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For function estimation using penalized squared error criteria, we derive
generally applicable risk bounds, showing the balance of accuracy of approx-
imation and penalty relative to the sample size. Attention is given to linear
combinations of terms from a given class (such as used in neural network
models, projection pursuit regression, function aggregation and multiple lin-
ear regression). The risk bounds apply to forward stepwise selection and other
relaxed greedy algorithms with penalty on the number of terms, and to `1-
penalized least squares, for which we develop a fast algorithm.

1. Introduction. Flexible regression models are built by combining simple
functional forms. Fitting such models to data in a training sample, there is a role for
empirical performance criteria such as penalized squared error in selecting compo-
nents of the function from a given library of candidate terms. With suitable penalty,
optimizing the criterion adapts the total weights of combination or the number of
components as well as the subset of terms to include. The aim is to produce func-
tion estimates which accurately predict responses for new input values with the
same distribution as the sample. This generalization capability is characterized by
the mean squared error as the statistical risk. In this context, our paper has several
interwoven objectives:

1. To analyze performance of penalized least squares estimators with theory of
acceptable penalties, such that the estimator optimizing the empirical crite-
rion has risk characterized by a corresponding population property of trade-
off of approximation and penalty relative to the sample size.

2. To allow for flexible function fitting using linear combinations of terms se-
lected from various large or even infinite libraries of functions.

3. To establish that a greedy term selection solves the `1 penalized squared error
problem with bounds on accuracy that compare favorably with competing
convex optimization algorithms for large libraries.

4. To demonstrate that different estimators, one based on forward stepwise se-
lection with penalty on the number of terms and another with penalty on the
`1 norm of coefficients, both achieve approximately the same risk, for target
functions that have control on the `1 norm of coefficients and for functions
in the interpolation classes between these and all of L2.
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2 HUANG, CHEANG AND BARRON

Suppose data (Xi, Yi)n
i=1 are independently drawn from the distribution of X, Y .

To produce predictions of the real-valued response Y from its input X , the target
regression function f∗(x) = E[Y |X = x] is to be estimated. It is assumed the
function f∗ has magnitude bounded by a constant B. The domain X is an arbitrary
measurable space. The noise or error ε = Y−f∗(X) is assumed to satisfy moment
conditions: namely, that var(ε|X) is bounded by a constant denoted σ2 and higher
order moments satisfy a Bernstein condition, as given in Section 2.

The empirical average squared error of a function f as a candidate fit to the ob-
served data is ‖Y−f‖2

n = (1/n)
∑n

i=1(Yi−f(Xi))2. Given a collection of functions
F , a penalty penn(f), f ∈F , and data, a penalized least squares estimator f̂ arises
by optimizing ‖Y−f‖2

n+penn(f)/n. For parameterized functions fβ with penalty
Penn(β), it is a plug-in rule f̂ = fβ̂ , where β̂ optimizes ‖Y −fβ‖2

n + Penn(β)/n,
accommodated by setting penn(f) = inf{Penn(β) : fβ =f}.

Estimators f̂ optimizing the criterion are then truncated to produce the final fit
T f̂ , where Tf = min{B′, |f |}sgn(f) truncates the functions at a level B′ chosen
to be not less than B. Let ‖f‖2 =

∫
f2dP be the squared L2(P ) norm, where P

is the distribution of X . With the truncation, using the squared L2(P ) loss, and
taking the expectation with respect to the distribution of the data, the statistical risk
of an estimator is E‖T f̂ −f∗‖2, a function of f∗ we wish to analyze.

Concerning objective (1), given positive δ, we determine in Section 2 a condition
for a penalty, such that an estimator f̂ approximately achieving the minimum of

‖Y − f‖2
n + penn(f)/n

will satisfy a corresponding risk inequality

(1.1) E‖T f̂ −f∗‖2 ≤ (1 + δ) inf
f∈F

{
‖f−f∗‖2 + E penn(f)/n

}
.

Thus the accuracy is controlled by the tradeoff between approximation error and
penalty divided by n. When the target f∗ is in F , then f =f∗ yields risk bounded
by penn(f∗)/n. If penn(f∗) is large compared to n, then the minimization favors
approximations f of smaller penn(f) to achieve an appropriate balance in (1.1).

The penalty condition we develop has an information-theoretic flavor. Given F ,
we require that there be a countable approximating set F̃ of representors f̃ , which
we call a variable-distortion, variable-complexity cover of F , and a complexity
function Ln(f̃), interpretable as a description length for f̃ , with the property that
for each f in F there is an f̃ in F̃ such that penn(f) is not less than γLn(f̃) +
∆n(f, f̃), where γ is a constant (depending on B, B′ and δ) and ∆n(f, f̃) is given
as a suitable empirical measure of distortion (based on sums of squared errors).
Accordingly, accurate estimators are obtained when functions f near the target are
close to functions of moderate complexity relative to n.
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RISK, GREEDY SELECTION, AND `1-PENALIZATION 3

Associated with property (1.1), the quantity inff∈F{‖f−f∗‖2 + Epenn(f)/n}
is an index of resolvability of f∗ by functions in F with sample size n. This ter-
minology is in accord with usage for minimum description length (MDL) proce-
dures with countable F in [13], [7] and for Bayes predictors in [10]. Our penalty
condition yields for uncountable F an extension of previous conditions based on
information-theoretic complexity. Parallel to our penalized least squares work is the
development of analogous conclusions for penalized log likelihood [14], extending
risk analysis of MDL criteria to uncountable families of candidate functions.

Suppose F is the linear span of a library H of candidate terms h(x). These
terms arise as candidate basis functions for approximating the target. Evaluated at
(Xi)n

i=1, the library yields a data-set of explanatory variables for regression, which
may include transformations and interactions among original variables.

The library cardinality is denoted M or sometimes p and, for possibly infinite
libraries of correlated variables, the effective cardinality Mn is the size of an em-
pirical cover of H at a suitable precision. For libraries of metric dimension d, at
precision 1/n the effective cardinality is of order nd. Two examples, among several
we discuss, are libraries of terms for product splines with variable knot locations
and sigmoidal neural nets, with d the number of original input variables.

For flexible function approximation, a large library of candidate terms is natural.
Typically Mn is much larger than the sample size n; though log Mn is arranged to
be small compared to n, as (log Mn)/n arises in the resolvability for the penalties
we study. The dependence on library size only through the logarithm allows for
very large libraries. Such large size increases the opportunity to find accurate linear
combinations of moderate penalty. This tradeoff is facilitated by approximation
properties of sparse linear combinations. Sparse combinations have a number of
terms m small compared to both the library size and the sample size.

For subsets of size m, the log cardinality log
(Mn

m

)
is near m log(Mn/m) plus a

term of order m. This log cardinality plays a role in our analysis, both in directly
giving the main term of a penalty based on the number of terms m as in Section 5
and, through a similar expression, as a key part of the demonstration in Section 4
of the validity of a penalty based on the `1 norm of coefficients.

One might think to favor the `1 penalization because of the convexity of opti-
mization. However, we shall see that approximately the same accuracy is available
by fast forward stepwise algorithms with either subset-size or `1 penalties. There
are circumstances slightly favoring one of these penalties over the other, or even a
combination of the two, as discussed after development of our main results.

Penalties for linear combinations are typically based on norms of the coeffi-
cients, and come in three varieties: (A) penalties on the `1 norm, or other `p norms
with 0<p<2, quantifying linear combinations that are close to sparse; (B) penal-
ties based primarily on the number terms m in linear combination, that is, the `0
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4 HUANG, CHEANG AND BARRON

norm of the coefficients, exactly capturing sparsity; and (C) penalties that capture
traditional notions of roughness, through weighted `2 norms, which, in some cases,
correspond to norms on derivatives or to reproducing kernels. Cases (A) and (B)
make flexible use of possibly large libraries; whereas, for case (C) there is less
flexibility as we shall discuss.

Functions in the linear span of H take the form f(x) = fβ(x) =
∑

h βhh(x)
where each β=(βh)h∈H has a subset in which the coefficients βh are non-zero.

Case (A): The penalty is based on the weighted `1 norm ‖β‖1 =
∑

h |βh|ah of the
coefficients, for given positive weights ah, usually taken to be a constant or a norm
of h. For given ah, the L1,H norm of functions f in the linear span of H is defined
by ‖f‖1,H = inf{‖β‖1 : fβ = f}, where the infimum is over all representations of
f in F . We consider Penn(β)/n = λ‖β‖1 and determine acceptably small values
for the multiplier λ = λn for information-theoretic validity of the penalty. The `1

penalty is in agreement with Tibshirani’s LASSO [79] and Chen and Donoho’s basis
pursuit [32, 33] as well as a precursor in Barron [6, 9] which involved optimization
on a discrete net. With the continuum of parameters β, use of the `1 penalty is
equivalent to solving the convex optimization

(1.2) min
β

{
‖Y −

∑
h

βhh‖2
n + λ‖β‖1

}
.

The choice of λ should be typically of order
√

(log Mn)/n, which allows for large
libraries, though if the library size is of order

√
n or smaller, then λ may be set to

be of order 1/
√

n, without the log factor. In Section 4 we show that such penalties
are proper and hence (1.1) holds (adjusted by a negligible term of order log Mn

n ),
yielding a risk performance characterized by the corresponding tradeoff between
squared approximation error plus the `1 penalty:

(1.3) inf
f∈F

{‖f−f∗‖2 + λ‖f‖1,H}.

In verifying the requirement, the `1 penalty arises in a variable-complexity cover
as a bound on a complexity-based term m

n log M
m +O(m

n ) plus a squared approx-
imation error ‖f‖2

1,H/m, at a near-optimal choice of m = ‖f‖1,H
√

n/ log M . It
yields risk comparable to what is achieved by stepwise selection algorithms with a
subset-size penalty, in accordance with objective (4) above.

We show improved rate based on library covering properties. Indeed, let εm be
the radius of the cells in an empirical L2 cover of H with m representors. We ex-
tend the validity of the criterion by showing all λ ≥ εmn

√
(log Mn)/n provide

proper penalties. This expression arises as an optimized tradeoff of m(log Mn)/n
and an improved squared approximation error bound ε2

m‖f‖2
1,H/m, achieved at an
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RISK, GREEDY SELECTION, AND `1-PENALIZATION 5

mn now of order smaller than
√

n/ log Mn for finite-dimensional libraries. This
refinement makes a noticeable improvement when the dimension is low. For exam-
ple, when H is the collection of indicators of half spaces in Rd, the rate matches
(to within a log factor) what is best possible for functions of bounded variation on
the line (d = 1). When the dimension is high the risk is of order close to what is
achieved with the simpler form of λ of order

√
(log Mn)/n. For large d, the rates

are close to the minimax lower bounds in [87] for variation balls.
This improved rate of `1 penalized least squares is also achieved by all-subset se-

lection and by our new greedy implementation of `1 penalized least squares, while
in contrast the bounds available for stepwise selection algorithms with subset-size
penalty lock in at the slightly slower rate.

For other papers on `1 penalized least squares, see Bunea, Tsybakov, Wegkamp
[24, 25] and references cited therein. The result that the risk of `1 penalized least
squares is bounded by the population tradeoff between approximation error and
`1 norm is new. Along with our present manuscript, current work in this direction
is in a manuscript by Zhang [89] independent of our development, plus our paper
[14] providing risk bounds for `1 penalized log-likelihood. Fascinating prior results
are in the cited [24, 25], from which we learned some detail of choice of λ in
the small M case. They do not seek results of the type (1.1) in the form (1.3).
Rather, imposing additional conditions (e.g., that pairs of candidate terms in the
library are nearly orthogonal), they examine `1 penalized least squares as a subset
selection rule for which, after some analysis, they apply conclusions of Birgé and
Massart [20, 21] to obtain a bound that is not a minimum of approximation error
plus `1 norm, but rather a minimum of approximation error plus a multiple of
log subset size. In a roundabout way, bounds in the form (1.3) could follow from
their bounds, by invoking approximation properties for suitable subsets, but that
approach is limited to libraries that satisfy their additional conditions.

Estimators other than `1 penalized least squares have been shown also to achieve
risk of order

√
(log M)/n governed by `1 properties. These include the aggrega-

tion method of Juditsky and Nemirovski [55], the exponentiated gradient on-line
learning algorithm of Kivinen and Warmuth [56], and greedy algorithms with a
line of development traced in [59] and [12] and further developed here. Moreover,
under specific assumptions on the noise distribution, one can use Cesàro averages
of Bayes predictive density estimates to obtain general risk bounds analogous to
(1.1) as in [10] with applications to various regression settings, including `1 con-
trol on risk, as developed in the sequence of papers by Yang et al [84, 87], Catoni
[28], and Tsybakov [80]. In problems of nonparametric classification, Koltchinskii
and Panchenko [57] have related results, including analogous improvements from
covering properties with `1 control.
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6 HUANG, CHEANG AND BARRON

Case (B): We show the validity of subset-size penalties for which the main terms
takes the form

(1.4) C

{
log

(
Mn

m

)
+ m log n

}
,

where C is a constant depending on B′ and δ. This penalty has a more direct
description-length interpretation, in accordance with the MDL principle [14, 15].
Representors are given by first describing a subset of size m out of Mn in the
library cover, using codelength log

(Mn

m

)
and then m log n represents additional

description length required to represent truncated linear combinations to suitable
precision. Setting aside for now secondary terms and the effect of greedy algo-
rithms, our bound on the risk of the estimator takes the following form

(1.5) (1 + δ) inf
m

inf
f∈Fm

{
‖f−f∗‖2 + C

1
n

log

(
Mn

m

)
+ C

m

n
log n

}
,

where Fm is the class of all m term linear combinations from the given library,
with implications for the risk depending on the accuracy of approximation of f∗

by members of Fm. Details of conclusions of this type are in Section 5.
Some discussion puts the conclusion for subset size penalties in the context of

past related work. Concerning library covering properties, as we have said, we
allow parameterized candidate basis functions yielding a library of finite metric
dimension (such as arise for neural nets or variable-knot splines) for which Mn

is of order nd. Typically, the dimension d corresponds to the parameter dimen-
sion of these basis functions. Accordingly, md is the total number of parameters
used in representing an m term linear combination. Consequently, the main part of
our penalty of order m log Mn is of order md log n, equal to the total number of
parameters times a log n factor, in accordance with typical MDL criteria.

For library covering using an L∞ norm for smoothly parameterized basis func-
tions, analogous risk properties for subset size penalties are in [11]. In contrast,
we use empirical covering properties, as required for certain neural net or product
spline expansions in which jumps are permitted (i.e. libraries consisting of indica-
tors of half spaces or rectangles). Unlike [11] we do allow greedy algorithms.

The present work began with the thesis [29], and the conference reports [30,
31], building on the conclusions in [9] and [59]. Recent similar conclusions for
subset size penalties and greedy algorithms are in [12], with a requirement that
Y is bounded. Here we allow unbounded noise, we have substantially improved
constants, the risk theory applies more generally (not just to subset size penalty),
we allow greedy optimization over the library (not just the cover), and we extend
the greedy term selection theory to show that a variant of it also solves the `1-
penalized least squares problem.
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RISK, GREEDY SELECTION, AND `1-PENALIZATION 7

The use of empirical covering properties gives the indicated advantage of greater
range of applicability, though to achieve it we do make a couple of concessions
concerning the form of the penalty.

One concession is that we are content to arrange for the second term to be
m log n rather than m times a constant. For our generalization, this enables us
to avoid the more elaborate chaining argument and associated large constants in
[11]. The need for the larger log

(Mn

m

)
term somewhat mutes the debate between

whether the other term should be of order m log n as in MDL and BIC criteria
[15, 71, 72], [74] or of order m as in AIC and Cp criteria [1, 2],[64]. If one wants
to have the whole penalty be a constant times m, risk analysis showing such to
be acceptable relies on the log of the number of subsets considered of each size
m to be of order not bigger than m, as developed in [76], [60], [83], [11, 20, 21],
[3, 4]. As discussed also in [86], that is an undesirable restriction when addressing
flexible high-dimensional modeling. In contrast, when either allowing all subsets
of Mn terms of size m, or when building up the subsets by greedy algorithms, ad-
dition of a constant times log

(Mn

m

)
, which is typically of larger order than m alone,

does make for a valid penalty.
The other concession for infinite libraries of possibly correlated variables in

managing the effect of the empirical cover is that we need some mild control on
the size of the coefficients of linear combination. This is arranged through the in-
clusion of an additional `1 penalty, with a very small multiplier λ so that its effect
is secondary to that of the subset size penalty.

Any `p norm with 0 ≤ p < 2 may be used to characterize linear combinations
suitably approximated by sparse subsets. This property is most clear for the case
of orthonormal basis functions for which the best subsets correspond to the sets
of largest coefficients. For libraries with correlated variables, it is the `1 case that
permits probabilistic arguments to cleanly demonstrate complexity and accuracy
tradeoffs and to establish favorable computation time bounds for stepwise proce-
dures. From risk conclusions in the `0 and `1 penalty cases, interpolation space
properties then show appropriate order of risk for other function regularities.

Case (C): Quadratic penalties such as L2 norms on derivatives (Sobelev norms)
and reproducing kernel norms are a third type. Early advocacy of such quadratic
penalties is in Good and Gaskins [49, 50], de Montricher Tapia and Thompson [40],
[77] and Wahba [82]. Functional analysis tools for analysis of quadratic penalties
in a Hilbert space setting are developed in Cox and O’Sullivan [35, 36]. Metric en-
tropy methods are developed for the case of smoothness constraints in Nemirovski,
Polyak, and Tsybakov [66] and for minimum contrast estimators and sieves in
Birgé and Massart [18, 19]. Shen [75] analyzes penalized criteria by an argument
reducing consideration to functions with penalty not more than the value at the
target, which is then addressed by the metric entropy methods of the constrained

imsart-aos ver. 2007/12/10 file: HCBmar20.tex date: March 21, 2008



8 HUANG, CHEANG AND BARRON

case. That approach is limited to the case that the target function has a finite penalty
value. Further developments in this direction are in Cucker and Smale [38]. In con-
trast our approach using variable-distortion variable-complexity covers avoids need
for such reduction to the constrained case.

Quadratic penalties correspond to weighted `2 norms on coefficients in basis
function expansions (e.g., for kernel methods these are the eigenfunctions) used to
define classes of functions. Balls of functions determined by these norms corre-
spond to ellipsoids in the coefficients.

A rigidity has been demonstrated for quadratic penalties that limits their per-
formance potential and reduces the priority for their analysis compared to more
flexible procedures. For a weighted `2 norm, consider the order of the basis func-
tions induced the values of the weights. Rather than locking in one such class of
functions, one can adapt to achieve the appropriate level of risk for all quadratic
norms that preserve this order, simply by using least squares on the first m terms
with a penalty (of order m) to select this number of terms, as shown in [11]. Indeed,
the risk, bounded by minm{‖f∗m−f∗‖2 + Cm/n} where f∗m is the L2 projection
onto the first m terms, is within a constant factor of the minimax rate simultane-
ously for all these ellipsoids. This prioritization of the leading terms, with no rate
advantage in ellipsoids for consideration of more general subsets, is the rigidity to
which we refer.

This rigidity contributes to slow rates for function estimation in high-dimensional
settings in traditional smoothness classes. Indeed, for multivariate formulations
with domain in Rd suppose the library consists of products of one-dimensional
basis functions in a specified order. Using all the products of the first k of each, the
number of terms m = kd is exponential in d, requiring exponentially large sample
size n to produce accurate estimates. One may adapt the value of k by penalized
least squares with penalty a constant multiple of kd, to be minimax optimal in rate,
e.g. for all Sobolev classes indexed by the order of smoothness s, but the minimax
rates are disappointingly slow, of order (1/n)2s/(2s+d).

In contrast, if the target function has a moderate `1 norm of coefficients, for
the library of M = Kd possible terms consisting of products up to order K, then
in accordance with the bounds from cases (A) or (B), with estimators based on
`1 penalization or greedy subset selection picking a sparse subset of much smaller
size m, the risk is bounded by order ‖f∗‖1,H

√
(d log K)/n, which does not require

an exponentially large sample size to provide an accurate estimate. Fourier norm
conditions that produce this favorable behavior are developed in [8, 9], [11], [12].
The reason for the extra flexibility with subset selection or the `1 penalty criterion
is the attention these give to the basis functions that the data show most matter to
the target, rather than to those prespecified to be important according to a weighted
`2 control.
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RISK, GREEDY SELECTION, AND `1-PENALIZATION 9

Risk on an Evaluative Sample: The analysis involves comparison of discrepan-
cies between sample and population values of average squared error, and it is fa-
cilitated by consideration of both the training sample and a future sample at which
the predicted responses are to be evaluated.

Let ‖f‖2
X = (1/n)

∑n
i=1 f2(Xi), also denoted ‖f‖2

n, be the squared L2(Pn)
norm, where Pn is the empirical distribution for the input data X =(Xi)n

i=1. Like-
wise, let ‖f‖2

X′ = (1/n)
∑n

i=1 f2(X ′
i) be the squared L2(P ′

n) norm, where P ′
n is

the empirical distribution for an independent copy X ′=(X ′
i)

n
i=1. The symmetrized

empirical squared norm is ‖f‖2
X,X′ = [‖f‖2

X + ‖f‖2
X′ ]/2, also denoted ‖f‖2

2n.

The statistical risk E‖T f̂ − f∗‖2
X′ measures how well the estimator trained

on X,Y generalizes to an independent X ′ with the same distribution as X . In
a traditional setting, when forming the estimator from the training data, one does
not have advance knowledge of the X ′ at which it will be evaluated and the risk
E‖T f̂ −f∗‖2

X′ matches E‖T f̂ −f∗‖2, using the squared L2(P ) loss. In addition
to this traditional setting, we treat Vapnik’s transductive inference setting [81], in
which, when constructing f̂ , one makes use of advance knowledge of the random
X ′ at which it is to be evaluated, and some slight advantages for reduced penalty
are developed for this case. Then the risk E‖T f̂ −f∗‖2

X′ is not expressible as the
expected squared L2(P ) norm. Nevertheless, the same techniques bound the risk
in either setting working with the general risk expression E‖T f̂ −f∗‖2

X′ .

Summary of Penalty Analysis: The task is to determine penalties such that an es-
timator f̂ approximately achieving the minimum of ‖Y−f‖2

n+penn(f)/n satisfies

(1.6) E‖T f̂ −f∗‖2
X′ ≤ (1 + δ) inf

f∈F

{
‖f−f∗‖2 + Epenn(f)/n

}
.

Lower bounds on penn(f) are established that permit this risk characterization.
Our underpinnings of penalized least squares begin with the case of a countable

collection F . Building on earlier work [7], for a specified constant γ, the penalty
may be chosen to be penn(f) = γL(f) where

∑
f e−L(f) ≤ 1, so that L(f) is

interpretable as a complexity (in nats) or e−L(f) is interpretable as a prior proba-
bility of f . Then the counterpart of (1.6) holds showing that the risk is bounded by
the index of resolvability inff∈F

{
||f−f∗||2 + γL(f)/n

}
specifying the tradeoff

between approximation and the complexity relative to the sample size.
Such countable collections can be effective in theory. For instance one may as-

sign L(f) to be the minimal log-cardinality (metric entropy) of covers of function
classes, plus a description length of such classes, thereby simultaneously achieving
the minimax optimal rates for each such class in accordance with [87].

It is more customary to envision optimization over families F with continuous
parameters (such as coefficients of linear combinations), optimized by penalized
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10 HUANG, CHEANG AND BARRON

least squares. As we have said, we demonstrate that the desired risk behavior holds
for such uncountable F , provided good discrete approximations F̃n can be formu-
lated together with complexities Ln(f̃). Indeed, for satisfaction of the risk inequal-
ity (1.6), we show it suffices that the penalty penn(f) be not less than

(1.7) min
f̃∈F̃n

{
∆n(f, f̃) + γLn(f̃)

}
.

expressing the distortion and complexity tradeoff. The distortion takes the form

∆n(f, f̃) =
[ n∑

i=1

(Yi −f̃(Xi))2 −
1
c

n∑
i=1

(f∗(X ′
i)−f̃(X ′

i))
2
]

−
[ n∑

i=1

(Yi −f(Xi))
2 − 1

c

n∑
i=1

(f∗(X ′
i)−f(X ′

i))
2
]
,(1.8)

with c > 1. To take advantage of boundedness properties, the f̃ may be replaced
by T f̃ and the last occurrence of f replaced by Tf . This distortion captures the
essence of what is needed in the problem: there is a discrepancy between error on
the training data and error on the independent copy and ∆n(f, f̃) is the difference
in these discrepancies at f̃ and f . A slackening of the requirement allows different
values of c in the first and second lines of the definition of the distortion.

The tradeoff between distortion and complexity is analogous to what occurs in
rate-distortion theory in Information Theory [17], [34]. The countable collection
F̃n of functions f̃ , which we have called a variable-distance, variable-complexity
cover of F , would be called in Information Theory a variable-distortion, variable-
rate code with codelength Ln(f̃).

To verify that proposed choices of penn(f) satisfy the property (1.7), it is equiv-
alent to show for each X ′, X , Y that for each function f in F there is a representor
f̃ in F̃n for which the value of the distortion plus complexity ∆n(f, f̃) + γLn(f̃)
is not more than penn(f). The sets F̃n may depend on X , X ′. Also ∆n(f, f̃) de-
pends on f∗, and if desired, the cover F̃n may also depend on f∗. Key to use of this
analysis is that we arrange covers for which the requirement (1.7) is satisfied with
a penalty penn(f) that does not depend on f∗. Moreover, though for the transduc-
tive formulation dependence of the penalty on both X and X ′ is acceptable, for the
traditional formulation we require also that the penalty not depend on X ′, which
may be facilitated in some cases by replacing expression (1.7) by its expectation
with respect to the distribution of X ′.

In particular, by constructions of this type, when F is the linear span of a li-
brary, we demonstrate the existence of suitable F̃n for which the familiar penalties
based on log

(M
mf

)
or λ‖f‖1,H do satisfy the requirements, where mf is the num-

ber of non-zero terms in f . Armed with such we prove suitable risk properties for
penalized least squares estimators.
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RISK, GREEDY SELECTION, AND `1-PENALIZATION 11

For non-smooth classes (as arise with libraries H of functions with jumps, such
as indicators of half spaces or rectangles), data-dependent covers and empirical
norms are essential; whereas, for smooth function classes the collection F̃n may
be fixed and the difference in the empirical squared norms between f∗−f and f∗−f̃
on X ′ in (1.7) may be replaced by its expectation inside the minimization.

In interpreting the distortion in the penalty condition, a convenient and slightly
more general expression for the distortion is

(1.9) ∆n(f, f̃) =
n∑

i=1

(Yi −f̃(Xi))2 −
n∑

i=1

(Yi −f(Xi))2 +
1
c

diffn(f, f̃)

with

diffn(f, f̃) =
1

1 + δ′

n∑
i=1

(f∗(X ′
i)−f(X ′

i))
2 −

n∑
i=1

(f∗(X ′
i)−f̃(X ′

i))
2.

The form (1.8) above corresponds to δ′=0. The modification with δ′>0 slackens
the penalty condition, but inflates the resulting risk bound by (1+δ′). It allows a
non-negative bound on diffn(f, f̃) equal to 1

δ′
∑n

i=1(f(X ′
i)−f̃(X ′

i))
2 to be used in

its place. This empirical squared distance is a more conventional distortion mea-
sure, it is independent of f∗, and it is helpful in dealing with the effect of truncation.

A natural question is whether the penalized squared error
∑n

i=1(Yi−f(Xi))2 +
penn(f) for f in the uncountable set F inherits the total description-length in-
terpretation of

∑n
i=1(Yi − f̃(Xi))2 + γLn(f̃) for f̃ in the countable set F̃ in

accordance with [7]. Our penalty requirement is equivalent to requiring that the
penalized squared error

∑n
i=1 (Yi −f(Xi))

2 + penn(f) is greater than or equal to

(1.10) min
f̃∈F̃

{
n∑

i=1

(
Yi −f̃(Xi)

)2
+ γLn(f̃) +

1
c

diffn(f, f̃)

}
.

With diffn(f, f̃) replaced by the non-negative quantity, we see the criterion in the
uncountable case exceeds the corresponding value in the countable case and hence
inherits the description-length interpretation for an information-theoretic validity.
The presence of the additional distortion term links the risk performance of f on
future data X ′ to the performance more directly establishable for its representor f̃ .

Example Libraries: We turn to discussion of Objective (2), calling attention to var-
ious flexible function models addressed by our analysis, depending on the choice
of the library H. In all these cases, input vectors x are in Rd. The simplest library
H consists of the coordinate functions {x1, . . . , xd}, in which case the library size
M coincides the with number of variables d. Even in this simplest case there are
challenges when M � n, as in the case of microarray gene data when the number
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12 HUANG, CHEANG AND BARRON

of variables is hundreds of thousands. If there be only dozens of variables, very
large libraries sizes M still arise by considering all interactions up to some order
as in polynomial regression. Also, continuously parameterized libraries (of infi-
nite cardinality) arise naturally in certain statistical models of interest to us. The
framework of our paper can be used in the following models:

A. Ordinary Linear Regression: The library of candidate predictors is H =
{x1, x2, . . . , xd} from which a data-driven subset is selected.

B. Polynomial Regression: The library H is the collection of all polynomial
terms xk1

j1
xk2

j2
· · ·xkI

jI
in subsets of the variables up to some maximum inter-

active order I and polynomial degree, often fit by forward stepwise selection.
Strategies for building up a polynomial fit include those described in [78] and
in [16].

C. Projection Pursuit Regression: H consists of all ridge functions h(x) =
φ(aT x) where a ∈ Rd provides the direction and φ is a scalar function
constrained only in its smoothness [48], [53],[54].

D. Neural Networks: H consists of the functions ha,b(x) = φ(aT x−b) where
φ(z) is a fixed function with distinct limits as z →∞ and z → −∞, usually
taken to be an increasing function. Such functions φ are called sigmoids and
linear combinations of them are called single hidden layer artificial neural
networks [39], [8, 9], [59].

E. Flexible Frequency Sinusoids: H consists of functions ha,b(x) = φ(aT x−
b) where φ(z) = sin(z). Linear combinations of such and algorithms for
fitting them were first considered (in the d = 1 case) in 1795 by Prony
[70]. Combined L1 and L2 moment conditions on the Fourier transform of a
function permit accurate estimates of it even if d is large [11].

F. Multivariate Additive Regression Splines (MARS): H consists of func-
tions (xj1− t1)+ · (xj2− t2)+ · · · (xjI − tI)+ with adaptation of the subset
of variables xj1 , . . . , xjI and the knot locations t1, . . . , tI and the interaction
order I for each such term, linearly combined in the MARS algorithm [45].
Spline fitting by `1 penalized least squares is developed in [67, 68].

G. Multiple Additive Regression Trees (MART): H consists of regression
trees, which are linearly combined in the MART algorithm [43, 46, 47].

H. Wavelet Basis Pursuit: H consists of the union of several wavelet basis
expansions (an over-determined system) as arises for instance by including
all Daubechies wavelets up to some order [63], [32, 33]. Related libraries
include ridgelets [26] and curvelets [27].

I. Function Aggregation:H consists of M functions f̂1, . . . , f̂M each already
fit to an initial part of the data. A linear combination of these chosen to fit
the rest of the data is used to aggregate into one improved estimator [55, 65],
[85], [24, 25].
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RISK, GREEDY SELECTION, AND `1-PENALIZATION 13

The risk analysis in this paper applies to these sorts of models with suitable search
strategies for choosing h in H. The presence of iterative algorithms to select terms
from the library and to assign weights of linear combination is a common feature
of flexible function methods associated with the above list of libraries.

It is critical to these applications that the theory is not only appropriate for fully
optimized subsets, but also for approximate optimization by various iterative algo-
rithms. This gives rise to our consideration of Objective (3).

Greedy Selection Summary: Iterative term selection such as forward stepwise
selection is implemented for ordinary linear regression in nearly every statistical
package. It is applicable to libraries of size that permit exhaustive consideration
of every h in H for each step of forward selection. Moreover, iterative selection
is also applicable to possibly infinite libraries provided an optimization strategy is
identified to apply at each step of selection.

The essence of forward selection and other greedy algorithms is that a suc-
cession of terms ĥ1, ĥ2, . . . , ĥm are selected in a data-driven fashion, as well as
weights of linear combination β̂1,m, β̂2,m, . . . , β̂m,m leading to an estimator of the
form

f̂m(x) =
m∑

j=1

β̂j,mĥj(x)

where at step m, the first ĥ1, . . . , ĥm−1 are given, and a new term ĥm in H is
chosen to be linearly combined with the previous terms.

A restrictive form of greedy algorithm is Jones’ pure greedy [54], Mallat’s
matching pursuit [63] and Friedman’s L2-boosting [46] (also called stagewise re-
gression) choosing β and a new term h fromH to become β̂m and ĥm, respectively,
the new fit is restricted to be of the form

f̂m(x) = f̂m−1(x) + βh(x),

where h is chosen by least squares or to maximize the correlation with the resid-
uals from f̂m−1. The projection pursuit algorithm of [48] is a pure greedy algo-
rithm. Limitations of pure greedy algorithms are given in the succession of work
of Temlyakov and his colleagues [41, 58, 61], who show that even if the target is
in the convex hull of the library, the pure greedy approximation converges to it, in
squared L2 norm, at a slow rate assured to only be as good as (1/m)1/3, improved
slightly to (1/m)11/31, and indeed for some dictionaries there is such a target for
which the rate is not better than (1/m).54, compared to the 1/m rate of the algo-
rithms we discuss next. Further properties of pure greedy are explored in [88].

Jones [54] provides a notion of a class of relaxed greedy algorithms with addi-
tional flexibility found to be essential for more desirable accuracy properties. The
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14 HUANG, CHEANG AND BARRON

key idea is to endow the algorithm with the opportunity to adjust (typically down-
weigh) the weight of the previous fit via consideration of the form

(1.11) (1−α)f̂m−1(x) + βh(x).

For instance α, β and h may be optimized by least squares. Per his definition (and
variants in [8] and [59]), given f̂m−1 and, if desired, given also ĥ1, ĥ2, . . . , ĥm−1,
a procedure for choosing a new function f̂m, not necessarily of the form (1.11), is
said to be a relaxed greedy algorithm if it produces sum of squared error not worse
than at specific αm, βm and hm as detailed further in Section 3.

Among algorithms that satisfy this requirement is standard forward stepwise
selection, in which given ĥ1, . . . , ĥm−1, all the coefficients β̂1,m, . . . , β̂m,m and the
new term ĥm are chosen so that the linear combination is optimal by least squares.
The relaxation requirement may be thought of as a minimal amount of back-fitting.
There is freedom in the choice of the new term ĥm for the updated relaxed fit (1.11).
As we have said, it is permitted to be the choice in H of least angle with residuals
from f̂m−1 or the choice which is best in linear combination with f̂m−1. Similar
purposes are accomplished by the LARS (least angle regression) algorithm [42],
the term selection algorithms in [67, 68], the B−Lasso algorithm in [90], and the
coordinate optimization algorithms in [44]. In accordance with the computational
theory we give here, we believe that some of these algorithms would be improved
by inclusion of the relaxation parameter.

Another relaxed greedy variant valid for bounded libraries is to pick h to come
within any constant factor (say 1/2) of the maximum inner product with residuals
(again, not to be purely added but rather with an 1−α relaxation factor). This
freedom of optimization (only coarsely to within a constant factor) may be useful
for certain high-dimensional libraries, where exact optimization is problematic.

A third relaxed greedy variant introduced in this paper is to select the new term
h along with α and β to best improve the `1 penalized sum of squares. We call it `1-
penalized greedy pursuit (LPGP). To be specific, at each step m, given the previous
f̂m−1, and vm−1 =

∑m−1
j=1 |β̂j,m−1|aĥj

, we choose h in H and coefficients α and

β to form f̂m = (1−α)f̂m−1 + βh and vm = (1−α)vm−1 + |β|ah to satisfy

||f̂m−Y ||2n + λvm

= min
h∈H,β∈R,0≤α≤1

{
||(1−α)f̂m−1 + βh−Y ||2n + λ [(1−α)vm−1 + |β|ah]

}
where λ is a nonnegative constant and, as explained previously, ah are weights
which may be set to be the empirical L2 norm ‖h‖n. This variant of relaxed greedy
algorithms combines benefits of both term selection and `1 penalization. With this
LPGP algorithm, for each h, one has two simple quadratics to solve for the scalars
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RISK, GREEDY SELECTION, AND `1-PENALIZATION 15

α and β, one for the possibility of positive β and one for the possibility of negative
β, followed by a decision of which h and with which sign.

Advantageous properties of these algorithms are provided. In ordinary regres-
sion from a small size library, forward selection is notorious, criticized because it
need not pick out the best subsets of each size, leading to favoring of backward
selection or all-subset selection. However, the latter two procedures are not suit-
able computationally for large libraries needed for flexible fitting of functions of
many variables. It is comforting that the relaxed greedy algorithm theory estab-
lishes a sense in which forward selection procedures nearly optimize the squared
error. Indeed, as shown in Section 3, for every data set (Xi, Yi)n

i=1, we have

(1.12) ‖Y − f̂m‖2
n ≤ inf

f

{
‖Y − f‖2

n + 4‖f‖2
1,H/m

}
,

and for the `1-penalized greedy pursuit estimates, we obtain

(1.13) ‖Y − f̂m‖2
n + λ‖f̂m‖1,H ≤ inf

f

{
‖Y − f‖2

n + λ‖f‖1,H + 4‖f‖2
1,H/m

}
.

The right sides of these bounds quantify a tradeoff between average squared error
of fit and `1 norm of coefficients. It is a desirable bound when the target is close
to functions f with finite ‖f‖1,H. The validity of these bounds requires that, in
forming the norm ‖β‖1 =

∑
h |βh|ah, the weights ah are not less than ‖h‖n.

We use the bound (1.13) in two ways. In the first instance we keep λ very small
(possibly 0) and emphasize the role of subset selection subset.

In the second instance we choose λ ≥ εmn

√
C(log Mn)/n emphasizing the role

of the `1-penalty while picking m as large as we like. In this case (1.13) quanti-
fies how `1-penalized greedy pursuit approximately achieves the `1-penalized least
squares optimization. Thus it is an alternative algorithm for solving Tibshirani’s
LASSO [79] or equivalently Chen and Donoho’s basis pursuit [32, 33]. An advan-
tage of our analysis is that the term 4‖f‖2

1,H/m in (1.13) bounds the computational
accuracy, quantifying how close to the minimum the algorithm achieves.

Let Af,m = ‖Y−f̂m‖2
n−‖Y−f‖2

n be the empirical average difference between
the squared error of the m term fit and the squared error of a particular compara-
tor f . The inequality (1.12) corresponds to the result for relaxed greedy fits that
Af,m ≤ 4‖f‖2

1,H/m for all data sets and all m and all f .
Our risk conclusions allow for forward selection or other relaxed greedy compu-

tations as follows. We give conditions on the library H and on a penalty penn(m),
with the penalized criterion providing the stopping rule m̂, such that the truncated
estimator T f̂ = T f̂m̂ has risk satisfying

(1.14) E‖T f̂−f∗‖2 ≤ (1 + δ) min
m

inf
f∈Fco

m

{
‖f∗−f‖2 +

penn(m)
n

+ EAf,m

}
.
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16 HUANG, CHEANG AND BARRON

where Fco
m is a comparison set for each m. For subset size control the primary

term in the penalty takes the form C log
(Mn

m

)
as previously discussed. In the case

of all-subset regression, Fco
m is taken to be Fm, the collection of all m-term lin-

ear combinations, yielding EAf,m ≤ 0, and then the bound (1.14) becomes the
bound (1.5) given in case (B) above expressing the trade-off between the approx-
imation error of the best size subset and the penalty. For greedy algorithms, we
use EAf,m ≤ 4‖f‖2

1,H/m (where now if empirical norms are used in defining
the weights ah, they are replaced on the right side by their expectations) and the
comparison class is taken to be all of F , that is, all functions which are linear
combinations of terms in H, leading to the risk bound

(1.15) (1 + δ) min
m

inf
f

{
‖f∗ − f‖2 +

penn(m)
n

+
4‖f‖2

1,H
m

}
.

In some cases (e.g., with near-orthogonality of the members of H), forward step-
wise algorithms should perform even better than indicated, at least for comparison
functions in Fm, which could produces a better performance than (1.15) in accor-
dance with the extent to which EAf,m is less than 4‖f‖2

1,H/m.
In the bound (1.15) for relaxed greedy selections with penn(m) = Cm log Mn,

for each f optimizing m yields m(f) = ‖f‖1,H
√

n/(C log Mn), so we have

(1.16) E‖T f̂ − f∗‖2 ≤ (1 + δ) inf
f

{
‖f∗ − f‖2 + ‖f‖1,H

√
(C log Mn)/n

}
.

The penalization procedure using the data based selection m̂ achieves this perfor-
mance without advance knowledge of the best m(f). One may try to fix m =√

n/(C log Mn), though the bound would then have the wrong order of behavior
of ‖f‖1,H with a square instead of the first power. Moreover, if Af,m happens to
be smaller than 4‖f‖2

1,H/m then the best m will be smaller and the risk bound
expressed in (1.14) correspondingly better than the bound in (1.16). Thus it is bet-
ter to use the data-based choice of m̂ via penalized least squares instead of fixing
m =

√
n/(C log Mn).

As we have said the bound (1.16) for these greedy algorithms is the same order
of risk achieved directly by certain types of `1 penalized least squares, as shown in
Section 4. Refinements show the improvement by εmn in the risk for both the `1

penalized least squares estimator and the all-subset selection estimator. This gives
a slightly better level of performance for `1 penalized greedy pursuit than presently
available for the greedy algorithms that don’t incorporate the `1 penalty.

Additional Computational Concerns: We discuss issues regarding library search
strategies. Direct use of forward stepwise selection entails exhaustive considera-
tion of every h inH for each iteration. With present computers, practicality of such
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computation restricts the library size to be not more than several million. Though
such cardinality strains computational resources, it is not an obstacle to our theory
since the risk depends on the ratio of the logarithm of the cardinality to the sample
size. Such libraries include those that arise from basis expansions of polynomial,
spline, trigonometric, or wavelet variety, including interactions expressed through
products of the one-dimensional basis functions, leading to a manageable number
of candidate terms when there are only a handful of original variables. But that
number of candidate terms grows exponentially with the number of original vari-
ables d. Thus, when there are more than a handful of such variables, we have the
ubiquitous but unwieldy situation in which the number of candidate basis functions
is vastly greater than what can be considered by algorithms that seek to perform
computations for every candidate for each step. Again while the computation is
problematic, the statistical risk theory is not, provided d log n

n is small.
To address this computational difficulty, certain algorithms impose greater re-

striction on the greedy search. These include forward selection in polynomial and
spline fitting in which a candidate new term is restricted to increment the form of
an existing term. In polynomial fitting, such increments consist of increasing the
degree of one of the variables by one in an existing term, as in the MAPS algo-
rithm [16]; whereas, in multivariate linear spline fitting by the MARS algorithm
[45], such increments consist of multiplying an existing term by a new factor of
the form (xj −t)+ for some j and t. Likewise for regression trees there are restric-
tions in the CART [23] and MART [43, 46, 47] algorithms in which new partitions
for piecewise constant regression are restricted to be a recursive refinement of an
existing partition. These algorithms are fast, but a limitation of existing theory (in-
cluding ours) is that we lack understanding of the approximation capabilities to
quantify their resolvability or risk. Certainly such estimates have favorable prop-
erties if, at each step, every member of the more complete library of (polynomial,
spline, or piecewise constant) terms were considered. But that is not what existing
algorithms are capable of doing in the case of exponentially large libraries.

Alternative computational tactics arise for libraries of functions hw(x) that are
parameterized smoothly through a parameter vector w of moderate dimension dH.
Such functions arise in the terms used in neural nets (in which w controls the
orientation and gain of a sigmoid), in sinusoids (in which w is a frequency vector),
in ridgelets (in which w determines the frequency and orientation), and in splines
(in which w is the vector of knot locations). From this perspective the problem at
each iterative m of a greedy algorithm is that of optimization of a function l(w)
which takes either the form ‖Y −(1−α)f̂m−1−βhw‖2

n or, for bounded libraries, an
empirical inner product between the residuals Y − f̂m−1 and hw. For local search
strategies, such as the gradient backpropagation algorithm [73] for least squares
fitting of neural nets or other nonlinearly parameterized terms, even in the greedy
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18 HUANG, CHEANG AND BARRON

term selection case, it is not known if the local optimum provides a theoretically
satisfactory substitute to global optimization. Stochastic search strategies (such as
Markov Chain Monte Carlo or simulated annealing) are designed to attempt to
sample w from a density proportional to exp(−l(w)/τ) for some temperature τ
eventually small enough that the distribution is likely to produce nearly optimized
w globally. It is a currently active topic of research to determine conditions on the
form of hw(x) and the Markov chain steps such that the stochastic search sampling
is provably accurate in a moderate number of computation steps, while retaining
the flexibility of representation of a nonlinearly parameterized library. Some steps
in this direction are in [5].

Outline: This paper is organized as follows. In Section 2 we develop the general
risk inequality for penalized least squares estimators. In Section 3, we develop
establish the computational accuracy results for relaxed greedy computations, in-
cluding the new `1-penalized greedy algorithm. In Section 4, we provide risk anal-
ysis for `1 penalized estimators. In Section 5, the results are applied to obtain
risk bounds for all-subset selection, forward stepwise regression and other relaxed
greedy computations. Concluding discussion and examples are give in Section 6
and 7 respectively. Some lemmas are relegated to the appendix.

2. General Risk Bounds. The goal of this section is to obtain a resolvability
bound on risk for general penalized least squares estimators. While the computa-
tion bounds hold for arbitrary data sets (Xi, Yi)n

i=1, the risk bounds are developed
in the following context.
Setting (B). Data (Xi, Yi)n

i=1 are independently drawn from the distribution of
(X, Y ). The target function (or signal) is f∗(x) = E[Y |X = x] and it is assumed
to be bounded by a constant B. The error (or noise) is ε = Y − f∗(X) and it is
assumed to satisfy the moment assumption (M).

Instead of restricting Y to be bounded, we allow the following.
Assumption (M) (Bernstein’s moment condition). The error ε = Y − f∗(X) has
a conditional distribution given X which satisfies the moment condition that for
some positive constant hBern not depending on X ,

E[|ε|k|X] ≤ (1/2)var(ε|X) k!hk−2
Bern,

for k ≥ 2, with variance var(ε|X) ≤ σ2 for all X for some finite σ2.
Assumption (M) is satisfied if ε is bounded or if the distribution of ε has tails

that decay exponentially fast. Assumption (M) corresponds to the finiteness of a
moment generating function, that is, D1 = Ee|ε|/ν < ∞ for ν > hBern. We also
exhibit improvements in the conditions and conclusions that hold when ε is sub-
Gaussian, that is, for some constant ν, a moment generating function of ε2 is finite,
i.e., D2 = Eeε2/ν < ∞; or when it is bounded, that is, |ε| ≤ c0.
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RISK, GREEDY SELECTION, AND `1-PENALIZATION 19

We work with a collection of functions F . Our first result will assume a uniform
bound B′ on candidate functions. Extension to remove this boundedness constraint
by using a truncation technique is provided later in this section.

Given a set F , f̂ is a penalized least squares estimator or approximate penalized
least squares estimator if it satisfies the inequality
(2.1)
1
n

n∑
i=1

(Yi−f̂(Xi))2+
penn(f̂)

n
≤ inf

f∈F

{
1
n

n∑
i=1

(Yi − f(Xi))
2 +

penn(f)
n

+ Af

}
,

where Af is a non-negative quantity. Here penn(f) and Af are permitted to depend
on the data X and Y .

The quantity Af may be thought of as an index of the computational accuracy
of approximate optimization. It is not to be neglected. The computational accuracy
achievable by certain algorithms of interest is intertwined with the degree to which
targets can be approximated from both approximation-theoretic and statistical risk
standpoints. Building on the work of the present section, a similar formulation
is investigated in Section 5, in which Af,m is indexed by the number of algorithm
steps m, as for instance in the case of greedy algorithms, and the penalized criterion
is used to adapt this number of steps.

We now give tools for development of the resolvability bound on risk. The case
that F is countable is a starting point. Analysis for countable F and bounded Y is
in [7]. From both statistics and engineering standpoints, it is awkward to force a
user to construct a discretization of his space of functions to which the optimization
would be restricted. We overcome this difficulty to extend to uncountable F . We
also remove the boundedness condition of Y in our theorem.

The target f∗ is not necessarily in F . To each f in F , there corresponds a func-
tion ρ : X × Y → R, which assigns to (X, Y ), the relative loss

(2.2) ρ(X, Y ) = ρf (X, Y ) = (Y −f(X))2 − (Y −f∗(X))2.

To ease aspects of the analysis, we imagine a hypothetical independent copy X ′, Y ′

of the data-set X,Y . Except in transductive analysis (where the penalty is allowed
to depend on known X ′), we do not allow the penalty or the estimator f̂ to depend
on this copy data. The empirical loss with respect to the training data is denoted
by Pn(ρ) = 1

n

∑n
i=1 ρ(Xi, Yi) and that with respect to the independent copy is

P ′
n(ρ) = 1

n

∑
i=1 ρ(X ′

i, Y
′
i ). Using Y = f∗(X) + ε, note that

ρ(X, Y ) = (f(X)−f∗(X))2 − 2ε(f(X)−f∗(X))
= g1(X)− 2εg2(X).

where g1(X) = g1,f (X) = (f∗(X)−f(X))2 and g2(X) = g2,f (X) = f(X)−
f∗(X). Let ĝ1(X) = g1,f̂ (X) and ĝ2(X) = g2,f̂ (X) and likewise ρ̂ = ρf̂ .
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Because f̂ is selected to (approximately) minimize the penalized empirical av-
erage squared error, the value Pn(ρ̂) on the training sample tends to be smaller
than the risk of f̂ , whereas its squared error P ′

n(ρ̂) on the independent sample is an
unbiased estimate of its risk. Indeed, since E(ε′i|X ′

i) = 0 and ε′i is independent of
X,Y , we have Eε′iĝ2(X ′

i) = 0. Hence the expected value of P ′
n(ρ̂) is

(2.3) EP ′
n(ρ̂) = EP ′

n(ĝ1) = E‖f̂−f∗‖2
X′ ,

which is the risk or generalization error we study, reducing to E‖f̂−f∗‖2 in the tra-
ditional setting. The idea is to control the empirical discrepancy P ′

n(ρf )−cPn(ρf )
between the loss on the future data and the loss on the training data for a constant
c near 1. Towards this end, one may seek a quantity Ln(f) to satisfy

(2.4) E sup
f∈F

{
P ′

n(ρf )− cPn(ρf )− cLn(f)/n
}
≤ 0.

Working with a closely related empirical discrepancy P ′
n(g1,f ) − cPn(ρf ), which

avoids need of further consideration of ε′i, we seek Ln(f) to satisfy

(2.5) E sup
f∈F

{
P ′

n(g1,f )− cPn(ρf )− cLn(f)/n
}
≤ 0.

Once either (2.4) or (2.5) holds, a similar inequality also holds for any data-based
selection of f̂ in F , yielding an upper bound for the risk

(2.6) EP ′
n(ρf̂ ) = EP ′

n(g1,f̂ ) ≤ c E
(
Pn(ρf̂ ) + Ln(f̂)/n

)
.

Then if f̂ is the penalized least squares estimator, optimizing Pn(ρf̂ )+Ln(f̂)/n or
approximately optimizing it within a specific accuracy, we obtain the desired risk
bound

(2.7) E‖f̂−f∗‖2 ≤ inf
f∈F

{
c E
(

Pn(ρf ) +
Ln(f)

n
+ Af

)}
,

noting, for any fixed f , that EPn(ρf ) = ‖f−f∗‖2.
We turn attention to determination of suitable Ln(f) to control the discrepancy

as in (2.5). First, as we show in this section, whenF is countable,Ln(f) = γLn(f)
proportional to complexities satisfying the Kraft inequality

∑
f∈F e−Ln(f) ≤ 1 are

acceptable. Then for the general case, with F is not restricted to be countable,
we define proper penalties to be those for which there is a suitable relationship
between the penalized discrepancy for f in F and corresponding quantities for f̃
in some countable set F̃ . The essence for a penalty penn(f), equivalent to (1.7), is
that there exists F̃ and Ln(f̃) satisfying the Kraft inequality with
(2.8)

sup
f∈F

{
1
c
P ′

n(g1,f )−Pn(ρf )− penn(f)
n

}
≤ sup

f̃∈F̃

{
1
c̃
P ′

n(g1,f̃ )−Pn(ρf̃ )− γLn(f̃)
n

}
,
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where c ≥ c̃ > 1. Then, in the uncountable case, the validity of the essential
property (2.5) and hence its associated risk bound is immediately inherited from
the validity in the countable case. In some cases, we will allow a slackening of this
requirement on the penalty by allowing the inequality (2.8) to hold in expectation
rather than point-wise.

So we address the matter of showing for the countable case that complexity
penalties do indeed satisfy the property (2.5). These complexity assignment L(f) =
Ln(f) may depend on n but for simplicity we often drop that index. First we think
of F̃ and L(f) as fixed (not depending on any of the data). Subsequently, we will
allow symmetric dependance of F̃ and L(f) on X , X ′ as an aid in verification of
(2.8) for penalties penn(f) depending on X .

A starting point is to examine the symmetric empirical process P ′
n(ρ)−Pn(ρ).

If Y is bounded, then one can obtain bounds on P ′
n(ρ)−Pn(ρ) directly (as in [59]

and [12]). For unbounded Y it is better to consider g1 and g2 separately. Define
G1 = {g1,f (·) : f ∈ F̃} and G2 = {g2,f (·) : f ∈ F̃}. There is a one-to-one corre-
spondence of F̃ with G1 and with G2. Therefore, we can define {L(g1) : g1 ∈ G1}
and {L(g2) : g2 ∈ G2} according to {L(f) : f ∈ F̃}. Since EP ′

n(ρ̂) = EP ′
n(ĝ1),

to bound the risk, the essence of the analysis is to demonstrate that P ′
n(ĝ1) cannot

be much larger than Pn(ĝ1), which is related to Pn(ρ̂) provided 1
n

∑n
i=1 εiĝ2(Xi)

is not much greater than 0. Then we add bounds from these two sources of error
together to give us a general risk bound for f̂ .

Two simple lemmas are tools in obtaining our risk bound. These differ from
standard empirical process analysis primarily in the use of variable complexity.
Also no chaining is invoked for the results we seek here. Lemma 2.1 provides a
probability bound, uniformly over functions g in a countable class G, on the differ-
ences between empirical means weighted by the complexity of g plus a multiple of
the empirical variance. Lemma 2.2 provides a corresponding probability bound for
weighted empirical averages of products of ε and functions g. In both lemmas, we
make use of the inequality

(2.9) 2ab ≤ γa2 + (1/γ)b2

for all γ > 0.

LEMMA 2.1. Let (X,X ′) = (X1, . . . , Xn, X ′
1, . . . , X

′
n) where X ′ is an in-

dependent copy of the data X and where (X1, . . . , Xn) are component-wise inde-
pendent but not necessarily identically distributed. A countable function class G
and complexities L(g) satisfying

∑
g∈G e−L(g) ≤ 1 are given. Then for arbitrary

positive u and γ, we have

(2.10) P
{

sup
g∈G

P ′
n(g)− Pn(g)

u + γ
nL(g) + 1

2γ s2(g)
≥ 1

}
≤ exp

(
−nu

γ

)
,
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where s2(g) = 1
n

∑n
i=1 (g(Xi)− g(X ′

i))
2. Moreover,

(2.11) E sup
g∈G

{
P ′

n(g)− Pn(g)− γL(g)
n

− 1
2γ

s2(g)
}
≤ 0.

PROOF. The proof of the first inequality uses Hoeffding’s inequality and a sym-
metry between Pn(g) and P ′

n(g) together with the union of events bound. This in-
equality is equivalent to saying that supg∈G

{
P ′

n(g)− Pn(g)− γL(g)
n − 1

2γ s2(g)
}

is stochastically less than an exponential random variable of mean γ/n. Accord-
ingly its expectation is not more than γ/n. The second conclusion states that the
expectation is actually not more than 0. See the appendix for details.

Remark: For uncountable classes G, if one has a countable G̃ for which an analog
of (2.8) holds

sup
g∈G

{
P ′

n(g)− Pn(g)− penn(g)
n

− 1
2γ

s2(g)
}

≤ sup
g̃∈G̃

{
P ′

n(g̃)− Pn(g̃)− γLn(g̃)
n

− 1
2γ

s2(g̃)
}

,(2.12)

then the same inequalities (2.10) and (2.11) are still valid for uncountable G with
penn(g) in place of γLn(g). As we have said, the condition (2.8) is just right for
our purpose when the functions are bounded, so we do not make use of (2.12) here.

LEMMA 2.2. Let ε = (ε1, . . . , εn) be conditionally independent random vari-
ables given (Xi)n

i=1, with conditional mean zero, satisfying Bernstein’s moment
conditions. A countable class G and complexities L(g) satisfying

∑
g∈G e−L(g) ≤ 1

are given. Assume a bound K, such that |g(x)| ≤ K for all g in G. Then

(2.13) P
{

sup
g∈G

1
n

∑n
i=1 εig(Xi)

u + γ
nL(g) + 1

An

∑n
i=1 g2(Xi)

≥ 1

}
≤ exp

(
−nu

γ

)
where A and u are arbitrary positive constants, and γ = Aσ2/2 + KhBern. Also,

(2.14) E sup
g∈G

{
1
n

n∑
i=1

εig(Xi)−
γ

n
L(g)− 1

An

n∑
i=1

g2(Xi)

}
≤ 0.

PROOF. The proof of the first claim uses a Bernstein type inequality. The second
claim is by the same device as for Lemma 2.1. See Lemma A.2 in the appendix.

We now show how these Lemmas are used to obtain a risk bound in the count-
able case. First we apply Lemma 2.1 to the countable class G1 to bound the con-
tribution to the risk from ĝ1. By Lemma 2.1, the following random variable (2.15)
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has expectation not more than 0 and it is stochastically less than an exponential
random variable with mean γ1/n,

(2.15) P ′
n(ĝ1)− Pn(ĝ1)−

γ1

n
L(ĝ1)−

1
2γ1

s2(ĝ1).

Since ĝ1 is nonnegative, we have s2(ĝ1) ≤ P ′
n(ĝ2

1) + Pn(ĝ2
1). Also since |f̂ | ≤ B′

and |f∗| ≤ B, the ĝ1 = (f∗ + f̂)2 is bounded by (B + B′)2. Hence s2(ĝ1) is
bounded by (B + B′)2(P ′

n(ĝ1) + Pn(ĝ1)). Choosing γ1 = A1(B + B′)2/2 with
A1 to be specified later, we have that expression (2.15) is greater than or equal to

(2.16) P ′
n(ĝ1)− Pn(ĝ1)−

γ1

n
L(ĝ1)−

1
A1

(
P ′

n(ĝ1) + Pn(ĝ1)
)
,

which is the same as

(2.17) (1− 1
A1

)P ′
n(ĝ1)− (1 +

1
A1

)Pn(ĝ1)−
γ1

n
L(f̂),

since L(ĝ1) = L(f̂). Now we turn our attention to ĝ2 = g2,f̂ (X). Note that |g2(X)|
is bounded by K = B + B′ and ĝ1 = ĝ2

2 . Using Lemma 2.2 for the class G2, we
know for any positive A2 that the following random variable also has expectation
not more than 0 and it is stochastically less than an exponential random variable
with mean γ2/n,

(2.18) Pn(εĝ2)−
1

A2
Pn(ĝ1)−

γ2

n
L(f̂),

where γ2 = A2σ
2/2 + (B + B′)hBern and L(ĝ2) = L(f̂), and where we denote

1
n

∑n
i=1 εiĝ2(Xi) by Pn(εĝ2).

With a constant a to be determined, we add (2.17) and 2a times (2.18) together
to obtain
(2.19)(

1− 1
A1

)
P ′

n(ĝ1)−
(

1 +
1

A1
+

2a

A2

)
Pn(ĝ1) + 2aPn(εĝ2)−

γ1 + 2aγ2

n
L(f̂).

To glue these terms together cleanly, observing the fact that ĝ1(Xi)− 2εiĝ2(Xi) =
ρ̂(Xi, Yi), we choose to set a to satisfy 1+ 1

A1
+ 2a

A2
= a and then expression (2.19)

becomes

(2.20)
(

1− 1
A1

)
P ′

n(ĝ1)− a

[
Pn(ρ̂) +

γ

n
L(f̂)

]
,

where γ = (γ1 + 2aγ2)/a. Alternatively, by choosing A1 = 1 + 2
δ1

, A2 = 2 + 2
δ2

,
and c̃ = (1 + δ1)(1 + δ2), then a = c̃(1 − 1/A1) and dividing the expression by
1− 1/A1, we have

(2.21) P ′
n(ĝ1)− c̃

[
Pn(ρ̂) + γL(f̂)/n

]
,
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with γ equal to (1+δ1/2)(1+2/δ1)
2c̃ (B+B′)2 +2(1+ 1

δ2
)σ2 +2(B+B′)hBern, where

δ1 > 0 and δ2 > 0 are arbitrary positive constants. The conclusion is this expres-
sion has expectation not more than 0. Moreover, expression (2.21) concentrates to
be not much more than 0, except with exponentially small probability. Indeed, for
any positive u1, u2 the probability that it exceeds [u1 + 2au2]/(1 − 1/A1) is not
more than exp(−nu1/γ1) + exp(−nu2/γ2).

Taking the expectation and moving the part in brackets to the right side we have

(2.22) EP ′
n(ĝ1) ≤ c̃ E

[
Pn(ρ̂) + γL(f̂)/n

]
.

This inequality (2.22) matches the desired risk bound (2.6) with a constant factor
c slightly larger than 1. Indeed if the penalty penn(f) were chosen as γL(f), then
f̂ minimizes

[
Pn(ρ̂) + γ

nL(f̂)
]
. Bounding the expected infimum by the infimum

of expectations, we may replace the right side by the resolvability expressing the
approximation and complexity tradeoff.

We note also that the above analysis leading to (2.21) holds if in place of f̂ , one
used any selection based on Y , X and X ′ within the countable F̃ . Consequently,

(2.23) E sup
f∈F̃

{
P ′

n(g1,f )− c̃Pn(ρf )− c̃Ln(f)/n
}
≤ 0,

where c̃ = (1 + δ1)(1 + δ2) and Ln(f) = γL(f). This verifies the desired form
(2.5) in the countable case.

To extend the conclusion to general F , we seek penalties for which (2.8) or
equivalently (1.7) holds. We are to exhibit a countable F̃ , such that, for each f ∈ F ,
the penalty penn(f) exceeds the infimum over f̃ ∈ F̃ of an appropriate expression.
More freedom in choosing penn(f) is made available by allowing the set F̃ =
F̃X,X′ and the complexities Ln(f̃) = LX,X′(f̃) we construct in the proofs to
depend on the input data X and its independent copy X ′. For instance, if F were a
bounded empirical metric entropy class, then we could work with an empirical L2

cover on these 2n points. We use variable-complexity empirical covers to handle
more general cases of interest including linear spans of libraries. With this freedom,
we allow penalties penn(f) to be at least

(2.24) inf
f̃∈F̃X,X′

{
γLX,X′(f̃) + ∆n(f, f̃)

}
,

where ∆n(f, f̃) is the distortion as explained in the introduction. When we desire
the penalty to not depend on X ′ the understanding is that it is to exceed the indi-
cated expression (2.24) for all X ′. Alternatively, a less demanding requirement is
that penn(f) exceed the expectation of expression (2.24) with respect to X ′ condi-
tional on X and Y .
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A useful devise in checking whether certain penalties of interest satisfy the re-
quirement is to note that while penn(f) as given might not exceed the required
expression (2.24), the addition to it of some adjustment, denoted Adjustn, that does
not depend on f , may lead to

[
penn(f) + Adjustn

]
exceeding (2.24). If need be,

this adjustment may depend on the data. Such adjustment does not change the pe-
nalized least squares estimator, but it will be reflected in the risk bound through
the presence of the expected adjustment relative to the sample size, 1

nE
[
Adjustn

]
.

It is then preferable to have such adjustments be negligible in size compared to the
main penn(f) term that adapts the choice of f .

For our analysis in the data-dependent penalty case, we note that key to the proof
of Lemma 2.1 is the fact that the probabilities there are unchanged if one exchanges
any coordinate pair (Xi, X

′
i). We will need coordinate pair exchangeability to still

hold for the classes F̃X,X′ . To allow this data-dependent freedom, we make use of
the following definition and assumption.
Definition (Coordinate Pair Symmetry). We call a collection of classes G̃X,X′ in-
dexed by (X,X ′), each a subset of a given class G, symmetric between X and
X ′ if G̃X(i),X

′
(i)

= G̃X,X′ , where X(i) = (X1, . . . , Xi−1, X
′
i, Xi+1, . . . , Xn) and

X ′
(i) = (X ′

1, . . . , X
′
i−1, Xi, X

′
i+1, . . . , X

′
n), for each i = 1, . . . , n. Likewise, for

g̃ in G̃X(i),X
′
(i)

= G̃X,X′ , we call LX,X′(g̃) symmetric between X and X ′ if
LX(i),X

′
(i)

(g̃) = LX,X′(g̃) for each i = 1, . . . , n.
Assumption (S) (Symmetry and Complexity Condition). The collection of classes
F̃X,X′ and associated complexities LX,X′(f̃) are coordinate pair symmetric be-
tween X and X ′ and the complexities LX,X′(f̃) satisfy the Kraft inequality∑

f̃∈F̃X,X′

e
−LX,X′ (f̃) ≤ 1.

With this assumption, Lemma 2.1 and 2.2 are established in generalized forms
in the appendix. In this setting, with symmetric dependence of F̃X,X′ and LX,X′

on X,X ′, the same argument we have used to derive the inequalities (2.21) and
(2.23) holds with these generalized forms of the lemmas. Consequently, we have
the following lemma and theorem.

LEMMA 2.3. For the regression setting (B), let F̃X,X′ be a data-dependent
countable set of functions with associated complexities LX,X′ satisfying Assump-
tion (S). Also assume there exists a uniform bound B′ for f̃ ∈ F̃X,X′ . Given any
positive δ1 and δ2, the following holds

(2.25) E sup
f̃∈F̃X,X′

{
1
c̃
P ′

n(g1,f̃ )− Pn(ρf̃ )−
γLX,X′(f̃)

n

}
≤ 0,
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where c̃ = (1+δ1)(1+δ2) and γ = 1+δ1/4+1/δ1
c̃ (B+B′)2 +2(1+ 1

δ2
)σ2 +2(B+

B′)hBern.

Adapting (2.24), our general penalty requirement is that there is a collection
F̃X,X′ of functions f̃ bounded by B′ and associated complexities LX,X′(f̃) satis-
fying Assumption (S) and an adjustment Adjustn such that for every f in F , the
penalty has

[
penn(f) + Adjustn

]
at least

inf
f̃∈F̃X,X′

{
∆n(f, f̃) + γLX,X′(f̃)

}
,(2.26)

where, setting c = (1 + δ) = (1 + δ3)c̃, the distortion is

∆n(f, f̃) =
n∑

i=1

(Yi − f̃(Xi))2 −
n∑

i=1

(Yi − f(Xi))
2

+
1
c

n∑
i=1

(Tf(X ′
i)− f∗(X ′

i))
2 − 1

c̃

n∑
i=1

(f̃(X ′
i)− f∗(X ′

i))
2.

Theorem 2.4 establishes our general bound on the risk of the penalized least squares
estimators for possibly uncountable F . For such F , this theorem and its refine-
ments provide our main tool for obtaining risk bounds for `1 penalized estimators
and those which are constructed from various term selection procedures.

THEOREM 2.4. For the same setting (B) as in Theorem 2.4, suppose we are
given any positive δ1, δ2 and non-negative δ3 and a proper penalty function penn(f)
which with an adjustment Adjustn exceeds (2.26) or exceeds its expectation with
respect to X ′. Then an approximate penalized least squares estimator f̂ = f̂n (with
optimization accuracy Af ), when truncated to the level B′, has risk satisfying

E‖T f̂ − f∗‖2
X′(2.27)

≤ c inf
f∈F

{
‖f − f∗‖2 + E

[
penn(f)

n
+ Af

]
+

adjust
n

}
,

where adjust = E
[
Adjustn

]
and c = (1 + δ) = (1 + δ1)(1 + δ2)(1 + δ3). Here γ

used in (2.26) is the same as given in Lemma 2.3.

Remark: A simple choice of the constants is to set δ1 = 1/2, δ2 = 1/3 and
δ3 = 0. In this setting, the coefficient c = 2 and the main term in γ is 25

16(B + B′)2

with an additional term arising from unbounded noise as 8
3σ2 + 2(B + B′)hBern.
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PROOF. We denote F̃X,X′ and LX,X′(f̃) by F̃n and Ln(f̃) for simplicity. Let
pen+

n (f) = penn(f) + Adjustn. Rearrange the penalty condition (2.26) and take
the expectation with respect to X ′ to obtain

EX′ sup
f∈F

{
1
c
P ′

n(g1,T f )− Pn(ρf )− pen+
n (f)/n

}
≤ EX′ sup

f̃∈F̃n

{
1
c̃
P ′

n(g1,f̃ )− Pn(ρf̃ )− γLn(f̃)/n

}
,

where c̃ = (1 + δ1)(1 + δ2). Applying Lemma 2.3, we know that the expectation
with respect to X,Y of the right side is less than or equal to 0. Consequently, the
corresponding expectation of the left side is less than 0 as well, yielding risk for
the penalized least squares estimator E‖T f̂ − f∗‖2

X′ = EP ′
n(g1,T f̂ ) bounded by,

c E
(

Pn(ρf̂ ) +
pen+

n (f̂)
n

)
.

The above expression is bounded by an expected minimum which is less than or
equal to the minimum expectation, from which the conclusion follows.

The requirement that the class F̃X,X′ of functions f̃ be bounded by B′ forces
us to either restrict attention to class F of candidate functions f which are also
bounded by B′ or to work with a truncated version TF = {Tf : f ∈ F}, where
T is the truncation operator at level B′ such that Tf = min{B′, |f |}sgn(f), in
which case our final fit is the truncated function T f̂ , where f̂ is the penalized least
squares estimator.

However, direct verification of the penalty requirement for the truncated func-
tion would be tricky in some cases (e.g., the `1-penalty case in Section 4). We
find then that it is more natural to exhibit satisfaction of a suitable inequality for
an unbounded F using an unbounded collection of covers F̃X,X′ . Then we would
like satisfaction of a penalty requirement in the unbounded case to imply its sat-
isfaction for the truncated functions, with T f̃ replacing f̃ and Tf replacing f . A
penalty requirement that meets this aim is said to be rectifiable. A modification of
our condition is shown to have this property.

First recall the penalty requirement expressed in (1.10) as a lower bound on
the penalized sum of squared errors. As explained there, by introducing a positive
δ3 = δ′, we bound diffn(f, f̃) with 1

δ3

∑n
i=1(f(X ′

i)− f̃(X ′
i))

2, which always is at
least the same expression with f and f̃ replaced by Tf and T f̃ , respectively. For
the squared error of f̃ in the first term of (1.10), we shall see that it also is at least
the corresponding squared error of T f̃ with a small correction. Accordingly, we
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consider the following expression in controlling the penalized squared error,
(2.28)

inf
f̃∈F̃X,X′

{
n∑

i=1

(
Yi − f̃(Xi)

)2
+ γLX,X′(f̃) +

1
c̃δ3

n∑
i=1

(f(X ′
i)− f̃(X ′

i))
2

}
.

where functions in F̃X,X′ may be unbounded. Indeed, the following shows that a
penalty requirement based on (2.28) with unbounded f , f̃ is rectified by truncation.

LEMMA 2.5. Expression (2.28) with the addition of an adjustment equal to
Tail(Y) is greater than or equal to that expression with f̃ and f replaced by T f̃ and
Tf , respectively, where the quantity Tail(Y )= 2

∑n
i=1(|Yi| − B′)21{|Yi| > B′}.

Accordingly, if the penalized squared error exceeds (2.28), then penn(f) is proper
in the sense that with the indicated adjustment, the penalty exceeds (2.26) for the
truncated T f̃ replacing the f̃ .

Remark: The quantity Tail(Yi) defined using the square of the excess (|Yi| − B′)
for |Yi| > B′, is also denoted Tail2(Yi). Later we will also have similar use
for Tail1(Yi) = 4B′(|Yi| − B′)1{|Yi| > B′} and Tail1(Y ) = 4B′∑n

i=1(|Yi| −
B′)1{|Yi| > B′} defined without the square.

PROOF. From the discussion above, we need to show the following inequality,

(2.29)
n∑

i=1

(Yi − f̃(Xi)2 + Tail(Y ) ≥
n∑

i=1

(Yi − T f̃(Xi))2,

to be able to conclude that with the tail adjustment, the penalty exceeds (2.26). We
show the above inequality is true term by term, that is,

(2.30) (Yi − T f̃(Xi))2 ≤ (Yi − f̃(Xi))2 + 2(|Yi| −B′)21{|Yi| > B′}.

We use truncation operators Ti = T|Yi|∨B′ which are defined for i = 1, 2, . . . , n as
Tif= min{max{|Yi|, B′}, |f |}sgn(f). By algebra for differences of squares (Yi −
T f̃(Xi))2 is equal to,

(2.31) (Yi − Tif̃(Xi))2 + (Tif̃(Xi)− T f̃(Xi))(2Yi − T f̃(Xi)− Tif̃(Xi)).

The first term is less than or equal to (Yi − f̃(Xi))2 from the definition of the
operator T|Yi|∨B′ . If |Yi| ≤ B′ or if |f̃(Xi)| ≤ B′, then T|Yi|∨B′ f̃(Xi) and T f̃(Xi)
are equal to each other and the last term is zero, so (2.30) holds then. Also if Yi and
f̃(Xi) are of opposite sizes then the first term on the right side of (2.30) already
exceeds the left side, so (2.30) holds then as well. Otherwise, Yi and f̃(Xi) are of
the same sign and both have magnitude at least B′. Then 2Yi−T f̃(Xi)−Tif̃(Xi)
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has magnitude not more than 2(|Yi| − B′). Also, since Tif̃(Xi) and T f̃(Xi) have
the same sign, the difference between them has magnitude less than or equal to
(|Yi| −B′), which completes the proof.

In sum, we have a penalty requirement with explicit use of bounded F̃ and a
variant of it which removes need for consideration of boundedness. Associated
conclusions are expressed in the following corollary.

COROLLARY 2.6. For the same setting (B) as in Theorem 2.4, suppose we
are given any positive δ1, δ2 and δ3. If a penalty function penn(f) is such that
the penalized squared error exceeds expression (2.28) with a possibly unbounded
F̃X,X′ , then with the adjustment by Tail(Y ) it exceeds (2.26) with the truncated
representors. Accordingly, an approximate penalized least squares estimator f̂ =
f̂n, when truncated to the level B′, has risk satisfying (2.27), where adjust = tail.
Here tail = 4D1ν

2 with D1 = Ee|ε|/ν as defined before and B′ ≥ B + ν log n.
If more strongly, ε is assumed to be sub-Gaussian with D2 = Eeε2/ν , then tail =
D2ν and B′ ≥ B +

√
ν log n; whereas if the error ε is bounded by a constant c0,

then tail = 0 and B′ ≥ B + c0.

Remark: In the risk bound, there are two terms effected by the value of ν. One is
the penalty for which it is best to use as small a B′ as allowed. It is also increasing
w.r.t. ν, so we may be inclined to use as small as possible a value for ν. The other
term is the tail/n term, based on D1 and D2 which increases with decreasing ν.
For some possible distributions on ε, such as a two-sided exponential or a Gaussian,
when ν goes to associated lower bounds, then D1 and D2, respectively, tend to
infinity. Therefore, the ideal ν to apply is determined by the trade-off between
these two terms. For the Gaussian, D2 is finite for ν > 2σ2. A simple rule is to use
a ν slightly larger than twice the variance.

PROOF. From Lemma 2.5, the fact that the penalty penn(f) is rectifiable pro-
vides the properness of the penalty function penn(f) adjusted by adding Tail(Y ).
Hence the risk bound for T f̂ follows by using Theorem 2.4. It remains to bound the
expectation of Tail(Y ) which is denoted tail. Lemma A.3 in the appendix shows
for i = 1, 2, . . . , n that, when εi has finite Ee|ε|/ν , for B′ ≥ B + ν log n,

E(|Yi| −B′)21{|Yi| > B′} ≤ 2D1ν
2/n,

whereas, when εi has finite Eeε2/ν , for B′ ≥ B +
√

ν log n,

E(|Yi| −B′)21{|Yi| > B′} ≤ D2ν/(2n).

Finally, if ε is bounded by c0, then |Yi| ≤ B + c0, which means Tail(Y ) = 0.
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Remark: The quantity tail arises in bounding the expectation of the excess of
|Yi| above B′. It is also denoted tail2 in Section 4 and 5. Likewise tail1 will de-
note corresponding bounds on ETail1(Y ). According to Lemma A.3, we may set
tail1 = 4B′D1v for B′ ≥ B + v log n; if ε is assumed to be sub-Gaussian, then
tail1 = 4B′D2

√
πv; whereas if the error ε is bounded, tail1 = 0.

3. Relaxed Greedy Computations and `1-Penalized Optimization. A gen-
eral review of forward selection and other types of greedy algorithms is given in
Section 1. As explained there, after having formed a linear combination of m − 1
terms chosen from a library H, one chooses the next term hm from H such that
a linear composition of it with proceeding terms provides a good improvement in
the fit. In this section, we present two variants of our `1-penalized greedy pursuit
(LPGP) algorithm and establish the claimed properties in Lemma 3.1. Traditional
forward stepwise selection and other relaxed greedy algorithms and their properties
correspond to a special case (with λ = 0).

Concerning the computation time, suppose for a library of size M that each step
of the search is conducted by trying every member of the library and evaluating re-
quired sums of size n for each. Then conducting m steps of the greedy algorithms
entails a computation time of order Mnm, with which statistically suitable accu-
racy is obtained with m not more than order

√
n. Of course, this is dramatically

better than for all-subset regression for which the runtime is of order
(M

m

)
nm2, or,

if the relevant inner products are precomputed, of order
(M

m

)
m3 + M2n.

For `1 penalized least squares, with fixed λ, the computation time of our LPGP
algorithm is again of order Mnm, in which, though we are permitted to use larger
m, one does not need to use a number of steps much larger than

√
n to obtain a so-

lution of statistical accuracy comparable to the exact penalized least squares limit.
Other greedy `1 penalized least squares algorithms such as LARS [42] are said to
provide solution for all λ in n steps for a computation time of order Mn2. Treat-
ing `1 penalization as a convex optimization, and appealing to computation theory
for interior point methods of Nemirovski and Nesterov as described in [22], would
lead to computation time for which the dependence on the library size entails a
somewhat higher power of M . So for `1 penalized least squares, greedy algorithms
such as LPGP are to be preferred to general purpose interior point methods.

For generality, and notational simplicity, we take our setting to be that of points
in a Hilbert space with a norm ‖ · ‖ and an inner product < ·, · >. The library H
is taken to be a given set of points h. The special cases of interest are the spaces of
functions in L2 with respect to a probability measure with norm ‖ · ‖ = ‖ · ‖L2(P ),
and in particular the empirical L2 space discussed above with ‖ · ‖n = ‖ · ‖L2(Pn).
In the latter case the roles of f∗ and fm in the lemmas below are played by the
point Y and the estimates f̂m evaluated at the input data.
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We first extend the definition of the L1,H norm.
Definition. The variation V (f) = VH,a(f) of f , with respect to a library H and
positive weights a = (ah : h ∈ H), is

V (f) = lim
ε→0

inf
fε∈FH

{
‖β‖1 : fε =

∑
h

βhh and ‖fε−f‖ ≤ ε, βh ∈ R, h ∈ H
}

,

where FH is the linear span of H and ‖β‖1 = ‖β‖1,a =
∑

h |βh|ah.
Note that by the definition of V (f), when it is finite, there will be finite linear

combinations fε =
∑

βh,εh with ‖f−fε‖ arbitrarily small and ‖β‖1 arbitrarily
close to V (f). We require the weights to satisfy ah ≥ ‖h‖.

The variation V (f) agrees with ‖f‖1,H for f in FH and extends the norm to the
closure (so as to include all f that are limits of such linear combinations). With this
extension, we denote L1,H = L1,H,a to be the set of functions with finite variation
with respect to the library H.

With the empirical distribution Pn on n points, we denote the empirical variation

Vn(f) = lim
ε→0

inf
fε∈FH

{
‖β‖1 : fε =

∑
h

βhh and ‖fε−f‖n ≤ ε, βh ∈ R, h ∈ H
}

,

where now ‖β‖1 =
∑

h |βh|ah with ah not less than ‖h‖n = ‖h‖X .
The choice ah = ‖h‖n is most directly relevant for the bounds in this section.

The choice max{‖h‖n, η}, for fixed η > 0, is used for risk bounds in Section 5.
Symmetric forms such as

√
2‖h‖X,X′ or ‖h‖∞ are used in Section 4.

There are two variants in our `1-penalized greedy pursuit algorithm.
Definition (`1-Penalized Greedy Pursuit). Let F be a collection of points in the
Hilbert space. Let f∗ be a point or function we wish to fit. Initialize f0 = 0.
For m = 1, 2, . . ., iteratively, given the terms of fm−1 as h1, . . . , hm−1 and the
coefficients of it as β1,m−1, . . . , βm−1,m−1, with vm−1 =

∑m−1
j=1 |βj,m−1|ahj

, we
proceed as follows in two cases with non-negative λ.
Variant 1
Let fm =

∑m
j=1 βj,mhj and vm =

∑m
j=1 |βj,m|ahj

, with the term hm in H and
coefficients chosen such that

||fm −f∗||2 + λvm ≤
inf

α,β,h∈H

{
||(1−α)fm−1 + βh− f∗||2 + λ ((1−α)vm−1 + |β|ah)

}
+ εcomp

m ,

(3.1)

where the infimum is over β ∈ R and α ∈ [0, 1] and we require nonnegative
εcomp
m ≤ 4δ0

(m+1)2
with δ0 ≥ 0.
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Variant 2
Choose the term hm in H to come within a given constant factor c ≥ 1 of the
maximum normalized inner product (minimum angle) with the residual f∗−fm−1,
that is, 〈 hm

ahm
, f∗ − fm−1〉 ≥ 1

c suph∈H〈 h
ah

, f∗ − fm−1〉 and choose fm = (1−
αm)fm−1 + βmhm with coefficients αm and βm in R such that

||f∗−fm||2 + λvm

≤ inf
β∈R,α∈[0,1]

{
||(1−α)fm−1 + βhm − f∗||2 + λ ((1− α)vm−1 + |β|ah)

}
.

(3.2)

Though optimization of α between 0 and 1 is desirable, it is acceptable to use
αm = 2/(m+1) in (3.1) and (3.2) to yield the same bounds as in Lemma 3.1. As
discussed in the introduction, the first variant with λ=0 includes forward stepwise
regression, in which case one optimizes the linear combination β1,m, . . . , βm,m at
each step. Where we have multiplication by λ it can be replaced by any nonneg-
ative convex function and the same conclusions will hold. The following lemma
establishes the computational accuracy of `1-penalized greedy pursuit.

LEMMA 3.1. Let H be a collection of points in the Hilbert space. Let f∗ be a
target we wish to fit by linear combinations of elements of H. Suppose the weights
ah which are associated with the variation V (f) = VH,a(f) are larger than or
equal to the norm ‖h‖ of the Hilbert space.
Case 1
If fm is chosen by using the first variant of the `1-penalized pursuit algorithm, then
for every m ≥ 1, the `1-penalized error satisfies
(3.3)

||f∗−fm||2+λ
m∑

j=1

|βj,m|ahj
≤ inf

f

{
||f∗−f ||2 + λV (f) +

4(V 2(f)− ‖f‖2 + δ0)
m + 1

}
,

where the infimum is taken over all f in the Hilbert space.
Case 2
If fm is chosen by using the second variant of the `1-penalized pursuit algorithm,
then an analogous conclusion to Case 1 holds, but with a price for the slight sub-
optimality of each hm. Indeed, for m ≥ 1,

(3.4) ||f∗−fm||2 + λ
m∑

j=1

|βj,m|ahj
≤ inf

f

{
||f∗−f ||2 + cλV (f) +

4bf

m + 1

}
.

where

bf = min
{
[cV (f) + ‖f∗‖]2 , [(1 + c)V (f) + ‖f−f∗‖]2

}
− ‖f−f∗‖2.
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Remarks:
1. Thus after m steps, our algorithm is within order 1/m of the infimum.
2. There are possibly surprising aspects of this conclusion. Even though fm

is not the best m-term fit, the bound shows that its accuracy compares favor-
ably with the infimum over all f . Also surprising is that on the left side, we have∑m

j=1 |βj,m|ahj
which may be greater than V (fm) when there are repeat visits to

the same h, whereas on the right side we have the infimum over all f . Evidently
this variation gap is also covered by the 4V 2(f)/(m+1) term.

3. For general algorithm weights, even those that don’t satisfy ah ≥ ‖h‖, in-
equalities (3.3) and (3.4) still hold with V (f) replaced by VH,a′(f) on the right
side, where a′h = max{ah, ‖h‖}.

4. We prove the inequalities (3.3) and (3.4) first for a fixed f on the right side and
subsequently take the infimum. These inequalities are trivial for f that have infinite
norm or infinite variation, so suppose that f has finite norm ‖f‖ and variation
V (f). There is no loss of generality if we assume H (replaced by H∪−H if need
be) is closed under sign-change and that the coefficients of linear combination are
kept non-negative. By the definition of V (f), there are a finite linear combinations
fε =

∑
h βh,εh with ‖f−fε‖ arbitrarily small and

∑
h βh,εah arbitrarily close to

V (f). In that way it is enough to establish the inequalities for such finite linear
combinations f in FH. That is, we establish them for f = fβ =

∑
h βhh and v =

‖β‖1 =
∑

h βhah, the variation associated with this particular representation of f .
5. The key step in the proof is a probabilistic sampling argument used to show

that there exists an hm yielding sufficient improvement at each step, following the
idea first used in the approximation result of Jones [54]. It is of interest that this
same idea is also used in our variable complexity argument in Section 4.

PROOF. Our algorithm constructs a sequence of terms h1, h2, . . . , hm and
a linear combination fm(x) =

∑m
j=1 βj,mhj . The variation associated with this

representation is vm =
∑m

j=1 βj,mahj
. Given the previous β1,m−1, β2,m−1, . . . ,

βm−1,m−1 and h1, h2, . . . , hm−1, this fm with the new term hm is chosen to
compare favorably with (1−α)fm−1(x) + βh for all h in the library. Such a fit
downweighs previous coefficients by the factor (1−α) and introduces a new term
with coefficient β, and thus corresponds to a variation of (1−α)vm−1 + βah. Let

(3.5) em = ‖fm−f∗‖2 − ‖f−f∗‖2 + λvm.

From (3.1) or (3.2), replacing the value with optimized α and β with the not smaller
value obtained with specific choices α = 2/(m+1) and β = αv/ah, we have

(3.6) em ≤
{
‖(1−α)fm−1 + αvh′ − f∗‖2 − ‖f−f∗‖2

}
+λ[(1−α)vm−1+αv],
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with h′(x) = h(x)/ah (where a small εcomp
m is permitted to be added to the right side

of (3.6) and the corresponding expression below). Next use λ[(1−α)vm−1 +αv] =
(1−α)λvm−1+αλv, with the equality replaced by≤ in the case that multiplication
by λ is replaced (generalized) to be the use of a convex function per the remark
above. Expanding the square the inequality may be rearranged as

em ≤ (1−α)em−1 + α2b(vh′) + αλv

−2α(1−α)〈f∗ − fm−1, vh′ − f〉
−α(1−α)‖fm−1−f‖2,(3.7)

where b(vh′) = ‖vh′−f∗‖2 − ‖f−f∗‖2.
Now in Case 1, hm was chosen to perform at least as well as the infimum of

the right side of (3.6) or equivalently (3.7) (to within the negligible εcomp
m ). Thus

em is less than the average of the right side for any convenient distribution on the
choices of h. For f =

∑
h βhh with v =

∑
h βhah, we consider the average when h

is chosen with probability βhah/v so that the expectation, the probability weighted
average, of vh(x)/ah is f(x). Then 〈f∗−fm−1, vh′−f〉 has expectation 0 and
‖vh′−f∗‖2 − ‖f−f∗‖2 has expectation the same as that of ‖vh′−f‖2 which is
less than or equal to v2 − ‖f‖2 since ah is greater than or equal to ‖h‖. Throwing
away the last term from (3.7), we thus have

(3.8) em ≤ (1−α)em−1 + α2bf + λαv + εcomp
m

with bf = v2 − ‖f‖2.
Likewise e1 ≤ bf + λv + εcomp

1 . Then with εcomp
m ≤ 4δ0

(m+1)2
and assuming in-

ductively that em−1 ≤
4(bf+δ0)

m + λv, we obtain from the inequality (3.8), with
α = 2

m+1 , that

em ≤ 4(bf + δ0)
m + 1

+ λv

as desired. Taking the infimum over all f establishes the result for Case 1.
Now we turn our attention to Case 2. The argument is similar to Case 1 but

differs in detail. With β = cαv
ah

in place of the minimizing β in (3.2), we obtain the
same inequalities as (3.6) and (3.7) but with cv in place of v and with the particular
choice of hm. Thus

em ≤ (1−α)em−1 + α2b(cvh′m) + cαλv

−2α(1−α)〈f∗ − fm−1, cvh′m − f〉
−α(1−α)‖fm−1 −f‖2,(3.9)

where h′m = hm/ahm and b(cvh′m) = ‖cvh′m −f∗‖2 − ‖f −f∗‖2. We bound
‖cvh′m −f∗‖2 in two ways. One way is to simply use a triangle inequality to get
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an upper bound (cv + ‖f∗‖)2. The other is also to use the triangle inequality and
‖f‖ ≤ v to obtain the bound

(‖cvh′ −f‖+ ‖f−f∗‖)2 ≤ [(1 + c)v + ‖f−f∗‖]2.

Thus b(cvh′) is bounded by bf = min{[cv + ‖f∗‖]2, [(1 + c)v + ‖f−f∗‖]2} −
‖f−f∗‖2.

The term 〈f∗−fm−1, cvh′m−f〉 is non-negative because of the selection rule of
hm using the fact that a maximum is bigger than the average. Therefore dropping
this inner product term yields

(3.10) em ≤ (1−α)em−1 + α2bf + λαv + εcomp
m .

Then from the same induction step, we prove the conclusion of Case 2.

Thus to prove the computational accuracy of the `1 penalized greedy pursuit
algorithm, the heart of the analysis is the demonstration that optimization of the
improvement on each step, which is at least as good as the improvement one has
on the average for certain distributions on h, is enough improvement for the claim
to hold by induction. The distributions are constructed from the absolute values
of the coefficients of functions approximating the target. This is the same strategy
used in [54] and [8] in showing accuracy of approximation by greedy algorithms
for targets in the convex hull of a multiple of a library and by [59] for targets
possibly outside of such a convex hull. With the simple modification to the squared
error, adding the contribution to the `1 penalty at each step, the greedy algorithm
is shown also to solve the `1 penalized least squares problem.

We end by considering the empirical situation to remind that the results of this
section imply the validity of inequality (1.12) and (1.13) in the introduction. In the
λ = 0 case, with Af,m defined as ‖Y−f̂m‖2

n−‖Y−f‖2
n, Lemma 3.1 demonstrates

an upper bound of Af,m equal to 4V 2
n (f)/m for all m and f . Likewise in the

general λ case, with Af,m defined as the difference of `1 penalized squared errors
between the m-step estimator and any function f is bounded by the same quantity.

4. Risk Bound for `1 Penalized Estimators. In this section, we apply tools
developed in Section 2 to establish risk bounds for the `1 penalized least squares
estimator. We start with special cases and extend the results to more general situa-
tions.

The class F = FH is the linear span of a library H as in Sections 1 and 3. Thus
any f in FH is of the form f(x) = fβ(x) =

∑
h βhh(x) where the coefficient

β = (βh : h ∈ H) has some finite subset of H within which βh is non-zero.
Without loss of generality, we assume that 0 is in H and, as before, we assume it
is closed under sign changes in the sense that if a function h in H, then −h is also
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in this set. Otherwise replace H with H∪−H ∪ {0}. Accordingly, in this section,
we assume all coefficient βh in the linear combinations are non-negative. We recall
that X = (Xi)n

i=1 and Y = (Yi)n
i=1 are training data and X ′ = (X ′

i)
n
i=1 is an

independent copy of X .
We want to show that a weighted `1 norm of the coefficient ‖β‖1 = ‖β‖1,a =∑
h |βh|ah can be used to formulate a proper penalty. Our first result in this section

requires that ah exceeds ‖h‖X and ‖h‖X′ , which may be thought of as distances of
h from 0. Later in this section we will allow smaller ah that correspond to distances
of h from certain sets that arise in approximating H.

An estimator f̂ = fβ̂ =
∑

h∈H β̂hh in FH is an approximate `1 penalized
least squares estimator with multiplier λ and weights ah if it satisfies the following
inequality,

(4.1) ‖Y − fβ̂‖
2
n + λ‖β̂‖1,a ≤ inf

β

{
‖Y − fβ‖2

n + λ‖β‖1,a + Aβ

}
.

Exact `1 penalized least squares corresponds to Aβ = 0, while computing a pre-
determined number of steps mn,comp of the `1 penalized greedy pursuit algorithm
yields Aβ ≤ 4‖β‖2

1,‖·‖n
/mn,comp. (Data-based stopping rules are analyzed sepa-

rately in Section 5). This definition of `1-penalized least squares with penalty given
by λ‖β‖1 matches the general concept, setting Penn(β)/n = λ‖β‖1 or equiva-
lently for f ∈ F setting penn(f)/n to be the minimum of λ‖β‖1 for coefficients
β for which fβ = f . Hence if we prove this penalty function is indeed a proper
penalty satisfying the requirements in Theorem 2.4 or Corollary 2.6, then the con-
clusion of those theorems may be applied to obtain a risk bound for f̂ .

First, considering the case that H is finite with size M = MH, we show that
λ exceeding C

√
(log M)/n, with some constant C, makes the quantity λ‖β‖1 a

valid choice of Penn(β)/n, with adjustment by a smaller order (log M)/n term,
satisfying the requirements of our theory. Then, subsequently, we will show re-
ductions in λ taking advantage of possible covering properties of the library and
allowing generalization to infinite size. The analysis in this first case displays the
essence of the proof for the more general cases.

Introduce the countable set F̃ to be the set of all functions of the form

(4.2) f̃(x) =
v

m

m∑
k=1

hk(x)/ahk

for terms hk in H for any m = 1, 2, . . . and v = mη, with η to be specified later.
We do not impose any upper bound on m in creating our cover.

For each f̃ ∈ F̃ , the main part of the codelength L(f̃) is m log M nats to de-
scribe the choices of h1, . . . , hm for a specified m. Actually, because the order does
not matter and because of the possibility of repeats, for specified m, a somewhat

imsart-aos ver. 2007/12/10 file: HCBmar20.tex date: March 21, 2008



RISK, GREEDY SELECTION, AND `1-PENALIZATION 37

shorter description of f̃ is possible, as detailed in the appendix, using not more
than m log(2eM/ min{m, M}) nats.

The other part of the codelength is the description of m and it is negligible in
comparison. Since the m are natural numbers, a crude codelength such as m log 2 is
enough. Thus adding these contributions together, we have the simple codelength,
for f̃ of the form (4.2),

L(f̃) = m log(2M),

and the refined codelength satisfying

L(f̃) ≤ m log+(M/m) + m log 4e.

If the quantities ah are symmetric between X and X ′, which is true when ah =
‖h‖∞ or when ah =

√
2‖h‖X,X′ , then F̃ and Ln(f̃) satisfy Assumption (S).

For f in F , let fβ = f yield ‖f‖1,H = ‖β‖1. The quantity which arises as a
lower bound for a proper penn(f)/n as in Theorem 2.4 is the minimum over F̃ of
the distortion plus complexity relative to sample size

(4.3) ‖Y −f̃‖2
n − ‖Y −f‖2

n +
1
c

[
‖f∗−f‖2

X′ − ‖f∗−f̃‖2
X′

]
+

γ

n
L(f̃),

where c is a constant greater than 1. To verify the proper penalty condition we
exhibit for each f ∈ F , the existence of a representor f̃ = f̃mf

in F̃ with an
m = mf depending on f , such that the inequality holds, namely that penn(f)/n
is not less than the expression (4.3).

To establish the existence of such a representor, recalling that f̃ is built from
choices of hk, we consider a distribution, in which each hk is selected indepen-
dently, in which the probability of each h is specified based on the values of βh.
For instance, these probabilities may be proportional to βhah. If the inequality we
want holds on the average with respect to the chosen distribution, then there will
exist a f̃ in F̃ with the desired property.

Useful characteristics of the distribution are that, for each x, the expectation of
f̃(x) is equal to f(x), and moreover, conditioning on X,X ′, by independence the
expectation of the squared norms ‖f̃−f‖2

X and ‖f̃−f‖2
X′ , respectively, are equal to

1/m times the corresponding expected squared norms we would have with a single
term.

Such conclusions are given in Lemma B.1 in the appendix. In particular, for val-
ues v ≥ ‖β‖1,a and ah ≥ ‖h‖n, i.i.d. sampling with probabilities proportional to
βhah produces ‖f̃−f‖2

n with expectation less than (v/m)‖β‖1,a. Likewise for strat-
ified sampling and other sampling designs given there, similar conclusions holds
with improvements in some cases in the values of v and ah. We will take advan-
tage of these improvements below, but first, for simplicity, we continue with the
implications from the i.i.d. sampling bound.
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Using the fact that associated cross-terms have mean zero, conditioning also on
Y , the difference ‖Y − f̃‖2

n − ‖Y −f‖2
n has the same expectation as ‖f̃ −f‖n.

Likewise, ‖f∗−f‖2
X′ − ‖f∗−f̃‖2

X′ , which we have also called diffn(f, f̃)/n, has
an expectation which is minus an expected squared norm, which is obviously non-
positive and hence can be ignored in setting the penalty.

The minimum over all f̃ of the expression (4.3) is a value not more than the
expectation over f̃ . Thus, using L(f̃) ≤ mf log(2M), we obtain an upper bound
of the minimum over F̃ of the distortion plus complexity relative to the sample size

(4.4)
v

mf
‖β‖1,a + γmf (log 2M)/n.

Here we arrange v ≥ ‖β‖1,a, picking v as a function of mf . Indeed, let mf =
d‖β‖1,a/ηe which determines v = mfη equal to ‖β‖1,a rounded up to the nearest
value in a grid of spacings η. Consequently we have demonstrated there is an f̃ for
which expression (4.4) is not more than

(4.5) η‖β‖1 + [‖β‖1/η + 1] γ(log 2M)/n.

Choosing the optimal η =
√

γ(log 2M)/n, expression (4.5) is equal to λ∗‖β‖1 +
γ(log 2M)/n, where λ∗ = 2

√
γ(log 2M)/n. Therefore, penn(fβ)/n of the form

(4.6) λ‖β‖1 + γ(log 2M)/n

satisfies the requirement (2.24) in Theorem 2.4 for λ ≥ λ∗. This is equivalent to a
penalty of λ‖β‖1 with adjustment by γ(log 2M)/n absorbed into the risk bound.

Applying Theorem 2.4 would require arranging the function ‖f̃‖∞ to be less
than B′. If ah = ‖h‖∞, then noting that ‖f̃‖∞ ≤ v ≤ ‖β‖1 + η, that boundedness
could be achieved by imposing the restriction that ‖β‖1 ≤ B′ − η.

Per Section 2, to avoid such restriction, we use expression (2.28) with the bound
on distortion available with positive δ3. Accordingly, for each f we want an f̃ for
which penn(f)/n exceeds the distortion plus complexity relative to sample size

(4.7) Dn(f, f̃) + γLn(f̃)/n,

where
Dn(f, f̃) = ‖Y −f̃‖2

n − ‖Y −f‖2
n + c3‖f−f̃‖2

X′ .

Here c3 = 1/(c̃δ3) and c̃ = (1 + δ1)(1 + δ2). For concreteness we set δ3 = 1/c̃,
so that c3 = 1 and the constant c in Corollary 2.6 is c = 1 + c̃.

The analysis in this generality is the same except that it yields a larger ex-
pectation over choices of f̃ , now invoking ah ≥ ‖h‖X′ as well as ah ≥ ‖h‖X .
Namely, the expectation of the distortion part is now multiplied by a factor of
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(1 + c3) = 2. Accordingly the expectation of expression (4.7) is not more than
2(v/m)‖β‖1 + γ(m/n) log(2M). Bounding it in the same manner as before, with
v = mη and m = mf = d‖β‖1/ηe, for which the optimal η is

√
γ(log 2M)/(2n),

leads to validity of the penalty Penn(β)/n of the form λ‖β‖1 + γ(log 2M)/n for

(4.8) λ ≥ 2
√

2γ(log 2M)/n.

Using the refined complexity bound mf log (4emax{M/mf , 1}), as detailed in
a Lemma in the appendix, establishes the validity of Penn(β)/n equal to λ∗‖β‖1

adjusted by γ log(4eM)
n +

√
γ
n

1
e , where now

(4.9) λ∗ = 2
√

2(γ/n) log(4emax{M
√

γ/n, 1}).

This allows for a smaller order λ in the case that M is not large compared to
√

n.
Slight refinements of this bound are possible in which there is a role for ‖β‖1 in the
denominator inside the logarithm, but the improvements obtained thereby appear
to only effect smaller order terms, and yield a penalty concave in ‖β‖1. We prefer
to stick with what can be obtained for the valid penalties linear or convex in ‖β‖1.

In the present simplified development, in obtaining the approximation bound,
we assumed the weights ah exceed ‖h‖X and ‖h‖X′ . Accordingly, here take ah =
‖h‖∞ in the traditional setting and allow ah =

√
2‖h‖2n in the transductive setting.

Summarizing the current conclusion, we have established the following.

LEMMA 4.1 (Validity of the `1 penalty in the finite library size case). An `1

penalized least squares estimator satisfying (4.1) with penalty λ‖β‖1,a, with λ ei-
ther at least 2

√
2γ(log 2M)/n or at least λ∗ as in (4.9), fulfills the requirement of

Corollary 2.6 for γ as stated there, such that, with ah = ‖h‖∞, the risk satisfies

E‖T f̂ −f∗‖2 ≤ c

[
inf
β

{
‖fβ −f∗‖2 + λ‖β‖1,a + EAβ

}
+ adjust/n

]
,

where adjust
n equals tail

n plus either γ log(2M)
n or

[
γ log(4eM)

n +
√

γ
n

1
e

]
, respec-

tively; whereas, for the estimator with ah =
√

2‖h‖2n,

E‖T f̂ −f∗‖2
X′ ≤ c

[
inf
β

{
‖fβ −f∗‖2 + λ‖β‖1,a∗ + EAβ

}
+ adjust/n

]
,

where a∗h =
√

2‖h‖.

A simple choice of the constants is to set δ1 = 1/2 and δ2 = 1/3. Then c = 3
and γ = 25

16(B + B′)2 + 8
3σ2 + 2(B + B′)hBern.
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Remarks:
1. Thus the resolvability infβ

{
‖fβ −f∗‖2 + λn,M‖β‖1,a

}
determines the risk be-

havior, with λn,M of order
√

(log M)/n, and adjustment terms negligible com-
pared to the main terms. In particular, for functions f∗ near fβ with moderate size
`1 norm of coefficients, the rate is controlled by λn near 1/

√
n times a log factor.

2. When the penalty uses weights ah =
√

2‖h‖2n based on the empirical L2 norm
on X,X ′, the resolvability bound on the risk bound involves the expected value of
the weights which are not more than a∗h =

√
2‖h‖. Accordingly, ‖β‖1,a∗ is used in

the risk bound. This appearance of the L2(P ) weights rather than the L∞ weights
is a risk advantage identified when one has knowledge of future input data.
3. The expectation of the computational accuracy term EAβ has a simplified bound
EAβ ≤ ‖β‖2

1,‖·‖/mn,comp when Aβ = 4‖β‖2
1,‖·‖n

/mn,comp. Indeed, ‖β‖1,‖·‖n
=∑

h βh‖h‖n, so its square is a sum over pairs h, h′ involving ‖h‖n‖h′‖n, each of
which by the Cauchy–Schwartz inequality has expectation not more than ‖h‖‖h′‖.
Accordingly, the expected square is not more than [

∑
h βh‖h‖ ]2, where ‖h‖ is the

L2(P ) norm.
4. The computation accuracy term Aβ is negligible if the optimization is per-
formed with sufficiently many steps. If the number of computation steps mn,comp is√

n/ log M , then for functions f∗ = fβ∗ with moderate `1 norm, the computation
accuracy is sufficient to retain the order

√
(log M)/n risk. For each f∗, let βn,M

be the coefficient vector that optimizes the resolvability with λn,M . If ‖βn,M‖1 is
large, then a minimal mn,comp needed to retain risk of the order of that resolvability,
is somewhat larger than

√
n/ log M , though always of order smaller than n.

5. The adjustment (log 2M)/n arose from the effect of rounding in setting m =
d‖β‖1/ηe. An additional randomization removes need for that adjustment. Con-
sider representors of the form f̃(x) = η

∑m
k=1 hk(x)/ahk

with constant η. Inde-
pendently, draw hk to be h in H with probability βhah/‖β‖1 (normalized by ‖β‖1

rather than by the slightly larger v used in the previous argument in the appendix).
Then given m, the mean of the representor is [mη/‖β‖1]f(x), which is not exactly
f(x). It exhibits a bias with integer m and non-integer ‖β‖1/η. So we pick integer-
valued m at random with mean ‖β‖1/η (for instance by a distribution on the two
integer values that straddle it), then the overall mean of the distortion plus com-
plexity expression (4.7) is bounded by 2η‖β‖1 +(‖β‖1/η)γ(log 2M)/n. With the
appropriate η, this yields the validity of the penalty λ‖β‖1 with λ satisfying (4.8),
with no need for the additional term.

Recalling the heart of the analysis so far, we have obtained a risk bound for `1

penalized least squares dictated by the presence of various m term subsets of the
library which, when adapted to fβ , provide approximation at rate ‖β‖2

1/m balanced
with complexity when m is of size determined by ‖β‖1

√
n/log M .
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Improvements: Smaller λ and smaller weights ah are possible using improve-
ments in the approximation bound. Also, we obtain finite complexity bounds in
certain infinite library cases. To avoid complication we first give such improve-
ments in a case in which the representors take a simple form, so we can retain the
same tools for their descriptive complexity.

The improvements are based on covering properties of the library H. We find
usefulness of two levels of cover. For infinite size libraries, at a fine precision ε1

typically of order approximately 1/
√

n, we use finite empirical covers for the pur-
pose of finding an effective library size M1. This size M1 serves as the surrogate
for M in the expressions for complexity, with a small added price in distortion.
This effective library size is permitted to be large compared to the sample size. As
before it appears in the risk bounds through the ratio (log M1)/n.

At another precision ε2, not nearly as small, we consider moderate improve-
ment in the v2/m approximation bound, and hence improvement in the distortion,
by stratified approximation by partitioning of the library into a number of cells
m0 and maintaining m ≥ m0. Consequently, as we show, both the distortion and
complexity terms in the penalty can be improved. As for the relationship between
the two precisions, the best tradeoff will occur when ε1 is of order ε2/

√
n. Let’s

consider the improvement of the distortion properties first.
Let H̃2 be a finite subset of functions from the library H. This subset may de-

pend on X,X ′. Each h ∈ H has a distance denoted εh,2 = minh̃∈H̃2
‖h − h̃‖2n,

from the set H̃2, where for this part of the analysis, the appropriate norm is the
empirical L2 norm on the 2n points X,X ′.

Let ε2 ≥ suph∈H εh,2 bound the precision of H̃2 as a cover of the library H.
Let m0 ≥ |H̃2| bound the cardinality of H̃2 and let m1 = m − m0. Appealing
to the stratified sampling argument of Case 3 of Lemma B.1, there is an equally
weighted linear combination fm = (v/m)

∑m
i=1 hk with terms hk in H selected

from those that form f , such that ‖Y−fm‖2
n−‖Y−f‖2

n + ‖f−fm‖2
X′ is not more

than 2ε2
2‖β‖1v/m, so in the present case taking our representor f̃ to be this fm the

distortion satisfies

Dn(f, f̃) ≤ 2ε2
2

v

m
‖β‖1 = 2ηε2‖β‖1,

where v/m ≤ ‖β‖1/(m − m0) and ‖β‖1 = ‖β‖1,1 =
∑

h |βh|. Moreover, for
any specified η > 0 we arrange for v/m = η/ε2 and for our representor to use a
total of m = mf terms, that is, the sum of the number of terms in each cell, where,
due to integer rounding effects, m is between ε2

∑
h βh/η and ε2

∑
h βh/η + m0

(where η/ε2 here plays the role of η in Lemma B.1).
The complexity term Ln(f̃) is set to be m log(2M) as before, now interpreted

as a sum of three parts: m0 log 2 for the description length of m0, plus m1 log 2 for
the description of m1, and m log M for the description of the choices of h.
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Using these bound on the distortion plus complexity, expression (4.7) is less
than or equal to

(4.10) 2ηε2‖β‖1 +
[
ε2
‖β‖1

η
+ m0

]
γ(log 2M)/n.

Note the similarity to the previous case, but with ε2 multiplying ‖β‖1 and with the
larger added term based on m0 ≥ 1. Again the optimal η∗ is

√
γ(log 2M)/(2n).

Accordingly, with the adjustment for γm0(log 2M)/n, we have the validity of
Penn(β)/n of the form

(4.11) λ‖β‖1,

for λ ≥ 4ε2η
∗ = 2ε2

√
2γ(log 2M)/n. For the adjustment to remain small com-

pared to this penalty requires that m0 be of somewhat smaller order than
√

n. This
restricts ε2 to be not very small, potentially tending to zero at a slow polynomial
rate, as will be discussed further for libraries with finite metric dimension proper-
ties.

The log factors here can be reduced. Indeed, the m log(2M) bound on the com-
plexity may be reduced to m log(4emax{M/m, 1}) as in the previous Lemma.
Now since m ≥ m0 and since we may assume that m0 ≤ M , this complexity may
be replaced with the upper bound m log(4eM/m0), retaining the linearity in m
as needed in the above argument. Accordingly, each of the log(2M) expressions
above may be replaced by log(4eM/m0), which is an improvement for m0 > 6.

Some of the examples involve continuously parameterized libraries, naturally
infinite in cardinality. With finite empirical covering properties we can define an
effective cardinality M1 to use in place of M . Not only is this idea useful for infinite
libraries, it can also apply for finite libraries to reduce the size of the multiplier for
`1 penalties, if some of the functions in the library are highly correlated.

To determine the effective cardinality of H, consider another empirical cover
denoted H̃1, but with much finer precision and, accordingly, with cardinality typ-
ically much larger than the H̃2 considered above. Let M1 denote an upper bound
on the cardinality of this cover. Let ε1 ≥ suph∈H εh,1 bound its precision, with
εh,1 = minh̃∈H̃1

‖h − h̃‖2n,1, using the empirical L1 norm defined by ‖h‖2n,1 =
1
2n

∑n
i=1(|h(Xi)|+ |h(X ′

i)|), as this choice of norm is sufficient for analyzing the
effect of this cover. One may arrange it to be an another empirical L2 cover (indeed
an L2 cover is also an L1 cover), but the best L1 cover of a given precision may
have somewhat smaller size.

Appropriate choices for the precision ε1 are discussed following the proof of the
Theorem below along with implications of the effective library size for libraries of
finite metric dimension.
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We give our general `1 penalty conclusions in the following Theorem. We re-
mind that the covers H̃1 and H̃2 are permitted to depend on X,X ′. We require that
they be coordinate pair symmetric. Indeed, in accordance with the symmetry of the
respective empirical norms, optimal size covers for specified precisions ε1 and ε2

have such symmetric. For the transductive setting we allow the cardinalities M1

and m0 and the precisions to depend on X,X ′; whereas, for the traditional setting,
we require that ε1 and ε2 be specified, not depending on the data, and that M1 and
m0 denote constant bounds on the respective cardinalities, even though the covers
are data-dependent.

The covers of the library are only used in setting a possibly smaller λ than be-
fore, otherwise the covers are not used in constructing the estimator. In imple-
mentation one only needs to know of bounds on the sizes and precisions of cov-
ers; we do not need explicit presentation of the covers we know to exist. Indeed,
the estimator continues to be the optimizer of the penalized least squares over all
(βh : h ∈ H) with the indicated λ.

THEOREM 4.2 (Validity of the penalty λ‖β‖1 with refinement of valid λ). Given
positive constants δ1 and δ2, the first two conclusions that follow are for ‖β‖1 =∑

h∈H |βh|. First, if MH = M is finite and has an empirical L2 cover of precision
ε2 and cardinality not more than m0, then with

λ ≥ 2ε2

√
2γ(log 2M)/n

the penalty fulfills the requirement of Corollary 2.6, yielding risk in the traditional
setting which satisfies

E‖T f̂ − f∗‖2 ≤ c

[
min

β

{
‖fβ − f∗‖2 + λ‖β‖1

}
+ adjust/n

]
,

with c = 1 + (1 + δ1)(1 + δ2) and adjust = tail2 + γm0 log(2M).
Second, allowing M infinite, if there is also an empirical L1 cover of precision

ε1 and cardinality not more than M1, then refining the allowed λ to be at least
2ε2

√
2γ(log 2M1)/n + 16B′ε1 yields the corresponding risk bound where now

adjust = tail1+tail2+2γm0 log(2M1). Moreover, the statements above hold with
the log(2M) and log(2M1) factors replaced by log(4eM/m0) and log(4eM1/m0),
respectively, assuming M and M1, respectively, are at least m0.

Third, with M finite or infinite, we allow the penalty to be equal to ‖β‖1,a=∑
h∈H |βh|ah with variable weights ah ≥ λ2εh,S,2 + λ1εh,H̃1,1, where εh,S,2 =

ming∈S ‖h− g‖2n is the empirical L2 distance of h to the linear span S of a given
subset of H̃2 of size not more than m0, and εh,H̃1,1 is the empirical L1 distance
of h to the subset of cardinality M1. Moreover, λ2 = 2

√
2γ(log eM1cn)/n and

λ1 = 8B′, where cn = 4e2 max{1, nc′} and c′ = 8(B′)2/[γ(m0 + 1)]. Then the
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risk bound holds with ‖β‖1,a in place of λ‖β‖1 and with adjust = 2tail1 + tail2 +
γ[2 log M1 + (m0 + 2) log cne)].

In the transductive setting, the same conclusions hold, where on the left we put
the risk E‖T f̂ −f∗‖2

X′ and on the right we have an expectation, recognizing the
possible data-dependence of M1 and m0 and accordingly also of λ and ah.

PROOF. The first claim is established in the development preceding the theorem
statement and the third claim is proved in the appendix using a more elaborate
approximation and covering argument. We give now the proof of the second claim.

We are to establish validity of the penalty λ‖β‖1 by showing that every f = fβ

has a representor such that λ‖β‖1 exceeds expression (4.7). We begin with same
argument as above, noting for λ at least 4ε2η, this λ‖β‖1 exceeds the expression

(4.12) ‖Y −fm‖2
n − ‖Y −f‖2

n + ‖f−fm‖2
X′ + γL(f̃m)/n,

where fm is an m term approximation to f , with terms hk in H, where m depends
on f . We form our representor f̃m by replacing each such hk with the closest h̃k

in H̃1. This yields f̃m = (v/m)
∑m

k=1 h̃k, in the present case of constant weights
ak = 1. The complexity expression L(f̃m) and the value of η = η∗ are taken to be
the same as before, except now with M1 in place of M .

We seek a lower bound on expression (4.12) using a corresponding expression
with f̃m in place of fm. Equivalently, adding ‖Y −f‖2 to λ‖β‖1 and to expression
(4.12), we seek such a bound on

(4.13) ‖Y −fm‖2
n + ‖f−fm‖2

X′ + γL(f̃m)/n,

which we pursue by first replacing the functions in (4.13) by their truncations.
Since (4.13) is of rectifiable form, we have the lower bound, as in Lemma 2.5,

(4.14) ‖Y − Tfm‖2
n − Tail2/n + ‖Tf − Tfm‖2

X′ + γL(f̃m)/n.

Next, when we replace the functions hk by their representors h̃k, we produce f̃m

with |Tfm(x) − T f̃m(x)| ≤ |fm(x) − f̃m(x)| ≤ (v/m)
∑m

k=1 |hk(x) − h̃k(x)|.
The average of this bound across the 2n points of X and X ′ is denoted Vm,ε1 =
(v/m)

∑m
k=1 εhk,1, which is not more than vε1.

Using the rule for differences of squares, [Tf(x) − Tfm(x)]2 is the same as
[Tf(x)−T f̃m(x)]2− [2Tf(x)−Tfm(x)−T f̃m(x)][Tfm(x)−T f̃m(x)], which
is at least

[Tf(x)− T f̃m(x)]2 − 4B′ |Tfm(x)− T f̃m(x)|.

Likewise, term by term, [Yi−Tfm(Xi)]2 is at least [Yi−T f̃m(Xi)]2−4B′|Tfm(Xi)−
T f̃m(Xi)| − Tail1(Yi), where Tail1(Yi) = 4B′(|Yi| − B′)1{|Yi| > B′}. Combin-
ing these inequalities, using the bound on the average of |Tfm(x)− T f̃m(x)| with
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respect to the X and X ′ points, we obtain that expression (4.14) is at least
(4.15)[
‖Y − T f̃m‖2

n + ‖Tf − T f̃m‖2
X′ + γL(f̃m)/n

]
− Tail1 + Tail2

n
− 8B′Vm,ε1

where Tail1 and Tail2 are the corresponding sums of Tail1(Yi) and Tail2(Yi), re-
spectively. We recognize the expression in brackets is of the desired form.

Here Vm,ε1 is not more than vε1. We have two upper bounds on v, either of
which we may put to use. On one hand v ≤ ‖β‖1+m0η/ε2, which yields 8B′Vm,ε1

not more than 8B′ε1‖β‖1 + 8B′m0ηε1/ε2. The term 8B′ε1‖β‖1 is added to the
penalty and the last term 8B′m0ηε1/ε2, which will be seen to be negligible, is
added to the adjustment. Accordingly, with penalty at least [4ηε2 + 8B′ε1]‖β‖1

and with adjustment by γm0 log(2M1)
n + 8B′m0ηε1/ε2 along with the tail terms,

we obtain a valid penalized squared error criterion exceeding the expression in
brackets in (4.15) for satisfaction of the conditions of our theory.

Alternatively, we have v ≤ ‖β‖1m/(m−m0), with which we may arrange for
the choice of m to be the maximum of the previous choice mf and 2m0, so that
m/(m−m0) ≤ 2. Hence 8B′Vm,ε1 has a second bound 16B′ε1‖β‖1. Accordingly,
the addition to the penalty can be instead 16B′ε1‖β‖1. In verifying the penalty
condition, we use that the new m ≤ ε2‖β‖1/η + 2m0, such that, with the new
factor of 2 on the m0, the adjustment term becomes 2γm0(log 2M1)/n, verified in
the same manner as at expressions (4.10), and (4.11), with M1 in place of M .

Moreover, as before, assuming m0 ≤ M1, each of the log(2M1) factors may be
replaced with log(4eM1/m0), as indicated in the Theorem statement. This com-
pletes our analysis for the second claim of the Theorem. As we said the proof of
the third claim is in the appendix.

Remarks:
1. In the special case of m0 = 1, with H̃2 consisting of a single function equal

to 0, the assumption concerning ε2 corresponds to ε2 = b ≥ suph ‖h‖2n, yield-
ing conclusions for the equally weighted `1 norm ‖β‖1 =

∑
h |βh| analogous to

the previous Lemma. Allowing larger m0 the result is improved by the ε2 factor
bounding the empirical distance of functions in H from data dependent covers.

2. The third conclusion is more flexible in what it allows of the penalty, using the
distance to the linear span S which is in smaller than the distance to H̃2. Also, like
Lemma 4.1, this case allows for variable weights ah, now possibly much smaller.
With variable weights the conclusion is close to the Lemma 4.1 result when S is
trivial, consisting only of the function equal to 0. Nevertheless, this third conclu-
sion does not subsume the others, because the more elaborate covering argument it
requires yields an additional factor of n inside the log in the definition of λ2.
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`1 Penalties for Libraries of Finite Metric Dimension. We now discuss the
choices of ε1 and ε2 and the form of the penalty for libraries of finite metric di-
mension, using the results of the second claim in Theorem 4.2 above.

First focus attention on the choice of the precision ε1 as a function of other
characteristics of the setting.

Recall that an infinite library H is said to have metric dimension d1 = dH,1

with respect to the empirical L1 norm, if there are positive constants b1 and c1

such that for every positive ε ≤ b1, every n ≥ 1, and every (X,X ′), the best
empirical L1 cover of precision ε has cardinality MH,ε not more than (c1/ε)d1 ,
where c1 ≥ b1 ≥ suph∈H ‖h‖2n,1. Here the cover may be data-dependent, even
though ε and the cardinality bound (c1/ε)d1 are not.

An important class of examples, as we recall in the Section 7, are those for which
the functions h(x) are uniformly bounded by a constant b and the graph class of
H, that is, the class of sets {x : h(x) ≤ τ}, τ ∈ R, h ∈ H, has VC-dimension d.
By Theorem 13 of Chapter 10 in Pollard [69], which is a result based on Haussler
[52], H has empirical dimension not more than d with respect to the empirical L1

norm, with MH,ε ≤ e(d + 1)(4eb1/ε)d ≤ e(4e2b1/ε)d for all ε ≤ b1. In this case
the associated c1 is equal to 4eb1[e(d + 1)]1/d.

Let’s explore consequences of H having finite metric dimension. Rounding
down to an integer, we set

M1 = (c1/ε1)d1 .

Accordingly, for each ε2, the associated best λ∗n,d corresponds to optimization over
ε1 of values of λ of order ε2

√
d1(log 1/ε1)/n + ε1. The best such ε1 is approxi-

mately ε2

√
d1/n to within a log factor and produces a λ∗n,d of order

(4.16) ε2

√
(d1/n) log(n/d1).

This is a pleasing result. It shows, for sequences of libraries and sample sizes in-
dexed by the metric dimension d1 and the sample size n, that the multipliers λn,d

can be arranged to be small whenever d1/n is small. Moreover, in view of the index
of resolvability bound on the risk of an `1 penalized least squares estimator, its risk
tends to zero at a rate controlled by this ε2

√
d1/n times a log factor, provided f∗

is in the closure of the linear span of the library. In particular, if the target function
f∗ has finite V (f∗) then the risk of the estimator tends to zero at rate λn,d of order
ε2
√

(d1/n) log(n/d1), assuming the adjustment terms have an order of behavior
not larger than this.

What is pleasing is that this rate is at least as good as the power 1/2 on the d1/n
term and this rate does not degrade to worse that this critical exponent 1/2 as the
library dimension gets large. This assurance of a rate that is at least as good as the
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dimension-independent rate 1/2 is a type of avoidance of the curse of dimension-
ality for functions that have finite variation with respect to the library, for libraries
of increasing dimension, so long as d is of smaller order than n. These properties
hold even though the effective size of the library M1 = (c1/ε1)d1 is much larger
than the sample size n for d1 ≥ 2. Improvements that arise from the factor ε2 are
icing on the cake.

We pin down the specifics of a suitable multiplier λn,d including the constants.

We have λ = 2
[
ε2

√
2γ d1 log(c1/ε1)+log 2

n + 4B′ε1

]
. From the inequality A + B ≤

[2(A2 + B2)]1/2, it is not more than 4
[
ε2
2γ

d1 log(c1/ε1)+log 2
n + 8B′2ε2

1

]1/2
, which

is exactly optimized at

(4.17) ε1 =
ε2

4B′

√
γd1

n
,

with an assumption that 1
4B′

√
γd1

n ≤ 1, so that if ε2 is not more than a constant
needed for the metric dimension control then also ε1 is not more than it.

Conveniently then we set this choice of ε1, equal to a constant times ε2

√
d1/n

as expressed in (4.17). At this choice we have

(4.18) λn,d = 2ε2

√2γ
d1 log(c1/ε1) + log 2

n
+

√
γ

d1

n

 .

This gives the advertised ε2

√
(d1/n) log(n/d1) rate, including the trivial case

with m0 = 1 corresponding to the single function equal to 0, where then ε2 =
bH ≥ suph∈H ‖h‖2n.

We proceed to take advantage of smaller ε2 and corresponding larger m0. Finite
metric dimensionality with respect either the empirical L1 norm or the empirical
L2 norm implies finite metric dimensionality with respect to the other, with dH,1 ≤
dH,2 ≤ 2dH,1. With d2 = dH,2 there are constants b2 and c2 such that for every
ε2 ≤ b2 and every X,X ′ there is an optimal empirical L2 cover of H of precision
ε2 with cardinality not more than (c2/ε2)d2 , where c2 ≥ b2 ≥ suph∈H ‖h‖2n. The
following corollary demonstrates refinements for the libraries with finite metric
dimension.

COROLLARY 4.3. Assume the library H has finite metric dimensions d1 and
d2 with respect to empirical L1 and L2 norms, respectively.

(1). The `1-penalized least squares estimator with penn(fβ) = λ‖β‖1 with λ at
least

λn,d = C1(d2)(1 +
√

d1/ρ) (γρ/n)(d2+2)/(2d2+2) ,
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where C1(d2) = d
1/(d2+1)
2 (2c2)d2/(d2+1) and ρ = d1 log(cn/d1) + 2 log(4e) with

c = (4B′c1)2/(c2
2γ), satisfies the requirement of the second conclusion in Theorem

4.2. In particular, if the target function f∗ has finite variation V (f∗), there exist
such multipliers λ, such that the the risk tends to zero at rate of order[

γd1

n
log

n

d1

] d2+2

2(d2+1)

.

Here if the noise ε in the regression is bounded, γ is a constant. Otherwise, accord-
ing to Corollary 2.6, the quantity γ is of order log2 n; whereas if ε is sub-Gaussian,
γ is of order log n.

(2). Using penalty penn(fβ) = λ‖β‖d2/(d2+1)
1 with λ at least

λ′n,d = C(d1, d2) (γρ/n)(d2+2)/(2d2+2) ,

where C(d1, d2) is defined in the proof and ρ is the same as in (1), the penalized
least squares estimator f̂ satisfies the resolvability risk bound

E‖T f̂ − f∗‖2 ≤ (1 + δ)

[
min

β

{
‖fβ − f∗‖2 + λ‖β‖

d2
d2+1

1

}
+ adjust/n

]
,

where adjust/n is of smaller order than λ′n,d.

PROOF. Both conclusions are proven by similar arguments. First replace the
log(2M1), arising as d log(c1/ε1) + log 2 in the expression (4.18) for λ, with the
alternative log(4eM1/m0). The choice of ε1 set in equation (4.17) still has the
indicated optimization property where now the log 2 is replaced by log(4e/m0).

Set

(4.19) m0 = d(c2/ε2)d2e.

Now since d2 ≥ d1 and c2/ε2 ≥ 1 we have that

M1

m0
≤ (c1/ε1)d1

(c2/ε2)d2
≤
[
c1/ε1

c2/ε2

]d1

=
[
4B′c1

c2

√
n

γd1

]d1

=
[
c

n

d1

]d1/2

,

where c = (4B′c1)2/(c2
2γ). Consequently, the multiplier for the `1 penalty may be

set to be any value of λ at least

λn,d = 2ε2
√

γ

[√
ρ/n +

√
d1/n

]
,

where ρ = d1 log
(
c n

d1

)
+ 2 log 4e. The

√
d1/n is of smaller order than the√

ρ/n term by a log factor. Likewise, for the adjustment γm0(log 4eM1/m0)/n+
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8B′m0ηε1/ε2, as suggested preceding the theorem statement, with η =
√

γρ/(4n),
we see that it can be upper bounded by γm0

n

[
ρ/2 +

√
ρd1

]
since 2 log(4eM1/m0)

is not more than ρ. Once again, the second part of the adjustment is negligible
compared to the first by a log factor.

We now have the ingredients with which to address the choice of ε2. Consider
the contributions from λn,d‖β‖1 and from the main part of the adjustment. Using
the identity (4.19), we have that the adjusted penalty as appears in the index of
resolvability is equal to

(4.20) 2ε2

√
γρ

n
‖β‖1 +

1
2

(
c2

ε2

)d2 γρ

n
.

(1) Picking a reference value v0 for the variation ‖β‖1, a near optimal ε2 for
expression (4.20) is equal to ε∗2 =

(
C0(d2)/v0

)1/(d2+1) (γρ/n)1/(2d2+2) where
C0(d2) = d2c

d2
2 /4. Plugging this value of ε2 into the expression for λn,d, we allow

multipliers λ that are at least

C1(d2)v
−1/(d2+1)
0

(
1 +

√
d1/ρ

)
(γρ/n)(d2+2)/(2d2+2) ,

where C1(d2) = d
1/(d2+1)
2 (2c2)d2/(d2+1). The first statement of the Corollary is a

special case with the reference v0 to be 1. As we mentioned,
√

d1/n is of smaller
order than

√
ρ/n by a log factor. Therefore, λn,d is of order (γρ/n)(d2+2)(2d2+2),

which is the same as of order
[
γ d1

n log n
d1

] d2+2

2(d2+1) . Consequently, if the target func-
tion f∗ has finite V (f∗), the index of resolvability tends to zero at the rate of λn,d.
This proves the conclusion.

(2) Previously we pick an ε2 not depending on β. Now we ε∗2 optimizing the
expression (4.20), which is

ε∗2 = (C0(d2)/‖β‖1)
1/(d2+1) (γρ/n)1/(2d2+2) .

This ε∗2 and the corresponding m0 = (c2/ε∗2)
d2 are functions of β, so we include

the associated terms in our penalty. Hence, using the optimal ε∗2, we obtain validity
of penalties which take value not smaller than

C(d1, d2) (γρ/n)(d2+2)(2d2+2) ‖β‖d2/(d2+1)
1 ,

where C(d1, d2) = (d1/(d2+1)
2 (1+

√
d1/ρ)+d

−d2/(d2+1)
2 (1+2

√
d1/ρ))(2c2)d2/(d2+1).

Consequently, according the second conclusion of Theorem 4.2, the resolvability
risk bound follows.
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Remarks:
1. When the target function f∗ has finite variation V (f∗), the risk of the penal-

ized least squares estimators with both penalties λn,d‖β‖1 and λ′n,d‖β‖
d2/(d2+1)
1

tend to zero at the same rate. This rate is strictly better than the power 1/2 on
d1/n. The smaller the empirical L2 dimension d2 is, the faster our risk converges
to zero.

2. When the target function f∗ has infinite variation, using the second penalty
λn‖β‖r

1, where r < 1, provides a faster rate. Indeed, consider the squared approxi-
mation error App(f∗, v) = inffβ :‖β‖1=v{‖fβ − f∗‖2}, which is a decreasing func-
tion of v. Now the index of resolvability is R1

r(f
∗, λn) = infv{App(f∗, v)+λnvr},

with penalties to be λn‖β‖r
1 for r ≤ 1. If App(f∗, v) is a polynomial function of v,

the solution R1
r(f

∗, λn) is also a polynomial function, which can be solved explic-
itly to reveal the power of the λn and to show the rate is decreasing with respect to
r. Even if R1

r(f
∗, λn) is not a polynomial function, one still gets a rate improve-

ment for r < 1 compared to r = 1.

Comment on Variable-Complexity Libraries: In Lemma 4.1, we used a con-
stant complexity log M for members of a finite library H. Variable complexi-
ties L(h) for h in H, satisfying

∑
h e−L(h) ≤ 1, may be used for countable li-

braries. Then the best ah via our technique, without taking advantage of metric
covering properties of H, is equal to aL,h = ‖h‖2n

√
L(h)+log 2 (for the tra-

ditional setting, we may use ‖h‖∞
√

L(h)+log 2 ). The analogous conclusion is
achieved showing λ‖β‖1,aL to be a valid penalty for λ ≥ 2

√
2γ/n with corre-

sponding risk bound. This extends Lemma 4.1 by using
√

L(h)+log 2 inside the
sum defining ‖β‖1,aL in place of the constant

√
log M+log 2 outside the sum. The

proof is similar to that for Lemma 4.1 except that we express the complexity as
L(f̃) =

∑m
k=1[L(hk) + log 2]; the representors f̃ = η

∑m
k=1 hk(x)/chk

are per-
mitted to use different weights chk

; the distribution of the hk chooses each h in
H with probability proportional to βhch; and we compute the resulting expecta-
tion of the distortion plus complexity Dn(f, f̃) + γL(f̃)/n, leading to the penalty
expression optimized at ch = ‖h‖2n/

√
L(h) + log 2.

5. Risk Bound for Subset Selection. In this section, we first extend the re-
sult presented in Section 2 to allow penalty depending on indices m as well as the
functions f . Then we apply these general risk conclusions along with the compu-
tation bounds for greedy algorithms provided in Section 3, to establish risk bound
for these estimators based on subset selection. An improvement to generate an es-
timator better than both the `1 penalized estimator and the subset selection is given
at the end of the section.

Suppose H is a set of functions, each with finite L2(P ) norm. Recall that X =
(Xi)n

i=1 and Y = (Yi)n
i=1 are training data and X ′ = (X ′

i)
n
i=1 is an independent
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copy of X . We now state a variant of the result in Section 2, taking advantage of
properties of models {Fm}m∈M for which F is the union, where M is an index
set. For each m ∈ M, we allow a comparison class Fco

m for approximate opti-
mization which might be larger than Fm. Suppose f̂ , m̂ approximately minimizes
the penalized least squares criterion ‖Y −f‖2

n +penn(f,m)/n relative to the com-
parison sets, in the sense that f̂ is in Fm̂ and one has a non-negative quantity Af,m

such that

‖Y −f̂‖2
n + penn(f̂ , m̂)/n ≤ inf

m∈M
inf

f∈Fco
m

{
‖Y −f‖2

n + penn(f,m)/n + Af,m

}
.

Here penn(f,m) and Af,m are permitted to depend on the data X and Y (and
also depend on the evaluation inputs X ′ in the transductive case). We call this
estimator f̂ or its truncated counterpart T f̂ a penalized least squared estimator
with optimization accuracy Af,m with respect to {Fco

m }m∈M.
Often, f̂ and m̂ are chosen by a two-step procedure. It is arranged for f̂m = f̂n,m

to approximately minimize ‖Y−f‖2 +penn(f,m)/n, for m̂ to be the model index
minimizing ‖Y − f̂m‖2

n + penn(f̂m,m)/n and for f̂ = f̂n,m̂ to be the estimator
obtained by plugging in the selected model. If f̂m exactly minimizes the criterion
among functions in Fm, for m ∈ M, then it is natural to set Fco

m = Fm and
Af,m = 0. Nevertheless, we can take advantage of larger comparison sets in some
settings. For instance, using relaxed greedy fits in the setting of Section 3, we may
have Fco

m equal to the whole L1,H.
Corollary 5.1 below, similar to Theorem 2.4, gives a condition on the penalty

such that an analogous risk conclusion holds for f̂m̂. As for the cover it may be
formed from a union of sets F̃X,X′,m̃, with m̃ in a subset M̃X,X′ of the index set
M, with associated complexities LX,X′(f̃ , m̃). In this setting the symmetry and
complexity condition becomes the following.
Assumption (S′) The index set M̃X,X′ , the function sets F̃X,X′,m̃ and associated
complexities LX,X′(f̃ , m̃) are coordinate pair symmetric between X and X ′ and
the complexities satisfy the Kraft inequality∑

m̃∈M̃X,X′

∑
f̃∈F̃X,X′,m̃

e
−LX,X′ (f̃ ,m̃) ≤ 1.

Our general requirement on the penalty is that there exists countable sets F̃X,X′,m̃

of functions f̃ bounded by B′ and associated complexities LX,X′(f̃ , m̃) satisfying
Assumption (S′) and an adjustment Adjustn, such that for every m ∈ M and
f ∈ Fm, the penalty has [penn(f,m) + Adjustn] at least

(5.1) inf
m̃∈M̃X,X′

inf
f̃∈F̃X,X′,m̃

{
∆n(f, f̃) + γLX,X′(f̃ , m̃)

}
,
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where ∆n(f, f̃) is the distortion between f and f̃ defined at (2.27).

COROLLARY 5.1. In the same setting as in Corollary 2.6, suppose the penalty
function penn(f,m) not only depends on f , but also depends on an index m in
an index set M. Given positive constant δ1, δ2 and nonnegative δ3, for penn(f,m)
with an adjustment Adjustn exceeding (5.1) or exceeding its expectation with re-
spect to X ′, then a penalized least squares estimator (with optimization accuracy
Af,m) when truncated to the level B′ satisfies the following risk bound

E‖T f̂ − f∗‖2
X′

≤ (1 + δ) inf
m∈M

inf
f∈Fco

m

{
‖f − f∗‖2 + E

[
penn(f,m)

n
+ Af,m

]
+

adjust

n

}
.

where (1 + δ), γ and adjust are the same as in Theorem 2.4.

PROOF. The proof is similar to that of Theorem 2.4. Denote M̃X,X′ , F̃X,X′,m̃

and LX,X′(f̃ , m̃) by M̃, F̃m̃ and Ln(f,m) for simplicity. Let pen+
n (f,m) =

penn(f,m) + Adjustn. Rewrite the condition (5.1) of the proper penalty as

EX′ sup
m

sup
f∈Fm

{
1
c
P ′

n(g1,T f )− Pn(ρf )− pen+
n (f,m)/n

}
≤ EX′ sup

m̃∈M̃
sup

f̃∈F̃m

{
1
c̃
P ′

n(g1,f̃ )− Pn(ρf̃ )− γLn(f̃ , m̃)/n

}
,(5.2)

where c̃ = (1 + δ1)(1 + δ2) and c = c̃(1 + δ3). Under the Assumption (S′), a
conclusion analogous to Lemma 2.3 is achieved, namely, the expectation of the
right side of (5.2) is non-positive. Consequently, the expectation of the left side
is less than or equal to 0 as well, yielding a risk for the penalized least squares
estimator f̂ bounded by,

c E
(
Pn(ρf̂ ) + pen+

n (f̂ , m̂)/n
)

,

which is bounded by an expected minimum both over the index setM and over the
comparison set Fco

m and thus bounded by the minimum expectation. This provides
our desired conclusion.

We now focus on the case that F may be the set of all finite linear combinations
of functions from a dictionary H, namely FH. In all-subset regression, we use a
penalty primarily determined by log

(MH
m

)
, the comparison class is Fm, the set of

all m-term linear combinations, and Af,m = 0.
The first theorem below is to demonstrate a risk bound with best tradeoff be-

tween approximation accuracy and the penalty function for the estimator T f̂m̂

chosen by all-subset selection from a finite library.
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THEOREM 5.2 (Risk characterization for all-subset selection). Assume the re-
gression setting (B). Assume H is a finite dictionary with Cardinality M = MH
and Fm is the set of all m-term linear combinations of H. Suppose f̂m = fβ̂m

is
the least squares estimator in FH,m. Let any positive δ1 and δ2 be given. Choose
m̂ among all 1 ≤ m ≤ min{n, M} to minimize the penalized squared error

‖Y −f̂m‖2
n + penn(m)/n,

where penn(m) has the form C
(
log

(M
m

)
+ (m+1) log n + log min{n, M}

)
with

C ≥ γ, where γ is the same as before.
Then for n ≥ 4e2, this selected estimator f̂ = f̂m̂ when truncated to the level

B′ satisfies the following risk bound

E‖T f̂m̂ −f∗‖2
X′ ≤ (1 + δ) inf

m
inf

fm∈FH,m

{
‖fm −f∗‖2 +

penn(m)
n

+
Cδ

n

}
where 1+δ = (1+δ1)(1+δ2) and Cδ ≤ γ′+γ+tail1 +tail2 with γ′ = 32e2B′2.
Here tail1, tail2 and B′ have the properties in Corollary 2.6 and its remark.

Remarks: This establishes for finite libraries the claim in Case (A) in the intro-
duction for all-subset regression. We point out that by allowing for a multiple of
n inside the logarithm, we can ameliorate the effect of the otherwise large γ′ and
allow for arbitrary n ≥ 1. That detail is given in the proof.

A similar conclusion holds for infinite libraries with finite covers. For such infi-
nite libraries our bounds are cleanest when we allow mild control (via penalties) on
the size of the coefficients, which avoids numerical difficulties with correlated vari-
ables. Such control adjusts is obtained by the subset size penalty with a (possibly
very small) multiple of ‖β‖1 or ‖β‖2

2 =
∑

h β2
h, a familiar ridge regression mod-

ification. When that multiplier is appropriately small, the main part of the penalty
remains based on subset size. Accordingly, we permit H to be an infinite library in
Theorem 5.4 below using a small multiple of ‖β‖1. We omit infinity library details
for the all-subset selection conclusion here.

PROOF. We prove the theorem in the following steps. Analogous steps are also
used for the other results of this section.

1. Note that the estimator f̂m̂ is a penalized least squares estimator;
2. Set M̃X,X′ = M = {1, 2, . . . ,M}. Construct empirical covers F̃n,m =
F̃X,X′,m and associated complexities {Ln(f̃ , m) : f̃ ∈ F̃n,m} to satisfy
Assumption (S′);

3. Show that the penalty function penn(f,m) satisfies condition (5.1).
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Then the risk bound for the truncated estimator T f̂m̂ follows from Corollary 5.1.
Step (1) is immediate for this case. The comparison class is taken to be Fco

m =
Fm. Our penalty is penn(f,m) = penn(m) for f in Fm. Using the definition, our
estimator is a penalized least square estimator with Af,m = 0.

Now we come to step (2). Given any set Λ ⊂ H, we let FΛ = span{h : h ∈ Λ}
denote its linear span and TFΛ denote the truncated version of this span. Using
the results of Haussler [52] as in Lemma B.4 in the appendix, we know that for
any Λ with cardinality not more than m, the covering number N (t, TFΛ, ‖.‖2n,1)
is less than e(4e2B′

t )m+1, where ‖.‖2n,1 is the empirical L1 distance on (X,X ′),
and t ≤ B′. Taking the union of these covers over the

(M
m

)
choices of subsets, we

bound the covering number of TFm =
⋃

Λ:|Λ|=m TFΛ as follows,

(5.3) N (t, TFH,m, ‖.‖2n,1) ≤ e

(
4e2B′

t

)m+1(
M

m

)
.

Then F̃n,m is chosen to be a t-cover of TFH,m with the minimum cardinality. In
particular, for f in FH,m, there exists a function f̃m ∈ F̃n,m, such that ‖f̃m −
Tf‖2n,1 ≤ t. We choose t = τ4e2B′/n, with 4e2τ/n ≤ 1, where as we shall see
it may be advantageous to allow τ = τm to depend on m; for simplicity, the claim
of the theorem chooses τ = 1. Then the log cardinality of F̃n,m is not more than
the logarithm of the right side of (5.3), that is,

(5.4) 1 + (m+1) log
n

τm
+ log

(
M

m

)
.

Now log M suffices for the description length of m in the setM = {1, . . . ,M}.
If one also imposes that models with not more than n terms be considered this part
may be reduced to log min{n, M} here and in what follows. Thus the complexities
are set to be Ln(f̃m,m) = log Card(F̃n,m)+ log M for which the Kraft inequality
holds. Using the expression (5.4) and the log cardinality of the covers, we have

(5.5) Ln(f̃m,m) ≤ log

(
M

m

)
+ (m+1) log

n

τm
+ log M + 1.

From the above construction, we recognize that both F̃n,m and Ln(f̃m,m) de-
pend on data only via the L2 empirical norm on (X,X ′), and so they are arranged
to be coordinate pair symmetric.

For step (3), for any m and f ∈ Fm, using Corollary 5.1, we are to show that the
penalty is at least inf f̃∈F̃n,m

{
∆n(f, f̃) + γLn(f̃ , m)

}
with our choice δ3 = 0. In

the proof of Lemma 2.5, we have the inequality that for any function f ,

‖Y − f‖2
n ≥ ‖Y − Tf‖2

n − Tail2(Y )/n
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where Tail2(Y ) = 2
∑n

i=1(|Yi| −B′)21{|Yi| > B′}. So we only need to show that
for every X ′ that penn(f,m) is not less than ∆n(f, f̃m) + γLn(f̃m) + Tail2(Y ),
where, with c = (1 + δ1)(1 + δ2), the distortion ∆n(f, f̃m) is given by

(5.6) n
(
‖Y − f̃m‖2

n − ‖Y − Tf‖2
n

)
+

n

c

(
‖f∗ − Tf‖2

X′ − ‖f∗ − f̃m‖2
X′

)
,

where f̃m is the function corresponding to f in the cover F̃n,m.
Term by term, [Yi − f̃m(Xi)]2 is at most [Yi − Tf(Xi)]2 + 4B′|Tf(Xi) −

f̃m(Xi)| + Tail1(Yi), where Tail1(Yi) = 4B′(|Yi| − B′)1{|Yi| > B′}. Then the
first two terms in ∆n(f, f̃m) are bounded by 4B′∑n

i=1 |Tf(Xi)−f̃m(Xi)|+Tail1.
Likewise, the last two terms are bounded by 2(B+B′)

c

∑n
i=1 |Tf(X ′

i) − f̃m(X ′
i)|.

Thus we obtain

(5.7) ∆n(f, f̃m) ≤ 8nB′‖Tf − f̃m‖2n,1 + Tail1 ≤ 32e2B′2τ + Tail1,

by substituting t = τm4e2B′/n. Now setting Adjustn to be Tail1 + Tail2 + γ and
combining the upper bound on ∆n(f, f̃m) from (5.7) and the upper bound on the
complexity from (5.5), we allow penn(f,m) not less than

(5.8) C

[
log

(
M

m

)
+ (m+1) log

n

τm
+ log M

]
+ γ′τm,

where C ≥ γ and γ′ = 32e2B′2. Applying Corollary 5.1 with this penalty yields
the risk bound for the penalized least squares estimator with all-subset selection

E‖T f̂m̂ −f∗‖2 ≤ c inf
m

inf
f∈Fm

{
‖f−f∗‖2 + E

penn(f,m)
n

+
adjust

n

}
,

where adjust = E[Adjustn] = tail1 + tail2 + γ.
The choice τm = 1, valid provided n ≥ 4e2, corresponds to the claim of the

theorem (with the adjustment that γ′τm, now equal to the constant γ′, is absorbed
into the constant in the risk bound rather than kept in the penalty). Alternatively,
we may choose τm = τ∗m = min

{
(C/γ′)(m + 1), n/4e2

}
to optimize expression

(5.8), valid for all n ≥ 1, for which the γ′τm term becomes not more than C(m+1).
Refined in this way we find acceptability of

penn(f,m) = C

[
log

(
M

m

)
+ (m+1) log

ne

τ∗m
+ log M

]

for the risk conclusion to hold. This completes the proof of the theorem.
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The performance of the all-subset selection estimator is at least as good as that
of the `1-penalized least squares estimator. Indeed, by Lemma B.1 in the appendix,
for any m = m1 + m0 and f∗, there is an m-term function fm such that

(5.9) ‖fm − f∗‖2 ≤ inf
fβ∈F

{
‖fβ − f∗‖2 + ε2

m0
‖β‖1/(m−m0)

}
,

where εm0 is the radius of the L2(P )-cover of the library with cardinality not
more than m0. Thus using γ(m+1) log(Mn) to upper bound the penalty function
penn(m), and minimizing with respect to m first, the main term of the resolvability
is inffβ∈F

{
‖fβ − f∗‖2 + λn‖β‖1

}
, where λn = εm0

√
γ(log Mn)/n, which has

the same form as in the `1-penalty case. A difference here is that for εm0 , we use a
L2(P )-cover of H whereas in Section 4, the empirical L2 cover is used.

The argument in the proof of all-subset selection is readily applicable to other
subset selection algorithms of interest to us, including forward stepwise selection,
other relaxed greedy algorithms, and `1 penalized greedy pursuit. These allows a
larger comparison class, all ofFH, and introduce an approximate computation term
in the bounds equal to an expectation of Af,m ≤ 4V 2

n (f)/m.
If the library H is finite, then forward stepwise and other relaxed greedy algo-

rithms may be used with penalty only on the number of terms and no need for
control on the size of coefficients as shown in Theorem 5.3. The infinite library
case is considered subsequently in Theorem 5.4.

We assume the greedy algorithm to run for a number of steps equal to mn,comp.
For forward stepwise, there is no reason to set mn,comp greater than min{n, MH}.
For other relaxed greedy algorithms, there is a continuous approximation improve-
ment for larger m. However, mn,comp = n is large enough to let the data reveal the
optimal m̂ as we can see in the following theorem. The choice that optimizes the
resolvability is of a smaller order than n.

THEOREM 5.3 (Risk characterization for forward stepwise regression). With
the same setting as Theorem 5.2, suppose, for m = 1, 2, . . . ,mn,comp, that f̂m =
fβ̂m

is a sequence of m-term estimators obtained by a relaxed greedy algorithm
(which includes forward stepwise regression). Let positive δ1 and δ2 be given.
Choose m̂ among all m ≤ mn,comp to minimize the penalized squared error

‖Y −f̂m‖2
n + pen0

n(m)/n

where pen0
n(m) = C

(
log

(M
m̃

)
+ (m̃+1) log n + log M

)
with m̃ = min{m,M}

and C ≥ γ. Then the estimator f̂m̂ when truncated to the level B′ satisfies the risk
bound,

E‖T f̂m̂ −f∗‖2
X′ ≤ (1+δ) inf

m
inf

f∈FH

{
‖f−f∗‖2 + E

pen0
n(m)
n

+
4V 2(f)

m
+

Cδ

n

}
,
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where the infimum is over m ≤ mn,comp. Here 1 + δ and Cδ are the same as in
Theorem 5.2 and V (f) = V‖·‖(f) is the variation of f with ah = ‖h‖ equal to the
L2(P ) norm.

Remarks: Thus we achieve the best tradeoff between the approximation error and
the penalty as in the all-subset selection case except here we have an additional
4V 2(f)/m cost due to the forward stepwise procedure.

For large dictionaries with M � n, the main term of the penalty comes from
the log

(M
m

)
. Using the bound m log M , the value mf = 2V (f)

√
n/(C log(Mn))

optimizes the bound over m for each f . Then the risk bound becomes

(1 + δ) inf
f∈FH

‖f−f∗‖2 + 4

√
C log(Mn)

n
V (f) +

log(Mn)
n

+
Cδ

n

 .

We note that the order of this bound is in agreement with what was achieved in
the first result in Section 4, when M is large compared to

√
n. One may attempt

similar refinement as achieved there for M or order
√

n or smaller (with the log
factor removed), now optimizing using m log eM/m as an upper bound on log

(M
m

)
for m ≤ M . However, the other term of size m log n in the present bound preserves
the logarithm factor here. Other techniques such as chaining (as in [11]) might be
able to avoid that log factor, but would need to be extended to allow for empirical
covers and for greedy approximate least squares fits. As we are primarily interested
in the large M case, we do not concern ourselves with that in this paper.

PROOF. We use the same argument as in Theorem 5.2. First, for f in FH and
m ≤ mn,comp, we set penn(f,m) to be penn(m). Using the property of the relaxed
greedy algorithm, our estimator is an approximate penalized least square estimator
with Af,m ≤ 4V 2

n (f)/m and Fco
m = FH. Here our Fm is the set of m-term linear

combinations but with repeated terms allowed.
Second, we set M̃X,X′ = {1, 2, . . . ,M}. For functions inFm, we construct our

representors in F̃n,m̃ as in the step (2) of Theorem 5.2, where m̃ = min{m,M}.
Then the complexities Ln(f̃m, m̃) have the same form (5.5) with m replaced by m̃.

Then we follow the proof of Theorem 5.2. The only additional term appearing
in the risk bound is EAf,m ≤ 4V 2(f)/m because EV 2

n (f) ≤ V 2(f).

Next, we given the corresponding conclusion for `1 penalized greedy pursuit
(LPGP) with a subset-size stopping criterion. In the theorem below, we denote
‖β‖1 = ‖β‖1,1 =

∑
h |βh| as before.

THEOREM 5.4 (Risk Characterization for LPGP). Assume the regression set-
ting (B). Let H be a dictionary with an empirical L1 ε1-cover H̃1 with cardinality
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M1 = Mε1,H. We take f̂m to be an m term fit from an LPGP algorithm (variant 1)
as in Section 3 with library H and coefficient λ0. Let any positive δ1, δ2 and ε1 be
given. Choose m̂ among all m≤mn,comp to minimize the penalized squared error
‖Y − f̂m‖2

n+penn(f̂m,m)/n where penn(f̂m,m) has the form nλ0vm+pen0
n(m)

with λ0 ≥ 8ε1B
′ and

pen0
n(m) = C

(
log

(
M1

m̃

)
+ (m̃+1) log n + log M1

)

with m̃ = min{m,M1} and C ≥ γ. Here vm as described in the LPGP algorithm
in Section 3 is equal to

∑m
j=1 |β̂j,m|, where the β̂j,m are coefficients of f̂m.

Then for n ≥ 4e2, the estimator f̂m̂ when truncated to the level B′ satisfies the
following risk bound

E‖T f̂m̂ −f∗‖2
X′

≤ (1 + δ) inf
m

inf
f∈FH

{
‖f−f∗‖2 + λ0Va(f) +

4V 2
a (f)
m

+
pen0

n(m)
n

+
Cδ

n

}

where 1 + δ and Cδ are the same as in Theorem 5.2 and Va(f) is the variation of
f with associated weights ah = max{1, ‖h‖}. Here ‖h‖ is the L2(P ) norm of h.

Remarks: For any constant η > 0, a similar conclusion holds with using weights
ah = max{η, ‖h‖}. Now the risk bound becomes

(1 + δ) inf
m

inf
f

{
‖f − f∗‖2 +

λ0

η
Va(f) +

4V 2
a (f)
m

+
pen0

n(m)
n

+
Cδ

n

}
.

The statement in the theorem is a special case with η = 1. We show the general
statement in the proof.

Our primary interpretation of this theorem is the extension of greedy subset
selection risk analysis to infinite libraries with a mild control on ‖β‖1. We accom-
plish this by using a small ε1 and λ0, for instance, of order 1/n. Because λ0 is
negligible, there is room to use a small η to make the term λ0/η negligible, which
provides an extension of Theorem 5.3 to infinity libraries with the variation Va(f)
close to V‖·‖(f), where the associated weights equal the L2(P ) norm.

One may also think of this theorem as producing a stopping rule for the LPGP
algorithm. By the same argument as in the remark after Theorem 5.3, the risk bound
is equal to

(1 + δ) inf
f

{
‖f − f∗‖2 +

(
λ0/η + 4

√
C(log nM1)/n

)
Va(f) + Cδ/n

}
.
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We note that if λ0 is chosen to have order
√

log M1/n or smaller, then the order of
this bound is in agreement with what was achieved in Section 4 without the further
refinement associated with empirical L2 covers of H. One advantage here is that
even in the traditional non-transductive setting, the risk bound uses the L2(P ) norm
to form the weights used in the variation.

Here we assumed that the LPGP algorithm satisfies the iterative optimization
requirement (3.1) with εcomp

m = 0. If instead, we approximately achieve the op-
timization there with εcomp

m ≤ 4δ0/(m + 1)2, then our risk bound in this theorem
holds with V 2

a (f)+δ0 in place of V 2
a (f). Actually we could use V 2

a (f)−‖f‖2+δ0.
As we have stated in the Remark of Lemma 3.1 in Section 3, we only need the

infimum in the risk bound for f inFH. So for the proof, we prove the conclusion for
such f = fβ =

∑
h βhh inFH, with the minimal ‖β‖1 among such representations

of f providing its variation. Here, there are two different weights associated with
‖β‖1. We denote ‖β‖1,η =

∑
h |βh|η with positive η and ‖β‖1,aemp with aemp

h =
max{η, ‖h‖X}.

PROOF. First, we know our estimator is an approximate penalized least square

estimator with Af,m ≤
4‖β‖2

1,aemp

m+1 − λ0
η ‖β‖1,η + λ0

η ‖β‖1,aemp and Fco
m = FH by

using Lemma 3.1 and its Remark 3. Now with E max{η, ‖h‖X} ≤ max{η, ‖h‖},
the expectation of Af,m is less than or equal to the same expression only with
empirical weights aemp replaced by max{η, ‖h‖}. Here ourFm is the m-term linear
combinations with repeated terms allowed as in Theorem 5.3.

Second, with an empirical ε1-cover H̃1, we use its cardinality in place of M .
For each f ∈ Fm, we form a corresponding f{h̃}, replacing each hk with the clos-

est h̃k in H̃1 and keeping the same coefficients. Then we have ‖f−f{h̃}‖2n,1 ≤∑m
j=1 βj‖hj− h̃j‖2n,1 ≤ ε1‖β‖1,η/η. We denote the collection of such f{h̃} by

FH̃1,m̃ with m̃ = min{m,M1}. Our set F̃n,m̃ is chosen to be an empirical L1

t-cover of TFH̃1,m̃ with the minimum cardinality. The same argument in Theorem
5.2 shows that the log cardinality of F̃n,m̃ is not more than 1 + (m̃+1) log n

τm
+

log
(M1

m̃

)
with t set to be τm4e2B′/n. For each f ∈ Fm, from the triangle inequal-

ity, there exists an f̃m closet to the corresponding f{h̃}, such that

‖Tf −f̃m‖2n,1 ≤ ‖Tf −Tf{h̃}‖2n,1 + ‖Tf{h̃} −f̃m‖2n,1 ≤ t + ε1‖β‖1,η/η.

Third, we are to show the penalty is at least inf f̃∈F̃n,m̃

{
∆n(f, f̃) + γLn(f̃ , m̃)

}
for any m and f ∈ Fm, with δ3 = 0. Using the same analysis as in Theorem 5.2
step (3), we note that ∆n(f, f̃m) is not more than 8nB′(t + ε1‖β‖1,η/η) + Tail1,
which implies that with Adjustn = Tail1 + Tail2 + γ, the penalty penn(f,m) is
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allowed not less than

(5.10) C

[
log

(
M1

m̃

)
+ (m̃ + 1) log

n

τm
+ log M1

]
+

λ0n

η
‖β‖1,η + γ′τm,

by substituting t = τm4e2B′/n, where C ≥ γ, λ0 ≥ 8B′ε1 and γ′ = 32e2B′2.
Applying Corollary 5.1 with this penalty yields the risk bound for the LPGP es-
timator. The choice of τm = 1 corresponds to the claim of the theorem and the
analysis of the optimal choice of τm is the same as in the final part of Theorem
5.2.

We end this section by combining results in Section 4 and 5 together to ob-
tain an improvement. For simplicity, here we only take the case where functions
in H have a uniform upper bound b ≤ 1. Similar result as Theorem 5.5 below
holds even if there is no uniform upper bound for H with more detailed anal-
ysis. First assume H is finite with cardinality not more than M . Let H̃2 be a
finite empirical L2 ε2-cover of H with cardinality not more than m0. Suppose
f̂1 = fβ̂1

is the `1-penalized least squares estimator with Penn(β) = nλ‖β‖1,

where λ = λ1 ≥ λ∗1 = 2ε2
√

2γ(log(2M))/n. Also let f̂m̂ be the estimator gen-
erated from a subset selection criterion such as forward stepwise regression, with
proper penalty Penn(β, m) = pen0

n(m) defined in Theorem 5.3. The theorem holds
with Aβ,m = ‖Y − f̂m‖2

n − ‖Y − fβ‖2
n.

Define our combined estimator f̂new to be the one selected between f̂1 and
f̂m̂ to achieve the smaller penalized squared error. This f̂new is an improvement
compared to both f̂1 and f̂m̂. Indeed, we have the following statement.

THEOREM 5.5. If H is finite, given positive constants δ1 and δ2, for n ≥ 4e2,
the estimator f̂new when truncated to the level B′ satisfies the following risk bound

E‖T f̂new − f∗‖2 ≤

c infβ
{
‖fβ − f∗‖2 + min

{
λ1‖β‖1,minm

{
pen0

n(m)
n + Aβ,m

}}
+ Cnew

δ
n

}
,

where c = 1 + (1 + δ1)(1 + δ2) and Cnew
δ ≤ tail1 + tail2 + γ log 2 + max{γ +

γ′, 2γm0 log(2M)} with γ′ = 32e2B′2.

Remark: The theorem shows the performance of the combined estimator is at least
as good as the better of the two procedures as determined by which provides the
smaller resolvability for the particular target f∗.

The same idea may also be used to combine the all-subset selection estima-
tor and the `1-penalized least squares estimator. However, we believe that the all-
subset selection estimator will win the minimization all the time.
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Analogous conclusion holds for infinite libraries. Indeed, supposeH has an em-
pirical L1 ε1-cover with cardinality M1. Define f̂1 = fβ̂1

to be the `1-penalized
least squares estimator with Penn(β) = nλ‖β‖1, where λ = λ1 + 2λ0 with
λ1 ≥ λ∗1 and λ0 ≥ λ∗0 = 8B′ε1. Also define f̂m̂ to be the estimator generated
from a subset selection criterion with Penn(β, m) = nλ0‖β‖1 + pen0

n(m) with
λ0 ≥ λ∗0 and pen0

n(m) as in Theorem 5.4. Then a similar risk bound for f̂new

holds with the expression in the infimum over β in the theorem replaced by

‖fβ−f∗‖2+min

{
(λ1+λ0)‖β‖1,min

m

{
pen0

n(m)
n

+ Aβ,m

}}
+λ0‖β‖1+

Cnew
δ

n
,

where Aβ,m = ‖Y−f̂m‖2
n + λ0vm−‖Y−fβ‖2

n−λ0‖β‖1. We show that the more
general statement holds in the proof.

PROOF. Set

(5.11) Penn(β, m, k) =

{
nλ0‖β‖1 + pen0

n(m) for k = 0;
nλ‖β‖1 for k = 1.

The definition of f̂new implies

‖Y −f̂new‖2
n +

Penn(β̂, m̂, k̂)
n

≤ min

{
‖Y −f̂m̂‖2

n + λ0‖β̂0‖1 +
pen0

n(m̂)
n

, ‖Y −f̂1‖2
n + λ‖β̂1‖1

}
.

Here k̂ is equal to 0 if the first term in the minimum is smaller and equal to
1 otherwise and β̂ = β̂k̂. The first term inside the minimum is not more than

infβ minm

{
‖Y −fβ‖2

n + λ0‖β‖+ pen0
n(m)
n + Aβ,m

}
and the second term equals

infβ{‖Y −fβ‖2
n + λ‖β‖1}. Using min{infβ A, infβ B} = infβ{min{A,B}}, the

right side of the above inequality is equal to

inf
β

min
k

min
m

{
‖Y −fβ‖2

n +
Penn(β, m, k)

n
+ Aβ,m,k

}
,

where Aβ,m,k = Aβ,m if k = 0 and zero if k = 1. Hence f̂new is a penalized least
squares estimator. Then since both Penn(β, m, 0) and Penn(β, m, 1) are proper
penalties, our penalty Penn(β, m, k) also satisfies the properness condition with
log 2 added to the complexity for the description of the choice of k, so that Theorem
2.4 yields the risk bound for f̂new. The additional description length appears in the
term γ log 2 in Cnew

δ .
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Care is needed to interpret the resolvability of f̂new. If we insert 4‖β‖2
1/m

as the upper bound of EAβ,m into the resolvability, as we have stated in the re-
mark of Theorem 5.3 and 5.4, the resolvability would have a contribution equal to
4
√

C log(nM1)/n. This quatity tends to zero with a slower rate than λ∗1, which has
the rate (log M1/n)r with r > 1/2 as presented in Corollary 4.3. Therefore, when
the empirical Aβ,m in each step matches the order 1/m bound, the `1-penalized
least squares estimator achieves a smaller risk. It seems at first glance that there
would be no need for this f̂new since the `1-penalized least squares estimator would
appear superior. However, the accuracy of the fit of selected subsets can be much
better than the bound. In other words, for some targets f∗, forward stepwise selec-
tion may outperform the order 1/m bound on EAβ,m for relevant fβ . When Aβ,m

is smaller than order 1/m, the criterion selects a smaller m̂ and may produces a
smaller risk than that given for the `1 penalized estimator. Armed with Theorem
5.5, we suggest to let the data decide the right choice and thereby achieve an im-
provement compared to both.

6. Additional Discussion. In this section, we discuss the trade-off between
the approximation error and the complexity as expressed in the resolvability and
its relationship to interpolation spaces between two classes of functions.

We have developed the resolvability risk bounds for `1-penalized least squares,
all-subset selection, forward step-wise regression and the estimator formulated
from the LPGP algorithm. We also constructed a combined estimator f̂new to be
an improvement compared to both the `1-penalization and the subset selection. In
all these cases, the index of resolvability consists of two parts, the approximation
error between the target f∗ and the candidate f and the penalty penn(f)/n. It is
natural to explore the trade-off between these two terms. This trade-off depends on
the behavior of the unknown target function f∗ and the accuracy with which it is
approximated.

For `1-penalization, as we mentioned in the remark of Corollary 4.3, we consider
the squared approximation error App(f∗, v) = inffβ :‖β‖1=v{‖fβ − f∗‖2}. If 0 is
contained in the library, App(f∗, v) is a decreasing function of the `1 norm v. If the
linear combination of the library is dense in L2(P ), the approximation error tends
to 0 as v gets large. Hence R1(f∗, λ) = infv{App(f∗, v)+λv} goes to 0 as λ gets
small. The index of resolvability is R1(f∗, λn), where λn is specified in Section
4. Thus, the resolvability rate is determined solely by the approximation rate and
by how small is the permitted multiplier λn. One important case is when the target
f∗ has a finite variation, namely, f∗ ∈ L1,H. Then with f =f∗, the approximation
error is zero and R1(f∗, λ)≤λV (f∗) goes to 0 with a linear rate. In general, if we
only know f∗ is in L2(P ), the convergence rate can be arbitrarily slow.

We consider the function classes interpolating betweenL1,H and L2(P ) indexed
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by 1≤ p≤ 2, denoted by Bres
1,p consisting of all functions f∗ for which there is a

constant C such that R1(f∗, λ) ≤ Cλ2−p for all λ > 0. The infimum of such
constants, denoted C1,p(f∗) is a measure of regularity of f∗ in Bres

1,p . As shown
in Lemma C.1, it is equivalent to a norm in a traditional interpolation space Bp.
The space Bp, which is equivalent to Bres

1,p , is developed in [12] where Fourier
spectral norm conditions on a function f∗ are shown to ensure membership in such
interpolation spaces. Moreover, the space Bres

1,p = Bp matches the weak space wLp

in the case where the library H is an orthonormal system. The interpolation space
is a natural extension to non-orthonormal systems.

When p = 1, we see Bres
1,1 includes L1,H. If f∗ ∈ Bres

1,p , the resolvability is of
order λ2−p

n . Results in Section 4 shows that λn is of order εm0

√
γ(log M)/n for

finite libraries, which provides a rate of ε2−p
m0

(γ log M
n )1−p/2 for the resolvability,

where εm0 is the radius of the empirical L2 cover of H with cardinality not more
than m0.

If f∗ ∈ Bres
1,p and H has finite metric dimensions d1 and d2 w.r.t. the em-

pirical L1 and L2 norms, respectively, the resolvability R1(f∗, λn) is of order(
γ d1

n log n
d1

)ξ
, where ξ = (1−p/2)(d2+2)/(d2+1), by using the first part of

Corollary 4.3. As we mentioned in the second part of Corollary 4.3, a penalty with
the form λn‖β‖d2/(d2+1)

1 produces an estimator with smaller resolvability, namely,
R1

r(f
∗, λn), where r = d2/(d2 +1) and R1

r(f
∗, λ) = infv{App(f∗, v)+λvr} and

λn is specified there. One may associate with this improved resolvability the class
Bres

1,r,p of functions f∗ for which R1
r(f

∗, λ)≤Cλθ for all positive λ with a constant
C depending on f∗, where θ = (2−p)/(rp−p+2−r). Lemma C.2 in the appendix
demonstrates that Bres

1,r,p is the same space as Bres
1,p . Consequently, if f∗ ∈ Bres

1,p , the
resolvability R1

r(f
∗, λn) yields a risk of order

(
γ

d1

n
log

n

d1

) (2−p)(d2+2)

2(d2+2−p)

,

which is indeed smaller than R1(f∗, λn).
Similarly, for all-subset selection, we define the squared approximation error

App0(f∗,m) = inffm∈FH,m
{‖fm − f∗‖2}, which is a function of the `0 norm m.

If the linear combination of the library is dense in the L2(P ) space, App0(f∗,m)
tends to 0 as m gets large. Hence R0(f∗, t) = infm{App0(f∗,m) + tm} goes to
0 as t gets small. From Theorem 5.2 in Section 5, the index of resolvability here
is R0(f∗, tn), where tn is of order γ(log Mn)/n, which is close to the square of
λn in the previous case. For different targets f∗, the resolvability describes the
performance of the all-subset selection estimator. L0,H is defined to be the set of
linear combinations with finite number of terms. When the target f∗ is inL0,H with
mf∗ terms, the approximation error is zero and R0(f∗, t) ≤ mf∗t tends to 0 with
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a linear rate; whereas, for general f∗ ∈ L2(P ), as before, the convergence rate
can be arbitrarily slow. We likewise consider the function classes between L0,H
and L2(P ) indexed by 0≤ p≤ 2, denoted by Bres

0,p , consisting of all functions f∗

for which there is a constant C such that R0(f∗, t) ≤ Ct1−p/2 for all t > 0. We
likewise define C0,p(f∗) as the infimum of such constants c. When p = 0, the space
Bres

0,0 is indeed L0,H. Then if f∗ ∈ Bres
0,p , the resolvability goes to 0 with rate

(
γ log(Mn)

n
)1−p/2.

Bres
1,p is a subset of Bres

0,p , as follows by the argument used at inequality (5.9) af-
ter Theorem 5.2, with m0 = 1 and either space yields risk of order bounded by
[(log M)/n]1−p/2. Using larger m0, if εm0 is polynomially small, that is, if H is
of finite metric dimension w.r.t. L2(P ), it follows that Bres

1,p is strictly smaller than
Bres

0,p , indeed, it is a subset of Bres
0,p′ , with p′ smaller than p. Both provide resolv-

ability of order [εm0(log M)/n]1−p/2, close to rate (1/n)1−p/2 if the dimension if
large.

The issue arises as to whether these rates are best possible for these interpolation
classes. Consider minimax risk of suitable subsets of Bres

0,p . The balls {f∗ ∈ Bres
0,p :

C0,p(f∗) ≤ C0} include the class of all f∗ such that App(f∗,m) ≤ Cm−2r where
r = 1/p−1/2 and C depends on C0 and r. These approximation rates concern
selection of arbitrary subsets of size m in H. In the setting of Yang and Barron
[87], Section 5 (which imposes additional structure), the minimax rate in such a
sparse approximation class is mn/n within logarithmic factors, where the subset
size mn is such that mn/n matches the approximation bound m−2r

n , which here
yields rate (1/n)2r/(2r+1) = (1/n)1−p/2, and our results show it is achieved for all
balls of Bres

0,p . Thus not only for p = 1, where the familiar rate
√

1/n is known to be
near optimal for functions of bounded variation w.r.t.H [87], but also for the whole
range of interpolation Bres

0,p with 0≤p≤2, the approximate rates are identified.

7. Examples. As we mentioned in the introduction, our main results in Sec-
tion 4 and 5 are applicable to a bunch of flexible function fitting methods, de-
pending on the choices of the library H. Note that for our analysis, the covering
property of our library is essential. Thus we concentrate in the following on the
covering property of several libraries.

7.1. Smoothly Parameterized Libraries. Assume our target function f∗(x) has
domain X . The library H consists of φω(x), continuously parameterized by a vec-
tor ω ∈ Ω ⊂ RdΩ , where Ω is a compact set and the functions φω satisfy the
Lipschitz condition

|φω(x)− φω′(x)| ≤ ‖ω − ω′‖l1 for all x ∈ X .
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Here ‖ · ‖l1 denote the l1 norm in RdΩ . Also assume Ω is bounded by a constant
R with respect to the norm ‖ · ‖l1 . If X = [−1, 1]d, such models include trigono-
metric models with continuous parameters, certain multivariate wavelet models in-
cluding ridglets, or single hidden layer sigmoidal networks with smooth sigmoids.
Because of the Lipschitz condition of functions inH, we know that ‖φω−φω′‖∞ ≤
|ω − ω′|l1 . Thus an l1-covering of Ω, the domain of the parameters, yields an L∞
covering of the libraryH. Using Lemma 10 in [11], the cardinality of the ε-cover of
the l1-ball {ω : ‖ω‖l1 ≤ R} is bounded by [2e(1 + R/ε)]dΩ , which implies H has
covering number N (ε,H, ‖ · ‖L∞) ≤ [2e (1 + R/ε)]dΩ . Since both the empirical
L1 norm and the empirical L2 norm are not more than the L∞ norm, an L∞-cover
is also an empirical L1 and L2 cover. Thus d1 ≤ dΩ and d2 ≤ dΩ. Our current
theory applies to such models. In particular, when the target function f∗ has finite
variation w.r.t. H, the risk of the `1-penalized least squares estimator converges to

zero at rate of order not more than
(

dΩ
n log n

dΩ

)(dΩ+2)/(2dΩ+2)
.

7.2. Libraries of Indicator Functions. SupposeD is a class of sets with Vapnik-
Červonenkis dimension D andH consists of all indicator functions of the sets inD.
One example here is single hidden layer sigmoidal networks with the sigmoid equal
to a step function. This H = Hstep consists of functions ha,b(x) = φ(aT x − b)
parametrized by (a, b) with internal weight vectors a in Rd, internal location pa-
rameter b in R and φ(z) = 1{z>0}. Here D is the class of half-spaces in Rd and
hence has VC-dimension D = d + 1. Other examples includes the set of indicators
of all rectangles or the set of indicators of all ellipsoids. We know the empirical L1

covering number of H is not more than e(D + 1)
(

4e
ε1

)D
. Thus d1,H ≤ D. Also for

the indicator functions, the empirical L2 norm is exactly equal to the square root of
the empirical L1 norm, which implies that d2,H = 2d1,H ≤ 2D. Therefore, given
the target function f∗ has finite variation, we know that the risk of the `1-penalized
least squares estimator converges to zero at rate of order not more than(D

n
log

n

D

)(D+1)/(2D+1)

.

7.3. Tensor Product Models. Suppose Φ is a set of functions bounded by 1 and
the library H = Φd consists of all the functions of the form

h(x1, . . . , xd) = φ1(x1) · · ·φd(xd),

where φ1, . . . , φd are functions in Φ. Typical examples are multivariate splines,
multidimensional Fourier transformation with φ obtained from products of sines
and cosines in the respective variables, and multivariate wavelets formed from
products of univariate wavelet basis functions.
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There are two variants of these models. One is to allow continuous knot locations
with bounded range or continuous frequencies up to a maximum frequency. In this
setting, the set Φ is infinite with covering properties essential to our analysis. If Φ
has empirical L1 and L2 covers Φ̃1 and Φ̃2 of precision ε1 and ε2 respectively, then
we can obtain a covering property of the library H. Since |φ1(x1) · · ·φd(xd) −
φ′1(x1) · · ·φ′d(xd)|≤

∑d
i=1 |φi(xi)− φ′i(xi)|, we know that Φ̃d

1 is a (dε1)-cover of
H with empirical L1 norm. Also the fact |φ1(x1) · · ·φd(xd)− φ′1(x1) · · ·φ′d(xd)|2
≤ d

∑d
i=1 |φi(xi)− φ′i(xi)|2 implies that Φ̃d

2 is a (dε2)-cover of H with empirical
L2 norm. In particular, when Φ has finite metric dimensions d1,Φ and d2,Φ with
respect to empirical L1 and L2 norms respectively, our H also has finite metric
dimensions with d1,H ≤ d·d1,Φ and d2,H ≤ d·d2,Φ.

The other case of interest is that the univariate library is a union of finite dic-
tionaries, i.e., Φ =

⋃
j Φj , where j is in an countable index set J. The index j can

specify, for example, the number of equal-spaced knots and the order of a spline
or the number of levels and order of wavelets. Let Kj be the cardinality of Φj and
Hj,d = Φd

j be the product dictionary of terms h(x1, x2, . . . , xd), as above, products
of the functions in Φj with cardinality Kd

j . Suppose L(j) is a complexity associ-
ated with the index j in J satisfying the Kraft inequality. By the same methods as in
Section 5, for functions f that are m-term linear combination of elements of Hj,d,
a valid penalty is

penn(m, j) = γ

{
log

(
Kd

j

m

)
+ (m + 1) log n + d log Kj + L(j)

}
,

permitting optimization over choices of dictionaries as well as choices of subsets,
and leading to corresponding risk conclusion in accordance with our theory.

7.4. Libraries with infinite dimension. The library H may be a much bigger
than those with finite metric dimension. For instance, the optimal covering number
Mε may be of order exp[(1/ε)θ] with θ > 0. Typically, θ = d/s for functions
of smoothness s in d variables. A fascinating result in this setting is that if the
target is in L1,H, the resolvability rate exponent is one-half of what it would be
for a single term in the library. Indeed, recalling the result in [86], we know that
minf̂ maxf∗∈H E‖f̂−f∗‖2 is of order ε2

n, where εn satisfies ε2
n = (log Mεn)/n. For

both the `1 and the subset selection cases, for functions in L1,H, the resolvability
is of order

√
(log Mε)/n+ ε, optimized w.r.t. ε, producing rate εn, which for L1,H

is the squared root of the minimax rate for H.
We caution that infinite-dimensional libraries H often have characteristics that

make their consideration less pertinent for estimation of linear combinations of
terms fromH. One such characteristic is that their size may lead to slow rates even
in the case of a limited number of terms. Moreover, in smoothness-class settings,
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such infinite-dimensional libraries may be closed under linear combination, which
voids need for consideration of more than one term.

An interesting special case for linear combinations of an infinite-dimensional
class is that of projection pursuit regression, where the library is a set of ridge
functions of x in X , a bounded set of Rd,

H = {φ(aT x) : a ∈ Ω, φ ∈ Φ},

with Φ a standard smoothness class of functions φ on R and Ω a compact subset of
Rd. Now FH consists of linear combinations of ridge functions which is a larger
class than H for d > 1. For Φ, consider the class Φα of all functions satisfying a
Lipschitz condition of order α with 0<α≤1 and let Hα,d be the associated set of
ridge functions. The metric entropy of Φα is approximately (c/ε)1/α and ofHα,d is
(c/ε)1/α + d log(1/ε). A related library Hstep (as in 7.2 above) uses Φ containing
only a single step function. That may appear to be more restrictive. However, for
α = 1, the space L1,H of functions of finite variation w.r.t. H1,d is included in
the space of finite variation w.r.t. Hstep. In general, if H is constructable from a
finite-dimensional set H̃ via linear combination, the resolvability for functions in
L1,H has rate of the same order as for the finite-dimensional case.

Concluding Comments: One often hears emphasis on whether the number of
terms M of a library H for linear combination is finite or infinite and, if it is fi-
nite, whether it is of larger or smaller order than the sample size n. We emphasize
for subset selections and for `1-penalization that the key issue is not whether the
library is finite or infinite but rather whether it has finite covering properties and, if
it does, then for the effective cardinality Mn, the issue is not how it compares to n,
but rather whether log Mn is small compared to n.

For functions in L1,H as well as the associated interpolation classes, forward
stepwise and `1 penalized least squares produce risk of order equal to a power of
(log Mn)/n, where the power is between 0 and 1. With these procedures, one does
not need to know which class contains f∗. The risk is controlled by an index of
resolvability showing the estimation simultaneously achieves desirable levels of
performance of all such classes.

APPENDIX A: LEMMAS FOR SECTION 2

LEMMA A.1. Let (X,X ′) = (X1, . . . , Xn, X ′
1, . . . , X

′
n) where X ′ is an in-

dependent copy of the data X and (X1, . . . , Xn) are component-wise independent
but not necessarily identically distributed. Given a fixed function class G, possibly
uncountable, suppose G̃X,X′ is a countable subset of G with associated complex-
ities LX,X′(g̃) satisfying Assumption (S). Then for arbitrary positive u and γ, we
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have

(A.1) P

 sup
g̃∈G̃X,X′

P ′
n(g̃)− Pn(g̃)

u + γ
nLX,X′(g̃) + 1

2γ s2(g̃)
≥ 1

 ≤ exp
(
−nu

γ

)
,

where s2(g̃) = 1
n

∑n
i=1 (g̃(Xi)− g̃(X ′

i))
2. Moreover,

(A.2) E sup
g̃∈G̃X,X′

{
P ′

n(g̃)− Pn(g̃)−
γLX,X′(g̃)

n
− 1

2γ
s2(g̃)

}
≤ 0.

PROOF. Set u1 = u + γ
nLX,X′(g̃) for simplicity. Indeed to verify the claim, we

bound the probability of the event as follows

P

 sup
g̃∈G̃X,X′

P ′
n(g̃)− Pn(g̃)
u1 + 1

2γ s2(g̃)
≥ 1


≤ P

{
∃g̃ ∈ G̃X,X′ :

P ′
n(g̃)− Pn(g̃)

s(g̃)
≥
√

2u1

γ

}
(A.3)

by using the inequality a2

2 + b2

2 ≥ ab.
One lets Z = (Z1, . . . , Zn) be independent ±1 valued equiprobable random

variables (so that EZi = 0). Since the distribution of X,X ′ is coordinate pair
exchangeable and Assumption (S) holds, we have, for any realization of Z, that
multiplying the differences g(Xi)−g(X ′

i) by Zi leaves the probability on the right
side of inequality (A.3) unchanged and hence equal to the following probability
with respect to the joint distribution of X,X ′, Z, which we then evaluate by con-
ditioning on X,X ′ and invoking Hoeffding’s inequality for the random Z.

P

∃g̃ ∈ G̃X,X′ :
1
n

n∑
i=1

Zi(g̃(X ′
i)− g̃(Xi))√

1
n

∑n
i=1(g̃(X ′

i)− g̃(Xi))2
≥
√

2u1

γ


≤ E

∑
g̃∈G̃X,X′

PZ|X,X′

 1
n

n∑
i=1

Zi(g̃(X ′
i)− g̃(Xi))√

1
n

∑n
i=1(g̃(X ′

i)− g̃(Xi))2
≥
√

2u1

γ


≤ E

∑
g̃∈G̃X,X′

exp
(
−nu1

γ

)

= E
∑

g̃∈G̃X,X′

exp
(
−nu

γ
− LX,X′(g̃)

)

≤ exp
(
−nu

γ

)
.
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Thus the first claim is proven.
For the second conclusion, as before, by coordinate pair exchangability and sym-

metry, we know that the left side of (A.2) is equal to,

(A.4) EX,X′,Z sup
g̃∈G̃X,X′

{
1
n

n∑
i=1

Zi(g̃(X ′
i)− g̃(Xi))−

γLX,X′(g̃)
n

− 1
2γ

s2(g̃)

}
.

Using the identity x = λ log exp(x/λ) inside the expectation with λ = γ/n,
conditioning on X and X ′, and applying Jensen’s inequality to move EZ inside
the log, the expression inside the expectation EX,X′ is less than or equal to

γ

n
log EZ sup

g̃∈G̃X,X′

exp

{
1
γ

(
n∑

i=1

Zi(g̃(X ′
i)− g̃(Xi))

)
− LX,X′(g̃)− n

2γ2
s2(g̃)

}
.

Replacing the supremum with the sum and moving the expectation inside, it is not
more than

γ

n
log

∑
g̃∈G̃X,X′

exp
{
−LX,X′(g̃)− n

2γ2
s2(g̃)

}
EZ exp

{
1
γ

n∑
i=1

Zi(g̃(X ′
i)− g̃(Xi))

}
.

Since {Zi}n
i=1 are independent, the expectation with respect to Z in expression

(??) equals the product of EZi exp
{

1
γ Zi(g̃(X ′

i)− g̃(Xi))
}

, which not more than

exp
{

1
2γ2 (g̃(X ′

i)− g̃(Xi))2
}

for each i by using the inequality ex +e−x ≤ 2ex2/2.
Hence, expression (??) is upper bounded by

γ

n
log

∑
g̃∈G̃X,X′

exp
{
−LX,X′(g̃)− n

2γ2
s2(g̃)

}
exp

{
n

2γ2
s2(g̃)

}
,

which is not more than γ
n log

∑
g̃∈G̃X,X′

exp{−LX,X′(g̃)} ≤ 0. The conclusion
follows.

LEMMA A.2. Assume ε = (ε1, . . . , εn) given X = (X1, . . . , Xn) are condi-
tionally independent with distributions for εi given Xi that satisfy Assumption (M).
Also assume X ′ = (X ′

1, . . . , X
′
n) is an independent copy of X . Given a function

class G, suppose G̃X,X′ is a countable subset of G with associated complexities
LX,X′(g̃) satisfying Assumption (S). Assume for all g̃ in G̃X,X′ that the absolute
value of g̃(x) is bounded by a constant K. Then

(A.5) P

 sup
g̃∈G̃X,X′

1
n

∑n
i=1 εig̃(Xi)

u + γ
nLX,X′(g̃) + 1

An

∑n
i=1 g̃2(Xi)

≥ 1

 ≤ exp
(
−nu

γ

)
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where A and u are arbitrary positive constants, and γ = Aσ2/2+KhBern. More-
over,

(A.6) E sup
g̃∈G̃X,X′

{
1
n

n∑
i=1

εig̃(Xi)−
γ

n
LX,X′(g̃)− 1

An

n∑
i=1

g̃2(Xi)

}
≤ 0.

PROOF. For simplicity, denote Gn = GX,X′ , Ln(g̃) = LX,X′(g̃) and h =
hBern. By the union of events bound, the probability

P
{
∃g̃ ∈ G̃n :

1
n

n∑
i=1

εig̃(Xi) ≥
1
A
‖g̃‖2

n +
γ

n
Ln(g̃) + u

}

≤ EX,X′
∑

g̃∈G̃n

Pε|X

{
1
n

n∑
i=1

εi(g̃(Xi)) ≥
1
A
‖g̃‖2

n +
γ

n
Ln(g̃) + u

}
.(A.7)

Let u2 = γ
nLn(g̃) + u for simplicity. Let Ri = εig̃(Xi) and R̄ = 1

n

∑n
i=1 Ri. Note

also that ER̄ = 0. Under Assumption (M), var(εi|Xi) ≤ σ2, so that var(R̄|X)=
1
n2

∑n
i=1(g̃(Xi))2var(εi|Xi) ≤ 1

n‖g‖
2
nσ2 and Ri also satisfies Bernstein’s condi-

tion with h′ = B′h. Then the right side of (A.7) satisfies

EX,X′
∑

g̃∈G̃n

Pε|X

{
R̄ ≥ u2 +

1
A
‖g̃‖2

n

}

≤ EX,X′
∑

g̃∈G̃n

Pε|X

{
R̄ ≥ u2 +

n

Aσ2
var(R̄|X)

}
.(A.8)

Here we do not use Bernstein’s inequality directly, instead the inequality (A.9) that
Craig [37] developed in his proof of Bernstein’s inequality. If Zi are independent
random variables satisfying Bernstein’s condition then

(A.9) P
{

Z̄ − EZ̄ ≥ τ

nt
+

ntvar(Z̄)
2(1− c)

}
≤ e−τ

for any 0 < th ≤ c < 1 and τ > 0.
To apply to (A.8), we arrange that u2 = τ

nt and t
2(1−c) = 1

Aσ2 and t = c
Kh ,

which together yield τ = ntu2 = nu2
Aσ2/2+Kh

= nt
γ + L(g), where γ = Aσ2/2 +

Kh. Using (A.9), the right side of (A.8) is less than or equal to

(A.10) EX,X′
∑

g∈Gn

exp
(
−nt

γ
− Ln(g̃)

)
≤ exp

(
−nt

γ

)
.
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The second claim uses a similar argument as in the corresponding claim of
Lemma A.1. Applying Jensen’s inequality to move the conditional expectation
Eε|X inside the log function, the left side of (A.10) is not more than

(A.11)
γ

n
EX,X′ log Eε|X sup

g̃∈G̃n

exp

{
1
γ

(
n∑

i=1

εig̃(Xi)

)
− Ln(g̃)− n

γA
‖g̃‖2

n

}
.

Replacing the supremum with the sum and moving the conditional expectation
inside it, the expression inside the expectation EX,X′ in (A.11) is not more than

(A.12) log
∑

g̃∈G̃n

exp
{
−Ln(g̃)− n

Aγ
‖g̃‖2

n

}
Eε|X exp

{
1
γ

n∑
i=1

n∑
i=1

εig̃(Xi)

}
.

Since {εi}n
i=1 are conditionally independent with each other, the conditional expec-

tation in the expression (A.12) is equal to the product of Eεi|Xi
exp

{
1
γ εig̃(Xi)

}
,

which is less than or equal to

(A.13) exp

{
σ2g̃2(Xi)

2γ2

1
1− g̃(Xi)h/γ

}

for each i by using Bernstein’s moment generating function inequality. Since |g̃(Xi)| ≤
K, we know that 1− g̃(Xi)h/γ is not less than 1−Kh/γ. Then (A.13) is not more
than exp

{
σ2g̃2(Xi)

2γ2
1

1−Kh/γ

}
, which is equal to exp

{
1

Aγ g̃2(Xi)
}

from the defini-
tion of γ. Hence, the expression (A.12) is upper bounded by

log
∑

g̃∈G̃n

exp
{
−Ln(g̃)− n

Aγ
‖g̃‖2

n

}
exp

{
n

Aγ
‖g̃‖2

n

}
,

which is not more than log
∑

g̃∈G̃n
exp{−LX,X′(g̃)} ≤ 0. The conclusion follows.

LEMMA A.3. Let Y = ε + f∗(X) with |f∗(X)| ≤ B. (1) If ε is a random
variable satisfying E exp(|ε|/ν) = D1 < ∞ for a positive constant ν, then for
B′ ≥ B + ν log n,

E(|Y | −B′)1{|Y | > B′} ≤ D1ν/n

and
E(|Y | −B′)21{|Y | > B′} ≤ 2D1ν

2/n.

(2) If ε satisfies E exp(ε2/ν) = D2 < ∞ for some ν > 0, then for B′ ≥
B +

√
ν log n,

E(|Y | −B′)1{|Y | > B′} ≤ D2

√
πν/n
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and
E(|Y | −B′)21{|Y | > B′} ≤ D2ν/(2n).

PROOF. In both cases we start with

P{|Y | > B′ + t} ≤ P{|ε| > B′ −B + t}.

Case (1): Using the definition of B′, this is not more than P{|ε| > t + ν log n}. In-
side we divide through by ν, exponentiate and apply Markov’s inequality to obtain

(A.14) P{|Y | > B′ + t} ≤ D1 exp(−(t/ν)− log n)

Integrate with respect to t from 0 to∞ to obtain the first claim of case (1). Multiply
both side of (A.14) with t and then integrate to obtain the second claim of (1).

Case (2): Likewise, using the definition of B′ yields,

P{|Y | > B′ + t}
≤ P{|ε| > t +

√
ν log n}

≤ D2 exp
{
−(t +

√
ν log n)2/ν

}
(A.15)

Integrate with respect to t from 0 to ∞. The integral on the left side becomes
E(|Y | −B′)1{|Y | > B′}. By changing variable with τ =

√
2(t +

√
ν log n)/

√
ν,

the integral on the right side becomes
√

ν/2D2
∫∞√

2 log n
exp(−τ2/2)dτ , which

not more than D2
√

πν/n. Finally, multiply both side of (A.15) with t and then
integrate. The integral on the left becomes E(|Y | − B′)21{|Y | > B′}. By chang-
ing variable with t′ = (t +

√
ν log n)/

√
ν, the integral on the right becomes

D2ν
∫∞√

log n
t′exp(−t′2)dt′, which is equal to D2ν/(2n).

APPENDIX B: LEMMAS AND PROOFS FOR SECTION 4

Next we collect some approximation properties for linear combinations of not
more than m terms selected from a library. Assume the Hilbert space setting of
Section 3, with F the linear span of a subset H.

LEMMA B.1. For f =
∑

h βhh in F , there are choices of h1, h2, . . . , hm in
H, with repeats allowed, for which linear combinations fm taking the following
forms have the indicated approximation bounds.
(1) Suppose ‖h‖ ≤ b inH. For any v ≥

∑
h |βh| there is an fm = (v/m)

∑m
k=1 hk

such that

(B.1) ‖f − fm‖2 ≤ (bv)2

m
.
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(2) Suppose ah ≥ ‖h‖ inH. For any v ≥ ‖β‖1,a there is an fm = (v/m)
∑m

k=1 hk/ahk

such that ‖f − fm‖2 ≤ (v/m)‖β‖1,a and hence

(B.2) ‖f − fm‖2 ≤ v2

m
.

(3) For m = m0 + m1, let a size m0 subset H̃ ⊂ H be given and let εh,H̃ =
inf h̃∈H̃ ‖h−h̃‖ for h ∈ H. There is a v between

∑
h |βh| and

∑
h |βh|(1+m0/m1)

and a choice of fm = (v/m)
∑m

k=1 hk such that ‖f−fm‖2 ≤ (v/m)
∑

h |βh|ε2
h,H̃

and hence

(B.3) ‖f − fm‖2 ≤
(
∑

h |βh|)(
∑

h |βh|ε2
h,H̃)

m1
.

(4) For m = m0 + m1 and a size m0 subset H̃, let S = spanH̃ be its linear span
and ΠS the operation of linear projection onto S, and let ah = εh,S = ‖h−ΠSh‖.
Then for v =

∑
h |βh|εh,S , there are choices of h1, h2, . . . , hm1 such that fm =

ΠSf + (v/m)
∑m1

k=1(hk −ΠShk)/εhk,S satisfies

(B.4) ‖f − fm‖2 ≤ (
∑

h |βh|εh,S)2

m1
.

Each of these four bounds on ‖f−fm‖2 is also a bound on the following difference,

‖f∗ − fm‖2 − ‖f∗ − f‖2,

for any f∗ in the Hilbert space for some fm of the indicated form.

PROOF. All of these conclusions are consequences of reasonably familiar ideas
of sampling. Without loss of generality, assumeH is closed under sign change. For
f = fβ in the linear span ofH one has a finite set of h for which βh is non-zero and
we may take them to be positive. Case 1 relies on classical sample average facts, as
in [8], and is a special case of the analysis for Case 2, which we now give. Consider
the distribution in which each such h is assigned probability βhah/v and any left-
over probability (due to v possibly strictly larger than

∑
h βhah) is assigned to

h = 0. Draw h1, h2, . . . , hm independently from the indicated distribution. Treat
h/ah as equal to 0 if h = 0. Then the expectation of vhk/ahk

is equal to f as is the
expectation of fm. Furthermore, the inner product of vhk/ahk

−f with vhj/ahj
−f

has expectation 0 for any j 6= k and expectation
∑

h βhah‖vh/ah − f‖2/v =
v
∑

h βh‖h‖2/ahf‖2 for j = k. Correspondingly, the expectation of ‖fm−f‖2 is
(1/m) times the corresponding expectation in a single draw, so there exists such
fm with

(B.5) ‖fm −f‖2 ≤ 1
m

(
v
∑
h

βh‖h‖2/ah − ‖f‖2

)
.
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Using ‖h‖ ≤ ah yields the stated conclusion for Case 2. Note then when v =∑
h |βh|ah, using the Cauchy-Schwartz inequality, the choice ah = ‖h‖ is seen to

optimize this bound, which may then be written 1
m

[
(
∑

h βh‖h‖)2 − ‖f‖2
]
. Alter-

natively, if ah = 1 so that the coefficients of the terms in fm are all equal then
the bound (B.5) provides the conclusion for Case 1 in the strengthened form (here
ignoring the subtraction of ‖f‖2), namely,

(B.6) ‖fm − f‖2 ≤ v

m

∑
h

βh‖h‖2.

The remaining conclusions improve upon these bounds by showing that the weight
determined by the norm ‖h‖, which is the distance of h from 0, can be replaced by
the distance of h from a particular finite set of points (Case 3) or the distance from
their linear span (Case 4).

Now we verify the claim for Case 3, which is related to a result in [62]. We
show that fm can take the simpler form shown here. The proof uses what we rec-
ognize to be a stratified sampling argument (though he did not use that terminol-
ogy). Partition H into m0 disjoint cells c where each cell consists of the points
closest to a particular h̃ in H̃ , breaking ties arbitrarily. Consider v(c) ≥

∑
h∈c |βh|

with sum denoted v =
∑

c v(c) and consider integers m(c) with sum not more
than m. For each cell c, draw hc,k for k = 1, 2, . . . ,m(c) independently with
choice h with probability βh/vc for h in c, and choice 0 with any left-over prob-
ability, due to v(c) possibly strictly larger than

∑
h∈c βh. Form the within-cell

sample averages fc,m = 1
m(c)

∑m(c)
k=1 hc,k, and, in general, the linear combination

fm =
∑

c v(c)fc,m, for which the coefficients of the individual terms take the form
v(c)/m(c). In the special case of sizes m(c) proportional to v(c) these ratios are
the same for all terms and fm takes the indicated form. In this case, for some η
we have v(c) = ηm(c) with sum v = ηm, and so v(c)/m(c) = η = v/m.
The within-cell sample averages have expectation fc so that the overall average
fm =

∑
c v(c)fc,m has expectation f =

∑
c v(c)fc. Then by independence the

expectation of ‖fm−f‖2 is
∑

c v(c)2 1
m(c)

∑
h∈c ‖h−fc‖2βh/v(c). The inner sum

is centered at the average fc for members of h ∈ c with the indicated weights. So
that inner sum is less than what one would have with fc replaced by 0 or by any
other point depending on c. We take in particular the representer of h, denoted h̃,
shared by all h in c, at which ‖h− h̃‖ = εh,H̃. Thus the expectation of ‖fm − f‖2

is bounded by

(B.7)
∑

c

v(c)
m(c)

∑
h∈c

βh min{‖h‖2, ε2
h,H̃},

and hence there exists such fm for which ‖fm − f‖2 has this bound. In particular,
if we set v(c) = ηd

∑
h∈c βh/ηe (that is the value

∑
h∈c βh rounded up in a grid
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of spacings η) and set m(c) = d
∑

h∈c βh/ηe. Then v(c)/m(c) = η, the estimator
takes the desired form, and the bound is

(B.8) η
∑
h

βhε2
h,H̃∪{0}.

Here εh,H̃∪{0} = min{‖h‖, εh,H̃}. To complete the analysis, note that v(c) is
between

∑
h∈c βh and

∑
h∈c βh + η, which when summed gives v between

∑
h βh

and
∑

h βh + m0η. Then from η = v/m that yields v ≤
∑

h βh/(1 −m0/m) or
η ≤

∑
h βh/m1, which when plugged into (B.8) provides the desired bound

(B.9) ‖fm − f‖2 ≤
(
∑

h |βh|)(
∑

h |βh|ε2
h,H̃)

m1
.

With εH̃ = suph∈H εh,H̃, that is, if H̃ is a size m0 cover with precision εH̃, then

(B.10) ‖fm − f‖2 ≤ ε2
H̃

(
∑

h |βh|)2

m1
.

This conclusion is comparable to [62], with the improvements that fm may take
the simpler form and that the precision ρ is based on the radius of cells (distance
from the representers), whereas his corresponding conclusion is for the diameter
of the cells.

For Case 4 draw h1, h2, . . . , hm1 independently with probability βhεh,S/v. The
other m0 terms are those in ΠSf . By the definition of fm we see that fm − ΠSf
is the average of the m1 terms v(hk − ΠShk)/εhk,S for which the expectation is∑

h βh(h−Πh) = f −ΠSf , so one then follows the same argument as in Case 2,
to obtain an expectation of ‖f − fm‖2 and hence the existence of such an fm for
which

(B.11) ‖f − fm‖2 ≤ (
∑

h |βh|εh,S)2

m1
,

which is the desired conclusion for Case 4.
Likewise ‖f∗− fm‖2−‖f∗− f‖2 has the same expectation as ‖f − fm‖2 with

fm unbiased for f in all four cases. This completes the proof of Lemma B.1.

Case 4 provides an improved bound but with less explicit control on its co-
efficients. Note that the span S includes H̃ ∪ {0} so εh,S is less than or equal to
εh,H̃∪{0}, perhaps substantially less, so by that inequality and by Cauchy-Schwartz,
the conclusion (B.11) is indeed superior to (B.9).

The next lemma considers the case that H is finite with cardinality M and pro-
vides log cardinality bounds on the number of fm of the forms specified in the pre-
ceeding Lemma for Cases 1,2, and 3. As in Section 4, the choice of v = ηm makes
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v determined from m, so we only need to count the number of h1, h2, . . . , hm. This
log cardinality will be less than m log M recognizing that repeats are allowed and
the order does not matter.

LEMMA B.2. The log cardinality of the set of terms h1, h2, . . . , hm, selected
from a give library of size M with repeats permitted, is log

∑min{m,M}
k=1

(M
k

)(m−1
k−1

)
,

not more than m log(2emax{M
m , 1}).

Adding m log 2 for description of m, gives the variable complexity bounds used
in Section 4.

PROOF. The number of distinct terms k is between 1 and min{m,M}. For
each such k we have

(M
k

)
choices of subsets of size k. For each we have

(m−1
k−1

)
,

not more than 2m−1, choices of how to assign counts of at least one of each. (This
is in accordance with the standard stars and bars argument, for the placement of
k − 1 bars among (m − k) + (k − 1) positions to split m − k extras among k

distinct terms.) Consequently, there are
∑min{m,M}

k=1

(M
k

)(m−1
k−1

)
such choices of f̃ =

(R/m)
∑m

j−1 hj/ahj
, for a specified m (our R is also determined by m). Thus, the

codelength for f̃ , for a specified m, may be set to be log
∑min{m,M}

k=1

(M
k

)(m−1
k−1

)
.

Using
∑m

k=1

(M
k

)
≤ (eM/m)m, when m ≤ M , this log cardinality is not more

than m log(2eM/m). Using
∑M

k=1

(M
k

)
= 2M , when m ≥ M , it is not more than

(M + m− 1) log 2 ≤ m log 4. This completes the proof.

LEMMA B.3. The minimum over integers m ≥ 1 of v2

m +m
n log(4emax{M

m , 1})
is not more than

λ∗v +
log 4eM

n
+

1
e

min{ 1√
n

,
M

n
}

where

λ∗ = 2

√
log 4emax{ M√

n
, 1}

n
.

PROOF. Set A = 4emax{ M√
n
, 1}. If v = 0, taking m = 1 confirms the bound.

Otherwise, for v > 0, consider m = dv/ηe and choose η =
√

log A
n , at which we

evaluate the expression of interest. If M/m ≥ 1, that is, if M ≥ v/η, then we
bound v2

m + m
n log(4eM

m ) by ηv + v
ηn log(4e M

v/η )+ log 4eM
n . Multiply and divide by

min{
√

n, M} inside the logarithm and note that ηv + v
ηn log A is optimized at the

chosen η to obtain the bound 2λ∗v + log 4eM
n + v

ηn log min{
√

n, M}. The last term

in this expression may be written as min{
√

n,M}
n r log 1/r with r = vη

min{
√

n,M} .
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Since r log 1/r is never more than 1/e, this establishes the desired bound for M ≥
v/η. If instead, at this m = dv/ηe, we have M/m ≤ 1, then the expression v2

m +
m
n log(4e) is bounded by vη + v

ηn
log 4e

n + log 4e
n , which is less than 2λ∗v + log 4e

n .
This completes the proof.

The penalty expression developed in Section 4 requires that the complexity term
be multiplied by γ for which the resulting minimum is bounded as in Lemma B.3
with n replaced by n/γ.

LEMMA B.4. Given any set Λ of functions with Card(Λ)=m, we denote by FΛ

as the linear span of Λ and TFΛ as its truncated version with truncation level B′.
Then the empirical L1-covering number satisfies,

N (t, TFΛ, ‖ · ‖n,1) ≤ e
(
4e2B′/t

)m+1
for 0 < t ≤ B′,

where ‖f‖2
n,1 = (1/n)

∑n
i=1 |f(Xi)| for any f in TFΛ.

PROOF. It is clear that any function in TFΛ is bounded by the constant B′. We
use Theorem 13 of Chapter 10 in [69], which is a result based on Haussler [52], to
obtain an upper bound on the empirical L1 packing number,

(B.12) M(tB′, TFΛ, ‖ · ‖n,1) ≤ e(D + 1) (4e/t)D for 0 < t ≤ 1,

where D is the VC-dimension of the set of all subgraphs of TFΛ Using the fact
that a covering number is less than or equal to a packing number with the same
diameter, we obtain an upper bound,
(B.13)

N (t, TFΛ, ‖ · ‖n,1) ≤ e(D + 1)
(
4eB′/t

)D ≤ e
(
4e2B′/t

)D
for 0 < t ≤ B′,

since D + 1 ≤ eD.
Also, it the VC-dimension of the set of all subgraphs of TFΛ is not more than

the VC-dimension of the set of subgraphs of FΛ, which is equal to m + 1, e.g., by
Theorem 9.5 in [51]. Thus D ≤ m + 1. This provides the desired conclusion.

Proof of Theorem 4.2, third conclusion. We are to show the validity of an `1

penalty ‖β‖1,a with weights ah ≥ λ2εh,S,2 + λ1εh,H̃1
, where εh,H̃1

and εh,S,2 are
the distances of h from a subset H̃1 of size M1 and from the linear span S of a
subset H̃2 of size m0, using the empirical L1 and L2 norms, respectively, on the
2n points of X,X ′. Here λ2 = 2

√
2γ(log eM1cn)/n and λ = 8B′ with cn as

specified. [Accordingly, M1 is typically chosen to be much larger than m0 so as
to make εh,H̃1

small enough that the behavior of the allowed ah is governed by
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the λ2εh,S,2 term.] A key tool in the proof is the refined approximation property in
Lemma B.1, case 4, above. It will be used in constructing our variable-complexity
variable-distortion cover of F , which is the linear span of all of H.

The heart of the idea in building our cover of F is to consider the subclasses
Fm0,m1 which consist of union of linear spans of choices of m = m0 + m1 func-
tions, where the union is over all subsets of size m1 out of M1 from H̃1 together
with all m0 functions from H̃2. Improved m term approximation properties hold
in this subclass for approximating functions in F with error expressed through
weighted `1 norms of their coefficients. However, the approximations we use have
more general sorts of coefficients than before, so we need an additional step to get
to suitable covers. For each such selection of terms, we appeal to the results of
Lemma B.4 concerning the optimal empirical L1 cover of the set of all truncated
linear combinations at a particular precision tm,n. Taking the union of these covers
for all subsets of size m1 from H̃1 we have a set F̃m0,m1 and our F̃ is their union
for 1 ≤ m1 ≤ M1.

We will take advantage of the fact that the Fm0,m1 are nested in m1. Indeed, if
due to repeats, a linear combination constructed to use up to m1 functions from
H̃1 actually uses only K < m1 then one may arbitrarily pick m1 −K other terms
from H̃1 and assign them 0 coefficients. Accordingly F̃m0,m1 remains a cover at
precision tm,n for such truncated linear combinations using less than or equal to
m1 terms from H̃1.

First we construct approximations using the m0 terms from H2 and an arbitrary
number m1 of terms selected from the whole library H. As in Lemma B.1, case 4,
let Π denote the operation of projection onto the linear span S of the given subset
of H of size m0, now using the empirical L2 norm on X,X ′. Let f be in FH and
consider a representation f = fβ of it with fβ(x) =

∑
h∈H βhh(x). Consider the

function g = f −Πf . It has a representation g(x) =
∑

h∈H βh[h(x)−Πh(x)] as a
linear combination of terms orthogonal to members of S. For m ≥ m0, we form an
m term approximation of fm to f . First when m = m0 we let fm0 = Πf and then
for m = m1 + m0 with m1 ≥ 1 we let fm = Πf + gm1 , where gm1 is an m1 term
approximation to g of the form gm1(x) = (v/m1)

∑m1
k=1[hk(x) − Πhk(x)]/εhk,2,

where εh,2 = ‖h − Πh‖2n is the distance of h from S, and v =
∑

h βhεh,2. Here
h1, h2, . . . , hm1 , with repeats allowed, is a selection of functions from H which
will be selected depending on f .

While bounding the accuracy of fm as an approximation of f , we will need
at the same time to make sure that we have some control on its coefficients, or
there will be difficulties when we switch from hk in H to its representer h̃k in H̃1.
With precision εh,1 = minh̃∈H̃1

{‖h − h̃‖2n,1}, the relevant precision weighted
variation of our approximation, which we have called Vm,ε1 now takes the form
Vm,ε1 = (v/m1)

∑m1
k=1 εhk,1/εhk,2. This variation we need to control looks ugly,
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but conveniently it has a nice expectation, namely ‖β‖1,ε1 , with respect to a distri-
bution on hk in which h occurs with probability βhεh,2/v.

We consider the following expression

(B.14) ‖Y −fm‖2
n + ‖f−fm‖2

X′ + λ1[Vm,ε1 + tm,n] + γLn(f̃m)/n,

analogous to expression (4.12) but now with the new form of approximation fm

and with the addition of a term λ1[Vm,ε1 + tm,n] we need to be small in controlling
the accuracy of the cover. Again to facilitate the approximation properties, the fm

is not yet restricted to be in our cover, as it is allowed to use arbitrary h in H,
and, for now, we allow arbitrarily large m1. As in Lemma B.1, Case 4, picking
h1, . . . , hm1 independently, with each h having probability βhεh,2/v, we obtain
that the expected value of expression (B.14) and hence its value for some such fm

is not more than

(B.15) ‖Y −f‖2
n +

2‖β‖2
1,ε2

m1
+ λ1[‖β‖1,ε1 + tm] + γLn,m1/n.

The Ln,m1 is used to bound the complexity Ln(f̃m) of functions f̃m in our cover
which use not more than m1 terms selected from H̃1. This complexity will de-
pend on the precision tm,n. As will soon be explained, the best tm,n for this bound
satisfies λ1tm,n ≤ γ(m + 1)/n, and at this best tm,n,

Ln,m1 ≤ (m1+1) log M1 + (m1+m0+1) log cn.

Now picking m1 to equal d‖β‖1,ε2/ηe with η =
√

γ(log eM1cn)(2n) and setting
λ2 to be at least the specified value, expression (B.14) becomes not more than

(B.16) ‖Y − f‖2
n + λ2‖β‖1,ε2 + λ1‖β‖1,ε1 + γ

2 log M1 + (m0 + 2) log(cne)
n

,

which is our penalized least squares criterion, including the indicated adjustment.
We truncate the fm and f in (B.14) and show that with certain replacements of

Tfm, ultimately leading to the representer of f , we have a suitable lower bound.
We first replace fm by a f̃m,temp, replacing certain of the occurrences of hk with
their representers h̃k. Indeed, in fm = Πf + (v/m1)

∑m1
k=1[hk − Πhk]/εh,2,

the projected pieces Πhk are already in the span S of m0 given functions, so
we let f̃m,temp = Πf + (v/m1)

∑m1
k=1[h̃k − Πhk]/εhk,2. So then their difference

f̃m,temp(x)− fm(x) = (v/m1)
∑m1

k=1[h̃k(x)− hk(x)]/εhk,2 has empirical L1 norm
bounded by our updated expression Vm,ε1 . Hence ‖T f̃m,temp − fm‖2n,1 ≤ Vm,ε1 . In
forming T f̃m,temp not more than m1 functions h̃k are selected from H̃1 and linearly
combined with the m0 functions from H̃2, and then thresholded to level B′. Ac-
cordingly, there is a representer f̃m in F̃m0,min{m1,M1}, which we may also arrange
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to be bounded by B′, for which ‖T f̃m,temp− f̃m‖2n,1 ≤ tm, where tm is a precision
to be specified. Consequently, the empirical L1 distance between fm and f̃m is not
more than Vm,ε1 + tm.

Then the argument proceeds as before in Section 4, in the development from
expression (4.12) to expression (4.15), to obtain that expression (B.14) is at least
(B.17)

‖Y−T f̃m‖2
n + ‖Tf−T f̃m‖2

X′ +
γL(f̃m)

n
− Tail1+Tail2

n
+(λ1−8B′)[Vm,ε1+tm],

where the [Vm,ε1 + tm] term may be dropped for λ1 ≥ 8B′.
Thus, for this case, reasoning as before, we have the ingredients for expression

(B.16) to be a valid penalized squared error criterion, exceeding the corresponding
expression here, for satisfaction of the conditions of our theory.

It remains to present the bound for the cardinality of F̃n,m0,m1 taken to be an
empirical L1 cover of TFm0,m1 with precision t = tm,n, and to use it to verify
our complexity expression and its bound. Here TFm0,m1 is the collection of trun-
cated linear combinations with not more than m1 terms from H̃1 and all of the m0

terms from H̃2. Through padding linear combinations that use fewer terms with
additional zero coefficient terms, as previously explained, this can be thought of as
the collection of truncated linear combinations with exactly min{m1,M1} terms.
In accordance with Lemma B.4, for t ≤ B′, its cardinality is not more than

(B.18)

(
M1

m1

)(
4B′e2/t

)m0+m1+1
,

with the understanding that if m1≥M1 then
(M1

m1

)
= 1, and, if desired, in the expo-

nent, m1 may be replaced by min{m1,M1}. Here
(M1

m1

)
is the number of subsets of

size m1 out of the M1 functions in H̃1 and the other factor is the cardinality bound
for the empirical L1 cover of the set of thresholded linear combinations for any
m specified functions. The logarithm of expression (B.18) plus log M1 provides a
valid variable-complexity assignment for functions in F̃ = ∪1≤m1≤M1F̃n,m0,m1

satisfying Condition (S). This complexity is the sum of three parts, log M1 corre-
sponding to the description of m1 ≤ M1, plus log

(M1

m1

)
for the description of the

subsets of terms, plus (m+1) log(4B′e2/tm,n) the bound on the log-cardinality of
the cover of thresholded linear combinations of such terms.

Taking γ/n times the log cardinality and adding the term λ1tm,n, we have the
part of the penalty expression that involves the choice of the precision tm,n. Ac-
cordingly, the optimal tm,n is seen to be min{γ(m+1)

λ1n , B′}, at which the term
λ1tm,n is not more than γ(m + 1)/n. Consequently, using λ1 ≥ 8B′, with this
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tm,n a valid complexity assignment is

(B.19) Ln,m = log

(
M1

m1

)
+ (m + 1) log cn,m + log M1,

where cn,m = 4e2 max{1, 8(B′)2

γ
n

m+1}, which is not more than cn = cn,m0+1 =
4e2 max{1, nc′} for m1 ≥ 1, where c′ = 8B′2/[γ(m0 + 2)]. Interpret

(M1

m1

)
= 1

for m1 > M1. Then replacing with cn,m with cn, we have that log
(M1

m1

)
+ (m +

1) log cn + log M1 is an upper bound on Ln,min{m1,M1} for all m1 ≥ 1. Since
log

(M1

m1

)
≤ m1 log M1 this completes the verification of the form of the complexity

bound used above, and, accordingly, it completes the proof of Theorem 4.2.

APPENDIX C: LEMMAS FOR SECTION 6

Real interpolation spaces [12]

Bp = [L2(P ),L1,H]θ,∞,

with 0≤θ≤1 and p defined by 1/p = (1 + θ)/2 consist of all functions f∗ which
satisfy

K(f∗, t) ≤ Ctθ,

where K(f∗, t) = inff∈L1,H{‖f∗−f‖L2(P )+tV (f)} is the so-called K-function.
The smallest C such that the above holds is the norm of f∗ in this interpolation
space.

LEMMA C.1. The interpolation space Bp is equivalent to the space Bres
1,p de-

fined in Section 6 for 1 ≤ p ≤ 2. Also

0.6 (C1,p(f∗))
1/p ≤ ‖f∗‖Bp ≤ 2 (C1,p(f∗))

1/p

and
0.38‖f∗‖p

Bp
≤ C1,p(f∗) ≤ 2‖f∗‖p

Bp

.

PROOF. First, if f∗ ∈ Bres
1,p , according to the definition, there exists a function

f ∈ L1,H, such that, ‖f∗ − f‖2 + λV (f) ≤ C1,p(f∗)λ2−p for any λ > 0. Hence,
‖f∗ − f‖2 ≤ C1,p(f∗)λ2−p and V (f) ≤ C1,p(f∗)λ1−p. Then the K-function
satisfies

K(f∗, t) ≤ ‖f∗ − f‖+ tV (f) ≤
√

C1,p(f∗)λ1−p/2 + C1,p(f∗)λ1−pt.
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Since the above inequality is true for all λ > 0, it also holds with the infimum over
λ on the right side, which yields

(C1,p(f∗))
1/p
(

2p− 2
2− p

)2/p−2 ( p

2− p

)
t2/p−1.

Thus because 2/p − 1 = θ, this f∗ is indeed in Bp and the norm ‖f∗‖Bp is less

than or equal to (C1,p(f∗))
1/p
(

2p−2
2−p

)2/p−2 ( p
2−p

)
.

Next, if f∗ ∈ Bp, using the same argument, we obtain that

R1(f∗, λ) ≤ ‖f∗‖2
Bp

t2θ + ‖f∗‖Bpt
θ−1λ

for all t > 0. Minimizing t on the right side and using θ = 2/p− 1 yields

R1(f∗, λ) ≤ ‖f∗‖p
Bp

(
p− 1
2− p

)1−p ( 1
2− p

)
λ2−p,

which implies that f∗ is in Bres
1,p and C1,p(f∗) ≤ ‖f∗‖p

Bp

(
p−1
2−p

)1−p (
1

2−p

)
.

Combining two bounds together yields

(2− p)2−p

(2p− 2)2−2ppp
‖f∗‖p

Bp
≤ C1,p(f∗) ≤

(p− 1)1−p

(2− p)2−p
‖f∗‖p

Bp
.

Likewise, we can bound ‖f∗‖Bp using (C1,p(f∗))
1/p. Extremizing the two coeffi-

cients in the upper and lower bounds produces the statement.

LEMMA C.2. The interpolation space Bres
1,r,p is equivalent to the space Bres

1,p for
1 ≤ p ≤ 2 and any r > 0.

PROOF. First, if f∗ ∈ Bres
1,p , according to the definition, there exists a v, such

that, App(f∗, v) + λv ≤ C1,p(f∗)λ2−p for any λ > 0. Hence, App(f∗, v) ≤
C1,p(f∗)λ2−p and v ≤ C1,p(f∗)λ1−p. Then the function R1,r(f∗, t) is not more
than

App(f∗, v) + tvr ≤ C1,p(f∗)λ2−p + Cr
1,p(f

∗)λ(1−p)rt.

Minimizing over λ on the right side yields

R1,r(f∗, t) ≤ c tθ,

where c doesn’t depend on t and θ = (2−p)/(rp−p+2−r). Therefore, the f∗ is
indeed in Bres

1,r,p.
The other direction can be proved by the same argument. We omit it here.
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[21] BIRGÉ, L. AND MASSART, P. (2001b). A generalized Cp criterion for gaussian model se-
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