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Abstract— We study the problem of data compression,
gambling and prediction of a sequence xn = x1x2...xn from
a certain alphabet X , in terms of regret and redundancy
with respect to a general exponential family. In particular,
we evaluate the regret of the Bayes mixture density and
show that it asymptotically achieves their minimax values
when variants of Jeffreys prior are used.
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1 Summary

We study the problem of data compression, gambling
and prediction of a sequence xn = x1x2...xn from a
certain alphabet X , in terms of regret and expected re-
gret (redundancy) with respect to a (i.i.d.) general ex-
ponential family. In particular, we evaluate the regret
of the Bayes mixture density and show that it asymp-
totically achieves their minimax values when variants
of Jeffreys prior are used. These results are general-
izations of the work by Xie and Barron [11, 12] and
extends the work of Clarke and Barron [3, 4] in the
case of exponential families to deal with the full natu-
ral parameter space rather than compact sets interior
to it.

This paper’s main concern is the regret of a cod-
ing or prediction strategy. This regret is defined as
the difference of the loss incurred and the loss of an
ideal coding or prediction strategy for each sequence.
A coding scheme for the sequence of length n is equiv-
alent to a probabilistic mass function q(xn) on Xn. We
can also use q for prediction and gambling, that is, its
conditionals q(xi+1|xi) provide a distribution for the
coding or prediction of the next symbol given the past.
The minimax regret with respect to a family of proba-
bility mass function S = {p(·|θ) : θ ∈ Θ} and a set of
the sequences Wn ⊆ Xn (denoted by r̄(Wn)) is defined
as

inf
q

sup
xn∈Wn

(log
1

q(xn)
− log

1

p(xn|θ̂) ),

where θ̂ is the maximum likelihood estimate given xn.
Here, the regret log(1/q(xn)) − log(1/p(xn|θ̂)) in the
data compression context is also called the (point-
wise) redundancy: the difference between the code
length based on q and the minimum of the codelength
log(1/p(xn|θ)) achieved by distributions in the family.
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Also, log(1/q(xn)) − log(1/p(xn|θ)) is the sum of the
incremental regrets of prediction log(1/q(xi+1|xi)) −
log(1/p(xi+1|xi, θ)). The maximin regret for set Wn

(denoted by r
¯
(Wn)) is defined as

sup
q∈P(Wn)

inf
r∈Pn(Xn)

Eq(log
p(xn|θ̂)
r(xn)

),

where P(Wn) is the set of all probability mass function
over Wn and Eq denotes the expectation with respect
to q. It is known that r̄(Wn) = r

¯
(Wn) holds [10, 12].

In this paper, we consider minimax problems for sets
of sequences such that

Wn = Xn(G) = {xn : θ̂ ∈ G},

where G is a certain good subset (satisfies Ḡ = Ḡ◦) of
Θ.

When S is the class of discrete memoryless sources,
Xie and Barron [12] proved that the minimax regret
asymptotically equals

(d/2) log(n/2π) + log CJ (G) + o(1),

where d equals the size of alphabet minus 1 and CJ(G)
is the integral of the square root of the determinant of
Fisher information matrix over G. An important point
in the above is that G is taken there to be Θ itself, i.e.
we do not have to have any restriction for the sequence
xn. For obtaining this asymptotically minimax regret,
they use sequences of Bayes mixtures with prior dis-
tributions that weakly converge to the Jeffreys prior.
The reason why one needs such variants of the Jeffreys
prior is as follows: If we use the Jeffreys prior, the risk
is asymptotically higher than the minimax value, for
xn such that θ̂ is near the boundary of Θ. We use pri-
ors which have higher density near the boundaries than
the Jeffreys prior, to give more prior attention to these
boundary regions and thereby pull the risk down to the
asymptotically minimax level.

In this paper, we generalize the results of [12] to
the case where S is a general exponential family. For
the multi-dimensional case, variants of Jeffreys mixture
are minimax, if G is a compact subset included in the
interior of Θ. For one-dimensional cases, we succeed to
obtain variants of Jeffreys mixture which are minimax
for any subset G under certain conditions.

We also consider the problem of minimax expected
regret (redundancy). The minimax expected regret for
the subset G of Θ (denoted by R̄n(G)) is defined as

inf
q

sup
θ∈G

Eθ(log
1

q(xn)
− log

1
p(xn|θ) ).



Also, the maximin expected regret for the parameter
set G (denoted by R

¯n(G)) is defined as

sup
w

inf
q

∫
Eθ(log

1
q(xn)

− log
1

p(xn|θ) )w(θ)dθ,

where supremum is taken for any prior measure w. It
is known that R̄n(G) = R

¯n(G) holds [5, 8, 6].
For asymptotics of this minimax expected regret,

the results by Clarke and Barron [4] are known. They
considered fairly general classes of i.i.d. processes and
showed that the minimax expected regret asymptoti-
cally equals

(d/2) log(n/2πe) + log CJ(G) + o(1),

where G must be a compact subset of Θ◦. In work pre-
ceding [12], Xie and Barron [11] evaluated the minimax
expected regret for the class of discrete memoryless
sources and showed that sequences of slightly varied
Jeffreys mixtures achieve the minimax value asymptot-
ically for the probability simplex Θ. The answer for the
minimax regret and the minimax expected regret are
similar. We give analogous conclusions for both mea-
sures of regret for one-dimensional exponential families.

For obtaining the above minimax results, we em-
ploy the Laplace integration method, which was used
by Clarke and Barron [3, 4] in order to evaluate the
expected regret of the Bayes procedures. Especially in
[4], they succeeded to uniformly evaluate the expected
regret by the Laplace integration for a compact subset
G of Θ◦. However in our task for the one-dimensional
case, a subset G can be arbitrary. This requires very
careful application of the Laplace integration.

2 Some Definitions

The exponential family is defined as follows. [2, 1]

Definition 1 (Exponential Family) Let ν be a σ-
finite measure on the Borel subsets of <d and X be
the support of ν. Define Θ ≡ {

θ : θ ∈ <d,
∫
X exp

(
θ ·

x)ν(dx) < ∞}
. Define a function ψ and a probability

density p on X with respect to ν by ψ(θ) ≡ ln
∫
X exp(θ ·

x)ν(dx) and p(x|θ) ≡ exp
(
θ ·x−ψ(θ)

)
. We refer to the

set S(Θ) ≡ {p(x|θ)|θ ∈ Θ} as an exponential family of
densities.

We let p(xn|θ) denote
∏n

i=1 p(xi|θ). Also, we let ν(dxn)
denote

∏n
i=1 ν(dxi). Here, we are treating models for

independently identically distributed (i.i.d.) random
variables.

Under this definition, the regret should be
log(1/q(xn)ν(dxn))− log(1/p(xn|θ̂)ν(dxn)), where q is
a probability density with respect to the measure ν,
but that equals log(1/q(xn)) − log(1/p(xn|θ̂)). Hence,
we can use the same definitions of regret given in the
previous section.

When Θ is an open set, S(Θ) is said to be a regular
exponential family. Many popular exponential families

are regular, but we assume that S(Θ) is steep. This
is weaker condition than “regular”. (When for all θ ∈
Θ − Θ◦, Eθ(|x|) = ∞ holds, then S(Θ) is said to be
steep.) We let J(θ) denote Fisher information matrix
of θ. For exponential families, the elements of J is given
by

Jij(θ) =
∂2ψ(θ)
∂θi∂θj

. (1)

Exponential families include many common statis-
tical models such as Gaussian distributions, Poisson
distributions, Bernoulli sources and etc. We explain
some examples of exponential family.

Example 1 (Bernoulli sources) Let X = {0, 1}
and ν({x}) = 1 for x = 0, 1. Then, we have ψ(θ)
= log(1 + eθ), which is finite for all θ ∈ <. Hence,
Θ = <. We have p(1|θ) = exp(θ − ψ(θ)) = eθ/(1 + eθ)
and p(0|θ) = exp(θ−ψ(θ)) = 1/(1 + eθ). Also we have

J(θ) =
eθ

(1 + eθ)2
.

Example 2 (Poisson distributions) Let
X = {0, 1, ...}, and ν({x}) = 1/x!. We have

ψ(θ) = log
∑

x

eθx

x!
= eθ.

Hence, Θ = < and J(θ) = eθ.

Example 3 (Inverse Gaussian distributions)
The density of inverse Gaussian distribution with re-
spect to Lebesgue measure is

p(x|c, µ) = (
c

2πx3
)1/2 exp(c · (− x

2µ2
− 1

2x
+

1
µ

)),

where µ > 0, c > 0, and x > 0. Hereafter, we fix c. It
may be arbitrary, but we let c = 1 for simplicity. Let
θ = −1/2µ2. We have

p(x|θ) = (
1

2πx3
)1/2 exp(θx +

√
−θ − 1

2x
)

= (
1
2π

)1/2 exp(θx +
√
−θ − 1

2x
− 3

2
log x).

Hence, we can see Θ = (−∞, 0], ν(dx) = exp(−1/2x−
(3/2) · log x)dx and ψ(θ) =

√−θ. Also, we have

J(θ) =
1

−4θ
√−θ

.

Note that the inverse Gaussian family is an example of
not regular but steep exponential families.

We let CJ(K) =
∫

K

√
det(J(θ))dθ. The Jeffreys

prior ([7]) over G (denoted by wG(θ)) is defined as

wG(θ) =

√
det(J(θ))
CJ(G)

.

We define the Jeffreys mixture for G (denoted by mG)
as

∫
G p(xn|θ)wG(θ)dθ.



3 The Lower Bound

The following holds for d-dimensional steep exponential
families.

lim inf
n→∞

(r
¯
(Xn(G))− d

2
log

n

2π
) ≥ log CJ(G). (2)

Note that this holds for any good G.
The inequality (2) is shown by using the following

which we can show by Laplace integration.

lim inf
n→∞

inf
xn:θ̂∈G′

(log
p(xn|θ̂)
mG(xn)

− d

2
log

n

2π
) ≥ log CJ(G),

where G′ is any compact set interior to G.

4 Upper Bounds

4.1 Multi-dimensional Exponential Families

Let G be a nice compact subset of Θ◦. Let {Gn} be a
sequence of subsets of Θ such that G◦n ⊃ G. Suppose
that Gn reduces to G as n →∞, where CJ(Gn) reduces
to CJ (G). If the rate of that reduction is sufficiently
slow, then

lim sup
n→∞

( sup
xn:θ̂∈G

log
p(xn|θ̂)
mGn(xn)

− d

2
log

n

2π
) ≤ log CJ (G) (3)

holds. Since the upper bound here matches the lower
bound, our strategy is minimax and we have deter-
mined the minimax value.

4.2 One-dimensional Exponential Families

For one-dimensional exponential families with natural
parameter space Θ with integrable

√
J(θ), we identify

three main types of boundary or tail behavior. The
natural parameter space Θ forms an interval with right
end point b either finite (b < ∞) or infinite (b = ∞).
Here we focus on the behavior on the right side of the
interval. (The behavior on the left side is analogous.)

Let λ be an element of Θ◦. We let G = [λ,∞) ∩ Θ
and consider the minimax problem for the set Xn(G).

In the case that b = ∞ and that root of J(θ) slightly
smaller than 1/2 is integrable, we use priors wn(θ) de-
fined on Gn and proportional to (J(θ))(1−αn)/2, where
αn is any choice that tends to zero slower than 1/ log n
and {Gn} is analogously defined as in the multi di-
mensional case. Then, this procedure is asymptoti-
cally minimax. This case includes Bernoulli sources
and Poisson distributions. This method provides an
alternative to the technique in Xie and Barron [11, 12].

In the case that the right endpoint of Θ is a finite
b, we identify two situations for steep exponential fam-
ilies. In one case the tirht endpoint b is in Θ and we
use

wn(dθ) = (1− εn)wGn(θ)dθ + εnδb(dθ),

where Gn = [λn, b) with λn ≤ λ and wGn is Jef-
freys prior on Gn (absolutely continuous with respect to

Lebesgue measure dθ), the component δb is point mass
at b and εn is any sequence converge to zero slower
at rate n−β for some β ≤ 1/2. If λn approaches λ
sufficiently slowly, then the above strategy is asymp-
totically minimax. This case includes Inverse Gaussian
family.

Finally for regular exponential families with finite
endpoint, Θ is open and hence does not contain b. The
example we are aware of for this case have J(θ) di-
verging rapidly to infinity as θ approaches b yielding∫ √

J(θ)dθ = ∞.

5 Idea for Proofs

The main tool we use in this work is the Laplace inte-
gration. Using Taylor’s theorem we have

mG(xn)

p(xn|θ̂) =
∫

p(xn|θ)wG(θ)

p(xn|θ̂) dθ

∼
∫

exp(−n(θ − θ̂)tĴ(θ̂)(θ − θ̂)
2

)wG(θ)dθ

∼ wG(θ̂)√
det(Ĵ(θ̂))

(2π)d/2

nd/2
,

where Ĵ(θ) is empirical Fisher information matrix (Hes-
sian of − log p(xn|θ)/n). For exponential families, Ĵ(θ̂)
equals Fisher information J(θ̂). This can be confirmed
by noting (1) and

log p(xn|θ) = n(θ · x̄− ψ(θ)),

where x̄ is the average of x in xn.
Therefore, we have

wG(θ̂)√
det(Ĵ(θ̂))

=
1

CJ(G)
,

which implies

mG(xn)

p(xn|θ̂) ∼
(2π)d/2

nd/2CJ(G)
.

This asymptotics hold when θ̂ stays interior to G. For
the sequence for which θ̂ is near boundary of Θ, we use
different techniques.

6 Minimax Expected Regret

For the lower bound on maximin expected regret, The
result by Clarke and Barron [4] is known, i.e. for d-
dimensional smooth families,

lim inf
n→∞

(R
¯n(G)− d

2
log

n

2πe
) ≥ log CJ(G).

holds. This can be applied to d-dimensional steep ex-
ponential families. We note that in [4] corresponding



upper bounds were only obtained for G compact and
in the interior of Θ. Here, we give tools to handle the
boundary behavior. For lower bound, the work of [4]
is sufficient to handle arbitrary G.

Recall that the minimax expected regret is

R̄n(G) = inf
q

sup
θ∈G

Eθ(log
p(xn|θ)
q(xn)

).

We can transform it as

Eθ(log
p(xn|θ)
q(xn)

) = Eθ(log
p(xn|θ̂)
q(xn)

) + Eθ(log
p(xn|θ)
p(xn|θ̂) ).

Since we can evaluate an
upper bound on Eθ(log(p(xn|θ̂)/q(xn))) by using the
upper bound on minimax regret, if we obtain an up-
per bound on Eθ(log(p(xn|θ)/p(xn|θ̂))), then we can
evaluate the upper bound on R̄n(G).

In fact for one-dimensional exponential families, we
can show that the minimax strategies for pointwise re-
gret are minimax for expected regret as well.

7 Conclusions

To summarize the answer,

d

2
log

n

2π
+ log

∫ √
det(J(θ))dθ

given for the stochastic complexity in Rissanen [9] and
given in Clarke and Barron [4] for related minimax re-
dundancy (expected regret) remains valid for minimax
regret when dealing with exponential families of var-
ious boundary behavior and is achieved by modifica-
tions of Jeffreys prior in some cases analogous to thoes
suggested by Xie and Barron [11, 12].
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