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Abstract— This paper introduces a convenient strategy for1

coding and predicting sequences of independent, identically2

distributed random variables generated from a large alphabet3

of size m. In particular, the size of the sample is allowed to be4

variable. The employment of a Poisson model and tilting method5

simplifies the implementation and analysis through independence.6

The resulting strategy is optimal within the class of distributions7

satisfying a moment condition, and it is close to optimal for8

the class of all i.i.d distributions on strings of a given length.9

The method also can be used to code and predict strings with a10

condition on the tail of the ordered counts, and it can be applied11

to distributions in an envelope class. Moreover, we show that12

our model permits exact computation of the minimax optimal13

code, for all alphabet sizes, when conditioning on the size of the14

sample.15

Index Terms— Large alphabet, minimax regret, normalized16

maximum likelihood, Poisson distribution, power law, universal17

coding, Zipf’s law.18

I. INTRODUCTION19

LARGE alphabet compression and prediction problems20

concern understanding the probabilistic scheme of a huge21

number of possible outcomes. In many cases the ordered22

probability of individual outcomes displays a quickly falling23

shape, with a small number of outcomes happening most often.24

An example is Chinese character. A dictionary [1] containing25

85568 Chinese characters in total [2] only has a few thousand26

that are frequently used. Here we consider an i.i.d model27

for this problem. Despite the possible dependence among the28

symbols in an alphabet like in language, it serves as a start29

and can be extended to models that consider dependent rela-30

tionships. Some efforts to investigate alphabets with symbols31

having dependency with each other are included in [3].32

Most source codes assume that the length of the source text33

is known (to the encoder and decoder) or assume that the first34

step in encoding is to describe the source length. Here we will35

work with a model that has a distribution for the source length36

N and show that it has desirable properties of computation and37

analysis both when conditioned on N=n and unconditionally.38

The reason is that with a suitable (Poisson) distribution for N,39

the counts that were dependent conditionally become indepen-40

dent unconditionally. Here a suitable universal distribution for41
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independent counts is derived with a simple exact expression. 42

The use of independent counts permits demonstration of near 43

optimal properties for large alphabet settings. Meanwhile, with 44

conditioning on the sample size, our model is shown to exactly 45

match the Shtarkov conditionally minimax optimal distribution 46

for all alphabet sizes and to provide a computationally feasible 47

means to exactly compute the Shtarkov conditionals required 48

for optimal coding. 49

Suppose a string of random variables X = (X1, . . . , X N ) 50

is generated independently from a discrete alphabet A of size 51

m. We allow the string length N to be variable. Thus X is a 52

member of the set X ∗ of all finite length strings 53

X ∗ =
∞⋃

n=0

X n
54

=
∞⋃

n=0

{xn = (x1, . . . , xn) : xi ∈ A, i = 1, . . . , n}. 55

Our goal is to code/predict the string X . Note that the length 56

N is determined by the string. Our model for the data will 57

incorporate a distribution of N , though we will also examine 58

the case it is conditioned on a specific value. 59

Now suppose given N , each random variable Xi is gener- 60

ated independently according to a probability mass function 61

in a parametric family P� = {Pθ (x) : θ ∈ � ⊂ Rm} on A. 62

Thus 63

Pθ (X1, . . . , X N |N = n) =
n∏

i=1

Pθ (Xi ) 64

for n = 1, 2, . . . Of particular interest is the class of all 65

distributions with Pθ ( j) = θ j parameterized by the sim- 66

plex � = {θ = (θ1, . . . , θm) : θ j ≥ 0,
∑m

j=1 θ j = 1, 67

j = 1, . . . , m}. 68

As is familiar in universal coding, the normalized 69

maximum likelihood (NML) distribution defined as 70

Q∗
nml (X |N = n) = maxθ∈� Pθ (X |N = n)/C∗

m,n 71

provides the unique pointwise minimax strategy when 72

the value C∗
m,n = ∑

X maxθ∈� Pθ (X |N = n) is finite, and 73

log C∗
m,n is the minimax regret. Coding and prediction of 74

sequences of random variables usually involves computing 75

conditionals of Xi+1|X1, . . . , Xi as consecutive ratios of its 76

marginals [4], [5]. This task is generally hard since the 77

marginalization requires a sum of order mn , which appears 78

to take exponential time in n. A linear time algorithm (in n) 79

for computing the NML is proposed in [6], but it is not 80

practically useful when the alphabet size m is large. Bayes-like 81
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representation of NML has been found which makes possible82

an easy computation of NML, but only moderate size m is83

computationally feasible at this point [7]. Alternatively, one84

can use the Krichevsky-Trofimov’s method [8], which is the85

mixture with respect to the Dirichlet (1/2, . . . , 1/2) prior, to86

approximate the NML distribution. It has been shown that the87

Krichevsky-Trofimov probability assignment achieves regret88

which matches the asymptotic minimax value (to within o(1))89

when θ lies in the interior of the parameter space and has a90

higher regret (by a O(m) term) for boundary points [5]. As a91

reviewer points out, examination of Equation (2.3) in [8]92

shows that the regret matches ((m − 1)/2) log(n/m) to within93

a O(m) error when m = o(n). For m � log n, we aim to94

do much better, with regret that differs from the conditional95

optimum by not more than (1/2) log n. The distribution on96

the counts induced by the Dirichlet (1/2, . . . , 1/2) has the97

right behavior when the counts are large. But when many of98

the counts are small, as is the case when m is of order n or99

larger, we target a better level of performance, matching that100

of the NML distribution, but with a computationally feasible101

distributional set-up. We accomplish these aims by applying102

two tools: one is the factorization of the coding distribution of103

the string into a product of the distribution of the counts and104

the string given the counts. The distribution of the latter is105

uniform in accordance with the sufficiency of the counts. The106

other is a tilted Stirling ratio distribution which we introduce107

here. It simplifies the encoding of the counts as discussed108

later, it has suitable regret properties, and it agrees with the109

minimax optimal NML conditionally.110

Let N = (N1, . . . , Nm ) denote the vector of counts for111

symbols 1, . . . , m. The domain of the counts is denoted Nm =112

{(N1, . . . , Nm ) : Ni ≥ 0, i = 1, . . . , m}. The observed sample113

size N is the sum of the counts N = ∑m
j=1 N j . Both Pθ (X)114

and Pθ (X |N = n) have factorizations based on the distribution115

of the counts116

Pθ (X |N = n) = P(X |N) Pθ (N |N = n),117

and118

Pθ (X) = P(X |N) Pθ (N).119

The first factor of the two equations is the uniform distribution120

on the set of strings with given counts, which does not depend121

on θ . The vector of counts N forms a sufficient statistic122

for θ . Modeling the distribution of the counts is essential for123

forming codes and predictions. In the particular case of all i.i.d.124

distributions parameterized by the simplex, the distribution125

Pθ (N |N = n) is the multinomial(n, θ) distribution.126

In the above, there is a need for a distribution of the total127

count N . Of particular interest is the case that the total count128

is taken to be Poisson, because then the resulting distribution129

of individual counts makes them independent [9].130

Accordingly, we give particular attention to the target family131

Pm
� = {Pλ(N) : λ j ≥ 0, j = 1, . . . , m}, in which Pλ(N) is132

the product of Poisson(λ j ) distribution for N j , j = 1, . . . , m.133

It makes the total count N ∼ Poisson(λsum) with λsum =134 ∑m
j=1 λ j and yields the multinomial(n, θ) distribution by135

conditioning on N = n, where θ j = λ j /λsum . And the induced136

distribution on X is 137

Pλ(X) = P(X |N)Pλ(N ). 138

The task of coding a string is equivalent to providing a 139

probabilistic scheme. A coder Q for the string could also be a 140

(sub)probability distribution on X ∗ which assigns a probability 141

Q(X) to each string X and produces a binary string of length 142

log 1/Q(X) (we do not worry about the integer constraint). 143

Ideally the true probability distribution Pλ(X) could be used if 144

λ were known, as it produces no extra bits for coding purpose. 145

The regret induced by using Q instead of Pλ is 146

R(Q, Pλ, X) = log
1

Q(X)
− log

1

Pλ(X)
, 147

where log is logarithm base 2. Likewise, the expected regret is 148

r(Q, Pλ) = EPλ

(
log

1

Q(X)
− log

1

Pλ(X)

)
. 149

In universal coding the expected regret is also called the 150

redundancy. 151

Here we can construct Q by choosing a probability distrib- 152

ution for the counts and then use the uniform distribution for 153

the distribution of strings given the counts, written as Puni f . 154

That is 155

Q(X) = Puni f (X |N)Q(N ). 156

Then the regret becomes the log ratio of the counts probability 157

R(Q, Pλ, X) = log
Pλ(N)

Q(N )
158

= R(Q, Pλ, N ). 159

And the redundancy becomes 160

r(Q, Pλ) = EPλ log
Pλ(N)

Q(N )
. 161

In the pointwise regret story, the set of codelengths 162

log(1/Pλ(X)) provides a standard with which our coder is 163

to be compared. Given the family Pm
� , consider the best 164

candidate with hindsight Pλ̂(X), which achieves the max- 165

imum value, Pλ̂(X) = maxλ∈�(Pλ(X)) (corresponding to 166

minλ∈� log(1/Pλ(X))), where λ̂ is the maximum likelihood 167

estimator of λ, and compare it to our strategy Q(X). The max- 168

imization is equivalent to maximizing λ for the count proba- 169

bility, as the uniform distribution does not depend on λ, i.e. 170

max
λ∈�

(Pλ(X)) = Puni f (X |N) max
λ∈�

Pλ(N ) 171

= Puni f (X |N) Pλ̂(N ). 172

Moreover, the maximum likelihood estimate is λ̂ = N . Then 173

the problem becomes: given the family Pm
� , how to choose Q 174

to minimize the maximized regret 175

min
Q

max
X

R(Q, Pλ̂, X) = min
Q

max
N

log
Pλ̂(N)

Q(N )
, 176

or the redundancy, 177

min
Q

max
Pλ∈Pm

�

r(Q, Pλ) = min
Q

max
Pλ∈Pm

�

EPλ log
Pλ(N)

Q(N )
. 178
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For the regret, the maximum can be restricted to a set of179

counts instead of the whole space Nm . A traditional choice180

being Sm,n = {(N1, . . . , Nm ) : ∑m
j=1 N j = n, N j ≥ 0,181

j = 1, . . . , m} associated with a given sample size n, in which182

case the minimax regret is183

min
Q

max
N∈Sm,n

log
Pλ̂(N)

Q(N )
.184

The normalized maximum likelihood distribution185

Qnml (N) =
Pλ̂(N )

C(Sm,n)
1{N∈Sm,n}186

provides the unique pointwise minimax strategy for coding and187

predicting the counts given C(Sm,n) =∑N∈Sm,n
Pλ̂(N) being188

finite in accordance with [4]. Again, we have log C(Sm,n) as189

the minimax regret.190

We introduce a coding distribution that makes the counts191

independent. Because it lives on the whole space Nm , it is192

suboptimal on each Sm,n′ . Nevertheless, we show that it is193

nearly optimal for every Sm,n′ with n′ not too different from194

a target n. Moreover, our simple coding distribution may be195

preferable to use computationally when m is large even if the196

sample size n were known in advance.197

To produce our desired coding distribution we make use198

of some basic principles. One is that the multinomial family199

of distributions on counts matches the conditional distribution200

of N1, . . . , Nm given the sum N when unconditionally the201

counts are independent Poisson. Another is the information202

theory principle [10]–[12] that the conditional distribution203

given a sum (or average) of a large number of independent204

random variables is approximately a product of distributions,205

each of which is the one closest in relative entropy to the206

unconditional distribution subject to an expectation constraint.207

This minimum relative entropy distribution is an exponential208

tilting of the unconditional distribution.209

In the Poisson family with distribution λ
N j
j e−λ j /N j !,210

exponential tilting (multiplying by the factor e−aN j ) preserves211

the Poisson family (with the parameter scaled to λ j e−a).212

Those distributions continue to correspond to the multinomial213

distribution (with parameters θ j = λ j /λsum) when condi-214

tioning on the sum of counts N . A particular choice of215

a = ln(λsum/N) provides the product of Poisson distributions216

closest to the multinomial in regret. Here for universal coding,217

we find the tilting of individual maximized likelihood that218

makes the product of such closest to the Shtarkov’s NML219

distribution. This greatly simplifies the task of approximate220

optimal universal compression and the analysis of its regret.221

Indeed, applying the maximum likelihood step to a Poisson222

count k produces a maximized likelihood value of223

M(k) = kke−k/k!. We call this maximized likelihood the224

Stirling ratio, as it is the quantity that Stirling’s approximation225

shows near (2πk)−1/2 for k not too small. We find that this226

M(k) plays a distinguished role in universal large alphabet227

compression, even for sequences with small counts k. This228

measure M has a product extension to counts N1, N2, . . . , Nm ,229

Mm(N ) = M(N1)M(N2) · · · M(Nm ).230

Fig. 1. Relationship between Ca and a.

Although M has an infinite sum by itself, it is normalizable 231

when tilted for every positive a. Our model for universal cod- 232

ing is to arrange i.i.d. counts, where the probability distribution 233

for the N1, . . . , Nm is given by what we call the tilted Stirling 234

ratio distribution 235

Pa(k) = kke−k

k!
e−ak

Ca
, (1) 236

for k = 0, 1, 2, . . ., with the normalizer Ca = 237∑∞
k=0 kke−(1+a)k/k!. Figure 1 illustrates how Ca decreases 238

with respect to a. For each k, the numerator (before normaliz- 239

ing by Ca) can be calculated by adding k log(1+1/k)−1−a to 240

the previous one on the natural logarithm scale. The individual 241

terms in Ca behave like e−ak/
√

k. So the series is expo- 242

nentially convergent, and accurately computed by stopping 243

at k large compared to 1/a. 244

The coding distribution we propose and analyze is simply 245

the product of those tilted one-dimensional maximized Poisson 246

likelihood distributions for a value of a we will specify later 247

Qa(N ) = Pm
a (N) = Pa(N1) · · · Pa(Nm). 248

By allowing description of all possible counts N j ≥ 0, 249

j = 1, . . . , m, our codelength will be greater for some 250

strings than codelengths designed for the case of a given 251

sum N = n. Nevertheless, with N distributed Poisson(n), 252

the probability of the outcome N = n is approximately 253

P(N = n) ≈ 1/
√

2πn. So the allowance of description of 254

N (not just N1, . . . , Nm given N) adds log 1/P(N = n) 255

which is approximately 1
2 log 2πn bits to the description 256

length beyond the value which would have been ideal 257

log 1/Qa(N1, . . . , Nm |N = n) if N = n were known. 258

This ideal codelength constructed from the tilted maximized 259

Poisson, when conditioning on n, matches the Shtarkov’s nor- 260

malized maximum likelihood based on the multinomial. Thus, 261

Qa(N) may also be used in construction of Shtarkov’s NML 262

distribution and its conditionals as explained in Section IV-C. 263

For small alphabet with m << n, the minimax regret is 264

about 1
2 log n bits per free parameter (a total of m−1

2 log n + 265

constant); and for large alphabet when m ∼ n and n = o(m), 266

the minimax regret is about O(n) and n log m
n respectively [4], 267

[5], [13], [14]. The additional 1
2 log n bits is a small price 268
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Fig. 2. Relationship between a∗ and m
n .

to pay for the sake of gaining the coding simplification and269

additional flexibility.270

If it is known that the total count is n, then the regret is271

a simple function of n and the normalizer Ca . The choice272

of the tilting parameter a∗ given by the moment condition273

EQa

∑m
j=1 N j = n minimizes the regret over all positive a.274

This arises by differentiation because ∂
∂a log Ca is equal to275

−n/m log e. Moreover, a∗ depends only on the ratio between276

the size of the alphabet and the total count m/n. Figure 2277

displays a∗ as a function of m/n solved numerically. These278

values can be stored. Given an alphabet with m symbols and a279

string generated of length n, one can look at the stored values280

and find the a∗ desired according to the m/n given, and then281

use the a∗ to encode.282

If, however, the total count N is not given, then the decoder283

does not know the a∗. We use a mixture of a to account for284

the lack of advance knowledge of N , and details are discussed285

in Section III-D.286

When a is small, the tilting of the maximized Poisson287

likelihood distributions does not have much effect except in288

the tail of the distribution. Over most of the range of count289

values k it follows the approximate power-law 1/k1/2 as290

we have indicated. Power-laws have been studied for count291

distributions and are shown to be related to Zipf’s law for292

the sorted counts [15]. Our use of a distribution close to a293

power-law is not because a power-law is assumed to govern the294

data, but rather because of its near optimum regret properties295

within suitable set of counts, demonstrated here for the class296

of all Poisson count distributions, from which we obtain also297

its near optimality for the class of all multinomial distributions298

on counts.299

An interesting suggestion from a reader is to simply use a300

count distribution that is proportional to 1/
√

k on {1 ≤ k ≤ n},301

or equivalently proportional to 1/
√

2πk on {1 ≤ k ≤ n}, with302

some provision for the k = 0 case. This would be reasonably303

successful, in a part of the m = o(n) regime, in those cases304

in which all but o(log n) of the counts are all large.305

However, characteristic of large alphabet source coding is306

that there can be a large number of small counts. Certainly307

more than order log n and even up to order min {m, n}. For308

small counts (e.g. k = 0, 1, 2), the 1/
√

2πk differs enough309

from the optimum kke−k/k! (which exactly reproduces NML310

conditional on the sum) that the use of 1/
√

2πk would be 311

substantially sub-optimal in regret, while the kke−k/k! dis- 312

tribution (with suitable modification) has near optimal regret 313

properties for all large m and exact optimal regret properties 314

conditionally. 315

Shtarkov studied the universal data compression problem 316

and identified the exact pointwise minimax strategy [4]. 317

He showed the asymptotic minimax lower bound for the regret 318

is m−1
2 log n + O(1), in which the parameter set � is the 319

m − 1 dimensional simplex of all probability vectors on an 320

alphabet of size m. However, this strategy cannot be easily 321

implemented for prediction or compression [4], because of the 322

computational inconvenience of computing the normalizing 323

constant, and because of the difficulty in computing the succes- 324

sive conditionals required for implementation (by arithmetic 325

coding). Let m∗ be the number of different symbols that appear 326

in a sequence. Shtarkov [16] also pointed out that when m is 327

large, it is typical that m∗ is much less than m, and the regret 328

depends mainly on m∗ rather than m. Xie and Barron [5], [17] 329

gave an asymptotic minimax strategy for coding under both the 330

expected and pointwise regret for fixed size alphabet, which 331

is formulated by a modification of the mixture density using 332

Jeffery’s prior. The asymptotic value of both the redundancy 333

and the regret are of the form m−1
2 log n+Cm+o(1), where Cm 334

is a constant depending on m. Orlitsky and Santhanam [18] 335

considered the problem in a large alphabet setting. They 336

found the main terms in the minimax regret for m = o(n), 337

m ∼ n and n = o(m) cases take the forms m−1
2 log n

m , O(m) 338

and n log m
n respectively. Szpankowski and Weinberger [14] 339

provided more precise asymptotics in these settings. They also 340

calculated the minimax regret of a source model in which 341

some symbol probabilities are fixed. Boucheron, Garivier, 342

and Gassiat [19] focused on countably infinite alphabets with 343

an envelope condition; they used an adapted strategy and 344

gave upper and lower bounds for pointwise minimax regret. 345

Later on Bontemps and Gassiat [20] worked on exponentially 346

decreasing envelope class and provided a minimax strategy 347

and the corresponding regret. 348

In this paper, we introduce a straightforward and easy 349

to implement data model and associated method for large 350

alphabet coding. The purpose is four-fold: first, by allowing 351

the sample size to be variable, we are considering a larger 352

class of distributions. This is a less restrictive assumption than 353

presuming a particular length. But the method can also be 354

used for fixed sample size coding and prediction. In addition 355

to simple near optimal compression for the class of all strings 356

of a given length, our method also provides natural extension 357

to the conclusion of [19] and [20]. 358

Second, it unveils an information geometry of three key 359

distributions/measures in the problem: the unnormalized maxi- 360

mum Poisson likelihood measure Mm of the counts, the condi- 361

tional distribution Mcond of Mm given the total count equals n, 362

which matches Shtarkov’s normalized maximum multinomial 363

likelihood distribution, and a tilted distribution Qa , with the 364

tilting parameter a chosen to make the expected total count 365

equal to n. This tilted distribution Qa minimizes the relative 366

entropy from the original measure Mm within the class C of 367

distributions with the moment condition E[N] = n. Hence, 368
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Qa is the information projection of Mm onto C. More-369

over, since Mcond is also in C, the Pythagorean-like equality370

holds [10], [21], as verified also in Appendix C.371

D(Mcond ||Mm) = D(Mcond ||Qa) + D(Qa ||Mm). (2)372

The case of a tilted distribution (the information projection)373

as an approximating conditional distribution is investigated374

in [12] and [11]. A difference here is that our unconditional375

measure Mm is not normalizable.376

Thirdly, the strategy designed through an independent Pois-377

son model and tilting is much easier to analyze and compute378

as compared to the strategies based on multinomials. The379

convenience is gained through independence. To actually apply380

this two pass code, one could first describe the independent381

counts N1, . . . , Nm , for instance by arithmetic coding using382

Pa(N j ), and then describe X1, . . . , Xn given the counts, by383

arithmetic coding using the sequence of conditional distribu-384

tions for Xi+1 given both X1, . . . , Xi and all the counts (which385

is the sampling without replacement distribution, proportional386

to the counts of what remains after step i ).387

Finally, the fourth purpose for our Stirling ratio model388

is that, as we have said, conditioning on the total count389

N = n reproduces the Starkov normalized maximum like-390

lihood distribution. Accordingly, as shown in Section IV-391

C, this method provides a computationally feasible way to392

exactly compute the Starkov conditionals required for minimax393

optimal compression.394

An alternative to exponential tilting, if the source length n is395

given, is to use independent count distributions proportional to396

the Stirling ratio kke−k/k! 1{0≤k≤n}, in which we individually397

condition on N j ≤ n, j = 1, . . . , m, with no need for398

exponential tilting. We do not examine the regret properties399

of this alternative here. Nevertheless, we note that it retains400

the independence by conditioning on a square lattice of counts401

rather than the simplex condition of N1 + N2 + . . .+ Nm = n,402

while retaining exact agreement with NML, if one does do403

that further conditioning on the sum. So the modification of404

the Stirling ratio can be either by tilting or by this individual405

bounding of the counts. If the source length is not known to the406

receiver, the individual count bounding method would require407

that n be first described or that there be an agreed upon upper408

bound.409

Tilting does not force a bound on the counts to be available410

and works well for a range of sample sizes. Moreover, there411

is the allowance of mixing across choices of a as explained412

in Section III-D.413

This paper is organized in the following way. Section II414

introduces the model. Section III provides results on the regret415

for coding with our independent counts model. Section IV416

gives results for exact minimax coding by conditioning on the417

total count. Section V gives simulated and real data examples.418

And details of proof are left in the appendix.419

II. THE POISSON MODEL420

A Poisson model fits well into this problem. We have for421

each j = 1, . . . , m,422

N j ∼ Poisson(λ j ),423

independently, and N also has a Poisson distribution 424

N ∼ Poisson(λsum), 425

where λsum =∑m
j=1 λ j . Write λ = (λ1, . . . , λm ), we have 426

Pλ(X) = Puni f (X |N)

m∏

j=1

Pλ j (N j ). 427

We know that the MLE for each λ j is λ̂ j = N j , and the first 428

term is a uniform distribution which does not depend on λ. So 429

Pλ̂(X) = Puni f (X |N)

m∏

j=1

M(N j ). 430

where M(k) = kke−k/k!, k = 1, 2, . . . (as given in the 431

introduction) is the unnormalized maximized likelihood 432

M(N j ) = maxλ j Pλ j (N j ). 433

If we use a distribution Q(N ) to code the counts, then the 434

regret is 435

log
Pλ̂(X)

P(X |N)Q(N )
= log

∏m
j=1 M(N j )

Q(N )
. 436

And the redundancy is 437

EPλ log
P(X |λ)

P(X |N)Q(N )
= EPλ log

P(N |λ)

Q(N )
. 438

This method can also be applied to fixed total count 439

scenario, which corresponds to the multinomial coding and 440

prediction problem. Suppose N = n is given, the Poisson 441

model, when conditioned on N = n, indeed reduces to the 442

i.i.d sampling model 443

Pλ(X1, . . . , X N |N = n) = Pθ (X1, . . . , Xn). 444

The right hand side is a discrete memoryless source distrib- 445

ution (i.i.d. Pθ ) with probability specified by Pθ ( j) = θ j , for 446

j = 1, . . . , m. Note that a sequence X1, . . . , X N with counts 447

N1, . . . , Nm of total N = n satisfies 448

Pλ(X1, . . . , X N |N = n) 449

= Pλ(X1, . . . , Xn)

Pλsum (N = n)
450

= Puni f (X1, . . . , Xn |N1, . . . , Nm )Pλ(N1, . . . , Nm )

Pλsum (N = n)
. 451

The question left is still how to model the counts. The 452

maximized likelihood (the same target as used by Shtarkov) 453

is thus expressible as 454

Pλ̂(X1, . . . , X N |N = n) 455

= Puni f (X1, . . . , Xn |N1, . . . , Nm )
∏m

j=1 M(N j )

Pλ̂sum
(N = n)

. 456
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Now again if we use Q(N1, . . . , Nm ) to code the counts,457

then the regret is458

log
Pλ̂(X1, . . . , X N |N = n)

Puni f (X1, . . . , Xn |N1, . . . , Nm )Q(N1, . . . , Nm )
459

= log

∏m
j=1 M(N j )

Pλ̂sum
(N = n)Q(N1, . . . , Nm )

460

≈ 1

2
log 2πn + log

∏m
j=1 M(N j )

Q(N1, . . . , Nm )
(3)461

Here λ̂sum = n, hence the term 1
2 log 2πn is Stirling’s approx-462

imation of log 1/Pλ̂sum
(N = n) with a difference bounded463

by 1
12n log e by the Robbin’s refinement [22] of the Stirling’s464

approximation. The 1
2 log 2πn arises because here Q includes465

description of the total N while the more restrictive target466

regards it as given.467

III. REGRET RESULTS CODING WITH468

INDEPENDENT COUNTS469

A. Regret470

We start by looking at the performance of using indepen-471

dent tilted Stirling ratio distributions as a coding strategy,472

by examining the regret.473

Let S be any set of counts, then the maximized regret of474

using Q as a coding strategy given a class P of distributions475

when the vector of counts is restricted to S is476

R(Q,P, S) = max
N∈S

log
maxP∈P P(N )

Q(N )
.477

Theorem 1: Let Pa be the distribution specified in478

Equation (1) (Poisson maximized likelihood, tilted and nor-479

malized) and N denote the total count. The regret of using480

a product of tilted distributions Qa = ⊗m
j=1 Pa for a given481

vector of counts N = (N1, . . . , Nm ) is482

R
(
Qa,Pm

�, N
) = a N log e + m log Ca .483

Let Sm,n be the set of count vectors with total count n be484

defined as before, then485

R
(
Qa,Pm

�, Sm,n
) = an log e + m log Ca . (4)486

Let a∗ be the choice of a satisfying the following moment487

condition488

EPa

m∑

j=1

N j = m EPa N1 = n. (5)489

Then a∗ is the minimizer of the regret in expression (4). Write490

Rm,n = mina R(Qa,Pm
�, Sm,n).491

When m = o(n), the Rm,n is near m
2 log ne

m in the following492

sense.493

−d1
m

2
log e ≤ Rm,n − m

2
log

ne

m
494

≤ m log(1 +
√

m

n
), (6)495

where d1 = O
(
(m

n )1/3
)
.496

When n = o(m), the Rm,n is near n log m
ne in the following 497

sense. 498

m log
(

1 + (1 − d2)
n

m

)
≤ Rm,n − n log

m

ne
499

≤ m log
(

1 + n

m
+ d3

)
(7) 500

where d2 = O( n
m ), and d3 = 1

2
√

π
n2e2

m(m−ne) . 501

When n = bm, the Rm,n = cm, where the constant 502

c = a∗b log e + log Ca∗ , and a∗ is such that EPa N1 = b. 503

Proof: The expression of the regret is from the definition. 504

The fact that a∗ is the minimizer can be seen by taking partial 505

derivative with respect to a of expression (4). The upper 506

bounds are derived by applying Lemma 1 in the appendix. 507

Pick a = m/2n and use the first inequality, we get the upper 508

bound for m = o(n) case; pick a = ln(m/ne) and use the 509

second inequality, we have the upper bound for n = o(m). 510

Here ln is the logarithm base e. The rest of the proof is left 511

in Appendix B. 512

Remark 1: The regret depends only on the number of 513

parameters m, the total counts n and the tilting parameter a. 514

The optimal tilting parameter is given by a simple moment 515

condition in Equation (5). 516

Remark 2: The regret Rm,n is close to the minimax level 517

in all three cases listed in Theorem 1. The main terms in the 518

m = o(n) and n = o(m) cases are the same as the minimax 519

regret given in [14] except the multiplier for log(ne/m) here 520

is m/2 instead of (m − 1)/2 for the small m scenario. For the 521

n = bm case, the Rm,n is close to the minimax regret in [14] 522

numerically. 523

Remark 3: In fact, the regret provides an upper bound for 524

the redundancy. Recall that 525

EPλ log
Pλ

Qa
≤ EPλ max

λ
log

Pλ

Qa
526

= aλsum log e + m log Ca . (8) 527

Theorem 4 in Appendix D gives more detailed expression 528

of the redundancy for using Qa . While there is a reduction of 529

(m/2) log e bits as compared to the pointwise case, the error 530

depends on the λ j ’s. Nevertheless, expression (8) still provides 531

an uniform upper bound for the redundancy for all possible 532

Poisson means λ with a given sum. 533

Corollary 1: Let Pm
� be a family of multinomial dis- 534

tributions with total count n. Then the maximized regret 535

R(Qa,Pm
�, Sm,n) has an upper bound within 1

2 log 2πn + 536

1
12n log e above the upper bound in Theorem 1. 537

Proof: This can be easily seen by Equation (3). 538

B. Subset of Sequences With Partitioned Counts 539

One advantage of using the tilted Stirling ratio distributions 540

is the flexibility of choosing tilting parameters. As mentioned 541

in the introduction, the ratio m/n uniquely determines the 542

optimal tilting parameter. In fact, different tilting parameters 543

can be used for symbols to adjust for their relative importance 544

in the alphabet. Here we consider a situation in which the 545

empirical distribution has most probability captured by a 546

small portion of the symbols. This happens when the sorted 547

probability list is quite skewed. 548
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The following theorem holds for strings with constraints549

on the sum of tail counts
∑

j>L N j = n f . Small remainder550

occurs in the following regret bound when n f/(m − L) and551

L/(n − n f ) are both small.552

Theorem 2: Let Sm,n, f,L be a subset of count vectors with553

the tail sum controlled by a value 0 ≤ f ≤ 1, that554

is, Sm,n, f,L = {N = (N1, . . . , Nm ) : ∑m
j=1 N j = n,555 ∑

j>L N j = n f }. Here L is a number between 0 and m.556

The regret of using the tilted Stirling ratio distributions for557

count vectors in Sm,n, f,L given each L ∈ {0, . . . , m} is mainly558

L

2
log

(n − n f )e

L
+ n f log

(m − L)

n f e
. (9)559

The remainder is bounded below by r1 and above by r2, where560

r1 = −d1
L

2
log e + (m − L) log

(
1 + (1 − d2)

n f

m − L

)
,561

and562

r2 = (m − L) log

(
1 + n f

m − L
+ d3

)
563

+ L log

(
1 +

√
L

n − n f

)
.564

Here d1 is O

((
L

n−n f

)1/3
)

and d2 is O
(

n f
m−L

)
and565

d3 = 1
2
√

π
(n f e)2

(m−L)((m−L)−n f e) .566

Proof: Consider the product distribution,567

Qa,b(N ) =
m∏

j=1

Pa,b(N j )568

=
m∏

j=1

N
N j
j e−N j

N j !
e−aN j e−bN j 1{ j>L}

Ca,b, j
,569

where Ca,b, j = Ca if j ≤ L, and Ca,b, j = Ca,b is defined570

as
∑∞

k=0 kke−(1+a+b)k/k! if j > L. It is in fact using an L571

dimensional product distribution Qa on the first L symbols,572

and an m − L dimensional product distribution Qa+b on the573

rest.574

The regret is the same for any N ∈ Sm,n, f,L given a and b.575

That is,576

R(Qa,b,Pm
�, Sm,n, f,L )577

= na log e + L log Ca + n f b log e + (m − L) log Ca,b578

= R(Qa ,P L
�, SL ,n−n f ) + R(Qa+b,Pm−L

� , Sm−L ,n f ).579

Here P j
� denotes the class of j independent Poisson distri-580

butions and Sj,k is the set of j independent Poisson counts581

with sum equal to k. In the above case, j = L or m − L, and582

k = n − n f or n f .583

The choice of a, b providing minimization of584

R(Qa,b,Pm
�, Sm,n, f,L ) is given by the following conditions585

EPa,b

m∑

j=1

N j = n586

EPa,b

∑

j>L

N j = n f.587

This result can be derived by applying Inequality (6) and 588

Inequality (7) in Theorem 1 to R(Qa,P L
�, SL ,n−n f ) and 589

R(Qa+b,Pm−L
� , Sm−L ,n f ) respectively. 590

Remark 4: The problem here is treated as two separate 591

coding tasks, one for a small alphabet with L symbols having 592

a total count n − n f , and the other for a large alphabet with 593

m − L symbols with total count n f . The two main terms in 594

expression (9) represent regret from coding the two subsets of 595

symbols, with one set containing L symbols having relatively 596

large counts, and each symbol induces 1
2 log n(1− f )e

L bits of 597

regret, and the other containing the rest m − L symbols with 598

small counts and together cost n f log m
n f e extra bits. 599

Remark 5: We can add more flexibility to the code by 600

including some extra cost. One is to adapt the choice of L 601

between 0 and m, including log(m + 1) more bits for the 602

description of L. Next one can either work with the counts 603

in the given order, or use an additional log
(m

L

)
bits to 604

describe the subset that has the L largest counts. Then one 605

uses log 1/Qa,b(N ) bits to describe the counts. Rather than 606

fixing f , one can work with the empirical tail fraction f̂ (L), 607

where n f̂ (L) is the sum of the counts for the remaining 608

m − L symbols. Finally we can adapt the choices of a and b. 609

A suggested method of doing so is described in Section III-D, 610

in which the Qa,b above is replaced by a mixture over a range 611

of choices of a and b. 612

C. Envelope Class 613

Besides a subset of strings, we can also consider subclass of 614

distributions. Here we follow the definition of envelope class 615

in [19]. Suppose Pm, f is a class of distributions on 1, . . . , m 616

with the symbol probability bounded above by an envelope 617

function f , i.e. 618

Pm, f = {Pθ : θ j ≤ f ( j), j = 1, . . . , m}. 619

Given the string length n, we know the count of each sym- 620

bol follows a Poisson distribution with mean λ j = nθ j , 621

j = 1, . . . , m. This transfers an envelope condition from the 622

multinomial distribution to a Poisson distribution, the mean 623

for which is restricted to the following set 624

�m, f = {λ : λ j ≤ n f ( j), j = 1, . . . , m}. 625

Theorem 3: The minimax regret of the Poisson class �m, f 626

with envelope function f has the following upper bound 627

R(Qa ,�m, f , N ) 628

≤ min
L∈{1,...m}

L

2
log

n(1 − F̄(L))

L
+ nF̄(L) log e + r3, 629

where F̄(L) =∑ j>L f ( j), and 630

r3 = L

2(1 − F̄(L))
log e + L log

(
1 +

√
L

n(1 − F̄(L))

)
. 631

Proof: A tilted distribution with a = L/2n(1 − F̄(L)) 632

will give the result. Details are left in Appendix E. 633

Remark 6: Here in order for r3 to be small, the tail sum of 634

the envelope function F̄(L) needs to be small, although the 635

upper bound holds for general envelope function f and L. 636
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This result is of the same order as the upper bound637

inf L:L≤n
(
(L − 1)/2 log n + nF̄(L) log e

) + 2 given in [19].638

The first main term in the bound given in Theorem 3 also639

matches the minimax regret given in [5] for an alphabet640

with L symbols and n(1 − F̄(L)) data points by Stirling’s641

approximation, i.e.,642

L − 1

2
log

n(1 − F̄(L))

2π
+ log

�(1/2)L

�(L/2)
643

≈ L − 1

2
log

n(1 − F̄(L))e

L
+ 1

2
log

e

2
.644

The extra (1/2) log(n(1 − F̄(L))e/L) is because the tilted645

distribution allows m free parameters instead of m − 1.646

Remark 7: The best choice of tilting parameters for envelope647

class only depends on the envelope function and the number of648

symbols L constituting the ‘frequent’ subset. Unlike the subset649

of strings case discussed before, neither the order of the counts650

nor which symbols are those with largest counts matters, all651

we need is an envelope function decaying fast enough when652

the symbol probabilities are arranged in decreasing order so653

that L is a small integer and F̄(L) is also not big.654

D. Regret With Unknown Total Count655

We know that a∗ depends on the value of the ratio η = m/n.656

However, when the total count is not known, we can use a657

mixture of tilted distributions Q(N ).658

Q(N ) =
∫ m/2

0
Qa(N )

1

m/2
da659

=
∫ m/2

0

m∏

j=1

N
N j
j e−N j

N j ! Ca
e−aN j

2

m
da660

≤ M(N )
2

m

∫ ∞

0
e−Nh(a)da661

where h(a) = a + η log Ca , with η = m/N . Here the upper662

end of the integrated area is due to Lemma 2. We have663

a∗ ≤ m/(2n) ≤ m/2.664

For any realized non-negative total count N = k, the665

integrand is maximized at a∗
η with η = m/k, defined as666

solution to the Equation EPa N1 = 1/η. And the integral can667

be approximated by the Laplace method [23],668

Q(N ) = 2

m

⎛

⎝
m∏

j=1

N
N j
j e−N j

N j !

⎞

⎠ e−kh(a∗
η)

√
2π

ck
(1 + o(1)),669

where c = h′′(a)|a=a∗
η
. Note that the above approximation670

provides the leading term in an asymptotic expansion of Q(N ).671

Given η fixed, the leading term approaches the integral as k672

goes to infinity.673

Hence, the regret induced by Q(N ) is674

log
M(N )

Q(N)
≈ k(a∗

η + η log Ca∗
η
) + 1

2
log

ck

2π
+ log

m

2
.675

The main part k(a∗
η +η log Ca∗

η
) is the answer from Theorem 1676

if we had known the sample size k in advance. By definition,677

h′′(a) = η
∂2

∂a2 (log Ca) = ηV arPa(N1),678

Fig. 3. Relationship between a and Va .

since log Ca is the cumulant generating function of the tilted 679

Stirling ratio distribution. We plot Va = ∂2

∂a2 (log Ca) in 680

Figure 3. 681

E. Prediction 682

A sequence of conditional distributions for Xi+1 given 683

the past observations X1, . . . , Xi for i < n provides a 684

sequential prediction with cumulative log loss defined by 685∑
i<n log 1/P(Xi+1|X1, . . . , Xi ). 686

There are two natural ways of providing this sequence of 687

conditionals. One is to get the conditionals from the full 688

joint distribution Pn , which is horizon dependent as men- 689

tioned above. It produces cumulative log loss prediction regret 690

precisely the same as the regret of using Qa for data com- 691

pression. The other is by using the sequence of distributions 692

Pi+1(X1, . . . , Xi+1), i < n, called sequential NML [24]. The 693

sequential prediction distribution Pi+1(Xi+1 = x |X1, . . . , Xi ) 694

is proportional to Pi+1(X1, . . . , Xi , Xi + 1 = x) and accord- 695

ingly simplifies to 696

P(Xi+1 = x |X1, . . . , Xi ) = (Ni
x + 1)Ni

x +1/Ni
x

Ni
x

∑m
x̃=1(Ni

x̃ + 1)Ni
x̃ +1/Ni

x̃
Ni

x̃

. 697

Note that the prediction rule does not involve a. Previous 698

study by Shtarkov [4] shows that it is approximately pro- 699

portional for large Nx to the Nx + 1/2 rule of the Laplace- 700

Jeffreys Drichlet (1/2, . . . , 1/2) update rule (also called the 701

Krichevski-Trofimov rule). Yet it differs importantly from the 702

Laplace-Jeffreys rule for small counts Nx . 703

However, when using two tilting parameters to adjust for 704

relative importance of symbols within an alphabet, for exam- 705

ple, Qa,b in Section III-B, the predictive distribution does 706

depend on b, i.e., 707

P(Xi+1 = x |X1, . . . , Xi ) 708

= e−1{x>L}b(Ni
x + 1)Ni

x +1/Ni
x

Ni
x

∑m
x̃=1 e−1{x̃>L}b(Ni

x̃ + 1)Ni
x̃ +1/Ni

x̃
Ni

x̃

. 709

Hence, all symbols beyond L are discounted by an extra fact 710

of e−b when predicted by this rule. 711
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IV. RESULTS CODING CONDITIONED ON N = n712

A. Conditioning on n and Convolutions of Pa713

To account for strings of arbitrary length, our coding714

strategy Qa assigns a probability distribution to all finite715

length strings. However, when considering strings of a known716

length, we are interested to see what the distribution looks like717

conditioning on a particular number n.718

Let N n denote any count vector in Sm,n , and Nn
x denote the719

x’s component of N n , where x ∈ {1, . . . , m}. Also, let Mmul720

be the multinomial(n, θ) maximized likelihood. We have721

Qa(N n |N = n) = Qa(N n)

Qa(Sm,n)
= Mmul (N n)

Mmul (Sm,n)
. (10)722

In Equation (10), the factor of difference between the inde-723

pendent coding distribution Qa (Nn) and the Shtarkov NML724

is the factor Qa(Sm.n). This is the probability of the event that725

the sum N1 + N2 + . . . + Nm equals n, when the individual726

counts are independent according to the tilted Stirling ratio727

distribution Pa . As such it is equal to the m-fold convolution728

of Pa which we also denote by Pm
a (n). This is the distribution729

on the sample size induced by Pa .730

Taking logs, we see that the difference between the uncondi-731

tional and conditional codelengths is given by log(1/Pm
a (n)).732

This is the amount by which the unconditional code dif-733

fers from the Starkov minimax optimal code. One sees in734

Equation (10) that the relationship with the minimax optimal735

code holds for all a ≥ 0. The choice of a∗ to minimize736

the coding regret of log 1/Qa(N ) is the same as the choice737

maximizing Pm
a (n), i.e. minimizing the difference between the738

unconditional codelength and the Starkov codelength.739

Up to a specified n, the convolution Pm
a (k), for 0 ≤ k ≤ n,740

can be evaluated recursively in m, started with P1
a (k) = Pa(k),741

and iterating the evaluations742

Pm
a (k) =

k∑

k′=0

Pa(k ′)Pm−1
a (k − k ′) (11)743

for k = 0, 1, . . . , n. Each such update requires k multiply and744

adds of stored values for k = 0, 1, . . . , n, which is n(n + 1)/2745

such operations. So a total of mn(n + 1)/2 operations provide746

computation of Pm
a (k) for 0 ≤ k ≤ n.747

In accordance with the relationship between our conditional748

distribution and Starkov’s normalized maximum likelihood,749

this convolution provides a computationally feasible approach750

to evaluation of the Starkov normalizing constant C∗
m,n . Indeed751

it is seen that for any a ≥ 0,752

C∗
m,n = Pm

a (n)Cm
a ean n!

nnen
.753

We shall see in Subsection IV-C that evaluations of the754

convolutions Pm′
a for 0 ≤ m′ ≤ m also permits evaluations of755

the conditionals required for implementation of the minimax756

optimal code.757

B. Two Pass Codes758

The coding distribution can be implemented by a two pass759

code. The first pass codes the counts and then the second760

pass codes the string given the counts. For the coding of761

the counts an arithmetic code is constructed using either the 762

tilted Stirling ratio distribution (this is the easiest to implement 763

since this distribution makes the counts independent) or we 764

use the distribution conditioned on the counts. Details for 765

computation of the required conditional probabilities are in the 766

next subsection and associated details of arithmetic coding of 767

the counts are in Appendix G. 768

Then, for the second pass, use an arithmetic code again to 769

code the string given the counts. This distribution of the string 770

given the counts is again to code the string given the counts. 771

The distribution of the string given the counts is uniform for all 772

strings with the given counts. To implement arithmetic coding, 773

one uses the conditional probability for x less than or equal 774

to the observed Xi+1 given its past and the counts, i.e. 775

P (Xi+1 < xi+1|X1, . . . , Xi , (N1, . . . , Nm )), 776

and 777

P (X1, . . . , Xi , Xi+1|(N1, . . . , Nm )), 778

for each i = 0, . . . , n − 1 with n = ∑m
j=1 N j . 779

Indeed for i = 1, the P(X1 = x1|(N1, . . . , Nm )) = Nx1/n, 780

and generally let N j,i be the count of the number of occurrence 781

of j in X1, . . . , Xi , then the remaining counts are Nrem
j,i = 782

N j − N j,i , and P(Xi+1 = x |X1, . . . , Xi , (N1, . . . , Nm )) = 783

Nrem
j,i /(n − i). This is the consequence of the distribution 784

of X1, . . . , Xn given N1, . . . , Nm being uniform on the set 785

of strings with these counts. (It is in accordance with the 786

theory of sampling without replacement that arises with this 787

conditioning.) 788

These two pass codes make possible computationally fea- 789

sible coding of exact or approximate minimax optimal codes. 790

The simpler approximate minimax coding has desirable regret 791

properties in the regime of m ∼ n and n = o(m) as well as 792

m = o(n). Alternatively, the one pass Krichevsky–Trofimov 793

[8] sequential coding rule, which is the Laplace posterior 794

update rule with respect to the Dirichlet (1/2, . . . , 1/2) prior, 795

can also be used for m = o(n). What we propose here 796

is a simple scheme that achieves nearly minimal regret in 797

all situations. And its implementation is simple due to the 798

independence of the coding distribution of the counts. Com- 799

putation complexity for the codes is O(m log n + n log mn) as 800

explained in Appendix G. Conditioning to provide the exact 801

minimax strategy adds an additional (m + n) log mn bits to 802

compute the conditionals, and an additional complexity of 803

order mn2 to compute the convolutions of Pa . (The latter can 804

be precomputed once off-line and stored so as to not increase 805

the time complexity in repeated coding thereafter.) We explain 806

more about the conditional distributions required to implement 807

the exact minimax strategy here below in Subsection IV-C. 808

C. Computing Shtarkov’s Distribution 809

Using Qa Conditionals 810

Exact minimax compression is regarded as challenging 811

because of the potential difficulty with the Shtarkov joint 812

distribution in computing either the conditional distribution 813

of Xi given X1, . . . , Xi−1 for observations i ≤ n or the 814

conditional distribution of the counts N j given N1, . . . , N j−1 815
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for symbol indices j ≤ m. Here we show how to overcome816

this difficulty working with the counts.817

We have seen that, when n is given, the Shtarkov joint818

distribution Qnml (N1, . . . , Nm ) of the counts is the same819

as the Qa joint distribution of N1, . . . , Nm , conditioned on820

N1 + . . . + Nm = n. Consequently, it holds for every value of821

a ≥ 0 that822

Qnml (N j = n j |N1 = n1, . . . , N j−1 = n j−1)823

= Qa(N j = n j |N1 = n1, . . . , N j−1 = n j−1,

m∑

i=1

Ni = n)824

for each j = 1, 2, . . . , m. By the rules of probability this is825

the ratio826

Qa

(
N1 = n1, . . . , N j = n j ,

∑m
i= j+1 Ni = n −∑ j

i=1 ni

)

Qa

(
N1 = n1, . . . , N j−1 = n j−1,

∑m
i= j Ni = n −∑ j−1

i=1 ni

)827

Next use that Qa makes the N j independent with distribution828

Pa and that the sums N j+1 + . . .+ Nm have distribution Pm− j
a829

obtained by the m − j fold convolution of Pa . Canceling830

common factors the above ratio is simply831

Pa(n j )Pm− j
a (n − (n1 + . . . + n j ))

Pm− j+1
a (n − (n1 + . . . + n j−1))

. (12)832

Thus computation of the Shtarkov conditionals reduces to this833

ratio involving the Pm′
a for 1 ≤ m′ ≤ m, precomputed by834

convolution. Note that the dependence on n j is only in the835

numerator and that the denominator is simply the sum of836

the numerator for n j in the range between 0 and n − (n1 +837

. . .+ n j−1), in accordance with the rules of convolution. This838

identity for the Shtarkov conditionals is valid for any a ≥ 0.839

Note that when a = 0, the numerator and denominator are not840

probability distributions since Ca equals infinity, but the Ca841

terms cancel out through conditioning and the equality still842

holds.843

For numerical stability (to avoid ratios of very small num-844

bers) it is advantageous to choose a = a∗ for which the845

denominator is large. This a∗ may be evaluated at m/n. The846

choice maximizing the denominator at step j is a∗ evaluated847

at (m − j + 1)/(n − (n1 + . . . + n j−1)).848

We note here that when conditioning on the count sum n,849

the results are unchanged if the tilted Stirling ratio distribution850

is restricted to the set {0 ≤ k ≤ n}. This is because in the851

convolution calculation of Pm
a (k) in Equation (11), the index852

k is only needed for 0 ≤ k ≤ n. Truncating the distribution at853

n would change the normalizer, though, as we have said, the854

normalizer cancels out in the conditional distribution.855

V. APPLICATION856

A. Simulation857

Theorem 2 indicates we could optimize L to save coding858

cost when the ordered counts are skewed. We look at the859

performance of the tilted Stirling ratio distribution for alge-860

braically decreasing counts with simulated data. The alphabet861

is partitioned into two subsets – the frequent symbols and the862

infrequent ones. The tilting parameter is chosen approximately863

Fig. 4. Regret of using tilted Stirling ratio distribution for algebraically
decreasing counts.

Fig. 5. Regret of using tilted Stirling ratio distribution for an algebraically
decreasing envelope class.

according to the ratio of the number of symbols in a subset 864

and their total count. The regret of assigning different number 865

of symbols as ‘frequent’ (L) is shown in Fig. 4. We can see 866

that more skewness pushes the optimizing L smaller. 867

Figure 5 shows the upper bound of the minimax regret in 868

Theorem 3 for an algebraically decreasing envelope class. 869

B. Real Data 870

We also provide an example of using the tilted Stirling ratio 871

distribution to code Chinese literature. The target book is an 872

ancient collection of poems named , translated as the 873

Classic of Poetry. It is the existing earliest collection of Chi- 874

nese poetry and dates from the 10th to 7th centuries BC [25]. 875

The book is downloaded freely from http://wenku.baidu.com/. 876

Since many ancient words are rarely used today, the encoding 877

is done in GB18030 [26], the largest Chinese coded character 878

set. It contains 70244 characters, among which 2889 appear 879

in the book with a total character count 39161. There are 880

792 characters appear once and 479 appear twice. The smallest 881

regret happens at L = 2889 which is the total number of 882

characters appear. 883
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Fig. 6. Regret of Qa,b for L from 1 to m.

VI. DISCUSSION884

We have introduced the use of independent tilted maximized885

Poisson likelihood distributions (also here called tilted Stirling886

ratio distributions) Qa for coding the counts of sequences of887

independently distributed random variables. The performance888

of the coding distribution is close to the minimax level.889

Actually, the difference between the regret and the minimax890

level is the probability assigned to the set with the observed891

total count by the tilted distribution with the optimal tilting892

parameter, i.e.893

R(Mcond ,Pm
�, Sm,n) = R(Qa∗ ,Pm

�, Sm,n)894

+ log Qa∗(Sm,n).895

The optimal tilting parameter a∗ minimizes the difference896

among all possible a. Since Mcond reproduces the Shtarkov’s897

NML distribution for the multinomial family of distributions898

on counts, it is the exact pointwise minimax strategy. As shown899

in this paper, our findings about the regret produced by900

the distribution Qa , taken together with earlier work [4], [5],901

[14], [18], show that the difference is no larger than about902

log n in small alphabet case, and about 1
2 log n for moderate903

or large alphabets. The probability Qa(Sm,n) is the probability904

distribution for the total count N evaluated at N = n as905

induced by our distribution Qa . Further analysis could be906

done to characterize this distribution of the total count more907

precisely.908

APPENDIX A909

Fact 1: For any a > 0,910

1√
2π

∫ 1

0
t−

1
2 e−atdt <

√
2

π
.911

Proof:912

1√
2π

∫ 1

0
t−

1
2 e−at dt

u=at= 1√
2π

∫ a

0
(
u

a
)−

1
2 e−u 1

a
du913

= 1√
2πa

∫ a

0
u− 1

2 e−udu914

The integrand is smaller than u− 1
2 on [0, a], so the integral is 915

upper bounded by 916

1√
2πa

∫ a

0
u− 1

2 du =
√

2

π
. 917

918

Fact 2: For any a > 0, 919

∞∑

k=1

k− 1
2√

2πerk
e−ak ≥ 1√

2π

∫ ∞

1
t−

1
2 e−atdt 920

when 1
12k+1 ≤ rk ≤ 1

12k . 921

Proof: It suffice to show 922

∞∑

k=1

k− 1
2

e
1

12k

e−ak ≥
∫ ∞

1
t−

1
2 e−at dt (13) 923

Note that f (t) = t− 1
2 e−at is convex in t , so we have 924∫ k+1

k f (t)dt upper bounded by ( f (k)+ f (k +1))/2. Then we 925

only need to show the latter is upper bounded by f (k)e−1/12k. 926

This can be done by proving the following inequality. 927

(
1 +

(
k

k + 1

) 1
2

e−a

)
e

1
12k ≤ 2 928

for each k ≥ 1 and a > 0. Check that the left hand side is 929

increasing in k, its value goes up to 1 + e−a which is not 930

larger than the right hand side for every a ≥ 0. Therefore, 931

Inequality (13) follows. 932

Lemma 1 (Bounds for Ca): For any a > 0, the following 933

bounds hold for Ca 934

max(1, 1 −
√

2

π
+ 1√

2a
) < Ca < 1 + 1√

2a
, (14) 935

and 936

1 + e−(a+1) < Ca < 1 + e−(a+1) + 1

2
√

π

e−2a

1 − e−a . (15) 937

Proof: The argument to prove the upper bounds is 938

analogous to Fact 2. Indeed, 939

Ca =
∞∑

k=0

kke−k

k! e−ak (a)= 1 +
∞∑

k=1

k− 1
2√

2πerk
e−ak (16) 940

Here (a) is by Robbins’ refinement of Stirling’s approximation 941

where 1
12k+1 < rk < 1

12k . 942

The sum can be bounded by a gamma integral, so 943

Ca ≤ 1 + 1√
2π

∫ ∞

0
t−

1
2 e−atdt 944

= 1 + 1√
2π

�( 1
2 )

a
1
2

945

= 1 + 1√
2a

. 946
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Also, following expression (16), Ca has the following lower947

bound.948

Ca = 1 +
∞∑

k=1

k− 1
2√

2πerk
e−ak

949

(b)≥ 1 −
√

2

π
+
√

2

π
+ 1√

2π

∫ ∞

1
t−

1
2 e−at dt950

(c)
> 1 −

√
2

π
+ 1√

2π

∫ 1

0
t−

1
2 e−atdt951

+ 1√
2π

∫ ∞

1
t−

1
2 e−atdt952

= 1 −
√

2

π
+ 1√

2π

∫ ∞

0
t−

1
2 e−atdt953

= 1 −
√

2

π
+ 1√

2a
.954

Here again 1
12k+1 < rk < 1

12k , and Inequality (b) is due to955

Fact 2 and Inequality (c) is by Fact 1.956

Note that Inequality (14) is good for small a. For a moder-957

ately large a (a > 0.2), the following upper bound is better.958

Ca ≤ 1 + e−(a+1) +
∞∑

k=2

1√
2πk

e−ka
959

< 1 + e−(a+1) + 1

2
√

π

e−2a

1 − e−a
.960

961

Lemma 2: For any a > 0,962

e−(a+1) ≤ EPa N1 ≤ 1

2a
.963

Proof: Let k∗ = argmink∈N+
∣∣k − 1

2a

∣∣. We prove the upper964

bound by consider a within two different intervals. First, if965

a ≤ e(
√

π − √
2)2, we know966

∞∑

k=1

kk+1e−k

k! e−ak
967

=
k∗−1∑

k=1

kk+1e−k

k! e−ak +
∞∑

k=k∗+1

kk+1e−k

k! e−ak
968

+k∗k∗+1e−k∗

k∗! e−ak∗
969

(a)≤
k∗−1∑

k=1

k1/2e−ak

√
2π

+
∞∑

k=k∗+1

k1/2e−ak

√
2π

970

+k∗1/2e−ak∗
√

2π
(17)971

where (a) is an upper bound by Stirling’s approximation.972

Both sums in the last expression can be upper bounded973

by a gamma integral, and k∗1/2e−ak∗
is no larger than the974

maximum of the unnormalized Gamma(3/2, 1/a) density,975

which is achieved at 1/(2a). Hence, we have the following976

upper bound for expression (17). 977

∫ k∗

0

t1/2e−at

√
2π

dt +
∫ ∞

k∗
t1/2e−at

√
2π

dt + (1/2a)1/2e−1/2
√

2π
978

= �(3/2)

a3/2
√

2π
+ (1/2a)1/2

√
2πe

979

= 1

(2a)3/2 + 1√
2πe

1

(2a)1/2 980

Using this upper bound for Ca , we could prove an upper 981

bound for the expected value. 982

EPa N1 =
∞∑

k=1

kk+1e−k

k! Ca
e−ak

983

(b)≤
1

(2a)3/2 + 1√
2πe

1
(2a)1/2

1
(2a)1/2 + 1 −

√
2
π

984

= 1

2a

⎛

⎝
1

(2a)1/2 + 1√
2πe

(2a)1/2

1
(2a)1/2 + 1 −

√
2
π

⎞

⎠

︸ ︷︷ ︸
(A)

985

The lower bound for the denominator in (b) is attributed to 986

Lemma 1. A little algebra can show that term (A) is not larger 987

than 1 when a is restricted to (0, e(
√

π − √
2)2]. 988

If a > e(
√

π − √
2)2, we have arg maxk≥1 k1/2e−ak = 1. 989

Using Stirling’s approximation and split the sum into k = 1 990

and k > 1, we have 991

∞∑

k=1

kk+1e−k

k! e−ak
992

≤ e−a

√
2π

+
∞∑

k=2

k1/2e−ak

√
2π

993

(c)≤ 1√
2π

(
1

2
e−a +

∫ ∞

0
t1/2e−at dt

)
994

= 1√
2π

(
1

2
e−a + �(3/2)

a3/2

)
995

= 1

2
√

2π
e−a + 1

(2a)3/2 996

where (c) is because the sum
∑∞

k=2 k1/2e−ak is bounded above 997

by the integral
∫∞

1 t1/2e−atdt , and the difference between 998∫ 1
0 t1/2e−at dt and e−a (value of k1/2e−ak at k = 1) is less 999

than 1
2 e−a due to the concavity of t1/2e−at to the left of 1/2a. 1000

By this upper bound for the numerator and Lemma 1 again, 1001

EPa N1 ≤
1

(2a)3/2 + 1
2
√

2π
e−a

1
(2a)1/2 + 1 −

√
2
π

1002

= 1

2a

⎛

⎝
1

(2a)1/2 + 1√
2π

ae−a

1
(2a)1/2 + 1 −

√
2
π

⎞

⎠

︸ ︷︷ ︸
(B)

. 1003

Term (B) is not larger than 1 because 1√
2π

ae−a ≤ 1 −
√

2
π 1004

for all a. 1005
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For the lower bound,1006

EPa N1 =
∞∑

k=1

kk+1e−k

k! Ca
e−ak

1007

=
e−(a+1)

(∑∞
k=1

kk e−(k−1)

(k−1)! e−a(k−1)
)

Ca
1008

l=k−1=
e−(a+1)

(∑∞
l=0

(l+1)l+1e−l

l! e−al
)

Ca
1009

= e−(a+1)

(∑∞
l=0

(l+1)l+1e−l

l! e−al

∑∞
k=0

kk e−k

k! e−ak

)

︸ ︷︷ ︸
(C)

1010

(d)≥ e−(a+1) (18)1011

Here Inequality (d) is because term (C) is above 1. Hence,1012

the upper bound is deduced.1013

1014

APPENDIX B1015

PROOF OF THEOREM 11016

Proof: It remains to show the two lower bounds in1017

expression (6) and (7). In both cases we need a lower bound1018

for na∗ log e + m log Ca∗ , and we do it by lower bounding a∗
1019

and Ca∗ , respectively. Let ã = m
2n .1020

• Bounds for a∗
1021

We know a∗ is the solution for the following equation.1022

EPa∗ N1 = n

m
1023

By Lemma 2, we have1024

1

2a∗ ≥ n

m
1025

That gives1026

a∗ ≤ m

2n
= ã (19)1027

Since Ca is decreasing in a, we have1028

Ca∗ ≥ Cã >
1√
2ã

=
√

n

m
.1029

For any j ∈ {1, . . . , m}, and a > 0, we have1030

EPa N1 =
∞∑

k=1

kk+1e−k

k! Ca
e−ak

1031

(a)≥
∑∞

k=1
kk+1e−k

k! e−ak

1 + 1√
2a

1032

(b)=
∑∞

k=1
k

1
2√

2πerk
e−ak

1 + 1√
2a

(20)1033

Here (a) is attributed to Inequality (14), step (b) is by Stir-1034

ling’s approximation, and 1
12k+1 < rk < 1

12k . Pick k1 = a−1/3,1035

then the numerator of expression (20) can be lower bounded by 1036

∞∑

k=�k1�

k1/2

√
2πerk

e−ak
1037

≥
∞∑

k=�k1�

k1/2

√
2πe

1
12�k1�

e−ak
1038

≥ 1
√

2πe
1

12(k1−1)

∫ ∞

�k1�
t1/2e−at dt 1039

Taking the integral from 0 to ∞ and subtracting the part 1040

from 0 to k1 yields the lower bound 1041

1
√

2πe
1

12(k1−1)

(
�(3/2)

a3/2 −
∫ k1

0
t1/2e−at dt

)
1042

≥ 1
√

2πe
1

12(k1−1)

(
�(3/2)

a3/2 −
∫ k1

0
t1/2dt

)
1043

= 1
√

2πe
1

12(k1−1)

(
�(3/2)

a3/2 − 2

3a1/2

)
. 1044

Write ra = 1
12(k1−1) = a1/3

12(1−a1/3)
. By the above calculation, 1045

we have a lower bound for the expectation under the tilting 1046

distribution. For a∗, 1047

1√
2πera∗

(
�(3/2)

a∗3/2 − 2
3a∗1/2

)

1 + 1√
2a∗

≤ Ea∗ N1 = n

m
. 1048

Arranging the terms, we have 1049

1

2a∗ ≤ n

m

(
1 + √

2a∗
)

era∗ + 2

3
√

π
1050

(c)≤ n

m

(
1 + √

2ã
)

erã + 2

3
√

π
1051

Here (c) is because a∗ ≤ ã by Inequality (19). So, 1052

a∗ ≥ ã(
1 + √

2ã
)

erã + 4
3
√

π
ã

1053

By Taylor expansion, this is no smaller than 1054

ã(
1 + √

2ã
) (

1 + rã + O(r2
ã )
)+ 4

3
√

π
ã

1055

= ã

⎛

⎝1 −
rã + √

2ã + √
2ãrã + 4

3
√

π
ã + O(r2

ã )
(

1 + √
2ã
) (

1 + rã + O(r2
ã )
)+ 4

3
√

π
ã

⎞

⎠ 1056

≥ ã

(
1 − rã − √

2ã − √
2ãrã − 4

3
√

π
ã − O(r2

ã )

)
1057

When m = o(n), rã is the leading term, so 1058

a∗ ≥ ã (1 − O (rã)) = m

2n

(
1 − O

((m

n

) 1
3
))

1059

As a result, 1060

na∗ log e ≥
(

1 − O

((m

n

) 1
3
))

m

2
log e 1061

Hence we get Inequality (6). 1062
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The above lower bound works when a∗ is small (i.e., when1063

m is small compared to n), yet when it is large, the following1064

bound is better. Let a0 = ln m
ne .1065

From Lemma 2,1066

e−(a∗+1) ≤ n

m
.1067

Then1068

ea∗ ≥ m

ne
= ea0

1069

a∗ ≥ a0 (21)1070

Thus,1071

na∗ log e ≥ na0 log e = n log
m

ne
1072

• Bounds for Ca∗1073

Now we want to lower bound Ca∗ . Recall Inequality (18),1074

let term (C) be defined as1075

sa =
∑∞

l=0(l + 1)l+1e−le−al/ l!∑∞
k=0 kke−ke−ak/k! .1076

We have1077

sa∗e−(a∗+1) = EPa∗ N j = n

m
= e−(a0+1).1078

It gives1079

e−(a∗+1) = e−(a0+1)

sa∗
.1080

By definition,1081

Ca∗ ≥ 1 + e−(a∗+1) = 1 + e−(a0+1)

sa∗
. (22)1082

By Stirling’s approxmation, the numerator of sa is bounded1083

above.1084

∞∑

l=0

(l + 1)l+1e−l e−al

l!1085

≤ 1 + 1√
2π

∞∑

l=1

(1 + 1

l
)l l + 1√

l
e−al

1086

(d)≤ 1 + e√
2π

∞∑

l=1

l + 1√
l

e−al
1087

≤ 1 + e√
2π

( ∞∑

l=1

le−al +
∞∑

l=1

e−al

)
(23)1088

where (d) is because (1 + 1
l )

l is bounded above by e for1089

each l > 0. We know
∑∞

l=1 le−al(1 − e−a) is equal to1090

the expectation of a geometric random variable with success1091

probability 1 − e−a , which equals to 1/(1 − e−a) − 1. And1092 ∑∞
l=1 e−al(1 − e−a) = e−a . Hence, Equation (23) has the1093

following upper bound1094

1 + e√
2π

e−a(2 − e−a)

(1 − e−a)2 .1095

Using the above inequality and Ca∗ ≥ 1 + e−(a∗+1), we have 1096

1

sa∗
≥ 1 + e−(a∗+1)

1 + e√
2π

e−a∗
(2−e−a∗

)

(1−e−a∗
)2

1097

= 1 −
e√
2π

e−a∗
(2−e−a∗

)

(1−e−a∗
)2 − e−(a∗+1)

1 + e√
2π

e−a∗
(2−e−a∗

)

(1−e−a∗
)2

1098

= 1 −
e2√
2π

2−e−a∗

(1−e−a∗
)2 − 1

1 + e√
2π

e−a∗
(2−e−a∗

)

(1−e−a∗
)2

e−(a∗+1)
1099

Multiply (1 − e−a∗
)2 on both the numerator and denominator 1100

of the second term, we have the above expression equal to 1101

1 −
2e2√

2π
− 1 − ( e2√

2π
− 2)e−a∗ − e−2a∗

(1 − e−a∗
)2 + e√

2π
e−a∗

(2 − e−a∗
)

e−(a∗+1)
1102

= 1 −
2e2√

2π
− 1 − ( e2√

2π
− 2)e−a∗ − e−2a∗

e√
2π

+ (1 − e√
2π

)(1 − e−a∗
)2 e−(a∗+1). 1103

The denominator of the second term is lower bounded by 1 1104

since 0 < e−a∗
< 1. Therefore, 1105

1

sa∗
1106

≥ 1 −
(

2e2

√
2π

− 1 − (
e2

√
2π

− 2)e−a∗ − e−2a∗
)

e−(a∗+1)
1107

≥ 1 −
(

2e2

√
2π

− 1

)
e−(a∗+1)

1108

≥ 1 −
(

2e2

√
2π

− 1

)
e−(a0+1). 1109

The last inequality is due to Inequality (21). Now, using 1110

Inequality (22), we have 1111

Ca∗ ≥ 1 +
(

1 − c1e−(a0+1)
)

e−(a0+1)
1112

where c1 = 2e2/
√

2π − 1. From this lower bound on C∗
a and 1113

using a0 = log m
ne , we derive that 1114

m log Ca∗ ≥ m log
(

1 +
(

1 − O
( n

m

)) n

m

)
. 1115

Therefore, Inequality (7) follows. 1116

APPENDIX C 1117

Theorem 0: Let M(k) = kke−k/k! denote the Stirling ratio 1118

measure for k = 0, 1, . . . as defined before. Let Mm = ⊗m
j=1M 1119

assign a product measure to N = (N1, . . . , Nm ). Let Mcond be 1120

the probability distribution on N obtained from conditioning 1121

on 1
m

∑m
j=1 N j = α (suppose α is a value that the average of 1122

the N j ’s is possible to obtain). Define Pa(k) = M(k) e−ak

Ca
for 1123

an a chosen by the condition EPa N1 = α (suppose such an a 1124

can be obtained). Let Cα be a class of distributions with the 1125

expected value of the average of N j equal to α 1126

Cα = {P : EP
1

m

m∑

j=1

N j = α}. 1127
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Then, Qa = ⊗m
j=1 Pa is the information projection of M on1128

Cα in the sense of uniquely minimizing D(Q||M) among all1129

Q in Cα . In fact,1130

D(Q||Mm ) = D(Q||Qa) + D(Qa ||Mm)1131

for all Q ∈ Cα . In particular, we have1132

D(Mcond ||Mm) = D(Mcond ||Qa) + D(Qa ||Mm).1133

Therefore, equality (2) stands.1134

This is similar to what has been shown in [10], [11],1135

and [12]. Theorem 0 says the tilted distribution is closest to the1136

original distribution in relative entropy among all distributions1137

with the expected value of a function equal to α. Hence1138

it is the redundancy minimizing distribution over the class1139

of distributions with a given moment condition. Note that1140

D(Q||Mm ) and D(Qa ||Mm) could be negative since Mm is1141

not a probability measure, but D(Q||Qa) ≥ 0 for all Q ∈ Cα .1142

Proof: For any Q ∈ Cα and m ≥ 1,1143

D(Q||Mm )1144

=
∑

N1,...,Nm

Q(N1, . . . , Nm ) log
Q(N1, . . . , Nm )

Qa(N1, . . . , Nm )
1145

+
∑

N1,...,Nm

Q(N1, . . . , Nm ) log
Qa(N1, . . . , Nm )

Mm(N1, . . . , Nm )
1146

= D(Q||Qa) + EQ

(
log e−a

∑m
j=1 N j

)
1147

(a)= D(Q||Qa) + EQa

(
log e−a

∑m
j=1 N j

)
1148

(b)= D(Q||Qa) + D(Qa ||Mm)1149

≥ D(Qa ||Mm).1150

Here (a) is because Qa and Q are both in the convex set Cα,1151

and (b) holds since Qa(N j ) = M(N1, . . . , Nm ) e
−a
∑m

j=1 N j

Cm
a

.1152

APPENDIX D1153

REDUNDANCY1154

Theorem 4: Consider the family of distributions that makes1155

N1, . . . , Nm independent Poisson λ1, . . . , λm. Let λsum =1156 ∑m
j=1 λ j , and let Pm

λsum
denote the family. The redundancy1157

of using a tilted Stirling ratio distribution Qa on the counts1158

generated by any Pm
λ ∈ Pm

λsum
is mainly1159

r(Qa, Pλ) =
(
(−m

2
+ aλsum) log e + m log Ca

)

︸ ︷︷ ︸
(A)

,1160

with the error bounded by1161

m∑

j=1

(
1

3λ2
j

+ 5

6λ j
) log e.1162

Moreover, the minimizer of the redundancy is a∗, with a∗
1163

chosen by making EPa N1 = λsum/m.1164

When m = o(λsum), term (A) satisfies the following1165

inequality1166

0 ≤
∣∣∣∣(A) − m

2
log

λsum

m

∣∣∣∣ ≤ m log(1 +
√

m

λsum
). (24)1167

When λsum = o(m), term (A) satisfies the following 1168

inequality 1169

m log

(
1 + λsum

m

)
− λsum log e 1170

≤
∣∣∣∣(A) −

(
λsum log

m

λsum
− m

2
log e

)∣∣∣∣ 1171

≤ 1

2
√

π

λ2
sume2

m − λsume
log e. (25) 1172

Remark 8: The expression (A) for the redundancy agrees 1173

with the regret a∗λsum log e + m log Ca∗ except for the 1174

−m
2 log e. This difference is due to the difference in the numer- 1175

ator in which the expected log Pλ(·) is used in the redundancy, 1176

and log Pλ̂(·) is used in regret. Here the expected difference 1177

E log
Pλ̂(·)
Pλ(·) is shown to be near −m

2 log e. A similar phenom- 1178

enon occurs in [27]. 1179

Proof: The first part of the proof follows Lemma 3 in [5], 1180

and the second part resembles the proof of Theorem 1. 1181

1182

Eλ ln

∏m
j=1 Pλ j (N j )

Qa(N )
1183

=
m∑

j=1

(
λ j ln λ j

)−
m∑

j=1

Eλ j

(
N j ln N j

)+ aλsum (26) 1184

+ m ln Ca 1185

Following Lemma 3 in [5], by Taylor’s expansion, for each j , 1186

Eλ j

(
N j ln N j

)
1187

≥ λ j ln λ j + Eλ j (N j − λ j )(1 + ln λ j ) 1188

+ Eλ j

1

2
(N j − λ j )

2 1

λ j
+ 1

6
Eλ j (N j − λ j )

3(− 1

λ2
j

) 1189

= λ j ln λ j + 1

2
− 1

6λ j
. 1190

We also know by Jensen’s inequality that 1191

Eλ j

(
N j ln N j

) ≥ λ j ln λ j . 1192

Hence, 1193

Eλ j

(
N j ln N j

) ≥ λ j ln λ j + 1

2
+ max(− 1

6λ j
,−1

2
). 1194

And by Inequality (30) in [5], 1195

Eλ j

(
N j ln N j

)
1196

≤ λ j ln λ j + (Eλ j N j − λ j )(1 + ln λ j ) 1197

+Eλ j (N j − λ j )
2

2λ j
− Eλ j (N j − λ j )

3

6λ2
j

1198

+Eλ j (N j − λ j )
4

3λ3
j

1199

= λ j ln λ j + 1

2
+ 1

3λ2
j

+ 5

6λ j
. 1200
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Therefore,1201

−
⎛

⎝
m∑

j=1

1

3λ2
j

+ 5

6λ j

⎞

⎠1202

≤ Eλ ln

∏m
j=1 Pλ j (N j )

Qa(N)
1203

−
(
−m

2
+ aλsum + m ln Ca

)
1204

≤ min

⎛

⎝
m∑

j=1

1

6λ j
,

m

2

⎞

⎠ .1205

The fact that a∗ is the minimizer can be easily seen by1206

taking partial derivative with respect to a for the redun-1207

dancy expression (26). The two inequalities are attributed to1208

Lemma 1, by picking a = m/(2λsum) and a = ln(m/λsume)1209

respectively.1210

APPENDIX E1211

PROOF OF THEOREM 31212

Proof: The MLE for an envelope class is the following1213

λ̂ j = arg sup
λ j≤n f ( j )

Pλ j (N j ) = N j ∧ n f ( j),1214

where ∧ denotes the minimum.1215

We formulate a tilted distribution by multiplying the expo-1216

nential tilting factor e−aN j for each j ∈ {1, . . . , m} and1217

normalize it.1218

Pa(N j ) =

⎧
⎪⎨

⎪⎩

N
N j
j e−N j

N j !
e−aN j

Ca, j
if N j ≤ n f ( j)

(n f ( j ))N j e−n f ( j)

N j !
e−aN j

Ca, j
if N j > n f ( j)

1219

where Ca, j = ∑
N j ≤n f ( j )

N
N j
j e−N j

N j ! e−aN j +1220

∑
N j >n f ( j )

(n f ( j ))N j e−n f ( j)

N j ! e−aN j .1221

The regret of using independent Pa for each N j in N ∈ Sm,n1222

is1223

log
m∏

j=1

Pλ̂ j
(N j )

Pa(N j )
= na log e +

m∑

j=1

log Ca, j . (27)1224

Again, a∗ minimizes expression (27).1225

For each j and any positive a,1226

Ca, j =
∑

N j ≤�n f ( j )�

N
N j
j e−N j

N j ! e−aN j
1227

+
∑

N j >n f ( j )

(n f ( j))N j e−n f ( j )

N j ! e−aN j .1228

The sum only depends on the envelope function f ( j) for given1229

a and j .1230

Since (n f ( j))xe−n f ( j ) ≤ x xe−x for all x > 0, for any1231

symbol j with N j > n f ( j), we have1232

(n f ( j))N j e−n f ( j )

N j ! e−aN j ≤ N
N j
j e−N j

N j ! e−aN j .1233

Hence we have, 1234

Ca, j ≤
∞∑

N j =0

N
N j
j e−N j

N j ! e−aN j ≤ 1 +
√

1

2a
. 1235

The second inequality is due to Lemma 1. 1236

However, if n f ( j) is small, the following upper bound is 1237

better. For N j ≤ �n f ( j)�, 1238

∑

N j ≤�n f ( j )�

N
N j
j e−N j

N j ! e−aN j ≤
∑

N j ≤�n f ( j )�

N
N j
j

N j ! 1239

≤
∑

N j ≤�n f ( j )�

(n f ( j))N j

N j ! . 1240

For the second partial sum, we also have 1241

∑

N j >n f ( j )

(n f ( j))N j e−n f ( j )

N j ! e−aN j
1242

≤
∑

N j >n f ( j )

(n f ( j))N j

N j ! . 1243

Deduce, 1244

Ca, j ≤
∞∑

N j =0

(n f ( j))N j

N j ! = en f ( j ). 1245

Hence for any given a, j and L ∈ {1, 2, . . . , m}, the 1246

following upper bound holds. 1247

na log e +
m∑

j=1

log Ca, j 1248

≤ na log e 1249

+ log

⎛

⎝
L∏

j=1

(
1 +

√
1

2a

)
m∏

j=L+1

(
en f ( j )

)
⎞

⎠ 1250

= na log e + L log

(
1 +

√
1

2a

)
1251

+
⎛

⎝
m∑

j=L+1

n f ( j)

⎞

⎠ log e. 1252

Let a = L

2
(

n−∑ j>L n f ( j )
) , the result follows. 1253

APPENDIX F 1254

INCOMPATIBILITY OF Pn 1255

1256

∑

x∈A
Pn+1(X1, . . . , Xn, Xn+1 = x) 1257

=
∑

x∈A

1
( n+1

Nn
1 ...Nn

x +1...Nn
m

)
Qa(Nn

1 , . . . , Nn
x + 1, . . . , Nn

m )

Qa(Sm,n+1)
1258

= 1( n
Nn

1 ...Nn
x ...Nn

m

) Mm(Nn)

Mm(Sm,n)
︸ ︷︷ ︸

(A)

Mm(Sm,n)

Mm(Sm,n+1)︸ ︷︷ ︸
(B)

1259

∑

x∈A

(
Nn

x + 1

n + 1

M(Nn
x + 1)

M(Nn
x )

)

︸ ︷︷ ︸
(C)

. 1260
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Term (A) equals to the distribution of the count vector N n
1261

conditioning on its total equal to n through expression (10).1262

Hence, it suffices to check whether the rest equals to 1. This1263

is obviously not true, since term (C) equals1264

e−1

n + 1

∑

x∈A

(Nn
x + 1)Nn

x +1

Nn
x

Nn
x

1265

which depends on the specific value of the count vector N n ,1266

while the ratio Mm(Sm,n)/Mm (Sm,n+1) is a constant given m1267

and n. Hence the Pn’s are not compatible.1268

APPENDIX G1269

COMPUTATION COMPLEXITY1270

The computations of arithmetic coding ingredients of the1271

two pass codes are examined. One sees that each step involves1272

at most order n log m or order m log n bits operations. For1273

some steps of computation log factors of computation may1274

be possible to avoid, but we will not belabor such reductions.1275

Moreover, we quantify the additional cost of the Shtarkov code1276

(conditional on n) compared to the code that makes the counts1277

i.i.d.1278

As a preliminary step the counts are calculated for each1279

symbol, and we flag which symbols have positive counts.1280

(Recall that m∗ denotes the number of symbols with positive1281

counts). The data are initially in the form of n observations1282

X1, . . . , Xn of symbols Xi stored in binary, log m bits each.1283

Initializing the m counts at 0, in one pass through the data1284

increment by one the count addressed by each of the observed1285

Xi , for i = 1, . . . , n. This entails n log m binary operations1286

(counting addressing as log m).1287

As we have said the first pass is to code the counts1288

either by using the tilted Stirling ratio distribution or by1289

using the exact minimax distribution obtained by conditioning1290

on n.1291

Let’s examine the first pass using the tilted Stirling ratio1292

distribution by arithmetic coding [28]–[30]. The essence of1293

this encoding is the iterative calculation of the cumulative1294

probabilities to the left of N1, . . . , N j , for j = 1, . . . , m.1295

As discussed the probabilities Pa(i) for i = 1, . . . , n have1296

been precomputed. Each can be accessed from memory with1297

a log n bits address. Likewise for the cumulative marginal1298

probabilities defined by Pcum
a,1 (k) = ∑k−1

i=0 Pa(i) for k = 1,1299

. . . , n, with Pcum
a,1 (k) set to 0 for k = 0. Initialize the iterations1300

with Pcum
a,1 (N1). Then for j ≥ 1,1301

Pcum
a, j+1(N1, . . . , N j , N j+1)1302

=

⎧
⎪⎨

⎪⎩

Pcum
a, j (N1, . . . , N j ) if N j+1 = 0

Pcum
a, j (N1, . . . , N j ) if N j+1 > 0

+Q j
a(N1, . . . , N j )Pcum

a,1 (N j+1).

1303

It is only at the flagged symbols with positive counts that the1304

cumulative probability needs to be updated. So these updates1305

to the cumulative probabilities performs only m∗ ≤ min{n, m}1306

multiplication and addition operations, and the associated bit1307

complexity is at most min{n, m} log n.1308

Meanwhile the joint probabilities Q j
a(N1, . . . , N j ) used1309

here are products of Pa(N1) through Pa(N j ) for j = 1,1310

. . . , m. These can be computed by updates in which for 1311

j = 1, . . . , m − 1 we multiply by Pa(N j+1) for the next 1312

iteration (again accessed using log n bits operations). All of 1313

these factors, even those where the counts are 0, are needed 1314

to get the proper partial products. So this is an order m log n 1315

operation if performed this way. Here the m may be reduced 1316

to m∗ ≤ min{m, n} if we only encode the flagged positive 1317

counts (this would entail computations using the conditional 1318

distribution given the set of positive counts which we do not 1319

explore here). 1320

One sees that the core of the arithmetic coding is the use 1321

of updates based on the n stored Pa(i) and their associated 1322

Pcum
a,1 (k). 1323

Here we have focused on the mathematical essence. 1324

As explained in [29] and [30] practical implementation 1325

requires careful additional computation to avoid underflow. 1326

This involves computing also the cumulatives including the 1327

current (N1, . . . , N j ), that is Pcum,+
a, j (N1, . . . , N j ) equal to 1328

Pcum
a, j (N1, . . . , N j )+ Q j

a(N1, . . . , N j ). When their binary rep- 1329

resentations are in agreement in their leading � bits (these 1330

are the initial � code bits), the values may be scaled by 1331

subtracting the part in agreement and shifting left by �, i.e. 1332

multiplying by 2� (noting that in this case the first � bits 1333

of Q j
a(N1, . . . , N j ) are zeros). These rescalings are repeated 1334

whenever there is such agreement. A related matter we are 1335

not addressing here in detail is the number of bits of precision 1336

with which the Pa(i) (and their products and cumulatives) are 1337

to be computed, remarking only that the final number of bits 1338

of the Pcum
a,m should be of the order of the length of the code 1339

which is log 1/Qm
a (N1, . . . , Nm ). 1340

The second pass is to use arithmetic coding to encode the 1341

string X1, . . . , Xn given the counts N1, . . . , Nm . Note that 1342

being given the counts for the symbols ordered as 1, . . . , m 1343

provides a sorted list of the observed symbols with repeats 1344

counted. Initialize with P(X1|N1, . . . , Nm ) = NX1 /n, which 1345

is evaluated at X1. The corresponding cumulative probability 1346

to the left of X1 is 1347

F−(X1|N1, . . . , Nm ) = L X1

n
, 1348

where L X1 is the count of symbols to the left of X1. For the 1349

next step, the relevant counts are for X2, . . . , Xn . Accordingly 1350

we decrease the count of NX1 and decrease the cumulative 1351

counts Lx for all x > X1. Then for i ≥ 1, having decreased 1352

by 1 the counts Nrem
Xi

and the cumulative counts Lrem
x for 1353

x > Xi , we proceed to set the conditional probability of 1354

the next symbol given the past and the counts (as given in 1355

Subsection IV-B) to be the relative frequency of x in the 1356

remaining string 1357

Prob(Xi+1|X1, . . . , Xi , (N1, . . . , Nm )) = Nrem
Xi+1

n − i
. 1358

where Nrem
Xi+1

= NXi+1 −NXi+1,i . And this associate cumulative 1359

conditional probability to the left of Xi+1 is 1360

F−(Xi+1|X1, . . . , Xi , (N1, . . . , Nm )) = Lrem
Xi+1

n − i
. 1361
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Arithmetic coding requires calculation of the following1362

probabilities1363

Qcum(X1, . . . , Xi , Xi+1|(N1, . . . , Nm ))1364

= Qcum(X1, . . . , Xi |(N1, . . . , Nm ))1365

+ Pi (X1, . . . , Xi |(N1, . . . , Nm ))1366

F−(Xi+1|X1, . . . , Xi , (N1, . . . , Nm )).1367

Note that for each i , what is needed is the value of Lrem
Xi+1

1368

which requires the position of Xi+1 in the sorted list of1369

the remaining symbols. This requires log n computation time1370

for each symbol. Therefore, the computation complexity is1371

O(n log n). Again, these calculations are scaled at each step as1372

in Pasco [29] or Rissanen and Langdon [30] to avoid underflow1373

or overflow.1374

In a nutshell, the total computational complexity for this1375

two pass code is O (m log n + n log mn).1376

For implementation of Shtarkov’s code, this can be com-1377

puted in similar fashion, by two pass arithmetic coding using1378

the distribution conditional on N = n. What is different1379

is the first pass arithmetic code for the counts, where in1380

place of the Pa(i) the updates use the conditional probability1381

distribution for the count for symbol j +1 expressed (as shown1382

in Subsection IV-C) by1383

Qnml (i |N1, . . . , N j , N = n)1384

= Pa(i)Pm− j−1
a (n − (N1 + . . . + N j + i))

Pm− j
a (n − (N1 + . . . + N j ))

. (28)1385

Adding these on step j for i < N j+1 produces the conditional1386

cumulatives Qcum
nml (N j+1|N1, . . . , N j , N = n) which replace1387

Pcum
a,1 (N j+1) in the code update. Likewise multiplying by this1388

at i = N j+1 updates the otherwise elusive joint probabilities1389

Qnml (N1, . . . , N j |N = n).1390

As before we assume the values of Pm′
a (k) for m′ = 1,1391

. . . , m and k = 0, . . . , n have been precomputed and stored.1392

So a main difference between the conditional and uncon-1393

ditional distribution codes is that in this conditional case1394

we have a storage of size mn for these Pm′
a (k) rather than1395

size n for the P1
a (k). Accessing these entails log mn bit1396

addressing. Computing the above conditional probabilities for1397

i = 0, . . . , N j+1 is then 1 + N j+1 operations, which sum1398

across j to be order m + n operations on these values. So the1399

total additional cost is only of order (m + n) log mn above the1400

value using the independent distribution.1401
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