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Abstract. We develop improved risk bounds for function estimation
with models such as single hidden layer neural nets, using a penalized
least squares criterion to select the size of the model. These results show
the estimator achieves the best order of balance between approximation
error and penalty relative to the sample size. Bounds are given both
for the case that the target function is in the convex hull C of a class �
of functions of dimension d (determined through empirical l2 convering
numbers) and for the case that the target is not in the convex hull.

1. Introduction

Penalized least squares model selection is commonly used to estimate a function
from data (Xi; Yi)

n
i=1, with a collection of models Fm, with m in some index

set M. Let f̂ = f̂m̂ be the estimate with model m̂ selected by penalized least

squares, achieving minm2M
1
n

Pn

i=1

�
Yi � f̂m(Xi)

�2
+
pen

n
(m)

n
; where penn(m)

is a penalty term. The data (Xi; Yi)
n
i=1 are assumed to be independently drawn

according to the distribution of random variables (X;Y ), with response variable
Y and input vector X . Performance is measured by the squared L2 norm
kf̂�fk2 =

R
jf̂(x)�f(x)j2�(dx) where the target function is f(x) = E[Y jX =

x] and � = PX is the distribution of X . Bounds of the form

Ekf � f̂k2 � C min
m2M

�
kf � fmk

2 +
penn(m)

n

�
(1)

characterize the risk of such functions estimates f̂ , where fm is the function in
Fm closest to f . Such bounds are available only for certain types of penalty and
to the extent that (1) holds, one wants small values and radius (penn(m))=n
equal to Kdm(logn)=n in accordance, roughly, with Schwartz's [14] BIC and
Rissanen's [13] MDL criteria. This bound is superior to what can be obtained
with the larger (penn(m))=n = K

p
dm(logn)=n from Vapnik's [15] structural

risk minimization (the derivation of which is similar, but here we more fully
take into account what is possible with squared error criteria). With smaller
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(penn(m))=n of order dm=n (as in Akaike's [1] criterion) lacking the logarithmic
factor, the bound (1) does not hold in general for estimation by nonlinearly
parameterized functions (such as neural nets) that lack the homogeneous metric
dimension property of Barron, Birge, and Massart [5].

Previously, bounds of the form (1) are in Barron [2],[4], and in [5], but there
the least squares optimization was restricted to discrete parameter sets or to
Lipshitz classes Fm (which permit L1 covering sets). For models with empir-
ical l2 or l1 covering numbers (thereby allowing for more general neural net
activation functions including step functions, which are not Lipshitz), bounds
of the form (1) were announced by Cheang and Barron [6], building on the
tools of Lee et al [11] concerning risk bounds for individual models without
model selection. The approach we develop here does allow for model selection
in a general setting which includes neural nets with step activation functions,
and yields much better constants.

We allow for the case that the target function is not in the closure of the
sequence of models Fm, m in M. Then having only a bound on Ekf̂ � fk
of the form (1), with C > 1, would be undesirable since kf � fmk is not
necessarily small. Thus, building on the work of Lee et al [11], we bound
the additional squared error beyond that achieved by the best function in a
convex set containing Fm. Let C be the convex closure of Fm and let fC be
the projection of f onto C. We bound the di�erence Ekf̂ � fk2 � kfC � fk2

which by Pythagorean inequality upper bounds the error Ekf̂ � fCk2 between

our estimate f̂ and the ideal fC. An accuracy of approximation a2m;C quanti�es
the di�erence in squared error achievable by functions in Fm and functions in
C. We �nd that

Ekf̂ � fk2 � kfC � fk2 � 4min
m

�
a2m;C +

penn(m)

n

�
+

4 �B2

n
: (2)

ConsequentlyEkf̂�fCk2 has the same bound. Now the presence of the constant
4 (greater than one) is not as much of a concern because a2m;C will be small
if fC is approximated well by members of Fm. Applications are given for one
hidden layer feed forward neural networks in section 4. A strategy of analysis
familiar from empirical process theory plays a basic role in our analysis.

2. A Brief Look at Empirical Process Bounds

Let G be a class of real-valued functions g on a measurable space D. Let
D1; D2; : : : ; Dn be independent random variables (data) with identical dis-
tribution. There is interest in the empirical process Pn(g), g 2 G, where
Pn(g) = 1

n

Pn

i=1 g(Di), and the uniformity of its closeness to the expecta-
tion P (g) =

R
g(D)P (dD). In statistical learning theory (see Vapnik [15])

probability bounds on supg2G (P (g)� Pn(g)) (Pollard [12], Dudley [7]), or on

supg2G
P (g)�Pn(g)

�(g) or supg2G
P (g)�Pn(g)
�+�2(g) (Vapnik [15], Haussler [8]), where �2(g)

is the variance of g, are useful in obtaining risk bounds for estimators that min-
imize empirical loss (or penalized empirical loss). We develop risk bounds in
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section 3 with the following lemma.
Lemma 1. Let a function class G be given. For every positive � , 
 and small

enough positive � such that �2 = � � 4�2


2
� 4�



is positive, we have

P

�
supg2G

P 0

n(g)�Pn(g)
�

2
+ 1

2

1

n

P
n

i=1
(g(D0

i
)�g(Di))

2 � 1

�

� P

8<
:supg2GD;D0;�

1

n

P
n

i=1
(g(D0

i)�g(Di))q
1

n

P
n

i=1
(g(D0

i
)�g(Di))

2

� �

9=
; � EN2 exp

�
�n�2

2

�
;

(3)

where GD;D0 is the collection of functions g 2 G restricted to the points
(D;D0) = (D1; : : : ; Dn; D

0
1; : : : ; D

0
n) and N2 = N2(�;GD;D0) is its minimal car-

dinality of cover GD;D0;� such that for each g in GD;D0 , there is a g� in GD;D0;�

with d(g; g�) � �. The metric d2n(g; g�) is de�ned using

d2n(g; g�) =

vuut 1

2n

 
nX
i=1

(g(Di)� g�(Di))2 +
nX
i=1

(g(D0
i)� g�(D0

i))
2

!
: (4)

Remark. Similar results, for example, in Lee et al [11], have the square root
of the actual variance (instead of the empirical variance) in the denominator
of (3). The advantage of our formulation is that in the application to function
estimation problems better mean squared error bounds are obtained using the
empirical variance in the lemma.

3. A Risk Bound

The target function is now denoted by f�(x) = E[Y jX = x]. Let fC be the
projection of f� onto C, a closed convex class. To each f in C, there corresponds
g : X � Y ! R, a relative loss function which assigns to each D = (X;Y ), the
regret

g(D) := (Y � f(X))2 � (Y � fC(X))2: (5)

Let Gm be the class of functions g corresponding to f in Fm, and let f̂m be
the least squares estimator, that is, f̂m minimizes 1

n

Pn

i=1(Yi � f(Xi))
2 over

f 2 Fm. The corresponding ĝm minimizes Pn(g) over g in Gm. Noting that
E(Y � f(X))2 = E[Y � f�(X)]2+ kf � f�k2, the expected regret of a function
f is

Eg(D) = kf � f�k2 � kfC � f�k2: (6)

The empirical loss with the training data fDigni=1 is Pn(g) = 1
n

Pn
i=1 g(Di)

and with an independent copy fD0
ig
n
i=1 is P

0
n(g) =

1
n

Pn

i=1 g(D
0
i). Note that

g(D) = (f(X)� fC(X))(f(X) + fC(X)� 2Y ): (7)

Under the assumption that functions in C are bounded by B and that jY j � B0,
then the right factor in (7) has magnitude jf(X) + fC(X)� 2Y j bounded, say,
by �B = 2(B0 +B) and jg(D)j � 2B �B.
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Let f̂C be the minimizer of
Pn

i=1 (Yi � f(Xi))
2
over f 2 C. The relative

empirical risk is

A2
m;C =

1

n

X
i=1

�
Yi � f̂m(Xi)

�2
�

1

n

X
i=1

�
Yi � f̂C(Xi)

�2
; (8)

and its expected value is denoted by a2m;C = EA2
m;C . If Fm consists of m-term

approximations (convex combinations of m terms) with terms selected from a
set � of bounded functions and C = conv(�) with j�(x)j � c for � 2 �, then

A2
m;C �

4c2

m
for all possible (Xi; Yi)

n
i=1 (see Lee et al [11] building on earlier

work of Jones [10] and Barron [3]) and hence

a2m;C �
4c2

m
: (9)

The estimator f̂m need not be an exact minimizer of 1
n

Pn
i=1(Yi�f(Xi))

2 over
f in Fm. What matters for the bounds is that one has control of the relative

empirical risk A2
m;C or of its expected value a2m;C . In particular, A2

m;C �
4c2

m

also hold for estimators based on the Jones [10] relaxed greedy algorithm.
The use of Lemma 1 is crucial in the proof of Theorem 1, which bounds the

risk when functions are estimated by penalized least squares criteria.
Theorem 1. Let the data be (Xi; Yi)

n
i=1, independent, having the distributions

of random variables (X;Y ). Let the target function be f�(x) = E[Y jX = x]
and let fC be the projection of f� onto C, a convex class of functions which
contains the subclasses Fm, and let f̂m be the least squares estimator minimiz-
ing 1

n

Pn

i=1(Yi � f(Xi))
2 over f 2 Fm for each m. Then let f̂ = f̂m̂, with m̂

the choice that minimizes the penalized least squares criterion

1

n

nX
i=1

(Yi � f̂m(Xi))
2 +

penn(m)

n
;

where the penalty penn(m) satis�es

X
m2M

exp

�
�
penn(m)

�B2
+
n�2m
2 �B4

+
n�m
�B2

+ logEN2

�
�m
�B
;Fm;D;D0

��
� 1: (10)

Then the expected loss of the estimator f̂m̂ compared to the best approximation
fC in the convex class C is

Ekf̂m̂ � f�k2 � kfC � f�k2 + 4Rn +
4 �B2

n
(11)

where Rn = minm

n
a2m;C +

pen
n
(m)

n

o
and thus Ekf̂m̂ � fCk

2 � 4Rn +
4 �B2

n
.

In particular if the model Fm is of dimension dm in the sense that the
covering number satis�es N2(�=2; Fm;D;D0) � ndm with � = 1

n
, then the risk

bound holds with penn(m) = Kdm logn.
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4. Application to Neural Network Estimation

A single hidden layer feedforward sigmoidal network is a family of functions
fm(x) of the form fm(x) =

Pm

i=1 �i�(ai � x � bi); x 2 Rd parametrized by
(ai; bi; �i)

m
i=1 with internal weight vectors ai in Rd, internal location parameter

bi in R, external weights �i, and �(z) = 1fz>0g. Thus fm(x) is a piecewise
constant function. The network model can be used to approximate the target
function f(x) and to estimate it based on data (Xi; Yi)

n
i=1, a random sample

from a joint probability distribution PX;Y with f�(x) = E[YijXi = x]. The
model classes are chosen to be

Fm =

(
fm(x) =

mX
i=1

�i�(ai � x� bi); x 2 R
d :

mX
i=1

j�ij � c; kfk1 < B

)
: (12)

Let
� = f��(ai � x� bi); x 2 R

d : ai 2 R
d; bi 2 R; j�j � cg: (13)

Thus we are taking convex combinations of functions from the class � consisting
of indicators of half-spaces multiplied by constants of magnitude less than c.
Theorem 2. Let the data be (Xi; Yi)

n
i=1, independently distributed with joint

probability distribution PX;Y and f�(x) = E[YijXi = x], and jY j � B0.
Let Fm be de�ned as in (12) and let C = conv�. Let fC be the projec-

tion of f� on C, and let f̂m be either the least squares estimator minimiz-
ing 1

n

Pn

i=1 (Yi � f(Xi))
2
over each f 2 Fm for each m, or more generally,

any estimator achieving A2
m;C �

4c2

m
, with sample size n � 8. Let f̂ = f̂m̂

with m̂ as the choice that minimizes the penalized least squares criterion

1
n

P
i=1

�
Yi � f̂m(Xi)

�2
+

pen
n
(m)

n
: Let m�

n be the particular value of m that

minimizes Rn = minm

n
a2m;C +

pen
n
(m)

n

o
, where the penalty penn(m), of order

�B2m(d+ 1) logn, is any choice not smaller than

�B2

�
(d+ 1)m log

2en

d+ 1
+m log

�
en2

2

�
+ log(m+ 1) + 4 + log

1

q(m)

�
; (14)

with q(m), such as q(m) = 6
�2m2 , chosen such that

P
m q(m) = 1. Then Rn

is of order minm

n
c2

m
+

�B2md log n
n

o
= 2c �B

q
d logn
n

and the expected loss of the

estimator f̂m̂ compared to the best approximation fC in the convex class C is

Ekf̂m̂ � f�k2 � kfC � f�k2 + 4Rn +
4 �B2

n
; (15)

and hence

Ekf̂m̂ � fCk
2 � 4Rn +

4 �B2

n
:

Remark. The proof of Theorem 2 is a direct application of Theorem 1 with
the appropriate calculation of the covering numbers of Fm which satis�es

N2

�
�m=2;Fm;D;D0

�
� e (m+ 1)

�
�B4e=2�2m

�m
(2en=d+ 1)

(d+1)m
; (16)
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using the bound in Haussler [9, Corollary 3]. In order to achieve nearly the
best tradeo� for the penalty in (10), we choose �m = min

�
2 �B2=n; �B2=2

�
.
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