c(·|θ, β) does not extend
to the direction of t̄− η(θ̂) in the outside exponential family,
which is needed to obtain higher likelihood of the mixture.
Note that this drawback is avoided if the range of T (x) is

bounded. In that case, V (xn|θ) is equi-continuous for all xn.
Then, Assumptions 5-8 are satisfied.
Another case in which the general method works for an

curved exponential family is that φ forms a quadratic hyper
surface in the u-space of the outside exponential family.
Suppose for example that φ(θ) = (θ, θ2) for d̄ = 2 and d = 1
case. Then, the derivative of V (xn|θ) does not depend on t̄,
hence V (xn|θ) is equi-continuous.

VI. MIXTURE FAMILIES
For the mixture family,
∂2 log p(x|θ)

∂θi∂θj
=

−(pi(x)− p0(x))(pj(x)− p0(x))

(p(x|θ))2 .

holds, where we have∣∣∣pi(x)− p0(x)

p(x|θ)
∣∣∣ ≤ pi(x) + p0(x)∑d

i=0 θipi(x)
≤ 1

θi
+

1

θ0
.

The last expression is not more than 2maxθ∈G maxi θ
−1
i ,

which is finite since G is a compact set interior to the
whole parameter set. Then, Ĵ(θ, xn) is bounded and Assump-
tion 5 holds. Further, ∂V (xn|θ)/∂θi is similarly bounded,
so V (xn|θ) is equi-continuous for all xn : θ̂ ∈ G and
Assumption 6-8 hold. This implies the general mixture strategy
works for mixture families with a compact G interior to Θ.
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