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Preface

This Festschrift is presented in honor of Jorma Rissanen, on the occasion of his 75™ birthday on October
20th, 2007. It contains 20 contributions by Jorma’s colleagues and friends covering a wide range of topics
in the areas of information theory, statistical modeling and inference, data compression and applications
of modeling in science, engineering, and economics, reflecting the many areas where Jorma’s work had a
great impact.

A special session will be organized in the IEEE Information Theory Workshop to be held in Porto,
Portugal during May 5-9, 2008. A number of the contributions will be presented in the special session of
the workshop and the final printed copy of the edited version of the present volume will be available.

Jorma’s exemplary career and his discoveries are a continuous source of inspiration for generations of
researchers and students. His discoveries in science have had a substantial impact on the foundations of
statistics and information theory. They prove fruitful in a wide range of applications, including science
(psychology, molecular biology, astrophysics), engineering (control, computer science, signal processing),
and economics.

Jorma is energetic as ever, constantly producing novel, galvanizing contributions in his positions as
professor emeritus at Tampere University of Technology, visiting professor at Helsinki University of
Technology and University of London, and HIIT Fellow at Helsinki Institute for Information Technology.
This volume is built out of contributions continuing in many ways the line of thoughts and principles
promoted by Jorma, giving a glimpse of the diversity of areas relevant to his research. This volume will
also reveal some insights of his remarkable personal life. All those who have had the privilege to meet

and work with him have been amazed to see in him such an example of staying straight in life and being
faithful to his pursuit of truth and values through science.

We wish to Jorma the fulfillment of all his wishes and strength to continue transforming his wishes into
reality.

Happy Birthday!

Bin, loan, Marcelo, Peter, and Petri

Berkely, Tampere, Palo Alto, Amsterdam, Helsinki

October 20th, 2007
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A Conversation with Jorma Rissanen

Pentti Huuhtanen, FErkki P. Liski and Simo Puntanen

Brief Biography

Jorma Johannes Rissanen was born in Pielisjirvi, Finland, on October 20, 1932. He received
his Master’s degree in electrical engineering in 1956, his Licentiate and Doctor of Technology
degrees in control theory and mathematics in 1960 and 1965, respectively, all from the Helsinki
University of Technology, Finland. He joined IBM’s San Jose Research Laboratory, California,
1966, where he remained for more than three decades, except for the academic year 1973-74,
when he held the chair of control theory in Link&ping University, Sweden. He is a fellow of
the Helsinki Institute for Information Technology, University of Helsinki. He is also a Professor
Emeritus at the Tampere University of Technology. Since 1998 he has been appointed Visiting
Professor in Computer Science at Royal Holloway, University of London. He is a Foreign Member
of the Finnish Academy of Science and Letters and he has received an Honorary Doctorate degree
from the Tampere University of Technology, Finland, in 1992.

Jorma Rissanen is the founder of the Minimum Description Length (MDL) principle, a new
inductive principle in statistical modeling. He has carried out significant research in the fields of
control, prediction and system theories, relation theory, numerical mathematics, information and
coding theory, probability theory and statistics. He has published more than a hundred research
papers and the books Stochastic Complezity in Statistical Inquiry (1989, World Scientific) and
Information and Complexity in Statistical Modeling (2007, Springer), and he holds 15 US patents.
He continues to be active in research.

Jorma Rissanen has earned many honors and awards, including the 2006 Kolmogorov Medal
of the Computer Learning Research Centre at Royal Holloway, University of London; an IEEE
Information Society Golden Jubilee Award for Technological Innovation for the invention of
arithmetic coding in 1998; the IEEE 1993 Richard W. Hamming medal ‘For fundamental contri-
butions to information theory, statistical inference, control theory, and the theory of complexity’;
an IBM Corporate Award in 1991 for the MDL/PMDL principles and stochastic complexity;
an IBM Outstanding Innovation Award in 1988 for work in statistical inference, information
theory, and the theory of complexity; the Best Paper Award from the IEEE Information Theory
Group in 1986 (covered all papers published in information theory during the preceding two-year
period); the Best Paper Award from the International Federation of Automatic Control in 1981;
an IBM Outstanding Innovation Award in 1980 for the introduction of arithmetic codes. He is
an [EEE Fellow.

In 1956 he married Riitta Aberg, and they have a son Juhani and a daughter Natasha, one
grandson Juhani and one granddaughter Elissa.

The following conversation took place both by email in the end of July and meeting in Tampere
in August 2007.
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Figure 1: Jorma Rissanen in his San Jose office in 1985.
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Early life, Kemi, wartime, 1932-55

QUESTION: Jorma, let us start at the very beginning. You were born on October 20, 1932 in
Pielisjirvi, near then the Soviet border, but soon your family moved to Kemi, which is situated
in the north-western part of Finland near to the Sweden—Finland border. Jorma, tell us something
about your family and your childhood in Kemi.

JORMA RISSANEN: There isn’t all that much to tell. We lived in rented apartments in various
suburbs of the small town, and just about all I remember of the period before the war was that
it was cold and there were huge piles of snow.

Did you have sisters or brothers?
I had four sisters and a brother.

Soon after you went to primary school in 1939 the Winter War broke out when the Soviet Union
attacked Finland on November 30, 1939. The war lasted 100 days. What kind of time was that
in your life?

It did not affect us too much. Since Kemi is hundreds of kilometers from the Soviet border we
had no bombing, even though we had to go to bomb shelters a few times.

The period of peace after the Winter War was short. The Continuation War lasted from June
25, 1941 until September 19, 1944. Germany took part by providing critical material support and
military cooperation to Finland and also some German troops operated in North Finland. When
Finland in September 1944 made peace with the Soviet Union the so-called Lapland War broke
out between Finland and Germany. Your home town Kemi was also in the middle of battles.
Could you tell about your personal war experiences?

Just before the fighting reached the house where we lived we took off to the woods together with
the family of the owner of the house, a horse and a cow. There we waited for a few days until
fighting passed the area. When the sound of the cannon shots seemed to come from farther away
I decided to take a look at our home on the main road to north. A miles long German column
of vehicles of any sort had been stopped on the road with dead soldiers with their arms lying
nearby. I, together with the neighborhood boys, had a keen interest in guns and ammunition,
and I thought that this is an excellent opportunity to get Schmeisser machine pistols. I picked
two and hid them under the house where we lived. Every room of the apartment had bullet holes
so that none of us would have survived if we had stayed. On the yard behind an Y-shape tree
a dead German soldier with his machine rifle was lying. I was tempted to take the rifle but it
was too long and heavy and I left it. Unfortunately I had no chance to try the machine pistols,
because the next few days a Finnish soldier came to check if there are any weapons around, and
my father told him that I had a cache under the house. I remember those as exciting times!

How about your early schooling in wartime?

After the Germans were pushed to Norway there was almost nothing to eat in Kemi, and I was
sent with many others to Sweden, where I stayed one year without attending any school and
missed the third grade. I learned Swedish though, which I however kept forgetting faster than
what I was taught an hour every day from the third grade on in the junior high school.
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Figure 2: Conference in Ann Arbor, Michigan: Jorma Rissanen and Claude Shannon. Jorma Rissanen has
received the Best Paper Award from IEEE Information Theory Group in 1986.

What can you recall about your life during the elementary, junior high and high school days?
Did you start showing any added aptitude in one subject over others at some stage?

For a couple of years I had trouble with arithmetic and mathematics, but then all of a sudden,
it seemed, I understood that arithmetic and mathematics is nothing but a game with certain
rules, which you have to learn. After that it became my favorite field.

Did you happen to meet inspiring teachers in science and mathematics?

Our mathematics teacher happened to be excellent. He kept on reminding the students that there
is nothing to learning mathematics and all of you are capable of getting at least the grade B. He
left me with the long lasting impression that I should be able to learn anything if it is explained
clearly.

Of science we were taught basic physics, the teacher of which was very good, too.

How about the matriculation examination in the early 1950s? What kind of thoughts does that
bring to your mind?

The examination itself took one whole day. I remember the 3-hour mathematics test, which
consisted of ten problems. One was an involved percentage type of problem, which was very hard
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to decipher, and I missed it. However, since it was the only one I missed I still got the grade
‘laudatur’ and was allowed to attend the 2-week summer school for the Technical University of
Helsinki. The other tests meant nothing to me and I must have passed them because I graduated.

Helsinki University of Technology, 1952-56

You enrolled in the undergraduate programme at Helsinki University of Technology (HUT) in
1952. How did you become interested in engineering studies?

At the time there were two favorite ways to proceed towards higher education with good ca-
reer prospects, the medical and technical fields, and my choice was clear: the most prestigious
technical university of Finland was in Helsinki.

After the years in Kemi, how did you like to live in Helsinki in your student years?

I actually lived in Helsinki itself only the first year, after which I moved to Otaniemi and took
the bus to the old technical university building, where all the lectures were given. I had no social
life other than soccer, which we played just about every night in the newly built indoors arena
in Otaniemi.

Do you recall teachers or other people at HUT that you regard as influences on your career as
it developed?

Hans Blomberg, the professor of theoretical electrical engineering was excellent. So was the
mathematics professor Kalle Viiséld, from whom I took all the courses he gave.

You served in the army right after finishing the undergraduate degree in 1956. How did you cope
with the mandatory military assignment?

My military career ended prematurely when I hurt my knee and was operated, which gave me
a good chance to study for the Licentiate degree in the military hospital.

1 recall that this knee problem has not been entirely solved and it has not allowed you to play
soccer according to your talents? Is that right?

That is right. I didn’t play soccer in the following ten years until a knee specialist in California
told me that there is nothing much wrong with the knee and go ahead and start playing, which

I did.

You started your Licentiate studies in 1957. What form were these studies? Was your aim
already directed at a doctoral degree?

There were no courses on control theory, and I picked the topic for graduate studies because of
Hans Blomberg’s interest in it. My aim certainly was a doctoral degree.

You have told that one of your first places of employment was the Helsinki City Utility Company.

It was my first steady employment; after all, I had just married and had to make a living.
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U-n.iversity of Tampere

Figure 3: Conference Dinner in Tampere Conference 1987: T. W. Anderson, Jorma Rissanen and Dorothy
Anderson.

So you were working and continuing your studies at the same time?

Yes.

When did your interests in mathematics and science begin to emerge?
They grew gradually during the undergraduate studies.

What was your dissertation about?

It was about the horrible problem of adaptive control.

Could you please be a bit more specific? Your answers makes me curious. . .

Although I feel the less said about the thesis the better, let me just add that the most important
and difficult part in problem selection is to pick a topic which both is tractable and reasonably
significant. Since nobody had been able to do anything worthwhile about the adaptive control
problem I should never have taken that as a PhD topic. Needless to say I wasted my time as
well as that of the examiner, Olli Lokki, and produced absolutely nothing worthwhile.
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Simo Puntanen

Figure 4: Sauna Party in Tampere Conference 1987: Ted Hannan, Jorma Rissanen, and Heikki Hella.

Who was your thesis advisor and what kind of process it was to work for a doctoral degree at
that time at HUT?

My thesis advisor was Hans Blomberg, and since there were no formal lectures given on graduate
level I simply started by reading literature given to me by him. I continued studying mathematics
under the tutoring of Kalle Vaiséld. The examination was done in my working out problems in
books as home work — not avoiding the more difficult ones as instructed by Professor Vaisila.

Often, work done for doctoral thesis shapes one’s future conception of the field. Is this the case
for you?

No.
Are there other people at HUT that you regard as influences on your career as it developed?
No.

You received the Doctor of Technology Degree in control theory and mathematics from the
Helsinki University of Technology in 1965. Were there many other doctoral students in your
field of research at HUT?

Since I did most of my work away from the university while working for IBM, I didn’t know of
any other doctoral student in any field at HUT.
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Did you have any contacts with the Department of Mathematics at the University of Helsinki?
At that time there were many world famous mathematicians like e.g. Rolf Nevanlinna, Paul
Kustaanheimo, P. J. Myrberg, Gustav Elfving and Olli Lehto.

I had no contact with the Department of Mathematics at the University of Helsinki, but I did
know the impressive Paul Kustaanheimo and of course I knew Olli Lokki who was at the HUT.
In fact, my first course in statistics were lectures given at HUT by Olli Lokki, who was the
pioneer of statistics teaching in HUT.

What were your plans for future after finishing your degree? How did you originally get interested
in research career?

It seems now that I have always regarded research as the only career for me, which was only
strengthened while working in IBM Research.

What about the teaching? Did you feel any call for teaching after finishing your degree?

I didn’t have a chance until later when I found out that teaching is too difficult to be left to the
professionals.

University of Tampere

Figure 5: Workshop in Tampere 1990. Jorma Rissanen talking on “Stochastic Complexity in Linear Models”.
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Sweden, 1958—-64

You started your international career in Sweden in 1958. You worked at ASEA in Visteras?
Could you tell something about that time?

I was told at the Helsinki City Utility Company that “by law we cannot fire you because of
the military service, but don’t come back”. I never did. In fact I left the whole country and
joined ASEA. T formulated and proved my very first theorem, one of the fundamental theorems
in control (Rissanen 1961). It states that by a linear feedback you can move the poles wherever
you wish but you cannot change their number.

You moved to the IBM Nordic Laboratory in Stockholm in 1960.

Yes, I did, and was sent for one year visit to Yorktown Heights and San Jose. These visits turned
out to be crucial for my entire future.

Information technology and industry lived their early stages in these times. Do you find that this
has some effect on your orientation in research?

The mission of the IBM Nordic Laboratories was industrial process control, but after a few years
the company grew tired of waiting for economic results from that. The main problem was not
control, which was easy if you knew what you were supposed to control. This turned my interests
to modeling, and as it happens I never got out of it. The effect of information technology to my
career was still some years away — and in fact came from an unexpected direction. But more of
that a bit later.

Your first published works were on linear systems and prediction theory. Are we right?

Yes, I mentioned above my very first pole shifting theorem for linear feedback systems. In
addition in the mid sixties I derived fast algorithms for factoring Hankel and Toeplitz matrices,
which solve the so-called system identification problem as well as the Kalman type of prediction
problem for ARMA processes (Rissanen 1973).

To the USA and to IBM, 1964—

You left Stockholm in 196/ and moved to the States. First to Electronic Associates in Princeton
and Lockheed in Huntsville, but soon back to IBM’s San Jose Research Laboratory, California.
That was a time of many changes of residence. Tell us what made you to get off the ground.

Well, T needed a sponsor in the USA for emigration, and my boss in IBM USA during the visit
had been promoted, which left me without a contact. I thought that who needs IBM and joined
Electronic Associates. I realized however that maybe I had made a mistake and when IBM
showed interest in getting us to San Jose we were just too happy to comply.

Did you join a research group in San Jose or did you work more or less independently? Tell us
about the research culture and atmosphere at IBM.

I joined a research group but was given quite free hands to study and work on my own problems.
This I took advantage of and became a professional student.
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San Jose is geographically pretty close to some of America’s greatest universities. Did you develop
connections with people in Stanford and Berkeley?

Yes, indeed. I gave graduate lectures in Berkeley on prediction theory, and visited regularly
professors Rudy Kalman and Tom Kailath in Stanford University. Later I actually was an adjunct
professor in Stanford University.

What kind of working habits did you follow? How would you describe a normal day?

I started at about 8 AM and studied or worked on a problem leading to a paper until 5 PM.
It took many years to get accustomed to such a regime without any obligations or directions —
just study without focus and search for a meaningful problem. Every other day at noon time I
played pickup soccer, which was a great distraction and broke the monotonous day.

In 1973-74 you held the chair of control theory in Linkoping University, Sweden. It was not
your cup of tea?

Immigrants often tend to feel nostalgia after a few years, and this happened to us as well. Also
the lack of focus in my research had an effect, and when I saw the advertizement of a professor
chair in Sweden I thought why not. It was a disastrous move. I found out that I don’t like
the field of control, I don’t like to be a professor, and I don’t like the climate nor the at that
time socialistic Sweden. However, something happened, which maybe could not have happened
otherwise. I was exposed to the exciting ideas of Chaitin, Kolmogorov, and Martin-L6f, which
set my mind in fire. I found that this is what interests me, and finally I could focus on something
that also could be of some interest to IBM. We returned to San Jose after just one year.

Did you have any personal contact with Kolmogorov?
I never had the honor of meeting him.
Did you meet Harald Cramér while you were in Sweden?

No, I never met him. But if you were to ask my statistical idols, I would definitely mention
Harald Cramér and R. A. Fisher.

Arithmetic coding, stochastic complexity and MDL, 1975—

Many works you did at that time were somehow related to time series analysis. The Box—Jenkins
approach to modeling ARIMA processes was described in a highly influential book by statisticians
George Box and Gwilym Jenkins in 1970 (Box and Jenkins 1970). It seems that you already were
Sfamiliar with these kinds of techniques at that time. Was it because of your system and prediction
theory background?

Yes indeed. The modeling problems for AR and ARMA processes were bread and butter in the
control field a decade before the Box—Jenkins book.

Later you had joint works with Ted Hannan who was one of the foremost experts in time series
analysis. Would you like to say something about your collaborations with him?

10
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Figure 6: The IEEE announced that Jorma Rissanen is the recipient of the 1993 IEEE Richard W. Hamming
Medal (IEEE Information Theory Society Newsletter 1993).

Ted loved to work on the difficult analysis problems arising in time series. His forte was analysis
of existing problems rather than the creation of new ones. Among his many results was to derive
a rather exact form for the penalty term in a criterion to find the number of parameters consis-
tently. This also implies the consistency of the criterion BIC or the asymptotic approximation
of the MDL criterion. To show something of my two-month visit to the Australian National
University we had a joint Biometrika paper, written mostly by him, on estimation of ARMA
order (Hannan and Rissanen 1982).

In 1975 you introduced a new coding technique for data compression, called Arithmetic Coding,
which is certainly one of your main contributions (Rissanen 1976). We may guess that coding
theory was not one of your study subjects in the Helsinki University of Technology. Was it at
IBM when you became interested in coding theory?

I had never heard of the coding problem at the time I stayed at HUT. I got the idea of arithmetic
coding from the brief paper by Kolmogorov, ‘Three Measures of Information’ (Kolmogorov 1965),
during my stay as the professor of control theory in Sweden.

11
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How do you see the status of Arithmetic Coding nowadays?

It is very simply the preferred way of doing coding for data compression. It has relegated the
optimal, elegant, and then dominant Huffman codes to a graceful retirement — as someone put
it.

You introduced in 1983 a universal modeling algorithm Context, called now wvariable order
Markov chains (Rissanen 1983). Tell us about the research that led to Context.

I got the idea from the elegant data compression algorithm by Lempel and Ziv. Since I was
advocating the view that all universal data compression algorithms must incorporate a model
of the data, I first reinterpreted the main part in the LZ algorithm as a universal model in the
huge class of ergodic processes. This then led to the universal modeling algorithm Context for
the much smaller class of Markov chains. Because the class is smaller the model cost is smaller
too, and you get a better compression if the data have any properties like the Markov chains.

Many people would like to know what led you into formulating the principle that is now known
as the MDL principle?

Since with arithmetic coding you can encode any data modeled in any statistical manner in a
completely mechanical and uniform way the key problem in data compression is to understand
the statistical behavior of the data, which is modeling. I then turned the problem around and
concluded that it is possible to measure the goodness of any model by its ability to compress
the data. This relationship becomes evident by Kraft inequality, which establishes the logical
equivalence between a distribution and the lengths of a (prefix) code tree.

Was the MDL principle formulated the first time in your Automatica paper “Modeling by shortest
data description” in 1978, or even before?

Yes. The MDL principle as a concept was clear to me after the introduction of arithmetic coding
in around 1975-1976, and in the Awutomatica paper I wanted to explain the principle to an
audience not familiar with coding but one which I was familiar with, the control theory people.

You were inspired by the Kolmogorov’s algorithmic theory of complexity. There are also the
related works by Ray Solomonoff, G. J. Chaitin and Per Martin-Léf. Do you think that their
works had some influence on your thinking?

In a fundamental way. You see, it is one thing to understand things intuitively but quite different
to see formally the relationships, which is what I learned from the writings of these distinguished
men. In fact, there are still certain baffling both conceptual and technical issues, which I hope
to be able to sort out some day.

The idea of estimation-via-coding was presented in the computer science literature by Wallace
and Boulton 1968. How is their approach related to MDL?

First, their principle is expressed as minimizing the mean code length, which is then estimated.
This results in a two-part code, which Wallace and his students have applied to a number of
practical cases. The MDL principle on the other hand has been developed into a theory of
inference rather than just a criterion for model selection.

12
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Figure 7: Peter Griinwald and Jorma Rissanen during the 2002 IEEE Information Theory Workshop in Banga-
lore, India.

Your paper ‘Stochastic complexity and modeling’ in Annals of Statistics 1986 extends certain
fundamental results in information theory and statistics. Could you tell us in a few words about
the significance of this contribution.

At the time I wanted to prove that with a parametric family of distributions you cannot get a
shorter code length for or, equivalently, a greater probability assigned to data sequences than
a certain calculable bound — no matter how you construct the code. That is, such a bound,
which I called stochastic complexity, is inherent for the family of distributions at hand. Later
constructions were found with which the bound can be essentially achieved. This simply means
that there are some absolute restrictions in modeling which you have to live with, and if your
model gets away with such restrictions nobody can beat you. This is the aim with universal
models.

During the last three decades you have developed such ideas as stochastic complezity, univer-
sal model, and universal minimal sufficient statistics, which provide an information theoretic
foundation for statistics. How do you assess the present status of your theory now?

The universal minimal sufficient statistics in the algorithmic information theory, where a model
of data is simply any finite set that includes the data, is due to Kolmogorov. When we deal with
distributions as models, which must be estimated from data, there is a possibility to sharpen
Kolmogorov’s result at least in two respects: First, the code length of a model, represented by
the maximum likelihood estimate of its parameters, corresponds to the Kolmogorov complexity
of the model. But the model can actually be represented more completely by the sequence of the
maximum likelihood estimates, obtained from all the prefixes of the data sequence. This has no

13
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counter part in the algorithmic theory, and clearly there is more information about the model
in the sequence of the maximum likelihood estimates than in just the last estimate. Hence, the
idea of ‘information’ that an estimated model represents is now different and more complex.

The second aspect which is missing in the algorithmic models is the idea of models that can
be optimally ‘distinguished’ from a given set of data. I have written about how this provides a
sense of optimality in hypothesis testing and greatly reduces the number of hypotheses we need
to test.

My most recent work is of a new generation of universal models, which, while related to the
predictive ways of constructing universal models like Dawid’s prequential ‘plug-in’ models or the
equivalent predictive MDL models, are strictly better — provably so.

If you were asked to list your three most important coniributions, what would you list?

The two most important contributions are undoubtedly Arithmetic Coding and the MDL princi-
ple. The third is tougher to pick. The theorem on the lower bound for the code length achievable
for parametric families mentioned above together with the latest extensions of the MDL theory
rank in my mind higher than Algorithm Context — perhaps because of the much greater difficulty
in deriving them. In fact, I understand the proof in the Annals of Statistics paper only in my
brighter moments.

Philosophy
In research, which is more important: conceptual foundations or technical perfection?

I think the conceptual foundations are more important although their clarifications require often
difficult analysis, which, moreover, tends to modify the initial concepts, and hence we cannot
really separate the two.

Do you see the computer as a tool in theoretical work?

Computations of anything I have proposed have influenced my theoretical work (shown that I
had overlooked something).

What is your approach to a problem? Do you have certain techniques or would you say that is
intuitive?

My intuition amounts to seeing, or better feeling, what’s essential in the problem. Then by
analysis comes a sharper isolation of that essential, which amounts to better understanding of
the problem. The rest is detail — albeit sometimes crucial detail. An example is coding, in which
the essential is just sorting and counting. However, the crucial thing is to understand exactly
what it is that should be counted. In fact, this is also behind the entropy and the algorithmic
information, so that in essence Kolmogorov’s three measures of information could be reduced
to one. Clearly, to find the essence can be difficult, although in case of arithmetic coding it was
not difficult, because of Kolmogorov’s paper, where the essence was spelled out. Nevertheless,
after the invention of arithmetic codes my boss cum secretary exclaimed that he could not have
invented that in a million years, or, more realistically, a million men could not find it in a year.
In truth, the story of arithmetic coding is more involved than what I made it out here to be.
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Figure 8: Jorma Rissanen and Stefano Zambelli at the home of K. Vela Velupillai in Galway, Ireland, March
2005.

What is your view on breadth versus depth in research? You have solved problems over a broad
range and reached many deep findings. Some people tend to think that working deeply on a small
topic is in contrast to having a wider interest.

I see no contradiction in the two views. I sometimes tell young people that you need mathematics
and deep analytic tools if you want to accomplish anything of lasting value; you cannot do that
simply by being clever in the small.

In this context I might mention a nice poem by Piet Hein, which I saw in the office door of
Terry Speed in Berkeley: Its name is Wide Road and it goes as follows:

To make a name for learning
when other roads are barred,
take something very easy
and make it very hard.

You have developed foundations of statistical modeling and carried out significant research in
many fields like e.g. prediction and system theories, information and coding theory, computer
learning, probability and statistics, and you have worked with computer scientists, engineers,
information theorists, mathematicians, and statisticians. Could you give us your projections for
statistical modeling in this new century?

In my view statistics needs a solid foundation rather than just a collection of isolated techniques
however clever.

It is not enough to claim to have found a method which works well or better than other
methods on some data. It’s even not enough to prove that the technique works on data generated
by an imagined ’true’ distribution. We need to understand why a technique works as it does,
and why it is better than the competing approaches. This is what’s missing in current statistics,
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where all sorts of criteria for the model selection problem have been proposed. In addition, a
sound statistical theory should be able to treat the estimation of both the parameter values and
their number within a common theory. We ought to be able to formalize ideas like ‘information’,
‘complexity’, and ‘noise’, which I’'m afraid can be done only with information theoretic means.
As a specific example, there are good techniques for denoising. However, unless the idea of ‘noise’
is defined it becomes the part in the data that is removed. I hope that statistics will progress
in a manner which makes sense and in which the fundamental concepts are defined and the
limitations clearly understood.

In many applications we are going to be faced with a lot of data generated by computational
statistics or by a measuring device and then the theory has to keep up with it. Are we in a
situation where there is more information than theory? Do you think there will be a revolution
in statistical theory?

I already explained above that the traditional statistics is unable to formalize the central concepts
that are needed to capture properties in complex data, so that indeed there is more in the
data than what the traditional statistical theory can explain. In my opinion, there will be
drastic changes in statistics although one may suspect that the changes will be gradual, perhaps
disguised as modifications of old approaches so that no foundation need be changed. Currently,
foundations, such as they are, are ignored.

Some writers seem to mix up MDL with Bayesian procedures. What is your view of the Bayesian
philosophical framework?

The MDL theory is based upon the MDL principle, which opens up an entirely different ap-
proach to statistics, free from the untenable assumption of a ’true’ data generating distribution,
while the Bayesian philosophy has no principle other than an unrestricted use of probabilities.
Instead the central concept is the posterior distribution, whose interpretation is just as fuzzy as
that of the prior. Moreover, since the prior affects the posterior its selection is crucial. In the
MDL theory, where the use of priors is optional, their selection must be restricted so that they
are encodable. This permits optimization of their selection, which cannot be done within the
Bayesian philosophy, because nothing prevents you from putting it to unity on the data. The
irresistible desire to peek into the data has created concepts like ’empirical’ priors which clearly
contradicts the very foundation of Bayesianism.

The usual confusion between the two approaches is understandable if one equates the MDL
principle with the early criterion for model selection, also derived by Bayesian arguments and
called BIC. Even though they are identical the MDL derivation attaches an asymptotic optimal-
ity to the criterion, while no such status can be given to BIC in terms of the Bayesian concepts.
As a result the MDL criterion has been refined and developed further, while the BIC is a dead
end.

Finally, the concepts like universal models, noise, statistical information, and complexity,
which are central in the MDL theory, have no meaning in the Bayesian philosophy. It is true that
Bayes’ formula creates a universal model, the so-called Bayesian mixture, which is good, but not
because its goodness could be assessed by Bayesian means. Rather, it is good because it reaches
the lower bound referred to above. Moreover, there are other universal models, which have not
been found in the Bayesian philosophy and which have properties preferable to the Bayesian
mixture. In summary, the MDL principle has created an entire theory with new concepts, which
goes beyond any Bayesian technique and Bayesian philosophy whatever that is.
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What definition of probability do you use?

Strictly speaking I use the probability that satisfies Kolmogorov’s axioms. Sometimes, when it
is preferable to talk about code length I mean by probability the number two raised to the
negative power of the code length. After all, prefix codes are very concrete and there is nothing
fuzzy about them. An example is the assignment of probability to a closed curve on the plane.
It is easy to encode such curves by the chain link method, which then assigns a probability to
the curve. Compare this with the horrendous task of defining a prior distribution for the set of
all continuous closed curves on the plane.

Figure 9: Jorma Rissanen with Wojciech Szpankowski and Jacob Ziv at the ITA Workshop, San Diego, Cali-
fornia, 2007.

Affiliations to Finland and current research

You were invited to “The 2nd International Tampere Conference in Statistics” in 1987. In
consequence of this meeting we had the privilege to learn to know you personally. Since then you
have been a regular visitor to Tampere. In 1987 Conference we had T. W. Anderson, George E. P.
Boz, C. R. Rao and Ted Hannan as keynote speakers. You surely had met all of them before?

I do not recall having met Professor Box before that meeting. Actually, as you may know, I met
Tarmo Pukkila, who was in charge for the Tampere Conference, first time in 1985 in Las Vegas
in the ASA Conference — and there Tarmo invited me to Tampere in 1987.
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And now you even have a flat in Hervanta, Tampere. How do you share your time between
California, Finland, and the numerous conference and lecturing trips?

I spend about two months each year in Finland on three different time periods. The conference
and lecture trips do not take that much of my time.

You have been invited to numerous conferences, visited a number of universities, and have de-
livered many prestigious lectures, e.g. the Kolmogorov Lecture 2006. Could you mention some
highlights?

In addition to the Kolmogorov lecture I remember with pleasure a talk I gave in Norbert Wiener’s
100 year memorial meeting in 1994, and the visit to Ann Arbor 1986, where Shannon himself
handed me the best paper award. I also remember lectures in Beijing in 2005 as a guest of
Microsoft, which provided a car with the driver for a week, and a memorial meeting of Z. C.
Wei in Academia Sinica in Taipei 2005.

From May 1995 until your mandatory retirement you held a part time professorship at the
Tampere University of Technology. Tell us now how you came to TUT.

TUT made me an honorary doctor in 1992, which followed with a part time professorship.
When I had to retire from that TUT made other special arrangements, which allowed me to
visit Tampere three times each year.

Now every year you are teaching a course on statistical modeling at TUT, you are a fellow of
the Helsinki Institute for Information Technology, and you have joint research projects in both
places. Could you tell about these activities?

I enjoy them greatly. Now I have access to peers and graduate students, which I never had in
IBM Research.

What do you want to say about your current research interests?

I'm involved in applications of the MDL principle to practical problems. I'm also involved in
theoretical work, some of which has been inspired by the applications.

In addition to papers by only yourself you have plenty of papers with your collaborators. Can
you shortly comment on the role of collaboration in your research?

Although I have mostly worked alone collaboration has been quite important, in particular on
arithmetic coding, whose practical implementation would have been outside of my skills.

What about your PhD students? You surely must have a bunch of them?
I have had access to PhD students mostly only in Finland, and I have found them both useful
and invigorating. They tend to come up with unexpected questions, which expose embarrassing

shortcomings in my original suggestions. Also, of course, their superb programming skills make
the applications possible, which, in turn, create further problems.
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Personal

You officially had to take the mandatory retirement from your part time professorship almost
ten years ago. Do you consider yourself retired?

I had no mandatory retirement from IBM Research. Rather, having already been involved in
the institutions in Finland and London, I decided to retire from IBM five years ago and spend
more time in Finland. I certainly do not consider myself retired. I often think that I should have
retired from IBM earlier.

What things do you like to do when you are not doing research? Tell us a little bit about your
life outside of research and your hobbies or other activities.

I must say that nowadays, when I don’t play soccer any more, I have very little activities other
than research. I walk my dog and work on the difficult to maintain yard. We live on a wild

mountain side.

You have held onto your passion for soccer. Tell us what kind of resonance soccer and bandy
play have had for you.

When I grew up in Kemi this game ‘bandy’, which is like soccer on ice with skates and a curved
club to control a small ball, was my passion in winter and soccer in summer. I started to play
recreational soccer in California in 1965 until my retirement in 2002. I would still play if there
was an ‘over 70 team’ (no younger than 70 years old allowed in the team). Unfortunately, there
does not seem to be enough players of that age.

As far as we remember you enjoy reading mysteries. Who are your favorite writers?

The British writers Ken Follet, Frederic Forsyth, Jack Higgins, and the Americans Clive Cussler,
and Dan Brown.

You did not learn English at school? What was your way of learning your perfect English?

First, my command of English is far from perfect, but having lived in California for 40 years has
helped.

What does the future hold for you?
I don’t know.

Yes indeed, we don’t know what the future holds. We wish you well! Thanks very much Jorma
for sharing your thoughts about your career and about science with us.

I thank you for bothering to find out my thinking and making me feel as if I had done something
worthwhile.
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Figure 10: Jorma Rissanen looking at the sketch of a plot on sale in Kuru, Finland, April 2007.
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THE MDL PRINCIPLE, PENALIZED LIKELIHOODS, AND STATISTICAL RISK

ANDREW R. BARRON, CONG HUANG, JONATHAN Q. LI, AND XI LUO

ABSTRACT. We determine, for both countable and uncountable collections of functions, information-
theoretic conditions on a penalty pen(f) such that the optimizer f of the penalized log likelihood criterion
log 1/likelihood( f) + pen(f) has statistical risk not more than the index of resolvability corresponding to
the accuracy of the optimizer of the expected value of the criterion. If F is the linear span of a dictionary of
functions, traditional description-length penalties are based on the number of non-zero terms of candidate
fits (the ¢o norm of the coefficients) as we review. We specialize our general conclusions to show the ¢
norm of the coefficients times a suitable multiplier A is also an information-theoretically valid penalty.

1. INTRODUCTION

From work in the information theory and statistics communities, there are close connections between
high-quality data compression and accurate statistical estimation. The original Shannon (1948) code con-
struction and the condition of Kraft characterizing valid codelengths show the correspondence between
probability distributions p(data) for data and optimal variable-length binary codes of length essentially
log, 1/p(data) bits (see, e.g., Cover and Thomas 2007). The development of universal data compression
and, in particular, the minimum description-length (MDL) principle has built this correspondence further
to deal with the case of distributions py(data) that depend on an unknown function f believed to belong
to a family F which may be given parametrically (see, Barron, Rissanen and Yu 1998 or Griinwald 2007
and work cited therein). The function f may provide a density or log-density function (for instance we
may have p(z) = po(z)ef @ /e + where py is a reference distribution and ¢ is a normalizing constant),
or, in the case that the data consists of pairs of inputs X and outputs Y, the function f(x) may refer to
a regression function, classification function, Poisson intensity function, etc. that captures an essential
aspect of the conditional distribution of Y given X. Starting from a discussion of coding redundancy, we
analyze statistical risk of estimation, capturing its relationship to the accuracy of approximation and the
level of complexity of functions f in F, to contribute to a general theory of penalized likelihood.

Ideal procedures adapt to the complexity revealed by the data. We discuss results for mixture-based
and prediction-based procedures and present new results for procedures that optimize penalized like-
lihood. Penalties pen(f) are typically related to parameter dimension or to function irregularity. We
develop means to determine when such penalties capture information-theoretic complexity to provide
for quality compression and accurate function estimation.

An index of resolvability, the optimum sum of relative entropy approximation error and penalty rel-
ative to the sample size, is used to capture the performance of these procedures. It upper bounds the

Andrew Barron, Cong Huang, and Xi Rossi Luo are with the Department of Statistics, Yale University, P.O. Box 208290, New
Haven, CT 06520-8290; Andrew.Barron@yale.edu, Cong.Huang@yale.edu and Xi.Luo@yale.edu; Jonathan Qiang Li is with
Radar Networks, Inc., 410 Townsend St., San Francisco, CA 94107: giang.li@aya.yale.edu.
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statistical risk as does a related expression involving an expected redundancy of data compression. These
resolvability and redundancy bounds on risk have been developed for penalized likelihood restricted to
a countable set of functions which discretizes F, with complexity penalty pen(f) = L(f) equal to an
information-theoretic codelength for f (Barron and Cover 1991, Barron 1990, Li 1999, Kolaczyk and
Nowak 2004, 2005, and Griinwald 2007). The estimator is interpretable as a maximizing posterior prob-
ability with L( f) equal to the log reciprocal prior probability of f. Some results for classes formed from
continuous finite-dimensional families with penalty proportional to the dimension have been developed
(Yang and Bafrron 1998, Barron, Birgé and Massart 1999), giving resolvability bounds on risk of such
penalized likelihood estimators. Moreover, resolvability bounds on risk of Bayes predictive density es-
timators with general priors have been developed as will be discussed below. The present paper gives a
simple and natural method to extend the previous information-theoretic bounds for penalized likelihood
to deal with more general penalties not restricted to countable F or to penalties based on dimension.

Early advocates of penalized likelihood estimation with penalty on the roughness of the density
include Good and Gaskins (1971,1980), de Montricher, Tapia and Thompson (1975), and Silverman
(1982). Reproducing kernel Hilbert space penalties are championed in Wahba (1990). Statistical rate re-
sults for quadratic penalties in Hilbert space settings corresponding to weighted ¢5 norms on coefficients
in function expansions (including Sobolev-type penalties equal to squared Lo norms of derivatives) are
developed in Cox and O’Sullivan (1990) based on functional analysis tools. Later developments in this
direction are in Cucker and Smale (2001). Empirical process techniques built around metric entropy cal-
culations yield rate results for penalties designed for a wide variety of function classes in Shen (1998).
Related theory for constrained maximum likelihood in nonparametric settings is in Nemirovski, Polyak
and Tysbakov (1985) and for minimum contrast estimators and sieves in Birgé and Massart (1993,1998).

The use of ¢; penalization of log-likelihoods is a currently popular approach, see Park and Hastie
(2007). The penalty is applied to coefficients in linear models for f, coinciding with a generalized linear
model py () for the data, where the terms of the linear model are members of a dictionary of candidates.
For special cases, see Koh, Kim and Boyd (2007), Banerjee, Ghaoui and d’ Aspermont (2007), Friedman,
Hastie and Tibshirani (2007b), or Zhang, Wahba et al (2005). That work has focussed on algorithmic
development, related to work for penalized least squares in Tibshirani’s 1996 Lasso, Chen and Donoho’s
1994,1999 basis pursuit, the LARS algorithm (Efron et al 2004), coordinate algorithms (Friedman et al
2007a) and relaxed greedy algorithms (Jones 1992, Barron 1993, Lee, Bartlett and Williamson 1996,
Barron and Cheang 2001, Zhang 2003, and Barron, Cohen, et al 2008). A new algorithmic result is
established at the end of this paper.

Recently there is activity to analyze risk of £; penalized procedures. Much of it, requiring restrictions
on the correlation of dictionary members, focusses on whether the procedure performs as well as the best
subset selection rule, as in the work on ¢; penalized least squares regression in Bunea, Tsybakov and
Wegkamp (2006,2007a) and Zhang (2007), on {1 penalized empirical Lo criteria for density estimation
in Bunea, Tsybakov and Wegkamp (2007b), and ¢; penalized logistic regression in Meier, van de Geer
and Biihlmann (2008), and the general method of van de Geer (2008). For general dictionaries without
correlation conditions, it is natural to ask whether an ¢; penalized criterion performs as well as the best
tradeoff between approximation error and ¢; norm of coefficients. This is examined for ¢; penalized
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least squares by Huang, Cheang and Barron (2008) and for #; penalized likelihood in the present pa-
per. Risk bounds for penalized likelihood should capture the corresponding tradeoff of Kullback-Leibler
approximation error and the penalty, as is available for Bayes predictive estimators. This motivates our
analysis of the risk of penalized likelihood estimators and demonstration that the ¢; penalty satisfies the
information-theoretic requirements for the results we seek.

Extending information-theoretic risk results to penalized likelihood with an uncountable family F,
the main tool developed in Section 3 is that of a variable-complexity cover. Such covers allow for variable
penalty levels. The distortion used in measuring closeness to the cover is based on discrepancies between
log-likelihood and its theoretical analog rather than based on the metrics of traditional metric entropy.
In brief, a valid penalty pen(f) is one for which for each f in F there is a representor in the cover for
which pen(f) is not less than its complexity plus distortion.

The theory is simplified compared to alternatives that would glue together bounds for subclasses
with their separate metric entropy (fixed complexity) covering properties. Indeed, it is not necessary
to organize F to come from a list of function subclasses. Nevertheless, to relate to past work, various
subclasses F, may arise, corresponding to functions of various regularity s, quantified by number of
derivatives or by weighted norms of coefficients in function expansions.

Often F is arranged as a union of families F,, of functions of similar characteristics, e.g., parametric
families Fr, = {fo,m : 0 € Rdm} of given parameter dimension d,,. For instance, consider linear com-
binations of a dictionary H of functions. Such fs(x) = ;4 Onh(x) are specified by the coefficients
0 = (0, : h € H). The set of linear combinations F is the union of models F,, for subsets m of H in
which the fg.,, (%) = > ;o Onh(x). These families have dimension dy, = card(m) when the functions
in m are linearly independent.

The data are assumed to come from a sample space over which distributions indexed by f are pro-
vided. For our most general statements, other than a measure space, no particular structure need be
assumed for this space. It is traditional to think of data in the form of a finite length string U = U,, =
(Uh,Us,...,Uy), consisting of a sequence of outcomes X1, Xo, ..., X,, or outcome pairs (X;, ;).
We write U for the sample space and Fy|y (or sometimes more briefly Py if clear from the context) for
the distributions on U. Likewise Ey|s or sometimes more briefly £y denotes the expected value. When

being explicit about sample size, we index by n, as in Py |y or P;m.

For lossless data compression, the space U is countable, such as a discretization of an underlying con-
tinuous space, py(w) is the probability mass function, and ¢(u), satisfying Kraft’s inequality ., q(u)
< 1, is a coding distribution with codelengths log, 1/¢(w) in bits. Then the pointwise coding red_urElancy
is log 1/q(u) — log 1/py(u), the difference between the actual codelength and the codelength we would
have had if f were given. Following past MDL work, we allow continuous sample spaces and density
functions relative to a given reference measure, yet, we refer to the log density ratio as a redundancy. See
Barron (1985) for a limiting code redundancy interpretation of the absolutely continuous case involving
fine discretizations.

Thus our setting is that the distributions Py|¢ have density functions p(ul|f) = py(u) relative to a fixed
reference measure on . The likelihood function likelihood(f) is py(U) at specified data U. When the
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sample space is a sequence space the reference measure is assumed to be a product of measures on the
individual spaces. For the special case of i.i.d. modeling, there is a space U/ for the individual outcomes
with distributions P]ED = Py and then [ is taken to be the product space /™ and Py 1r= P}‘ is taken to
be the product measure with joint density ps(w,,) = [T ps(us).

The object of universal data compression and universal modeling in general is the choice of a single
distribution ¢(u), u € U, such that the redundancy log 1/q(u) —log 1/py(w) is kept not larger than need
be (measured either pointwise or in expectation over u and either on the average or in worst case over f)
for functions in each class of interest.

As discussed in Rissanen (1989), Barron, Rissanen and Yu (1998) and Griinwald (2007), minimum
description-length methods choose ¢ in one of several interrelated ways: by Bayes mixtures, by predictive
models, by two-stage codes, or by normalized maximum-likelihood codes. We discuss some aspects of
these with an eye toward redundancy and resolvability bounds on risk.

Our treatment of penalized likelihood gives general information-theoretic penalty formulation in sec-
tions 2 and 3, with risk bounds given for squared Hellinger and related distances, and then application
to ¢1 penalties in sections 4 and 5. To put these results into an information-theoretic context, we first
review below redundancy and resolvability bounds for mixture models and their implications for the risk
of predictive estimators. These risk bounds are for the stronger Kullback-Leiber loss. This material
shows that tools are already in place for dealing with uncountable families by mixture models, and their
associated predictive interpretations. Then penalized likelihood is studied because of its familiarity and
comparative ease of computation.

1.1. Mixture models. These models for U use a prior distribution w on F leading to a mixture density
q(u) = qu(w) = [ py(w)w(df). For instance with F a union of families JF,,, the prior may be built from
a probability w(m) and a distribution on F,, for each m. If F,, is given parametrically the prior may
originate on the parameters yielding q(ulm) = qu,, (u) = [ py, ,,(w)w(dd|m), and an overall mixture
q(u) = X, w(m)q(ulm). A mixture distribution has average case optimal redundancy, averaging over
w according to py(u) and averaging over functions according to the prior. These mixture densities are
the same objects used in Bayesian model selection and Bayesian prediction. However, a difference is
that with MDL we use data compression thinking to guide the choice of the prior weights to achieve
operationally desirable properties.

We discuss tools for redundancy and resolvability bounds for mixtures and the bounds they yield
on risk. First we recall results for parametric families in which the aim is to uniformly control the
redundancy.

The expected redundancy of the mixture gy, takes the form Ey[log p(U|f)/qu,, (U)] which we rec-
ognize as the Kullback-Leibler divergence between the mixture and the target. In a well-studied problem,
initiated in the characterization of communication channel capacity and extended to minimax redun-
dancy of universal data compression (Gallager 1968,1974, Davisson 1973, Davisson and Leon-Garcia
1980, Haussler 1997, Clarke and Barron 1990,1994 and Xie and Barron 1997) the minimax procedure
yielding the smallest worst case expected redundancy in each F, corresponds to a choice of prior wy,
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yielding the largest minimum average redundancy, interpretable as a maximum Shannon mutual infor-
mation I{f;U), and suitable approximate forms for the optimal w,y,, called the least favorable prior or
capacity achieving prior, are available in an asymptotic setting. Indeed, for smooth parametric families

|'/2 with a

with a Fisher information 7(f|m), an asymptotically optimal prior is proportional to |I1(8|m)
sequence of boundary modifications, and the resulting redundancy behaves asymptotically like d—Z;& logn
plus a specified constant determined by the logarithm of the integral of this root Fisher information.
There are finite sample bounds of the same form but with slightly larger constants, from examination of

the resolvability of mixtures we come to shortly.

Building on the work of Shtarkov (1987), the theory of pointwise minimax redundancy identifies
what is the smallest constant penalty that can be added to log 1/p(U| f,n), where f,,, = [ m is the maxi-
mizer of the likelihood, such that the result retains a data-compression interpretation. This problem has
been studied in an asymptotic setting in Rissanen (1996), Barron, Rissanen and Yu (1998), Takeuchi
et al (1997a,1997b,1998,2007), and Xie and Barron (2000). One of the conclusions, in the cases stud-
ied there, is that the same value ‘% log 5- + log [ [T (8lm)|"/2d@ characterizes this smallest constant
penalty asymptotically. That theory provides data compression justification for a penalty with main term
proportional to the dimension d,,. Certain mixture procedures have asymptotically minimax pointwise
redundancy and are shown to be close to the exact optimal normalized maximum likelihood. These
mixtures use the same Fisher information based prior with boundary modification, with an additional
modification required for non-exponential family cases, that puts some small mass on an enlargement
of the family. That there are solutions of mixture form is of interest for our subsequent discussion of
predictive distributions.

Choosing weights w(m) to assign to the families can also be addressed from an information-theoretic
standpoint, thinking of log 1/w(m) as a codelength. Indeed, since the MDL parameter cost, approxi-
mately dT'” log n, is determined by the dimension d,,, it is customary to set log 1/w(m) using the log-
cardinality of models of the same dimension (one can not do much better than that for most such models).
For example, for models which correspond to subsets m of size d chosen out of p candidate terms in a
dictionary, the log 1/w(m) can be set to be log (5), plus a comparatively small additional description
length for the dimension d. Often p is large compared to the sample size n, while the critical dimensions
d which lead to the best resolvability are small compared to n, so this log 1/w(m) of order d,, log p/d
substantially adds to dT'” log n in the total description length. Use of dT'” log n alone is not in accord with
the total minimum description length principle in such cases in which the contribution from log 1/w(m)
is comparable or larger.

1.2. Index of resolvability of mixtures. We now come to a bound on expected redundancy of mixtures
developed in Barron (1998), which is shown to bound an associated statistical risk. Recall the Kullback
divergence D(Py||Qu) = Elogp(U)/q(U) is the total expected redundancy if data U are described us-
ing ¢(u) but the governing measure has a density p(u). Suppose this density has the form p«(w), some-
times abbreviated p.(u). A tool in the examination of the redundancy is D, (f*, f) = D(Pyjs+||Py)s)
which measures how well f approximates a hypothetical f*. In the i.i.d. modeling case this divergence
takes the form D, (f*, f) = nD(f*, f) where D(f*, f) is the divergence between the single observation
distributions D (Py+

Py). It is an important characteristic of mixtures that the divergence of a mixture
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from a product measure is considerably smaller than the order n divergence between pairs of distributions
in the family.

Indeed, the resolvability bound on expected redundancy of mixtures is given as follows. Let the
distribution Qy be a general mixture with density g(u) = [ p(u|f)W (df) formed from a prior W. Let
B be any measurable subset of functions in F. Then, as in Barron (1998), by restriction of the integral
to B followed by Jensen’s inequality, the redundancy of the mixture ) is bounded by the sum of the
maximum divergence of distributions in B from the target f* and the log reciprocal prior probability of
B, and thus, minimizing over any collection of such subsets B,

D(Piny- Q) < mjn {ax Dot ) + log 1/ W ()}

In i.i.d. modeling, we divide by n to obtain the following redundancy rate bound. This shows the re-
dundancy of mixture codes controlled by an index of resolvability, expressing the tradeoff between the
accuracy of approximating sets and their log prior probability relative to the sample size,

(DB 11110, < mjn (e DU, )+ Liog1/w(m)}.

When the B = {f} are singleton sets, the right side is the same as the index of resolvability given in
Barron and Cover (1991), used there for two-stage codes, as will be discussed further. The optimal sets
for the resolvability bound for mixture codes take the form of Kullback balls By ¢« = {f : D(f*, f) <
r2}, yielding

(1/n)D(Py,is-[|Qu,) < min {7"2 + %log 1/W(Br,f*)}.

As illustrated in Barron (1998) with suitable choices of prior, it provides the usual (dp,/2)(logn)/n
behavior of redundancy rate in finite-dimensional families, and rates of the form (1/n)” for positive
p < 1 for various infinite-dimensional families of functions. Similar characterization arises from a
stronger Bayes resolvability bound D(Py s+ [|Qu) < —log [ e=P»"DW (df) as developed in Barron
(1988,1998), Haussler and Barron (1993), and Zhang (2006).

1.3. Implications for predictive risk. For predictive models the data are presumed to arise in a se-
quence Uy = (U,)N_; and the joint distribution ¢(U y) (for universal modeling or coding) is formed
by gluing together predictive distributions ¢(uy,|,,_; ), that is, by multiplying together these conditional
densities forn = 1,2,..., N. In the i.i.d. modeling case, given f, the density for U,, given the past is
plun|f). Predictive distributions are often created in the form p(uy|f,—1) by plugging in an estimate
fn—1 based on the past u,,_; = (u;)"=}!. Nevertheless, predictive distribution need not be restricted to be
of such a plug-in form. Indeed, averaging with respect to a prior w, a one-step-ahead predictive redun-
dancy is optimized by a Bayes predictive density q(uy |u,,_1). The one-step-ahead predictive redundancy
is EyD(Py, 7l|Qu, v, ), which we recognize to be the Kullback risk of the predictive density, based
on a sample of size n — 1, as an estimate of the target density p(uy,|f). Here and in what follows, it is
to be understood that if the variables are not i.i.d. given f, the target becomes the conditional density
P(Un|t,_1, f). The model built by multiplying the Bayes predictive densities together is the mixture
Gw(u). Correspondingly, by the chain rule, the total codelength and its redundancy yield the same val-
ues, respectively, as the mixture codelength and redundancy discussed in (1) above. Indeed, the total
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redundancy of the predictive model is
N

D(PysllQuy) = > EfD(Pu,l1Qu,iu

n=1

)7

n—1

which is the cumulative Kullback risk. Dividing by N we see in particular that the Cesaro average of the
risks of the predictive distributions is bounded by the index of resolvability discussed above.

This chain rule property has been put to use for related conclusions. For example, it is the basis
of the analysis of negligibility of superefficiency in Barron and Hengartner (1998). That work shows
for d-dimensional families that % is the asymptotically efficient level of individual Kullback risk based
on samples of size n. Indeed, summing across sample sizes n = 1,2,..., N, it corresponds to a total
Kullback risk (total redundancy) of % log N, which cannot be improved upon asymptotically (except in a
negligible set of parameters) according to Rissanen’s (1984) award winning result. The predictive inter-
pretation also plays a critical role for non-finite dimensional families F in identifying the efficient rates
of estimation (also in Barron and Hengartner 1998) and in establishing the minimax rates of estimation
(in Yang and Barron 1999 and Haussler and Opper 1997). For these cases typical individual risk rates
are of the form some constant times (1/n)? for some positive rate p < 1. At the heart of that analy-
sis, one observes that taking the Cesaro average Kullback risk across sample sizes up to IV recovers the
same form (1/V)” (albeit with a different constant multiplier). The idea is that minimax rates for total
expected redundancy is somewhat easier to directly analyze than individual Kullback risk, though they
are related by the chain rule given above.

1.4. Two-stage codes. We turn our attention to models based on two-stage codes, also called two-part
codes. We recall some previous results here, and give in the next sections some simple generalizations to
penalized likelihoods. Two-stage codes were used in the original formulation of the MDL principle by
Rissanen (1978,1983) and in the analysis of Barron and Cover (1991). One works with a countable set
Fof possible functions, perhaps obtained by discretization of the underlying family F. A key ingredient
in building the total two-stage description length are assignments of complexities L, (f), for f € F,
satisfying the Kraft inequality 3 ;- 27%"(/) < 1, given the size n of the sample.

These complexities typically have the form of a codelength for the model class m (of the form
L(m) = log 1/w(m) as discussed above), plus a codelength L(f|m) or L(6|m) for the parameters that
determine the functions in F,, which may be discretized to a grid of precision ¢ for each coordinate,
each of which is described using about log 1/ bits. Under, respectively, first or second order smoothness
conditions on how the likelihood depends on the parameters, the codelength for the parameters comes
out best if the precision 9 is of order % or in, leading to L( f|m) of approximately d,, logn or % logn,
respectively, for functions in smooth families F,.

We are not forced to always have such growing parameter complexities. Indeed, as suggested by
Cover and developed in Barron (1985) and Barron and Cover (1991), one may consider a more gen-
eral notion of parameter complexity inspired by Kolmogorov. That work shows when any computable
parameter value govern the data, ultimately a shorter total codelength obtains with it than for all other
competitors and the true parameter value is discovered with probability one. Nevertheless, for any cod-
ing scheme, in second order smooth families with parameters in R%, except for a null set of Lebesgue
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measure O as shown by Rissanen (1984,1986), the redundancy will not be of smaller order than dT"L logn.
The implication for parameter coding is that for most parameters the representor in the code will need to
have complexity of order not smaller than dT’” logn.

For each function f and data U, one has a two-stage codelength Ly, (f) +log 1/p;(U) corresponding
to the bits of description of f followed by the bits of the Shannon code for U given f. Then the minimum
total two-stage codelength takes the form

1
min <log —— + Ly (f }
feF { pr(l) ()
The minimizer f (breaking ties by choosing one of minimal L, (f)) is called the minimum complexity

estimator in the density estimation setting of Barron and Cover (1991) and it is called the complexity
regularization estimator for regression and classification problems in Barron (1990).

Typical behavior of the minimal two stage codelength is revealed by investigating what happens when
the data U, are distributed according to pg«(u,,) for various possible f*. As we have noted, eventually
exact discovery is possible when f* is in F, but its complexity, as will be ultimately revealed by the data,
may be too great for full specification of f* to be the suitable description with moderate sample sizes.
It is helpful to have the notion of a surrogate function f;; in the list F, appropriate to the current sample
size n, in place of f* which is not necessarily in the countable £'. The appropriateness of such an fois
judged by whether it captures expected compression and estimation properties of the target.

The redundancy rate of the two-stage description (defined as % times the expected difference between
the total codelength and the target log 1/p¢«(U,,)) is shown in Barron and Cover (1991) to be not more
than the index of resolvability defined by

1 1
Y = min < —D(Py (+]|| P —L .
Rn(f*) ?gﬁ{n (B 1711 P,10) + n(f)}
For i.i.d. modeling it takes the form
Ru(f*) = ?1612 {D(7 )+ Lu(f)/n},

capturing the ideal tradeoff in error of approximation of f* and the complexity relative to the sample
size. The function f;; which achieves this minimum is the population counterpart to the sample-based f .
It best resolves the target for the given sample size. Since f is the sample-based minimizer, one has an
inequality between the pointwise redundancy and a pointwise version of the resolvability

pp(U) ; P+ (U) .

The resolvability bound on the expected redundancy is recognized as the result of taking the expectation

log

of this pointwise inequality.

This R, (f*) also bounds the statistical risk of f , as we recall and develop further in Section 2, with
a simplified proof and with extension in Section 3 to uncountable . The heart of our statistical analysis
will be the demonstration that the loss function we examine is smaller in expectation and stochastically
not much more than the pointwise redundancy.
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Returning to the form of the estimator, we note that when F is a union of sets ]:"m, the complexities
may take the form L(m, f) = L(m) + L(f|m) for the description of m followed by the description of f
given m. Thus, in fact, though it is customary to refer to two-stage coding, there are actually three-stages
with minimum total

min min {L(m) + L(f|m) +log1/ps(U)} .
™ fe€Fm

The associated minimizer 7 (again breaking ties by choosing the simplest such m) provides a model
selection in accordance with the MDL principle. Likewise the resolvability takes the form

Ry (f*) = min min {D(f*, f) + L(m, f)/n}.
M feFm

The ideal model selection, best resolving the target, is the choice m}, achieving the minimum, and the
performance of the sample based MDL selection 72 is captured by the resolvability provided by m..

Two-stage codes in parametric families are closely related to average-case optimal mixture-codes.
Indeed, in second order smooth families of dimension d, Laplace approximation, as in Barron (1985),
shows that log mixture likelihood is approximately the maximum log-likelihood minus the log ratio be-
tween the square root of the determinant of empirical total Fisher information and the prior density, plus
%1og 2m. Two-stage codes can achieve the same form (although with a slightly suboptimal constant)
provided one uses more elaborate parameter quantizations based on local diagonalization of the Fisher
information with a rectangular grid in the locally transformed parameter space, as explained in Barron
(1985), rather than merely using a rectangular grid in the original parameters. To avoid such complica-
tions and to have exact average-case optimality, when it is computationally feasible, it is preferable to
use mixture models in such smooth families rather than two-stage codes.

Nevertheless, in many estimation settings, it is common to proceed by a penalized likelihood (or pe-
nalized squared error) criterion, and it is the intent of the present paper to address associated information-
theoretic and statistical properties of such procedures.

To recap, we have seen in the minimum description-length principle that there are close connections
between compression and statistical estimation.

The connections of information theory and statistics have additional foundations. While it is well-
known that information-theoretic quantities determine fundamental limits of what is possible in commu-
nications, it is also true that corresponding information-theoretic quantities determine fundamental limits
of what is possible in statistical estimation, as we recall in the next subsection.

1.5. Information-theoretic determination of minimax rates. In Haussler and Opper (1997) and Yang
and Barron (1999) the problem of minimax rates of function estimation are shown to have an information-
theoretic characterization. Suppose we have a loss function £(f*, f) which is a squared metric locally
equivalent to Kullback divergence D(f*, f) (i.e., they agree to within a constant factor in a suitable
subset of the function space), and assume that the data U,, = (Uy,...,Uy) are i.i.d. from pg« with an
f* in a given function class F;. Here we use the subscript s to remind ourselves that we are referring
to function subclasses that permit control on the quantities of interest that characterize minimax rates
(that is, finite metric entropy or finite capacity). In the language of information theory the family of
distributions (Py s, f € Fs) is a channel with inputs f and outputs U,,.
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Three quantities are shown to be important in the study of the statistical procedures: these are the
Kolmogorov metric entropy, the Shannon channel capacity, and the minimax risk of Wald’s statistical
decision theory. The merric entropy H, = H(F;) is defined by

H.(F,) = inf {logcard(]:") cinf 4(f, f) < €, Ve F }
F fer

for which a critical e, = ¢,(Fs) is one for which €2 is of the same order as ., /n. Shannon’s channel
capacity Cyp, = Cp(Fs) is
Cn = max I(f;Uy)/n

where the maximum is over distributions W restricted to F and I(f; U) is Shannon’s mutual informa-
tion for the channel, equal also to the Bayes average (w.r.t. W) of the redundancy of the mixture code.
Finally, the minimax risk v, = ry,(Fs) is

rp = inf sup E; 4(f, ),
f feFs
where the infimum is over all estimators based on the sample of size n. Suppose also that we are not in a
finite-dimensional setting (where the metric entropy is order of a multiple of log 1/¢), but rather we are
in an infinite-dimensional setting, where the metric entropy is of order at least (1/¢)Y for some positive
v. Then from Haussler and Opper (1997) and Yang and Barron (1999), as also presented by Lafferty

(2007), we have the equivalence of these quantities.

Theorem 1.1. The minimax estimation rate equals the channel capacity rate equals the metric entropy
rate at the critical precision. That is,

€n 2
ra~ Gy~ =2,

where ~ means that the two sides agree to within constant factors.

In modern statistical practice it is rarely the case that one designs an estimator solely around one
function class of bounded metric entropy. Indeed, even if one knew, in advance of seeing the data, how
one wants to characterize regularity of the function (e.g. through a certain norm on coefficients), one
usually does not have advance knowledge of an appropriate size of that norm, though such knowledge
would be required for such metric entropy control. Instead, one creates an estimate that adapts, that
is, it simultaneously gives the right levels of risk for various function subclasses. Penalized likelihood
estimators provide a means by which to achieve such aims.

We say that the countable set F together with its variable complexities provides an adaptive cover of
each of several function subclasses Fg, if for each of the subclasses there is a subset of functions in F that
have complexity bounded by a multiple of H, and that cover the subclass to within precision €,. Then
application of the index of resolvability shows that the minimum complexity estimator is simultaneously
minimax rate optimal for each such subclass. In this setting the role of Theorem 1.1 is to give the lower
bounds showing that the achieved rates are indeed best possible.

As discussed in Yang and Barron (1998,1999), Barron, Birgé and Massart (1999), and Barron, Cohen,
Dahmen and DeVore (2008), such adaptation (sometimes to within log-factors of the right rates) is shown
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to come for free for a variety of function classes when the models consist of subsets of basis functions
from suitable dictionaries and the penalties are given by the dimension (times a log-factor).

The resolvability bounds go beyond such asymptotic rate considerations to give finite sample perfor-
mance characterization specific to properties of the target f*, not required to be tied to the worst case for
functions in various classes.

2. RISK AND RESOLVABILITY FOR COUNTABLE .7':

Here we recall risk bounds for penalized likelihood with a countable F. Henceforth we use base e
exponentials and logarithms to simplify the mathematics (the units for coding interpretations become
nats rather than bits).

In setting our loss function, we will have need of another measure of divergence. Analogous to the
Kullback-Leibler divergence we have already discussed, for pairs of probability distributions P and P
on a measurable space, we consider the Bhattacharyya, Hellinger, Chernoff, Rényi divergence (Bhat-
tacharyya 1943, Cramér 1946, Chernoff 1952, Rényi 1960) given by d(P, P) = 2log 1/ [ (p(u)p(u))*/?
where p and p, respectively, are the densities of P and P with respect to a reference measure that
dominates the distributions and with respect to which the integrals are taken. Writing D(P||P) =
—2Elog(p(U)/p(U))"/? and employing Jensen’s inequality shows that D(P||P) > d(P, P).

On a sequence space ", if P™ and P"™ are n-fold products of the measures P and P, then (P, P”) =
nd(P, P) and D(P™, P") = nD(P, P). Analogous to notation used above, we use d,,(f*, f) to denote
the divergence between the joint distributions Py s+ and Py r, and likewise d (f*, f) to be the divergence
between the distributions Py, |« and Py .

We take this divergence to be our loss function in examination of the accuracy of penalized likelihood
estimators. One reason is its close connection to familiar distances such as the L; distance between
the densities and the Hellinger distance (it upper bounds the square of the L distance and the square
of the Hellinger distance with which it is equivalent as explained below). Another is that d(P, P), like
the squared Hellinger distance, is locally equivalent to one-half the Kullback-Leibler divergence when
log p(u)/p(u) is upper-bounded by a constant. Thirdly, it evaluates to familiar quantities in special cases,
e.g., for two normals of mean  and /i and variance 1, this d(P, P) is +(p— {1)*. Most important though
for our present purposes is the cleanness with which it allows us to examine the risk, without putting any
conditions on the density functions py(u).

The integral used in the divergence is called the Hellinger affinity A(P, P) = [ p'/?3'/2. Ttis related
to the squared Hellinger distance H2(P, P) = [(p(u)"/? — p(u)/?)2 by A = 1 — 1H? and hence the
divergence d(P, P) = —2log A = —2log(1 — 1H7?) is not less than (P, P). In thinking about the
affinity note that it is less than or equal to 1 with equality only when P = P. We let A, (f*, f ) denote
the Hellinger affinity between the joint distributions Fy| s« and Py Its role in part of our analysis will
be as a normalizer, equaling the expectation of [py(U)/ps+ (U )]1/2 for each fixed f.
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The following result from Jonathan Li’s 1999 Yale thesis is a simplification of a conclusion from
Barron and Cover (1991). It is also presented in Kolaczyk and Nowak (2004) and in Griinwald (2007).
We repeat it here because it is a stepping stone for the extensions we give in this paper.

Theorem 2.1. Resolvability bound on risk (Li 1999). For a countable F, and Ly(f) = 2L, (f) satisfying
> e~ Inlf) <1, ler f be the estimator achieving
1
min ¢ log ——— + Ly(f }
FeF { py(Uy) (0

Then, for any target function * and for all sample sizes, the expected divergence of f from f* is bounded
by the index of resolvability
Edy(f*, f) < min{ Dy (f*, f) + La(f) }-
fer
In particular with i.i.d. modeling, the risk satisfies

Bd(f, f) < win {D(f*,f)+£”(f)}
feFr mn
Proof of Theorem 2.1: We have
1 (p (L) /pg+ (U)) /2D s (U) .
2log ——— = 21 — 1 — La(f).
NN A D) tlee eV

Inside the first part on the right side the ratio is evaluated at f . We replace it by the sum of such ratios
overall f € F obtaining the bound

(s (U) /pgs (U)) /2~ LD pr(U) ;
<2lo E . + lo + La(f).
gfef. An(f*, ) & p;(U)

Now we take the expected value for U distributed according to Py s«. For the expectation of the first

part, by Jensen, obtaining a further upper bound, we may bring the expectation inside the log and then
bring it also inside the sum. There we note for each fixed f that E(ps(U)/ps(U))/? = An(Pyp-, Py),
so there is a cancelation of the ratio. Then all that is left inside the log is > e~ L) which by assumption
is not more than 1. Thus the expected value of the first part is bounded by 0. What then remains is
the expectation of the pointwise redundancy, which being less than the value at f;;, is bounded by the
index of resolvability, which completes the proof for the general case. Dividing through by n gives the
conclusion for the i.i.d. case.

If log ps«(u)/py(u) < B for all win i, then by Yang and Barron (1998), Lemma 4, we have
a(f*, f) < D) < Ced(f™, f),

for a constant C'g given there that is less than 2 + B. Consequently, we have the following.

Corollary 2.2. If, in the ii.d. case, the log density ratios are bounded by a constant B, that is, if
[logpy«(u)/py(u)| < B forall f € F, then there is a constant Cg < 2+ B such that the Kullback risk
satisfies

ED(f*7f) < Cpmin {D(f*’f)Jr ﬁnr(bf) }

feF
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Remarks.

We comment that the presence of the factor 2 in the penalty £(f) = 2L(f) is a byproduct of using
the Chernoff-Rényi divergence with parameter 1/2. As in the original Barron and Cover (1991) bound,
one may replace the 2 with any multiplier strictly bigger than 1, though the best bound there occurs with
the factor 2. See Zhang (2006, Thm. 4.1) or Griinwald (2007, Ch. 15) for analogous risk bounds for
Chernoff-Rényi divergences with parameter A between 0 and 1.

Producing an exact minimizer of the complexity penalized estimator can be computationally difficult,
but an approximate minimizer is still amenable to analysis by the above method. For instance in Li (1999)
and Li and Barron (2000) a version of a greedy algorithm is given for estimating densities by sums of m
components from a given dictionary of possible component densities (e.g. Gaussian mixtures). Analysis
there shows that with m steps the complexity penalized likelihood is within order 1/m of the optimum.

Refinements of the risk bound in Li’s thesis deal with the case that the distribution of the data is not
near any of the Py. In this case he extends the result to bound the distance of the estimate from a reversed
information projection of the distribution onto a convex hull of the Py.

Some implications of resolvability bounds on risk are discussed in Barron and Cover (1991). Corre-
sponding results for complexity penalized least squares and other bounded loss functions were developed
in Barron (1990). Applications to neural nets were developed in Barron (1991,1994), providing risk
bounds for estimation of linear combinations of a dictionary, by penalized least squares with a penalty
that incorporates aspects of the £y and ¢; norms of the coefficients, but restricted to a countable set
(that restriction is lifted by Huang, Cheang and Barron (2008) and the developments we give in the next
section). Analogous resolvability bounds for regression and log-density estimation by neural nets in a
weakly dependent setting were given in Modha and Masry (1996a,b). For mixture density estimation (in-
cluding Gaussian mixtures), direct implications of Theorem 2.1 using resolvability calculations are given
in Li (1999) and Li and Barron (2000) and, building in part on those developments, Rakhlin, Panchenko,
and Murherjee (2005) give related risk results using bounds for Rademacher averages of convex hulls.

Kolaczyk and Nowak (2004,2005), and Willett and Nowak (2005) give implications of Li’s theorem
for multiscale wavelet image estimation and Poisson intensity function estimation. In some of their
investigations the data are functions (e.g. of continuous time or location) but the theory nevertheless
applies as they make clear in their settings. Indeed, as we have indicated, the structure of the data U
(other than that there be a dominating measure for the candidate distributions) is not essential for the
validity of the general bounds.

The proof of Theorem 2.1 given here is essentially the same as in Li’s Thesis. One slight difference
is that along the way we have pointed out that the expected redundancy of the two-stage code is also a
bound on the risk. This is also noted by Griinwald (2007) and, as he emphasizes, it even more closely
relates the risk and coding notions. The resolvability form is more useful in obtaining bounds that exhibit
the tradeoff between approximation accuracy and dimension or complexity.

45



Festschrift for Jorma Rissanen

To be specific, the proof of Theorem 2.1 compares the loss d, (f*, f ) with the pointwise redundancy
rn = logps-(U)/p f(Q ) 4 L, (f) and shows that the difference is a random variable of mean bounded
by 0. In a similar manner one can obtain a measure of concentration of this difference.

Theorem 2.3. Tightness of the relationship between loss and redundancy: The difference between the
loss dp(f*, f ) and the pointwise redundancy ry, is stochastically less than an exponential random vari-
able of mean 2.

Proof of Theorem 2.3: As shown in the proof of Theorem 2.1 the difference in question is bounded by

2log (s (U /pf*(f_*)ij)/%—uf)

feF

The probability that this exceeds any positive 7 is bounded first by dividing through by 2, then exponenti-

—7/2

ating and using Markov’s inequality, yielding e times an expectation shown in the proof of Theorem

2.1 to be not more than 1. This completes the proof of Theorem 2.3.
Further remarks:

In the i.i.d. case we measure the loss by the individual divergence obtained by dividing through by
n. Consequently, in this case the difference between the loss d(f*, f ) and pointwise redundancy rate is
stochastically less than an exponential of mean 2/n. It is exponentially unlikely (probability not more
than e~"7/2) to be greater than any positive 7.

The original bound of Barron and Cover (1991) also proceeded by a tail probability calculation,
though it was noticeably more elaborate than given here. An advantage of that original proof is its
change of measure from the one at f* to the one at f;, showing that questions about the behavior when
f* is true can indeed be resolved by the behavior one would have if one thought of the distribution as
being governed by the f;; which best resolves f* at the given sample size.

Remember that in this section we assumed that the space F of candidate fits is countable. From both
statistics and engineering standpoints, it is awkward to have to force a user of this theory to construct a
discretization of his space of functions in order to use this penalized likelihood result. We overcome this
difficulty in the next section.

3. RISK AND RESOLVABILITY FOR UNCOUNTABLE F

We come to the main new contributions of the paper. We consider estimators f that maximize
pr(U )e‘pen(f ) or, equivalently, that achieve the following minimum:

min { log pf(lg) + pen(f) } .

feF

Since the log ratio separates, for any target p., this sample minimization is equivalent to the following,

min { log fg + pen(f) } :
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We want to know for proposed penalties pen(f), f € F, when it will be the case that f has risk controlled
by the population-based counterpart:

min { Plos @ P 2

where the expectation is with respect to p. (U). One may specialize to p, = pj- in the family. In general,
it need not be a member of the family {p; : f € F}, though when such a bound holds, it is only useful
when the target is approximated by such densities.

There are two related aspects to the question of whether such a bound holds. One concerns whether
the optimal sample quantities suitably mirror the population quantities even for such possibly larger F,
and the other is to capture what is essential for the penalty.

A quantity that may be considered in examining this matter is the discrepancy between sample and
population values, defined by,

«(U (U

pl) o, PxU)

g .
py(U) pr(U)
Perhaps it is ideally centered, yielding mean O when defined in this way, with subtraction of the Kullback

divergence. However, control of this discrepancy, at least by the techniques of which we are aware, would
require control of higher order moments, particularly the variance, which, in order to produce bounds
on Kullback risk (using, e.g., Bernstein-type bounds), would require conditions relating the variance of
the log density ratios to the expected log ratio. Furthermore Bernstein-type bounds would entail a finite
moment generating function of the log-likelihood ratio for generating function parameters in an open
neighborhood of 0. Though such development is possible, e.g., if the log densities ratios are bounded, it
is not as clean an approach as what follows.

Instead, we use the following discrepancy which is of similar spirit to the above and easier to control
in the desired manner,
p«(U) 1
log — 2log .
pr(U) BE(ps(U)/p<(U)"/?

This discrepancy does not subtract off as large a value, so it is not mean centered, but that is not neces-

sarily an obstacle if we are willing to use the Hellinger risk, as the control needed of the discrepancy is
one-sided in character. No moment conditions will be needed in this analysis other than working with
the expected square-roots that give the Hellinger affinities, which are automatically bounded by 1. Note
that this expected square root is a value of the moment generating function of the log-likelihood ratio
log ps(U)/p+(U) and that its logarithm is a value of its cumulant generating function, but only evaluated
at the specific positive value 1/2.

In Theorem 2.1, the penalty £(f) = 2L(f) is used to show that if it is added to the discrepancy, then
uniformly for f in the countable F (i.e. even with a data-based f in place of a fixed f) we have that the
expectation of the penalized discrepancy is positive.

This leads us to consider, in the uncountable case, penalties which exhibit a similar discrepancy
control. We say that a collection F with a penalty pen(f) for f € F has a variable—complexity
variablediscrepancy cover suitable for p, if there exists a countable F and £(f) = 2L(f) satisfying
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> 7 e~L() < 1, such that the following condition (x) holds for all U:

. Dx (Q) 1 r3
b { o8y @ B me e Y }
< }2§~{1°gzu<zz>"21°g B (© @ pe”(f)}' *)

This condition captures the aim that the penalty in the uncountable setting mirrors an information-
theoretically valid penalty in the countable case. We drop reference to dependence of the penalty on
the sample size, but since the bounds we develop hold for any size data, there is no harm in allowing any
of the quantities involved to change with n. In brief, the above condition will give what we want because
the minimum over the countable f is shown to have non-negative expectation and so the minimum over
all fin F will also.

Equivalent to condition () is that there be a F and L(f) with 3" e ~L() < 1 such that for every f in
F the penalty satisfies

i) g, EorU)/p(U)!2
p7U) E(ps(U)/p.(U))1/2

That is, the penalty exceeds the minimum complexity plus discrepancy difference. The log ratios sep-

pen(f) > min {1og
feF

+2L(f)}.

arate so the minimizing f does not depend on f. Nevertheless, the following characterization (xx) is
convenient. For each f in F there is an associated representor f in  for which

) B/ )
{log JHT) =219 B 0.0

The idea is that if f is close to f then the discrepancy difference is small. Then we use the complexity

+ 2L(f)} (%)

pen(f) >

of such f along with the discrepancy difference to assess whether a penalty pen(f) is suitable. The
countable set F of possible representors is taken to be non-stochastic. Nevertheless, the minimizer in F
will depend on the data and accordingly we allow the representor f of f to also have such dependence.
With this freedom, in cases of interest, the variable complexity cover condition indeed holds for all U,
though it would suffice for our purposes that (*) hold in expectation.

One strategy to verify the condition would be to create a metric-based cover of F with a metric
chosen such that for each f and its representor f one has | log p +(U)/p /;(Q )| plus the difference in the
divergences arranged if possible to be less than a distance between f and f. Some examples where this
can be done are in Barron and Cover (1991). Such covers give a metric entropy flavor, though the L( f )
provides variable complexity rather than the fixed log-cardinality of metric entropy. The present theory
and applications show such covering by metric balls is not an essential ingredient.

Condition (xx) specifies that there be a cover with variable distortion plus complexity rather than a
fixed distance and fixed cardinality. This is analogous to the distortion plus rate tradeoff in Shannon’s
rate-distortion theory. In our treatment, the distortion is the discrepancy difference (which does not need
to be a metric), the codebook is the cover F, the codelengths are the complexities L( f ). Valid penalties
pen(f) exceed the minimal sum of distortion plus complexity.
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An alternative formulation of penalized likelihood conditions is in Shen (1998). He argues that the
estimator is likely to have a penalty value in the set { f : pen(f) < C pen(f*)}, with C near 1. Under his
conditions, this set is compact with metric entropy properties permiting appeal to uniform large deviation
bounds of log likelihood ratios from Wong and Shen (1995) (which do require relationship between the
variance and mean of the log-likelihood ratios) and to results on constrained maximum likelihood from
Nemirovskii, Polyak and Tsybakov (1985). One could also appeal then to results in Birgé and Massart
(1993,1998) on minimum contrast estimation. There are applications to function classes, including some
that go beyond the traditional Sobolev type. However, for that machinery, possibly large constants arise
giving a asymptotic rate flavor to the conclusions. Unlike Shen’s method, we don’t assume that the target
f* must have a finite penalty. What matters is that there be functions f close to f* that do. Moreover, in
seeking risk bounds of the form inf{D(f*, f) + pen(f)/n} with constants equal to 1, we are striving to
make the results of practical interest in non-asymptotic settings.

The ideas we develop here have parallels with other empirical loss, such as the average squared error
in regression, explored in a concurrent paper for which some of us are coauthors (Huang, Cheang and
Barron 2008), building on work with Cheang originating with his 1998 Yale thesis. That work does
center by subtracting the expected loss to define the discrepancies and forces uniform boundedness of
the fits, so that variances of the squared errors are proportional to the mean squared errors. The idea
bridging from the countable to the uncountable classes by the assumption that the penalty exceeds a
complexity penalized discrepancy difference originates with Cong Huang in this regression work. Its use
here with densities is simpler, because we use a milder loss function that allow arbitrary densities.

Our main theorem, generalizing Theorem 2.1 to uncountable F, is the following.

Theorem 3.1. Consider F and peny,(f) satisfying the discrepancy plus complexity requirement (x) and
the estimator f achieving the optimum penalized likelihood
1

min < log —— + pen .

feF { e ) }
Ifthe data U are distributed according to Py s+, then
ps(U)
pr(U)

Edy(f*. ) < min {Elog T penn(f) }

In particular, for i.i.d. modeling,

Ed(f*, f) < min { D", f) +pena(f)/n}.

Proof of Theorem 3.1. From the characterization (xx), at f = f in  there is an associated f in F with

(p (L) /py- (U))"/2e~ D) [10 py-(U)

ps(U)

1
QIOgAi < 2log
n

The first part of the right side has expectation not more than 0 by the same analysis as in Theorem 2.1
(replacing the ratio inside the log, which is there evaluated at a random f , by its sum over all of F and
bringing the expectation inside the log by Jensen’s inequality). The expectation of the second part is an
expected minimum which is bounded by the minimum expectation. This completes the proof.
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In like manner we have the following.

Corollary 3.2. For F and peny(f) satisfying the discrepancy-complexity requirement, the difference
between the loss dy, (f*, f) and the pointwise redundancy r,, = logp (U)/p J;(Q) +peny, (f) is stochas-
tically less than an exponential random variable of mean 2.

Proof of Corollary 3.2. An interpretation of this assertion is that at a particular f = f the penalized
discrepancy log p s« (U) /ps (U)—2log 1/An(f*, f)+pen,(f) is stochastically greater than —Z where Z
is an exponential random variable of mean 2. The requirement on the penalty enforces that uniformly in
JF this penalized discrepancy exceeds a minimum complexity penalized discrepancy from the countable
class case, which as in the proof of Theorem 2.2 is already seen to be stochastically greater than such a
random variable. This completes the proof.

Remark: We complete this section with a further comment on the tool for verification of the requirement
on the penalty. Consider the case that f models the log density function of independent random variables

Xi,...,Xp, in the sense that for some reference density pp(x) we have
~ polz) ef(@)
pr(w) = p”

where c; is the normalizing constant. Examining the difference in discrepancies at f and a representing
f we see that both pg(z) and ¢y cancel out. What remains for our penalty requirement is that for each f
in F there is a f in a countable F with complexities L(f) for which

pen(f) > 2L(f Z F(X0) + 2nlog Bexp { §(F(X) - £(X))}

where the expectation is with respect to a distribution for X constructed to have density which is the
normalized pointwise affinity pq () = [py« (z)p ()Y 2 /A(f*, f).

In the final section, with an #; penalty on coefficients, we illustrate how to demonstrate the existence
of such representors f of functions f in the linear span of a dictionary of candidate basis functions.

4. INFORMATION-THEORETIC VALIDITY OF THE ¢ PENALTY

Let F be the linear span of a dictionary H of functions. Thus any f in F is of the form f(z) =
Jo(x) = >7; 0ph(x) where the coefficients are denoted 6 = (6, : h € H). We assume that the
functions in the dictionary are bounded. We want to show that a weighted ¢; norm of the coefficients
[101l1 = >_p |9n]an can be used to formulate a valid penalty. Here we use weights a, = [|h||oc. For
fin F we denote Vy = min{||0||1 : fo = f}. With the definition of V; extended to a closure of F,
this V; is called the variation of f with respect to H (this terminology is suggested by the notion of
total variation which corresponds to the case that H consists of indicators of half-spaces). We show that
certain multiples of V; are valid penalties.

The dictionary H is a finite set of p candidate terms, typically much larger than the sample size. (One
can also work with an infinite A together with an empirical cover as explored in Section 5.) As we shall
see, the codelengths of our representors will arise via a variable number of terms times the log cardinality

50



Festschrift for Jorma Rissanen

of the dictionary. Accordingly, for sensible risk bounds, it is only the logarithm of p, and not p itself, that
we need to be small compared to the sample size n.

A valid penalty will be seen to be a multiple of V, by arranging the number of terms in the representor
to be proportional to Vy and by showing that a representor with that many terms suitably controls the
discrepancy difference. We proceed now to give the specifics.

The countable set F of representors is taken to be the set of all functions of the form f (x) =
Vi Zle hi(x)/ap, for terms hy in H U —H U {0}, where the number of terms K isin {1,2,...} and
the nonnegative multipliers V' will be determined from K in a manner we will specify later. We let p be
the cardinality of H U —H U {0}, allowing for h or —h or 0 to be a term in f for each h in H.

The main part of the codelength L(f) is K log p nats to describe the choices of h1,...,hg. The
other part is for the description of K and it is negligible in comparison, but to include it simply, we may
use a possibly crude codelength for the integer K such as K log2 (or more standard codelengths for
integers may be used, e.g, of size slightly larger than log K). Adding these contributions of K log 2 for
the description of K and of K log p for the description of f given K, we have

L(f) = K log(2p).
Some shortening of this codelength is possible, taking advantage of the fact that the order of the terms
hi,...,hx does not matter and that repeats are allowed, as will be briefly addressed in Section 5. For
simplicity we take advantage of the present form linear in K in the current section.

To establish the existence of a representor f of f with the properties we want, we consider a distribu-
tion on choices of h1, ha, . .., hx in which each is selected independently, where hy, is i with probability
|8r|ar/V (with a sign flip if 8y, is negative). Here K = Ky = [V;/d] is set to equal V}/§ rounded up to
the nearest integer, where Vf => h |6 |an, where a small value for & will be specified later. Moreover,
we set V' = K¢, which is V; rounded up to the nearest point in a grid of spacings §. When V7 is strictly
less than V' there is leftover an event of probability 1 — V/V" in which Ay is set to 0.

As f varies, so does the complexity of its representors. Yet for any one f, with K = K, each of the
possibilities for the terms Ay, produces a possible representor f with the same complexity K log 2p.

Now the critical property of our random choice of f(z) representing f(x) is that, for each z, it is a
sample average of ii.d. choices V' hy(x)/ap,. Each of these terms has expectation f(x) and variance
V'3, 10n|R? () /an, — f?(x) not more than V2.

As the sample average of K such independent terms, f(z) has expectation f () and variance (1/K)
times the variance given for a single draw. We will also need expectations of exponentials of f (x) which
is made possible by the representation of such an exponential of sums as the product of the exponentials
of the independent summands.

The existence argument proceeds as follows. The quantity we need to bound to set a valid penalty is
the minimum over F of the complexity-penalized discrepancy difference:

2L(F) + 3 (F(X0) — F(X0)) + 2nlog / (@) exp((F@) — f(2))}
i=1
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where p(x) = p,(x) is a probability density function as specified in the preceding section. The minimiz-
ing f gives a value that is not more than the expectation over random f obtained by the sample average
of randomly selected hy,. We condition on the data X7, ... X,,. The terms f(X;) — f(X;) have expec-
tation O so it remains to bound the expectation of the log term. The expected log is less than or equal
to the log of the expectation and we bring that expectation inside the integral. So, indeed, at each x we
are to examine the expectation of the exponential of %[ f () — f(z)]. By the independence and identical
distribution of the K summands that comprise the exponent, the expectation is equal to the K'th power

of the expectation of exp{ % [V h(z)/a — f(z)]} for a randomly drawn h.

We now take advantage of a classical bound of Hoeffding, easily verified by using the series expansion
of the exponential. If 7" is a random variable with range bounded by B, then Eexp{£(T — 1)} <
B2
exp{gzz}.
For any given z, let R(x) = maxj, h(x)/a, — miny, h(x)/ay, be the range of h(x)/ay, as h varies,
which is uniformly bounded by 2. At z fixed, T = 1V h(x)/ay, is a random variable, induced by the
random h, having range %R(x) not more than V. Then at the given z, using the Hoeffding inequality

gives that the expectation of exp{3( f(x) — f(x))} is bounded by exp{%}.

The expectation of the log of the integral of this exponential is bounded by % or equivalently %V d,
when multiplied by 2n yields a discrepancy difference bound of

%n Vo,
where V' is not more than Vy + 4.

Now twice the complexity plus the discrepancy bound has size 2K log(2p) + iané + %néQ, which,
with our choice of K = [V} /4] not more than V; /& + 1, shows that a penalty of the form

peng(f) > Ay + C

is valid as long as \ is at least 2 log(2p) + 1nd and C' = 2log(2p) + ind?. We set § = (3lo&22)1/2
as it optimizes the bound on A producing a critical value A* equal to (2nlog 2p)1/2 and a value of
C = 4log(2p). We note that the presence of the constant term C' = 4log(2p) in the penalty does not
affect the optimization that produces the penalized likelihood estimator, that is, the estimator is the same
as if we used a pure /; penalty equal to AV;. Nevertheless, for application of our theory giving risk
bounds, the C' found here is part of our bound.

We summarize the conclusion with the following Theorem. The setting is as above with the density
model py(z) with exponent f(z). The estimate is chosen with f in the linear span of the dictionary H.
The data are i.i.d. according to ps« ().

Theorem 4.1. The {1 penalized likelihood estimator f = fg achieving

1
min < log ——— + \,||0 },
0 { gpfa(X ) a6l

EL )

or, equivalently,

1
min < lo —+)\V},
/ { Epr X,y

Ln
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has risk Ed(f*, f) bounded for every sample size by
m(r) < pt o)

1/2

+)\an} N 4log 2p
n n

. An 2log(2p)
provzded n > [T}

In particular, if f* has finite variation V-« then for all n,

An Vi n 4log 2p.
n n

Bd(f*,f) < Ru(f*) <

Note that the last term “’ngl’, is typically negligible compared the main term, which is near

21 1/2
{ﬂ} Ve
n

1/2
Not only does this result exhibit [10%] as the rate of convergence, but also it gives clean finite sample
bounds.

Even if V-« is finite, the best resolvability can occur with simpler functions. In fact, until n is large
compared to VJ?* log p, the index of resolvability will favor approximating functions f;; with smaller
variation.

5. REFINED RESOLVABILITY FOR ¢; PENALIZED LOG LIKELIHOOD

Three directions of refinement of this risk conclusion for ¢; penalized log likelihood are presented
briefly here, using the techniques introduced above. These parallel corresponding refinements for ¢;
penalized least squares in Huang et al (2008). This section may be skipped by those who only want the
overview and who want to move to the computation results of Section 6. The present material is for
readers who want to see some of the nuances of statistical rates of density estimation using ¢; controls.

One refinement is that a valid codelength bound for f can take the form K log(4e max{p/K,1})
which is smaller when K > 2e. This leads to an improvement in the risk conclusion in which X}, is
as above but with 4e max{p//n, 1} in place of 2p inside the log factor so that the log factor may be
replaced by a constant when p is small, not more than a multiple of y/n. The idea of this improvement
originates in the setting of Bunea et al (2007a). This improved codelength and risk conclusion follows
directly from the above argument using Huang et al (2008), Lemmas 8.5 and 8.6 so we omit the detail.
This refinement does not improve the order of the bound when the dictionary size p is a larger order
power of n.

Secondly, we consider infinite dictionaries with a finite metric dimension property, and show that a

suitable cover of the dictionary has size about nd/2 where d is the metric dimension of the dictionary.

Then analogous conclusions obtain with log p replaced by (d/2)logn, so that if f* has finite variation

2
dlo% . Thus the performance of

with respect to the dictionary then the risk is of order bounded by [
the /1 penalized log-likelihood estimator is in agreement with what was obtained previously for other
estimators in Barron (1991,1994), Modha and Masry (1996a,b), Lee, Bartlett, and Williamson (1996),
Juditsky and Nemirovski (2000), Barron, Cohen, Dahmann and Devore (2008); where a noteworthy
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feature is that unlike standard derivative-based regularity conditions which lead to rates that degrade with
dimension, the variation condition with respect to a finite-dimensional dictionary has rate of statistical
risk at least as good as the power 1/2.

To explain, suppose a library H has the properties that ||h|/o < b and there are positive constants
¢ and d such that for each positive ¢ < b there is a finite L, cover H of size M, < (c/¢)%. Here the
cover property is that for each 4 in H there is a representor / in H with || — Ao < €. Then d is called
the metric dimension of H. (As shown in Barron (1991,1994) this property holds for the dictionary
of Lipshitz sigmoidal functions in d variables used in single hidden layer neural networks and related
classes of sinusoidal functions; see Barron, Birgé and Massart (1999) for other examples.) Again with F
the linear span of #, functions take the form f(x) = >,y Onh(2) in F and we consider optimization
of the ¢; penalized log likelihood.

To adapt the above proof, we use the unweighted 41 norm |0y = Y-, ., |04, multiplying by b? in
the bound on the v(x) to account ay, equal to 1 rather than ||h||e, and let Vy is the infimum of such
|0||1 among representations satisfying fy — f. To obtain a representor f, we again draw hi,..., hx
independently, with distribution that yields & with probability |6y|/V, with K = K; and V' as before.
The new step is to replace each such f; with its representor ﬁj in H, which changes the value of each

f(x) by at most Ve. Thus the discrepancy studied above

n

SO(F(X0) — F(X) + 2nlog / ple) exp{3(F(2) — (=)}

i=1
is increased by at most 2nV e, while the complexity is the same as before with the cardinality p replaced
by M.,. This yields a complexity penalized discrepancy bound of 2K log(2M.) + 1nb?(Vy + 6)8 +
2n(Vy + 0)e, where the three terms correspond to the three parts of the above analysis: namely, the
complexity, the discrepancy, and the contribution of the cover of the dictionary.

Consequently, we have validity of the penalty pen, (f) = A, Vy+C, with A, at least A}, = 2log(2M.,)
+3nb%5+2ne and C = 2log(2M.) + §nb?3%+2nde. Setting § = + [£ log(2M.)] 1/2 produces the best
such A\* equal to b[2n 1og(2]\/[5)]1/2 + 2ne. With M, replaced by the bound (c/<)<, to balance the two
terms in A% we set € = b+/d/n, valid for d < n. Then M, is within a constant factor of (n/d)%? and we

have the desired risk conclusion in a slightly improved form. Indeed, for any sequence of dictionaries
AL 1/2
n

with A, not less than this A, for dictionaries of finite metric dimension, we have the resolvability bound

and sample sizes with d/n small, =2 is near b [% log %} and % is near 2 [% log %} To summarize,

on risk of the £; penalized likelihood estimator:

. 2 " . N AV, c

par ) < ) < pr{oun 2t 4 2
A feature of this analysis of resolvability of densities is that the constructed variable-complexity cover
F is not data-dependent. This necessitated our appeal to Lo, covering properties of the dictionary in
constructing the set of representors . Results for least squares in Lee, Bartlett, and Williamson (1996)
and for penalized least squares in Huang et al (2008) allow for data-dependent covers (depending on
observed and hypothetical input data), and accordingly allow for empirical L or Ls covering properties
of the dictionary, thus allowing traditional step sigmoids in the neural net case. It is not clear whether
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there is a method to allow data-dependent covers in risk analysis for density estimation by penalized
likelihood.

Thirdly, an improved method of approximation with probabilistic proof originates in the Lo case in
Makovoz (1996), with a stratified sampling interpretation in Huang et al (2008). It yields an improvement
in which V2/K is replaced by e2V2/(K — Kj) where =g is the distance attained by the best covering of
the dictionary of size Ky < K. We find it allows a somewhat smaller A, and improved risk bounds for
£ penalized log-likelihood estimators of order [% log %] %+ﬁ’ which remains near the rate 1/2 when
the dimension d is large. This conclusion is in agreement with what is achieved by other estimators in
Yang and Barron (1999) and close to the lower bound on optimal rates given there. Similar implications
for classification problems using convex hulls of a dictionary are in Koltchinskii and Panchenko (2005).
The refined conclusion for #; penalized least squares is given in Huang et al (2008) using empirical Lo
covering properties based on Makovoz’s result.

Adapting the stratified sampling argument to ¢; penalized log likelihood and the use of L, covering
properties proceeds as follows. Partition  into K disjoint cells c. Let v(c) > . 10r| and fo(z) =
Wla > hee Onh(z) which decomposes f(z) = >, cq Onh(x) as f(z) = >, v(c)fo(z). Consider posi-
tive integers K (c). A convenient choice is v(c) = nK(c) with K(c) = [ >, |0nl/n]. For each cell ¢
draw hc g, fork = 1,2,..., K(c), independently with outcome h with probability 05, /v(c) for hin ¢ (and
outcome 0 with any leftover probability due to v(c) possibly larger than -, - . |0;|). Form the within cell
sample averages f. i (z) = ﬁC) Zf:(? he k() and the random representor f(z) = 3 v(e) fex (),
which is seen to be an equally weighted average when v(c) is proportional to K (c). Now with ap, = 1
we proceed as in the analysis in the previous section, with the following exception.

For each z, the expectation of exp{3| f(x) — f(x)]} with respect to the distribution of the random
terms is again straightforward by the independence of the Ay, but now they are not all identically
distributed. This expectation becomes the product across the cells ¢ of the K (c) power of the expectation
of exp{%%[hcﬁl(a}) — fe(x)]}. By the Hoeffding bound each of these expectations is not more than
exp{z5(v(c)/K(c))*Re(x)}, where R.(x) = maxpech(x) — minpe, h(x) is the range of h(z) for
h € c for each z. With mid.(x) = [minpe.(x) + maxpec(2)]/2 equal to the midrange function we
recognize that it is the choice of function representing cell ¢ optimizing maxpe. |h(z) — mid.(z)|, equal
to the half-range R.(z)/2. Then we bound R.(z) by ||R¢|lcc = 2maxpe. ||k — mid,||co, Which is
not more than 2¢q if the partition is arranged to correspond to the best Lo, cover of H of size Kj.

Accordingly, the expectation of 2nlog [ pa(z) exp{%[f(:c) — f(x)]} is not more than $n>", %?c; &3

Choosing v(c)/K(c) = nto equal §/ep and V' = Y__v(c), this is }Ianiso, improving on the previous
bound by the presence of the factor «g.

The other difference with the previous analysis is that with K (c) equal to ;.. |0|/n rounded up
to an integer, the sum of these counts over the K cells is a total count of K = K between V;/n and
Vi/n + Ko. Likewise, V = K is between Vy and V; + Kon, with = 6 /€.

So the complexity penalized discrepancy bound is now 2K log(24M;) + }an&:O + 2nVe. Us-
ing the indicated bounds on K and V/, and setting 6 = [% log(Q.Ms)] Y 2, it is not more than A} Vy +
C, with A} = ¢ [2nlog(2]kf5)]1/2 + 2ne the same as before but with the smaller ¢y in place of
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b, which is the source of the improved rate. One sees that a good choice for the relationship be-
tween the precisions is ¢ = £¢/+/n, with which C = Ky [4log(2M.) + 2nde/ep] becomes C =
Ko [4log(2M.) + (8log(2M.))"/ ?], the same order as before but with the multiplication by Ko > 1.
Again the resolvability is inf ;e 7 {D( N+ % + %} with the improved A}, and the inflated C. In

1
particular, in the finite metric dimension case with Ko of order (1/£9)%, setting e of order [% log 2] 2d+2

1.1
one finds that both A, /n and C/n are of order [£ log 2] 2 *20F2 | providing the claimed improvement in
rate.

This completes our story of the risk of penalized log likelihood. Common penalties for functions in
uncountable sets 7 may be used, such as the #1 norm of the coefficients of f, which may, at first glance,
not look like a complexity penalty. Nevertheless, variable cover arguments show that the ¢; penalty
does have the property we require. For suitable multipliers A, the /1 penalized discrepancy exceeds the
complexity penalized discrepancy, and hence inherits its clean risk properties.

6. A NOTE ON COMPUTATION

Building on past work on relaxed greedy algorithms, we consider successively optimizing the ¢
penalized likelihood one term at a time, optimizing choices of «, § and h in the update

Je@) = (1= a) fy_1(2) + Bh(z)

for each £ = 1,2,.... The result is that it solves the ¢; penalized likelihood optimization, with a
guarantee that after k steps we have a & component mixture within order 1/k of the optimum. Indeed,
one initializes with fo(m) = 0 and vg = 0. Then for each step k, ones optimizes «, 3, and h to provide
the the kth term hy(2). At each iteration one loops through the dictionary trying each h € H, solving
for the best associated scalars 0 < o < 1 and 5 € R, and picks the % that best improves the £; penalized
log-likelihood, using v, = (1 — &)vg—1 + | 3] an, as the updated bound on the variation of fk. This is a
case of what we call an /1 penalized greedy pursuit. This algorithm solves the penalized log-likelihood
problem, with an explicit guarantee on how close we are to the optimum after k£ steps. Indeed, for any
given data set X and forall £ > 1,

1 log _ + Ay,
n e &)

< inf ! {1 ! AV, } QV’?
inf § — |log —— + +—=7,
AT T TR S
where the infimum is over functions in the linear span of the dictionary, and the variation corresponds to

the weighted £1 norm ||0]|1 = >, 4, |0n]an, with ay, set to be not less than | A||o.. This inequality shows
that fk has penalized log-likelihood within order 1/k of the optimum.

This computation bound for ¢; penalized log-likelihood is developed in the Yale Thesis research of
one of us, Xi Luo, adapting some ideas from the corresponding algorithmic theory for ¢; penalized least
squares from Huang et al (2008). The proof of this computation bound and the risk analysis given above
have many aspects in common. So it is insightful to give the proof here.
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It is equivalent to show for each f in the linear span that

- {log IT, ) + Aog = Vy)

The left side of this desired inequality which we shall call ey, is built from the difference in the criterion

values at fk and an arbitrary f. It can be expressed as
1 ; 5
o = - SOUCN) = A0 +1og [ py()explii(o) — @)} + Now = Vi)
i=1

where the integral arising from the ratio of the normalizers for p £ and py. Without loss of generality,
making H closed under sign change, we restrict to positive 5. This ey, is evaluated with fx(z) = (1 —
oz)fk_l(x) + Bh(z) and vy, = (1 — a)vg_1 + Bay, at the optimized «, 8 and h, so we have that it is as
least as good as at an arbitrary h with 8 = aw/ay, where v = V. Thus for any i we have that e, is not
more than

n ~
%Z[f(Xi) — afe1(X:) — avh(X;)/ap] + 10%/pf(l’)e[&f}‘”mwvhm/ah_ﬂx)} + aAlvp_1 — v,
=

where @ = (1 — «). Reinterpret the integral using the expectation of ealvh(@)/an—=F@)] with respect to
p(z) = edlfi-1(@)—f (m)]pf(:c) /¢, where c¢ is its normalizing constant. Accordingly, we add and sub-
tract log ¢ = log [ e®k-1(®)=1 @)y (2) which, by Jensen’s inequality using @ < 1, is not more than
alog [ elfie—1(2)—f (@]pf(a:). Recognizing that this last integral is what arises in ex_; and distributing f
between the terms with coefficients & and «, we obtain that e is not more than

n

(1~ aes + a3 IFX) — vh(X0) an] +log [ eH O/,
i=1

This inequality holds for all & so it holds in expectation with a random selection in which each A is drawn
with probability ay,|0|/v where the 6}, are the coefficients in the representation f(z) = >,y Onh(x)
with v = 37, [0plan, = V3. We may bring this expectation for random / inside the logarithm, and
then inside the integral, obtaining an upper bound by Jensen’s inequality. Now for each = and random
h the quantities [vh(x)/ap — f(z)] have mean zero and have range of length not more than 2v since
ap, > ||h]lco- So by Hoeffding’s moment generating function bound, the expectation for random A of
ealvh(@)/an=F(@)] {5 not more than e®***/2. Thus

er < (1—a)eg—1 + OLQVfQ
forall 0 <« <1, in particular with &« = 2/(k + 1), and eg < 2Vf2, so by induction the result holds
2
2Vf .
k+1

e <

This computation bound as well as its regression counterpart in Huang, Cheang and Barron (2008)
holds even for A = 0, which shows its relationship to past relaxed greedy algorithm work (by Jones 1992,
Barron 1993, Lee, Bartlett and Williamson 1996, Cheang 1998, Cheang and Barron 2001, Li and Barron
2000, Zhang 2003 and Barron, Cohen, Dahmen, and DeVore 2008). These previous results remind us that
explicit control on the /1 norm of the estimator is not necessary for similar conclusions. Instead, one can
incorporate a penalty on the the number of terms & rather than their £; norm and have fast computations
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by traditional relaxed greedy pursuit algorithms with A = 0. The conclusion in the cited work is that it
yields estimators which perform well as captured by risk bounds based on the best tradeoff between the
accuracy of functions in the linear span and their 1 norm of coefficients. The result stated here for /1
penalized log-likelihood and in Huang et al (2008) for regression, takes the matter a step further to show
that with suitable positive A the greedy pursuit algorithm solves the £1 penalized problem.

This computation analysis comfortably fits with our risk results. Indeed, the proof of our main risk
conclusion (Theorem 3.1) involves the penalized likelihood ratio log IZ;—%) + pen( f ). Instead of the
exact penalized likelihood estimator f , substitute its k term greedy fit fk, Then the computation bound
of the current section shows that this penalized likelihood ratio is not more than its corresponding value

at any f, with addition of 2Vf2 /(k +1). Accordingly, its risk is not more than

. AV 2V C
* < : * vy S5 =
Ed(f*, fr) _Ifrélg{D(f7f)+ N R

Finally, we note an intrinsic connection between the computation analysis and the information-
theoretic validity of the penalty for statistical risk. Indeed, inspecting the proof of the computation
bound we see that it can be adapted to show that V2 /(K + 1) bounds the discrepancy divided by n of
an associated greedily obtained fz, which may be used as a representor of f, rather than the sample
average f used in Section 4. Moreover with prescription of oy and g, one again can describe such fx
using K log(2p) bits. Accordingly, the same analysis used to demonstrate the computation bound also
demonstrates the information-theoretic validity of the /; penalty.

The key step in our results is demonstration of approximation, computation, or covering properties,
by showing that they hold on the average for certain distributions on the dictionary of possibilities. As
a reviewer notes, as information-theorists we are predisposed to look for opportunity to provide such
an argument by Shannon’s pioneering work. One can see other specific precursors for the probabilistic
proof argument used here. For the purposes of demonstrating information-theoretically valid penalties
for log-likelihood for Rissanen’s MDL criterion, the idea for the probabilistic argument came in part
from its use in the least squares setting, showing approximation bounds by greedy algorithms, in the line
of research initiated by Jones.
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Abstract

The Minimum Description Length (MDL) principle is an important tool for retrieving knowledge
from data as it embodies the scientific strife for simplicity in describing the relationship among
variables. As MDL and other model selection criteria penalize models on their dimensionality, the
estimation problem involves a combinatorial search over subsets of predictors and quickly becomes
computationally cumbersome.

Two approximation frameworks are: convex relaxation and greedy algorithms. In this article, we
perform extensive simulations comparing two algorithms for generating candidate models that mimic
the best subsets of predictors for given sizes (Forward Stepwise and the Least Absolute Shrinkage
and Selection Operator - LASSO). From the list of models determined by each method, we consider
estimates chosen by two different model selection criteria (AIC and the generalized MDL criterion
- gMDL). The comparisons are made in terms of their selection and prediction performances.

In terms of variable selection, we consider two different metrics. For the number of selection
errors, our results suggest that the combination Forward Stepwise+gMDL has a better performance
over different sample sizes and sparsity regimes. For the second metric of rate of true positives among
the selected variables, LASSO+gMDL seems more appropriate for very small sample sizes, while
Forward Stepwise+gMDL has a better performance for sample sizes at least as large as the number
of factors being screened. Moreover, we found that, asymptotically, Zhao and Yu’s ((1)) irrepresen-
tibility condition (index) has a larger impact on the selection performance of Lasso than on Forward
Stepwise. In what refers to prediction performance, LASSO+AIC results in good predictive models
over a wide range of sample sizes and sparsity regimes. Last but not least, these simulation results
reveal that one method often can not serve for both selection and prediction purposes.

1 Introduction

The practice of statistics often refers to making efficient use of observed data to infer relationships among
variables in order to either gain insight into an observed phenomenon (interpretation) or be able to make
predictions based on partial information (prediction). In this paper, we focus on models designed to
uncover how a dependent or response variable Y € ) is affected by a set of p predictor variables X € RP.
Whether the goal is prediction or interpretation, the important task is to learn some “meaningful” or stable
characteristics of the data across different samples of the data.

A traditional approach consists of postulating a class of models F indexed by a parameter 3. An
estimate ﬁ is often defined as:

f = argminger Zl.L(Zi,XiTﬁ)7 (1)

where Z; = (X;,Y;),¢ = 1,...,n denotes then n observed data samples; Y € R” and is a vector
containing the observed values for the dependent variable; X € R™*P is a matrix containing the observed
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values of the predictors in its rows; 3 is a model within the postulated class; and L is a loss function
measuring the goodness of fit to the data Z for the model indexed by (. In this paper, we restrict
attention to loss functions L defined by the negative log-likelihood (neg-loglikelihood) of probabilistic
models. This framework is general enough to accommodate both regression and classification models
and encompasses all Generalized Linear Models (2; 3). In this paper we will focus attention on the
standard Gaussian linear regression model:

Y = X8+ ¢, withe ~ N(0,5?). )
The minimization in (1) translates in this case to the Lo-loss:

B = argmin {[[Y’ — X5} . 3)

Some of the information criteria we will be dealing with below also require an estimate of the variance
o2, Unless otherwise stated, we use the likelihood estimate:

A2
R e [
n

4

However reasonable the estimate defined by (1) may be, this approach does not account for the fact
that we often ignore what is an appropriate class of models in which to fit the data, that is, F should also
be estimated. On the one hand, if we rely solely on the observable empirical neg-loglikelihood L(Z, .) to
decide between two classes of model F; C Fo, the larger class will be trivially preferred. On the other
hand, the simpler model class F; may be more representative of any structure contained the data and less
sensitive to noise. The Minimum Description Length (MDL) principle introduced by Jorma Rissanen
(4-6) addresses this problem by including the cost of coding the model itself into the picture. As more
complex models are costlier to describe, parsimony is now rewarded.

The problem of identifying an adequate model class on which to search for an estimate B has been
recognized since the seventies. It has since motivated developments of model (variable) selection crite-
ria that penalize the neg-loglikelihood by measures of complexity of the model including the Minimum
Message Length criterion (MML, 7), C;, (8), Akaike’s Information Criterion (AIC, 9), Bayesian Infor-
mation Criterion (BIC, 10), and various MDL methods (e.g. the generalized MDL criterion, gMDL,
11).

For linear models, many model selection criteria involve a penalty in the dimensionality of the model
under evaluation (i.e., number of non-zero terms in @), that is, the selected estimate is of the form:

B(An) = argmén{?L(Z,ﬁ)+)\n\|5|\0}, )]

where ||8]jo = #{j : 8; # 0} and A, is a tuning parameter trading-off summarization performance and
“complexity” of the model. We will refer to such penalties as £g-penalties in what follows. Perhaps the
two most popular examples of model selection criteria within this family are AIC (9) and BIC (10) for
which A, = 2 and A\, = log(n) respectively. In this paper, we will be working with two criteria related
to AIC and BIC: the AIC¢ criterion (12) is a finite-sample corrected version of AIC; and the gMDL
criterion (11) that tries to combine the virtues of AIC and BIC.

The strict computation of £y-penalized estimates leads to a costly combinatorial search over all sub-
sets of the largest model: the best subset search problem is an NP hard problem in the number of predic-
tors p as established by a recent formal proof (13). Exact solutions to this problem are computationally
infeasible for modern massive data sets where the number of predictors p is in the orders of thousands
as in gene expression data analysis and even millions as in text processing applications. Even if the
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computation of models involving all subsets were feasible, it would still be wasteful. As the number of
models to be compared is large, many of them are indistinguishable within the precision afforded by the
number of samples practically available. As an example, a regression model involving 50 predictors (a
modest size for many modern data sets) would require the comparison of 250 ~ 10'® models.

Computationally feasible approximations to the £yp-penalized estimates are currently a very active
and exciting field of research in statistics. In this paper, we perform extensive simulations to compare
the prediction and variable selection performance of models picked by AIC¢ and gMDL from lists of
candidate models generated by algorithms that identify subsets that are “approximately” the best for
their dimension.

The first approximation we consider is the greedy Forward Stepwise regression for selecting vari-
ables. Forward Stepwise regression is an eminently algorithmic procedure. Starting from the null model,
it selects the predictor whose coefficient corresponds to the largest sized term on the loss function gradi-
ent and refits the model involving the selected parameters at each step. For linear models and under the
squared error loss (L2-loss), that corresponds to picking the variables most correlated with the residuals
at each step (see 14). The second approximation we study is the convex relaxation approach in which the
{y-penalization is replaced by the ¢1-norm of the candidate vector of coefficients . Early examples of
the use of /1-norm as a penalization are the non-negative garrote (15), the Least Absolute Shrinkage and
Selection Operator (LASSO, 16) and basis pursuit (17). The soft-thresholding rule used in VisuShrink
(18) is also intimately related to the £1-penalty. This relaxation results in a convex penalization, easing
the burden of computing estimates defined as the solution to an optimization problem (19).

The remainder of this paper is organized as follows. Section 2 reviews some of the theoretical
results concerning exact £y and ¢1 penalized estimates. Section 3 presents a brief overview of the greedy
(Forward Stepwise) and relaxed (LASSO) regularization paths. There, we also present the selection
criteria we will consider in our later simulation experiments. In Section 4, we present our simulation
setup and results obtained for the squared error loss. Section 5 presents our conclusions.

2 Properties of {;, and /;-penalized estimates

The properties of ¢y-penalized estimates are well understood as various theoretical results have been
obtained since their introduction in the seventies (e.g. 20-22). Two important examples of /y-penalized
estimates are AIC (9) and BIC (10). These two criteria reflect a tension that exists between prediction
performance and model selection accuracy. Well known results show that AIC-type criteria have the
property of yielding the minimax-rate optimal of the regression function under the predictive Lo-loss
(23-28), while BIC like criteria are consistent in terms of model selection (21).

Penalization by the ¢1-norm of 3 aims at solving an approximate solution to a convex relaxation of
the optimization problem (5). The approximate estimate ﬁL Ass0{An) is defined as:

Brasson) = argm&nL(Z,ﬂ)Jr/\nHﬁHl, (6)

where [|B]l1 = 3, |B;|. Despite its relative youth, ¢;-penalized estimation has undergone intensive
research in recent years and a series of theoretical results concerning its properties have been achieved
(e.g. 29-38; 1; 39-41). Many of these results are either asymptotic in nature or concern the behavior of
sparse approximation in the noiseless setting. In the deterministic setting, the use of convex relaxation
of the /g-norm by the ¢1-norm was shown to recover the correct sparse representation under incoherence
conditions (42; 31; 30; 32; 34).

In what concerns the predictive performance of /1 -penalized estimates, results in (29) establish that,
based on observed data, the actual out-of-sample prediction error can be estimated with greater pre-
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cision for the non-negative garrote (closely related to ¢;-penalized estimates) than for subset selection
procedures. As a result, non-negative garrote estimates can attain better predictive models than their £y
counterparts. As we will see in our experimental section, this seems to carry over to the LASSO.

In terms of model selection, asymptotic results by (38), (1) and (40) establish conditions for model
selection consistency for ¢;-penalized estimates under the Lo-loss in the non-parametric setting (i.e.,
pr, — 00 as n — o). Here, we define the irrepresentability index as:

II(S,8) = 1—|S2X5'sign(8)]lo (M

where Y11 is the covariance matrix of the covariates with non-zero coefficients and > is the partition of
the covariance matrix of the covariates accounting for the correlation between the irrelevant and relevant
covariates. Results from (1) show that a sufficient condition for the LASSO to be consistent in model
selection for some sequence A, as 7 — oo is that:

II(%,8) > 0 ®)

Later in this paper, we will be investigating the effect of the irrepresentability index on the model selec-
tion performance in finite samples. Results in (39) refine the model selection consistency results for the
LASSO by determining at what rates the number of relevant covariates g and the number of measured
predictors p can increase as n grows for model selection consistency to be preserved.

3 Approximation algorithms and selection criteria

The strict implementation of model selection criteria of the form shown in (5) requires the computation
of estimates for all possible subsets. As mentioned before this is both computationally infeasible and
wasteful given the large number of candidates that must be compared. It does, however, suggest that two
tasks are involved in the selection of a model: generating a series of candidate models and applying a
criterion to pick the “best” among them.

We consider two algorithms (Forward Stepwise and LASSO) for generating candidate models based
on approximations to the combinatorial problem (5). For selecting estimates out of the lists of candidates
created by these two algorithms, we consider two different criteria: AIC¢ (12) and gMDL (11).

Before we proceed, we point out that alternative algorithms for generating candidate models and
alternative selection criteria exist. Boosting algorithms (43) are an important tool for generating list of
candidate models. For an example of Boosting algorithms applied to model selection, see (44). Cross-
validation (45-47) is an important tool for choosing among different models, especially in what refers
to prediction. It is, however, limited by its computational cost and often inadequate for model selection
purposes (24).

3.1 Description of the path-tracing algorithms

Although the exact solution to problem (5) is a combinatorial problem, a natural greedy approximation
suggests itself. At first, initialize a set of active parameters A to be empty and set BO = 0 — the sparsest
possible solution. Then repeat the following process until no parameters are left out or a local optimal
is attained. Pick the parameter corresponding to the entry in the gradient vector VgL with the largest
absolute value. Add the chosen parameter to the set A and refit the model adjusting the estimates of
parameters contained in A (i.e., set the new estimate to be a vector such that the gradient of all variables
in A are zero). We shall refer to this algorithm as the Forward Stepwise algorithm for the remainder of
this paper. It has close connections to the orthogonal greedy algorithms from approximation theory (see,
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for instance, 48;49).!

The convex relaxation approximation takes a different route. As mentioned above, it replaces the
exact solution of the problem (5) by an approximation based on convex relaxation as defined in (6).
A series of candidate models is generated by letting A, vary over [0, 00). At a first glance, the convex
relaxation approach seems radically different from the Forward Stepwise regression algorithm. However,
the homotopy/LARS ? algorithm introduced in (50; 51) to compute all LASSO candidates reveals a
close connection between them. The homotopy/LARS algorithm also starts by setting an active set A
of parameters to be empty and set Bo = 0. At each step, it then selects the parameters with the highest
gradients, computes a direction preserving the gradient with respect to all active parameters equal in size
and determines a step size in which one of two events happen. Either the gradient corresponding to an
inactive term becomes as high as the ones in .4 in which case a new term is added to \A; or one of the
parameter estimates in .4 hits zero in which case it is excluded from A.

In the case of linear models fitted using an L»-loss, an analysis in (51) gives the computational cost
of the k-th interaction of these algorithms in terms of the current size of the active set aj, and the number
of observed samples n. At the k-th step, the costlier operation to perform is determining the direction
of the next step. To do so, it is necessary to invert the matrix X', X 4. This can be done efficiently by
updating its Cholesky decomposition at each step of the algorithm at a cost in the order of O(a% +agn).

For Forward Stepwise, the entire regularization path has exactly r = rank(X) < min{p,n} steps
resulting in a cost of the order of O(r® 4 r?n) for the entire Forward Stepwise path. The complete
LASSO regularization path, on the other hand, allows variables to be dropped and re-added to the model
along the way and hence has a random number of steps. Well behaved data will cause the computational
cost of the LASSO and Forward Stepwise path to be roughly the same. In particular, if the positive cone
condition in (51) is satisfied, the two paths are known to agree, thus involving approximately the same
computational effort. On the other hand, the LASSO path is costlier when a lot of variable droppings
take place. In our experience, we have observed more correlated designs to be associated with longer
and consequently costlier paths for the LASSO.

3.2 Selection criteria for choosing an estimate from the regularization path

The Forward Stepwise and the LASSO algorithms above generate each a collection of models for us
to choose from, which we call their regularization paths. We will focus our attention on two different
criteria for picking models from the Forward Stepwise and LASSO regularization paths: the AIC¢ (12)
(corrected AIC) and the gMDL (11) criteria. We decide for these two criteria based on the good results
reported in (11), (52; 44), and (53).

The AIC¢ was proposed by Sugiura (12) as a finite sample correction for Akaike’s AIC (9). The
authors have previously used this criterion in the n < p setting with good predictive performance (54).
‘We use it here in place of cross-validation to reduce the computational cost of our experiments. For linear
models based on the Lo-loss (Gaussian likelihood for residuals), the AIC¢ estimate are defined as:

n K(®)

| n | n(os5)
= arg min < —=lo Y- X8I 4+ — " 7

6AIC¢ g@epath B) g <ZZ=;| i Bl > 2 1 (K<€2+2>

where K (/3) denotes an effective dimension of the model associated to 3.
The second criterion we consider is the gMDL (11) criterion motivated as a data-driven bridging the
AIC and BIC. We refer the reader to (11) for more details on the gMDL criterion. For a Gaussian (Lo-

'Boosting algorithms in their turn relate to the pure greedy algorithms in approximation theory.
LARS standing for Least Angle Regression and Selection
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loss) linear model and again letting K (3) again denote an effective dimension of the model associated
to (3, the gMDL estimate is defined as:

BgMDL = arg min gMDL(Z,3)

Bepath
with:
log (X =XBI2Y | K@) X i R2 > K®)
MDL(Z ) — og< "—K(8) ) + =5~ log <:_—;§%2—> +log(n), if R* > ==,
log (Y'TY> + %log(n), otherwise.

For both LASSO and the Forward Stepwise one effective dimensionality of the model K'(3) is given
by the number of non-zero terms in 3. For the LASSO, this is justified by the unbiased estimate for the
degrees of freedom for LASSO estimates introduced in (55).

4 Simulation results

After reviewing the algorithms we will be using and some of the theoretical properties of £y and #;
penalized estimates, we now present the results of our simulations. As seen in Section 3 above, LASSO
and Forward Stepwise have some close connections and subtle differences. Natural questions regarding
how their differences and similarities translate into selection accuracy and predictive performance arise.
Our experiments below are geared to shed some lights on some of these questions.

Throughout this section, we work with the squared error loss (Ls-loss) and use the 1ars package
implementation for both the LASSO and Forward Stepwise selection algorithms in R.

4.1 Simulation Set-up

The data in our simulations is generated according to:
Y = XfB+e,

where n observations are available and p predictors can be selected, that is, Y,e € R*, X € R"*P,
Throughout, £ ~ N(0,L,). The predictors are also Gaussian with X ~ N(0,%). To avoid system-
atic biases favoring one or another method, both the covariance matrix of the predictors ¥ € RP*P and
the coefficients of the model 5 € RP are chosen randomly. 3 is given by ¥ = %W, where W has
a Wishart(IL,, [dp]) distribution. The higher the multiplier d in the degrees of freedom, the less cor-
relation among the predictors as 3 concentrates around the orthogonal design with increasing d. For
the coefficients, we fix the fraction of non-zero coefficients s € (0, 1) and randomly choose ¢ = |sp|
coefficients to be non-zero. Conditional on the sparsity structure, the non-zero coefficients are sampled
independently from a N (0, 1) distribution and re-normalized to keep the signal to noise ratio fixed at 2.0.

Once the regularization paths are traced according to the Forward Stepwise and LASSO algorithms,
model estimates are picked using the AIC¢ and gMDL criteria. We also compare the selected models to
models chosen from the path based on full information on the model. The prediction oracle is defined as
the estimate in the path that minimizes the model error (3 — 3)E(X'X)(5 — 3). The selection oracle
estimate is the one model in the path minimizing the number of selection errors (i.e., the size of the
symmetric difference between the selected set and the true set).

68



Festschrift for Jorma Rissanen

5% non-zero 25% non-zero 75% non-zero

n = 100
100

p

#:true pasitives/y

00 02 04 0B 08 10
#1ius positives/g

00 02 04 06 08 10
# true positives/q

00 02 04 G8 08 14

s
b

i & é 6o 05 10 75 20 25 000 0P5 o0 D15 020 025 030
mean # false posiivesia mean # false positvesiq ‘mean # false positivasia

n = 1,000
p =100

#1rue pasitivasiy
00 02 04 0B 08 10
#true posiivesy
00 02 04 06 08 10
# true posttivesy
0 02 Q4 08 08 10

2K

)

00 05 20 25 000 005 090 05 020 025 080

10 15 20 2 05 10 15 5
mean # false posiivesiq mean # false positivesiq mean # faise posttivesia

Figure 1: ‘Mean ROC curves” for the LASSO (dashed) and Forward Stepwise (dotted): Within
each panel, the relative operating characteristic (ROC) curve shows the mean minimal number of false
positives (horizontal axis) needed to achieve a given number of true positives (vertical axis) for both the
LASSO (dashed lines) and Forward Stepwise (dotted lines). A selection procedure is better the more its
curve approaches the upper left corner of the plot. As we can see here, both the LASSO and Forward
Stepwise trade-off between false positives and true positives in a similar fashion for all sample sizes and
sparsity levels.

4.2 Model selection results

We first take on the model selection aspects of LASSO and Forward Selection. We start by analyzing
how the LASSO and Forward Stepwise trade-off between their ability of detecting true coefficients while
keeping irrelevant predictors out of the model.

4.2.1 “Mean” ROC curves for the Forward Stepwise and LASSO

In this first step of our analysis, we compare the relative operating characteristic (ROC) curves for For-
ward Stepwise and the LASSO. An ROC curve will show the trade-off between the gain of adding a
relevant variable and the loss of including an irrelevant variable as we move along the regularization
path. By comparing the ROC curves of the LASSO and Forward Stepwise, we have a view of the model
selection behavior of the two methods for all possible choices of the tuning parameter A,,.

To estimate these curves, we fix a number of correctly selected variables and record the mean number
of irrelevant variables included in the earliest model in the path containing that many true variables. The
estimated curves are shown in Figure 1 for different sample sizes and sparsity levels.

Overall, we see a remarkable similarity in the ROC curves for the LASSO and Forward Stepwise. As
a result, the ROC curves suggest that the LASSO and Forward Stepwise have similar behavior in terms
of model selection accuracy over a wide range of settings.

4.2.2 The effect of the irrepresentability index and sample size

We now evaluate how much the irrepresentable index (7) affects the ability of the selection oracle to
correctly select a model from the LASSO and Forward Stepwise. According to recent theoretical results
(38; 1; 40), the presence of a model with all correct variables in the LASSO path is strongly related to

69



Festschrift for Jorma Rissanen

the irrepresentable index. Does the asymptotic results carry over to the small-n-large-p case? And how
does the irrepresentable index affect the Forward Stepwise estimates if at all? The results presented in
Figure 2 aim at answering these questions.

The two panels on Figure 2 show the minimum number of selection errors (ie, the number of er-
rors committed by the selection oracle) plotted against the irrepresentability index for different sample
sizes and sparsity levels as indicated. The results seem to imply that it takes large samples for the ir-
representability index to become a dominant effect on the model selection performance of the LASSO.
Another interesting conclusion from Figure 2 is the relative insensitivity of Forward Stepwise to the
irrepresentability index, especially in the sparser case. This was a somewhat surprising result given
the similarity between the two algorithms. It also suggests that the coherence requirements in (35) as
sufficient conditions for Forward Stepwise to recover the sparsest solution are overly restrictive.

4.2.3 Selection Oracle vs. AIC¢ and gMDL

We now assess the model selection performance of the AIC; and gMDL criteria for picking estimates
from the LASSO and Forward Stepwise regularization paths. Figures 3 and 4 show the number of
selection errors for gMDL and AIC¢ and how they compare to the selection oracle for the LASSO and
Forward Stepwise at different sparsity levels.

Throughout, gMDL outperforms AIC¢ in keeping track of the minimal number of selection errors.
Given the model selection consistency (alt. inconsistency) of BIC (alt. AIC) in the parametric case (21),
that is not a surprising result: while gMDL strives to combine the virtues of BIC and AIC, the AIC¢
simply adjusts the behavior of AIC for finite samples.

Also interesting is the fact that gMDL seems to approach the selection performance of the selection
oracle as n increases for Forward Stepwise but not for the LASSO. That suggests that a selection criterion
specifically designed for use with the LASSO regularization path can improve upon LASSO estimates
picked by gMDL.

4.2.4 Specificity of Forward Stepwise and LASSO estimates

As an important application of variable selection consists of identifying potential relevant factors for
further analysis, we now investigate how the Forward Stepwise and LASSO estimates fare in this respect.
The important quantity in this case is the proportion of true positive effects among the selected effects.
Given the imbalance between the proportion of true positives and true negatives in sparse models, a good
performance in terms of number of selection errors does not necessarily translate into performance in
terms of correct positive rate. Table 1 reports these results for Forward Stepwise and LASSO estimates
picked by gMDL. The results for AIC¢ were considerably worse and are not reported.

A high correct positive rate can be achieved by simply over-restricting the estimates. As a control for
this, we also report the number of false positives among the selected predictors. A very low number of
false positives serves as a warning of over-restriction. Overall, the number of false positives was about
the same for Forward Stepwise and LASSO.

When an oracle is available, the correct positive rate for Forward Stepwise is significantly larger for
all cases considered. However, when models are picked according to the feasible gMDL, an interesting
effect occurs. For smaller samples (n = 50, p = 100), the LASSO estimates reach substantially higher
correct positive rates than Forward Stepwise. As the sample sizes increase, Forward Stepwise gradually
becomes better in the comparison to the LASSO and is preferable for large samples.
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Figure 2: Number of selection errors for LASSO and Forward Stepwise vs the irrepresentabil-
ity index: Each panel shows a plot of the (jittered) selection oracle number of selection errors vs. the
irrepresentability index for the approximation and sample size indicated. In small samples, the irrep-
resentability index does not affect the model selection performance of neither the LASSO nor Forward
Stepwise. Asymptotically, the irrepresentability index affects the LASSO more markedly than Forward
Stepwise, particularly in the sparsest case.
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Figure 3: Number of selection errors under 5% non-zero coefficients: Each panel shows the (jittered)
number of selection errors vs. the irrepresentability index for the indicated criterion and sample size.
The gMDL criterion had a better performance than AIC in terms of number of selection errors for both
LASSO and Forward Stepwise and all sample sizes considered. Using gMDL results in a slightly better
selection performance for Forward Stepwise in comparison to LASSO.
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Figure 4: Number of selection errors under 25% non-zero coefficients: As in Figure 3, each panel
shows the (jittered) number of selection errors vs. the irrepresentability index for the indicated criterion
and sample size. The gMDL criterion still performs on par or slightly better than AIC¢ in terms of
number of selection errors for both LASSO and Forward Stepwise and all sample sizes considered.
Again, using gMDL results in a slightly better selection performance for Forward Stepwise in comparison
to LASSO.
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Comparison of the oracle model error for Forward Stepwise and LASSO
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Figure 5: Oracle model errors for Forward Stepwise and LASSO: Each panel shows boxplots of the
prediction oracle model errors for the Forward Stepwise and LASSO. The dotted lines in the upper panels
indicate the model error of the null model (excluding the intercept error). In terms of the oracle model
error, LASSO and Forward Stepwise perform similarly. LASSO has a slight advantage in small sample
and less sparse settings, while Forward Stagewise seems better for sparser models and large sample sizes.
The relative virtues of LASSO and Forward Stepwise for prediction change considerably when an oracle
is no longer available (see Figure 6 below).

4.3 Prediction results

We end the exposition of our simulation results by evaluating how the LASSO and Forward Stepwise
approximations compare in terms of predictive performance. Figure 5 shows boxplots comparing the
model error associated to the LASSO and Forward Stepwise predictive oracles, that is, the models in the
regularization path with the minimum model error. The best possible performance depends on the spar-
sity of the underlying model and the available sample size. In the sparsest case considered, the Forward
Stepwise oracle had a better performance than its LASSO counterpart for all sample sizes considered.
At less sparse regimes, the LASSO has an advantage for smaller samples, but Forward Stepwise catches
up as the sample size increases.

When an oracle is not available and the sample size is small, the AIC¢ estimate picked from the
LASSO (LASSO+AICc estimate) is able to track the model error of the LASSO prediction oracle. The
LASSO+AIC estimate had a competitive predictive performance across all simulated set-ups. This
can be regarded as the LASSO version of earlier experimental and theoretical results (15; 29) for the
non-negative garrote estimates. For large sample sizes and very sparse models, however, the Forward
Stepwise+gMDL estimate can outperform the LASSO+AICc.

5 Discussion/Concluding Remarks

The MDL framework introduced by Jorma Rissanen is an instrumental tool in extracting knowledge from
data. However, the high dimensional nature of many modern data sets poses computational challenges
due to the combinatorial nature of the optimization problem defining many MDL estimates. A common
approach to circumvent this problem consists in applying model selection criteria to a reduced list of
candidates generated by algorithms that heuristically identify potentially good models.

In this paper, we present a series of experiments comparing models selected from the regularization
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Correct positive rate # False positives
Sel. Oracle gMDL Sel. Oracle e¢MDL
n P q| FS LASSO| FS LASSO| FS LASSO| FS LASSO
50 100 5| 98.7 97.4 | 66.3 75.6 2.49 2.74 | 2.34 2.73
0.2 0.2 06 0.6 || 0.027 0.026 | 0.024 0.026
50 100 25| 89.5 83.8 | 57.3 71.1 || 21.58 19.97 | 21.54 22.91
0.4 04| 0.6 0.8 || 0.064 0.088 | 0.040 0.039
100 100 5 99.1 98.0 | 80.3 75.2 1.67 2.01 | 1.63 1.82
0.1 0.2 0.5 0.6 || 0.026 0.026 | 0.025 0.027
100 100 25| 87.5 83.0 | 70.7 74.0 || 17.94 16.97 | 18.58 19.18
0.3 0.3 0.5 0.5 || 0.092 0.099 | 0.060 0.082
1000 100 5| 99.9 99.2 | 97.9 81.5 0.50 0.70 | 0.60 0.58
0.0 0.1 0.2 0.5 || 0.017 0.019 | 0.018 0.018
1000 100 25 | 92.2 87.1 | 88.1 69.8 | 8.023 8.87 | 8.83 6.23
0.3 0.3 | 0.4 0.4 | 0.109 0.118 | 0.085 0.072

Table 1: Proportion of correct positives according to regression type and selection criterion:
oracle is available, Forward Stepwise can reach higher proportions of correctly selected variables than
LASSO. Between gMDL and AIC¢, gMDL proved better for screening (hence, AIC¢ is not shown).
LASSO+gMDL is a better screener in small samples and Forward Stepwise+gMDL is a better screener
for larger samples. Notice that the number of false positives is roughly the same for LASSO+gMDL and

Forward Stepwise+gMDL within each experimental settings (n,p,q).

If an

Comparison of the model error for Forward Stepwise and LASSO for different selection criteria
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Figure 6: Model errors for Forward Stepwise and LASSO for gMDL and AIC¢: Each panel shows
a boxplot of the model errors for Forward Stepwise and the LASSO and different selection criteria
as indicated (Ora is the predictive oracle). The dotted line shows the model error of the null model.
Throughout, the LASSO+AIC¢ estimate managed to track the LASSO prediction oracle model error. The
gMDL criterion can keep a good track of the oracle model error for Forward Stepwise in the sparsest case.
Overall, LASSO+AIC¢ have steadier predictive performance: it far exceeds Forward Stepwise+gMDL
in the less sparse cases and it performs on par with Forward Stepwise+gMDL in the sparsest case.
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path of either greedy (Forward Stepwise) or convex relaxation (LASSO) algorithms and selected by
either AIC¢ or the gMDL. We compare the selected models according to their prediction and variable
selection performances.

In what concerns variable selection accuracy, the list of models generated by Forward Stepwise
and the LASSO trade-off very similarly between false negatives and false positives, as evidenced by
the experimental mean ROC curves (see Figure 1 for a definition). In terms of the number of variable
selection errors, the Forward Stepwise+gMDL estimates seemed to have the best performance over the
cases considered. For maximizing the correct positive rate among the selected variables, gMDL had the
best results. For sample sizes smaller than the number of predictors being selected, the combination
LASSO+gMDL had a better performance. As the sample sizes increased, the combination Forward
Stepwise+gMDL achieved the best results.

Still regarding the selection performance of the two methods, our simulations suggest that, in small
samples, the irrepresentability index (7) does not have a great influence on the oracle number of selec-
tion errors for neither the LASSO nor Forward Stepwise. Asymptotically, however, not even the selection
oracle model picked from the LASSO path is model selection consistent for negative values of the ir-
representability index as postulated by theoretical results (38; 1; 40). The models picked from Forward
Stepwise by the selection oracle for large samples were less affected by the irrepresentable index es-
pecially in the sparser cases. The incoherence conditions used in (35) provide sufficient conditions for
the candidates recovered by Forward Stepwise to recover the best subsets, but our results suggest such
conditions are overly restrictive.

In terms of prediction, the model error of models picked from the Forward Stepwise and LASSO
paths by the prediction oracle performed very similarly. However, when an oracle was not available, the
LASSO+AIC, estimate had a good predictive performance across all settings tested. Such results repro-
duce for the LASSO, earlier simulation (15) and theoretical (29) findings for the non-negative garrote.
They do provide compelling evidence to prefer the LASSO over Forward Stepwise in a reduced sample
size situation. In that respect, we identify a minor theoretical gap: do Breiman’s theoretical results (29)
concerning the stability of the non-negative garrote carry over to the LASSO? Our simulation results
seem to suggest so.

Finally, we observe an interesting parallel between the theoretical results for AIC and BIC for the all
subsets case and our results. Regardless of the approximation used to obtain a list of candidate models,
the AIC¢ criterion was the best choice for prediction, whereas gMDL was the best performer for variable
selection. Given that AIC¢ and gMDL are “closer” to AIC and BIC respectively, it seems plausible that
AIC-like (alt. BIC-like) criteria are more suitable for prediction (alt. variable selection) purposes when
all subsets are substituted by a list of “approximately” best subsets.
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Abstract

We apply the Minimum Description Length model selection approach to the detection of
extra-solar planets, and use this example to show how specification of the experimental design
affects the prior distribution on the model parameter space and hence the posterior likelihood
which, in turn, determines which model is regarded as most ‘correct’. Our analysis shows
how conditioning on the experimental design can render a non-compact parameter space
effectively compact, so that the MDL model selection problem becomes well-defined.
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1 Introduction

The Bayesian approach to parametric model selection requires the specification of a prior prob-
ability distribution over the parameter space. The Jeffreys’ prior, which is proportional to the
square root of the determinant of the Fisher information computed in the parameter space,
has been shown to be the uniform prior over all distributions indexed by the parameters in a
parametric family [1]. Geometrically, its integral over a region of the parameter space com-
putes a volume that essentially measures the fraction of statistically distinguishable probability
distributions within that region [1]. In this interpretation, the Jeffreys prior distribution

det J;;(©)

w(®) = d‘e 1
( ) fdd@\/det ‘L«J(@) ( )
where © = {6, -- - , 04} simply measures the fractional volume of the small element d® relative

to total volume of the parametric manifold V = [ d9© \/det J;;(©). Here J;; is the Fisher infor-
mation on the parameter space © € R? and d?® is the standard Riemannian volume element on
R% The volume V also appears in the Minimum Description Length (MDL) approach to model
selection [2, 3], conceptually because it effectively measures how many different distributions are
describable by different parameter choices.

An important difficulty in applying the MDL approach to model selection occurs when the
parameter space is noncompact and the volume V' diverges. In this case, from the Bayesian per-
spective, a uniform prior on the parameter space does not exist, while from the MDL perspective
the number of models that might be describable diverges, leading to problems with the definition
of the description length. Of course the parameter space can be cut off by hand, but unless the
choice of cut-off is well founded, it can lead to artifacts in the comparison of different model
families [4, 5, 6]. Unfortunately in many practical problems the parameter space is noncompact
and V diverges. For example, in astrophysics, the detection of exoplanets depends on a model
of the light coming from the occluded star. This model will contain a non-compact direction
representing the orbital period of the planet — see, e.g., [7]. For examples from psychophysics
see, e.g., [4].

In this note we argue that merely specifying the experimental set-up — before the measure-
ment of any actual data — influences the prior distribution on the parameter space. This occurs
because, given the finite number of measurements in any experiment, many of the probabil-
ity distributions indexed by a parametric manifold will be statistically indistinguishable. In
cases where the parameter space is noncompact, the uniform prior conditioned on the experi-
mental setup can thus become well-defined. In the geometric language of [1], the volume that
measures the number of probability distributions in the parametric family that are statistically
distinguishable given a finite number of measurements can be finite even if the parameter space
is non-compact. In effect, specifying the experimental set-up can render the parameter space
compact.

Our results illustrate how the choice of experimental set-up influences the measure on the
parameter space of a model, thereby affecting which model is regarded as most ‘correct’. In
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section 2 we briefly review the computation of posterior probabilities, and consider the effect of
conditioning on the experimental set-up on the parameter space measure. In section 3 we apply
these considerations to a physical problem: the analysis of light-curves of stars with orbiting
planets. In this example we see that the volume of the parameter space is rendered effectively
finite after the experimental set-up is specified.

2 The effect of experimental design on the parameter space
measure

2.1 Review

Suppose one is interested in some physical phenomenon, and has made N relevant measurements:
Y = {y1,...,yn}. Further suppose that there are two different parametric models, A and B,
that aim to describe the phenomenon in question. The basic question to be answered is which of
the two models is the better one, considering the experimental data Y. The probability-theoretic
answer to this question is to compute the posterior probabilities P(A]Y") and P(B|Y'), which we
can write using the Bayes Rule as

_ P4
PAIY) = 5 [w(@)P(re), 2
where © = (61,...,604) € R? is the vector of variables parametrising A, and w(©) is the volume

form associated to the measure on the parameter space, which we will define shortly. A corre-
sponding expression can also be written for P(B|Y'). Since we wish to compare P(A|Y) and
P(B|Y), we can ignore the common factor P(Y), and we will assume P(A) = P(B) and drop
this factor as well. Thus the only remaining ingredient to be defined is the volume form w(©);
we simply quote the result from [1]: the volume form that gives equal weight to all statistically
distinguishable distributions in the parametric family is

- det Jl](@)
[ dde,/det J;;(O)

where J;;(0) is the Fisher information matriz, defined as the second derivative of the Kullback—
Leibler distance D(Op||Oy):

w(O) dle, (3)

Jij(©p) = 05,00, D(Op]|Op + ®)|o=0, (4)
A
Deeylle) — [ 76, ghs. 5)

where dZ is the integration measure over the sample space {Z}, and ©,(Z) is the distribution
function associated to the values of the parameters (67, .. .,6%). Now we have defined everything
needed to compute the posterior probabilities, and we illustrate the formalism by applying it to
the analysis of light-curves.
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Using this, we can compute the Fisher information matrix by computing the Kullback—Leibler
distance between two nearby points and Taylor expanding:

L Oo(Y)
D(©]|0,) = /dN O0(¥) In ===
( OH (1) Yy O(y) @q(y)
Ou(Y) + O, Og(§)AO; + Oy.09.Op () AO; AG;
N —/ng@O(g)ln o0(%) + 08,90 (¥) lt o, Op; Oo () A0 A0;
O0(¥)
. . . 1 (98,00(¥/))(99,00(y
= —/dNy (391.@0(@/)A9i+a€i89j@0(y)A9iA9j— 5( O(G)ZEE)J o ))A@A@j)
0p, B9 (1)) (0g.O0 (Y
: l/ng( b, o(y))(qe, O(y))AeiAej. (©)
2 o(¥)

EJi]'(@o)

On the third line, the terms linear in ©¢ vanish, as exchanging the order of integration and
derivation, the integral of ©g will yield a constant 1, which then differentiates to zero.

2.2 Effect of the experimental set-up

The measure (3) is independent of the experimental data ¥ and is constructed under the as-
sumption that the entire sample space can be measured by the observer. However, in real
experiments, instrumental and design limitations only allow observation of some subset M of
the sample space. Thus an observation either results in no detected outcome, or in a measure-
ment y; € M. Thus the effective predicted distribution of measured outcomes is not the ©(y),
but rather o0 for e M
. or

o) = { @éz{l)t’, no Izileeasu;ed outcome, (™)
where Q°U = fgéM dy ©(y). We will argue that if the models in the asymptotic regions of
a noncompact parameter space differ in their predictions mostly outside the observable region
M, the Fisher information for the effective distributions (7) can decay sufficiently quickly to
render the volume V = [ d9© \/det J;;(©) finite. In this section we will give one set of sufficient
conditions for this to happen and in Sec. 3 we will give a detailed example.

Consider a model, specified by parameters 0= (61,...,04) € R? and a distribution O5(%),
with ¢ € R". We will slightly simplify notation simply referring to the distribution as ©(%)
and understanding the implicit parameter dependence. Let us use spherical coordinates in the
parameter space RY with p being the radial coordinate, i.e. (81,...,84) — (p,1,...,0d-1)
Also consider an experimental set-up that can only make measurements inside some compact
region M C R™. Thus,the probability of no measurement being registered by this experiment is
©0ut = fy“¢M dy 0(y).

Our first assumption is a smoothness condition, so that inside the region M the distribution
does not fluctuate too much as one approaches the asymptotics of parameter space:

DO ers| < 0(p), for large p, i = 1,...,d, (8)

where 6(p) goes to zero as p goes to infinity; we will later specify the exact scaling needed.
Intuitively, this condition says that as the parameter p — oo, the models do not differ too much
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inside the observable part of the sample space M. This allows us to estimate
9,001 = ‘al-(1 —/ dij @(g‘))‘ < Vol(M)s, (9)
yeM

where Vol(M) denotes the volume of the compact region M.

Secondly we assume that inside M, the distributions ©(y) do not decay too quickly as p — oco.
Intutitively, since any experiment will only measure a finite amount of data (say N points), if
the probability of a single measurement lying inside M is significantly less than 1/N, then the
experimental set-up will not detect anything. Thus we will require

O(9) lyers > c(p).  for large p, (10)

where again we will later specify the scaling of ¢(p) with p.!
Using these assumptions, we can establish an upper bound for the Fisher information (6):

/ 90 (%)9;0(y)
yeM S (27)

2
+ Vol(M)?5? < Vol(M)% + Vol(M)26% ~ Vol(M)6

c .

[Ji;]

ai@Outaj@Out
@Out

2
< 2

1
/% 1

Thus the determinant of the Fisher information scales as
52\ 2
v/ Det Jij ~ (?) R (12)

and for the integral V' to be finite one must have suppression stronger than ,/Det J;; ~ p .
Thus the integral converges if ¢ is suppressed more strongly than

5(p) < YL, (13)

From the experimental set-up one can estimate how €(p) scales with p, which then determines
how d(p) needs to scale for the integral to converge. This is thus a sufficient condition for
rendering the parameter space effectively finite.

It is worth stressing that, following the above analysis, any method of deciding the validity
of a model is impacted by the choice of the experiment in a completely computable way, and
this should be taken into account when designing experiments.

3 The probability of exo-planet detection

3.1 Model for exo-planets

Consider a star orbited by a planet so that the planet periodically passes between the star and
Earth. The light output (light-curve) of such a star is a constant line, with a small periodic dip

1This condition can be relaxed by recognizing that if O(9)|gem decays too quickly as p — oo, then the models
in the asymptotic region of the parameter space make no measurable predictions for experiments designed with
a finite number of measurements. The example in the Sec. 3 will illustrate such a scenario.
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Figure 1: An example of a light-curve.

when the planet is eclipsing part of the star. One model for such a light-curve was proposed in
[7] as

y(T7D77777—7b;t) :b_g

~ 1 -1
tanh c( + 5) — tanh e(f — 5) , (14)
where (=)
sow(t—7
T'sin =7 .
wn
An example light-curve is shown in figure 1; T is the period of the planet; 5 is the duration of

t= (15)
the transit, i.e. how long the planet eclipses the star; D is the depth of the dip in the curve;
b is the total observed brightness of the star; and 7 is a phase parameter specifying when the
planets transit occurs. Finally, ¢ is a constant parameter specifying the sharpness of the edges
of the light-curve, expected to be fairly large as the transition between transit/no-transit is
relatively quick. The assumption ¢ > 1 greatly simplifies our analysis, and is not physically
very restrictive.

The parameter space for this model is clearly non-compact as 7' can range to infinity. How-
ever, we will argue that the space is effectively rendered compact after the experimental set-up

is specified. To be precise, the parameter space is%:

T e0,00), Del0,b], 7€[0,T], nel0,0T], bel0,bnal, (16)

where § is a small number that we will estimate, and the maximal brightness b4, is naturally
given by the brightness of Sirius, the brightest star visible from Earth. Assuming a circular orbit
as in Figure 2, the ratio of the transit time to the period of the planet is given by

N o 2 Vplanet 17
T 27R/vplanet 7R’
For the currently known transiting exo-planets this ratio is around ~ 0.1 [8], although for a
typical system one expects it to be smaller as large planets orbiting close to the star are easier
to observe, which favors largest values of the ratio. For an elliptical orbit, the answer will differ
by an O(1) factor, but will have the same dependence on r/R. Thus, 5 will always be a small
fraction of T'.

Now we can write down the probability density for measuring values § = (y1, ..., yn) for the
light-curve at times (¢1,...,tx) with the light-curve specified by parameters

2Note that we consider ¢ to be a constant, not a parameter.
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Figure 2: The basic set-up: an extra-solar planet orbiting a star of radius r with an average
distance R.

(69,09,63,09,09) = (T, D,n,7,b) as

(i —0(00;t5))2
1 —— g N __1 N _ 0. 2
e 29}, = (2m0) " ze 202 =1 h—30(05t)) , (17)

N
Oo(¥) =
oly kl;[l\/m

where we have assumed that the uncertainty in each measurement is Gaussian, and further we
have chosen the standard deviation to be equal for all measurements for simplicity. Using (17)
in the formula (6), we see that the the integrals in the Fisher information are Gaussian in yg;
thus we can compute them analytically to get

N

1
Jij = =) Z 00, y(0; tk)af?ij; tk)- (18)
k=1

This is our key formula, and we shall spend the next subsection analysing its properties.

3.2 Finiteness of light-curve parameter space

We now wish to apply the general arguments of section 2 to the exo-planet system. Consider
an experimental set-up that can barely measure two periods, and then consider shortening the
experiment slightly so that only one dip is detected; this is depicted in figure 1. To be precise,
the shorter set-up measures the beginning and end of a transit at ¢; and ¢2, n points in between,
and m points after the transit. The longer set-up makes measurements at the same times, and
additionally at times ¢3 and t4, detecting the second transit. In the next subsections we will show
that Jspors <€ Jlong, indicating that detecting the second dip is of fundamental importance to
experimental design; without the second dip the experimental set-up can’t differentiate models
with large enough 7T'. This renders the parameter space effectively finite, as an experiment can
not differentiate between models that have period 7" larger than the duration of the experiment.

3.2.1 Effect of measuring a second transit on det(J)

In this subsection we will give an estimate for the magnitude of the determinant of the Fisher
information, and show how it is affected by the inclusion of the second transit in the data. In
subsequent subsections we will exactly compute the determinant for a few specific experimental

set-ups.
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From (18) and the definition of a determinant, we see that in each term of the determinant
each parameter 6; appears exactly twice in the derivatives, i.e. each term is of the form

1
Jigr Jige Jiaga issaisgs ~ —35019 Ory OpY OpY Ony Oy Ory Ory Oy Iyy. (19)

As a rough estimate of the size the determinant, we investigate how large terms of this type can
be. The derivatives are

ory(0,1) — %%&? (Sin w(tT— ) w(tT— 7) cos w(tT— T)) ’ (20)
apy(0,t) = % (tanhc(f— %) — tanhc(f + %)) , (21)
o0, = ~ P oD, (22)
o(0,6) — —%@, Dhy(0,1) — 1, (23)

with f(@) = tanh?c(t + %) — tanh? ¢(f — %). (24)

From (24) we see that f(£) # 0 only when  ~ :I:%7 again assuming large c¢. This tells us that
the measurements that contribute most to the Fisher information are the ones on the edges of

the dips® | i.e. at times #1, 2,3 and ¢4 in figure 1. We write the condition |f] ~ % as

w(t—17)
T

. T
=2 2
sin 5T (25)

and note that the ratio of transit time to period is very small, < 1. This gives us the solutions
tTT ~nt % (26)
where n is an integer indexing the number of the dip, with n = 0 denoting the solitary dip if
only one is present in the data.
We wish to estimate the ratio of the determinants of the Fisher information by an order of
magnitude estimate
Jshort Js.oJs . Jgs. . Js . J3

1171 422 33 Y iajs Visgs ‘max (27)

Jiong  JE T JE T '

1151 %4272 “43j3 Viaja V is]5 ‘max

where both the numerator and the denominator are of the form (19), and according to the
argument above the maximal contributions come from the edge measurements. From (21-23) we
see that the derivatives with respect to D, 7,7 and b are all periodic at the edges: |9g,y(0,t1)| =
... =|0p,y(0,t4)] for 0; # T, and thus will cancel in the ratio (27).

It is crucial that dry, however, is not periodic due to the second term in (20). At the first

dip, t1,t2 = £k, we expand (20) to find

w2eD n?
48 T3’

3This statement is somewhat subtle, and we will discuss this matter in more detail in section 3.2.3; for our
current purposes it is sufficiently accurate.

Ory(t) ~ Ory(t2) ~

(28)
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while at the second dip, t3,t4 =1+ 7771:7 the contribution is

cD
10ry(ts)| ~ [Ory(ts)| =~ P (29)
ignoring signs that are irrelevant for this estimate. Thus we see that the Fisher information
increases strongly as the second dip is included:
Jshort (Ory(ti,2))?

n 6
Jlong - (Ory(t1,2))? + (Ory(t1,2)0ry(ts,a)) + (Ory(tsa))? ~ <T> <« 1, (30)

where we ignored order one coefficients. This is an explicit example of how our arguments from
section 2 work for a realistic model: when an experimental set-up does not have the capability
to detect two dips, it becomes impossible to determine the period, and consequently the Fisher
information is very small (or vanishing) compared to an experiment that is able to detect two
dips and determine the period more accurately. For any given experiment of finite duration At,
the Fisher Information will decline with 7" when 7" > At effectively rendering the parameter
space compact.

3.2.2 The tail T'— oo

To verify our claim that the parameter space is really rendered compact we need to show that
det J — 0 strongly enough as T is taken to infinity. It is easy enough to find the T-scaling of the
derivatives (20-23); 97y scales as T3, while the others stay finite in the large 7" limit. Thus, as
seen from (19), the determinant will scale as

vdet J ~ dry ~ (31)

1
ﬁ7
which shows that that the parameter space measure vanishes fast enough for large T' to render
the parameter space volume finite.

3.2.3 Explicit computation of Det(J;;) for specific experimental set-ups

While the order of magnitude estimate of the previous subsection offers an intuitive reason as
to why the Fisher information decreases sharply when the number of peaks detected falls below
two, it is still instructive to explicitly compute the determinant in a few experimental set-ups.

Detecting two dips: Let us first consider the case Jiong from section 3.2, i.e. measurements
at times indicated in figure 1. Using the derivatives (20-23) one can write down the Fisher
information matrix (18) as

2T +T2) -T1  2TiX —4T3X 2Ty
-1 1+n —2X 0 —(2+n)
T8 = 2 X —2X  4x? 0 4X , (32)
—AT3 X 0 0 16X?2 0
2T —(2+n) 4X 0 44+n+m
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where for brevity we defined

_ cDr? _ eD

Ty = ory(t) =0ry(t2) = s 8 D= Iry(ts) = —0ry(ts) = P (33)
_ D _ Oryltag)  Oryltaa)
= hy(t1,2,3,4) = SR (34)

In computing this matrix we used that f(#) = 0 for { # :I:%, which is true up to corrections of

order e~ ¢

, as seen from (24); for this reason one does not need to specify the exact times of the n
measurements during the dip, or the m measurements outside the dip, as up to e~¢ corrections

they all contribute equally. The determinant of the Fisher information is simple,
Det(JilJC.’ng) = 64nmX (T} + T}) ~ 64nm XT3, (35)

This result explains the subtlety referred to earlier: although measurements at the edges con-
tribute the most to the Fisher information, if one only has measurements at the edges (n =
m = 0) the Fisher information actually vanishes. Physically this is easy to interpret, as only
measuring the edges t1,...,t4 will yield four points lying on a line, and thus they cannot be
used to determine any information about the curve; other data points are needed to ‘anchor’
the data.

Detecting only one dip: Similarly one can compute the Fisher information in the ‘short’
experimental set-up, where measurements are made at the same times as before, except not at
t3 and ¢4. This yields

277 - 22X 0 27,
-7y i+n =X 0  —(1+n)
Jpet= | amX  -X 2X2 0 2X , (36)
0 0 0 8Xx? 0

2 —(1+n) 2X 0 2+n+m

and perhaps surprisingly the determinant vanishes: Det(Jisjhort) =0, up to tiny e~ corrections.
This indicates that the estimate in section 3.2.1 was an overestimate?: terms in the determinant
of J#hort are of the magnitude estimated, but the determinant is arranged in such a way that the
terms cancel to a high accuracy, and the compactness of the parameter space is strengthened.

4 Discussion

Our analysis has shown how the specification of an experimental design affects the measure on
model parameter spaces in MDL model selection (or equivalently the prior probability distribu-
tion on parameters in the Bayesian approach). Interestingly, the finite number of measurements
within a bounded sample space in any practical experiment can effectively render a non-compact
parameter space compact thereby leading to a well-defined prior distribution (3). Our analysis

“As the estimate illustrates an intuitive reason why the appearance of the second peak is so important, we
decided to include it.
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could be turned around to design experiments to discriminate well between models in some
chosen region of the parameter space by ensuring that the Fisher information (18) is large in the
desired region. It would also be useful to determine general conditions under which experimental
design effectively makes model parameter spaces compact, perhaps following the arguments of
Sec. 2.

Acknowledgments:  This paper was written in honor of Jorma Rissanen’s 75th birthday and
his many seminal achievements in statistics and information theory. VB and KL were partially
supported by the DOE under grant DE-FG02-95ER40893, and KL was also partly supported
by a fellowship from the Academy of Finland. VB was also partly supported as the Helen and
Martin Chooljian member at the Institute for Advanced Study.

References

[1] V. Balasubramanian, “Statistical Inference, Occam’s Razor and Statistical Mechanics on
The Space of Probability Distributions,” [arXiv:cond-mat/9601030], V. Balasubramanian,
“A Geometric Formulation of Occam’s Razor for Inference of Parametric Distributions,”
[arXiv:adap-org/9601001].

[2] J. Rissanen, “Modeling by shortest data description”, Automatica, 14:1080-1100, 1978.

[3] J. Rissanen, “Fisher information and stochastic complexity”, IEEE Trans. Inform.Theory,
42:40-47, 1996.

[4

I.J. Myung, V. Balasubramanian and M.A. Pitt, “Counting Probability Distributions: Dif-
ferential Geometry and Model Selection”, Proceedings of the National Academy of Science,
97(21) 11170-11175, 2000.

[5] F. Liang and A. R. Barron, “Exact minimax strategies for predic- tive density estimation,
data compression, and model selection”, IEEE Transactions on Information Theory 50,
2708-2726, 2004.

[6] Chapter 11 of P.D. Griinwald, The Minimum Description Length Principle, MIT Press,
June 2007.

[7] P.Protopapas, R. Jimenez and C. Alcock, “Fast identification of transits from light-curves,”
Mon. Not. Roy. Astron. Soc. 362, 460 (2005) [arXiv:astro-ph/0502301].

[8] http://obswww.unige.ch/ pont/simpleTABLE.dat

91



Festschrift for Jorma Rissanen

92



Festschrift for Jorma Rissanen

Enumerative Coding for Tree Sources

Alvaro Martin* Gadiel Seroussi * Marcelo Weinberger *

ToO JORMA, OUR FAVORITE BAYESIAN, HAPPY BIRTHDAY!

Abstract

Efficient enumerative coding for tree sources is, in general, surprisingly intricate—a
simple uniform encoding of type classes, which is asymptotically optimal in expectation
for many classical models such as FSMs, turns out not to be so in this case. We describe
an efficiently computable enumerative code that is universal in the class of tree sources
in the sense that, for a string emitted by an unknown source supported on a known
tree, the expected normalized code length of the encoding approaches the entropy rate
of the source with a convergence rate (K/2)(logn)/n, where K is the number of free
parameters of the source. Based on recent results characterizing type classes for tree
sources, the code consists of the index of the sequence in the tree-type class, and an
efficient description of the class itself using a non-uniform encoding of selected symbol
and string counts. The results are extended to a twice-universal setting, where the tree
underlying the source is unknown, and is estimated from the input sequence.

1 Introduction

Jorma’s journey through universal coding for parametric model classes went from the crude,
original version of the two—part codes of [1], to the Normalized Maximum Likelihood (NML)
codes of [2], which he first analyzed in [3] by establishing a connection between the two
methods. The transition from two—part codes to the NML code unveils, in a sense, an
obvious reliance on enumerative coding methods [4], via the method of types [5]. In the
method of types, the set of sequences of a given length n over a finite alphabet A is
partitioned into type classes, where two sequences belong to the same class if and only
if they are assigned the same probability for any choice of the model parameters. Since all
sequences in a type class are equiprobable, the universal probability assignment problem
can be reduced to optimally assigning probabilities to type classes.

This is indeed the case for the NML code, which can be interpreted as a description
of the type, generated by assigning to it a probability proportional to its ML probability,
followed by an enumeration of the sequences in the type class. In two—part codes, instead,
the ML parameter estimate of the model is quantized, thereby merging type classes, which
are assigned a probability using the same quantized parameter estimate. The two—part
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code of [1] is inherently incomplete since, once the quantized estimate is described, it is
redundant to allocate coding space to all the n—tuples; rather, only the sequences in the
corresponding type classes need to be assigned codes. Moreover, this two—part code assigns
a uniform probability over the merged type classes. These drawbacks are addressed in [3]
via yet another interpretation of the NML code.

Unfortunately, implementing the NML code is difficult even for the simplest model
classes. Other universal methods, based, for example, on the Krichevskii-Trofimov sequen-
tial probability assignment [6], are computationally efficient, and also assign the same code
length to all the sequences of a given type. They do not, however, provide a separate and
identifiable description of the type. In this paper, we are interested in universal enumerative
codes that possess both qualities: they provide a separate description of the type class of
the encoded sequence, and this description can be efficiently computed. By “universal” we
mean codes whose normalized average length differs from the entropy rate of the source by a
term of the form K 102%, where K is the number of free statistical parameters of the source,
in accordance to Rissanen’s lower bound [1, Theorem 1]. By “efficient computation” we
mean one whose encoding running time is polynomial in the length of the input sequence,
and with code construction time that is also polynomial in the number of free parameters
of the source.!

For exponential (or asymptotic exponential) families [7, 8] satisfying some mild regular-
ity conditions, most type classes have, to first approximation, the same ML probability [9,
Appendix A]. This observation leads to enumerative source codes that are universal (in
expectation), and for which uniform coding is used both for the set of type classes and for
the set of sequences of each type. In particular, for finite-state machine (FSM) models [10],
such a code can be efficiently implemented. Indeed, for an FSM F with a finite set of
states S and alphabet of size |A| = «, there are? © (n‘SKO‘_l)) type classes of sequences
of length n [11, attributed to N. Alon]. Thus, a uniform encoding of the type class gives
a normalized cost of up to |S|(« — l)k’% + O(%) bits. Moreover, by means of Stirling’s
formula and bounding the expectation as in [12], one obtains, for the type class of a ran-
dom sequence, that the expected normalized logarithm of the class size is upper-bounded
by H —|S|(o — 1)102gn” + O(L), where H is the entropy rate of the source. Thus, the term
subtracted from H compensates for half the cost of describing the type class, yielding an
overall penalty of |S|{a — 1)102% + O(1/n) bits over H, which is optimal by [1]. Since the
description of the type class is not difficult in this case, and efficient methods exist for
enumerating the class, the resulting enumerative code satisfies our requirements.

The question arises: Is a similar technique applicable to useful model classes which do
not necessarily induce an asymptotic exponential family? In this paper, we address this
question for the popular tree models [12, 13], which have proven very valuable as modeling
tools in data compression and other applications in information theory and statistics (cf. [12,

YOur complexity requirement will focus on the description of the type class, as there are known efficient
methods to do the enumeration of the class itself for most cases of interest. Notice that, since the number
of types in the cases of interest is generally exponential in the number of free parameters of the source, a
construction of the NML code relying on the computation of the ML probability of each type would be very
inefficient.

2We use conventional asymptotic notation: O(f(n)) denotes a function g(n) such that 0 < g(n) < cf(n)
for a positive constant ¢ and sufficiently large n, ©(f(n)) a function g(n) such that g(n) = O(f(n)) and
f(n) = O(g(n)), and o(f(n)) a function g(n) such that lim, .. g(n)/f(n) = 0. All logarithms will be to
base two. To simplify discussions, we will sometimes ignore fractional parts of code lengths, referring, for
example, to logn bits instead of the more precise “at most [logn] bits.” This loose convention will be
immaterial to the main asymptotic results of the paper.

94



Festschrift for Jorma Rissanen

T o e T o ey
L 3 E 1 o) /1 g™
S, @ 6 o .0 @
¢ o ¢ e

Figure 1: Tree models over A = {0, 1}

13, 14, 15, 16]). Tree models offer a compact representation which, in real life applications,
can often model finite-memory processes with a significantly smaller number of parameters
compared to fully parametrized Markov models. These savings translate to a lower model
cost [1] and a faster convergence to optimal performance (e.g., compression ratio).

In contrast to the FSM case, for a tree model with a set of states S, which in general
does not induce an asymptotic exponential family of distributions [8], the number of type
classes grows polynomially as n¥, but the exponent k may be larger than (o — 1)|S7|. The
asymptotic number of type classes in this case is fully characterized in [17], generalizing
the corresponding result for FSMs. A simple example that illustrates this phenomenon is
easy to construct: Consider the trees 77 and 75 of Figure 1. It can be shown that each
type class of T3 is partitioned into up to a constant number of type classes in T5. Since
the tree T has the “FSM property” (in the sense that the occurrence of a symbol in a
state defines the next state), the number of type classes, by the above discussion on FSMs,
is ©(n®) for both trees, even though T} has four states. Since, as noted, the partitions
are essentially the same, lower-bounding the average code length appropriately, we can
readily see that an enumerative scheme using a uniform code for the type classes would not
exploit the reduction in the number of model parameters of T} with respect to T5. Notice,
however, that a type class with significantly different conditional empirical distributions for
states 00 and 01 of 75 will have small probability under the model 77 for any choice of
model parameters, which suggests that the savings in code length might be recovered with
a non-uniform code for the type classes.

In this paper, we construct such non-uniform code, leading to an efficient enumerative
coding scheme which is universal (in expectation) for tree sources. While in the context
of the two—part code of [1], the use of non-uniform codes as in [3] has only a third order
effect (not affecting the rate of convergence to the entropy), here the non-uniformity is
crucial to achieve second-order optimality as defined by [1]. Furthermore, in the twice—
universal setting, in which a tree is not given and optimality is rather required for any
possible tree, we show that, by suitably estimating a tree from the data, the sequences
in the aforementioned “atypical” type classes for each given tree would in fact estimate a
different tree. These type classes can thus be discarded from the coding space, leading to a
twice—universal enumerative code for sequences in the class of tree models.

Our implementation of the second part of the enumerative code, namely, the index of 2™
in its type class, will be based on the enumeration of tree type classes from [17]. As for the
first part, namely, the description of the type class, a key building block in our scheme will
be a collection of codes for encoding counts of occurrences of certain patterns within the
input sequence. In the example of Figure 1, given the empirical conditional distribution,
P, in state 0 of 77, and the number of occurrences, ng, of the pattern 00, we can estimate
the number of occurrences, né‘”, of symbol a in state 00 of T5 as ﬁé‘” = ngp(a). If ng and p
have already been described to the decoder, we can then encode the difference nﬁ,‘” — ﬁé‘” by
assigning high probability to small absolute differences. This observation will be generalized
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to encode, efficiently, a collection of pattern counts that uniquely determines the type class
of a sequence.

The rest of the paper is organized as follows. After introducing our notation and formal
setting in Section 2, in Section 3 we introduce variable length codes for symbol counts,
following the observation above. These codes, which are based on Golomb codes [18] and
dubbed symbol count codes (SCCs), will help us obtain, in Section 4, a precise asymptotic
estimate for the size of the type class of a sequence with respect to a given tree. This
estimate complements the exact combinatorial characterization of the type class in [17]. In
Section 5 we generalize the construction of SCCs to codes for pattern counts, dubbed string
count codes (SCCS*)7 which yield an efficient description of the type class and, combined
with the result of Section 4, lead to a universal enumerative code. The SCCs" also yield
an alternative construction of enumerative codes, taken with respect to an extension of
the original tree 7', and where the increment in the cost of describing the larger model
is compensated exactly by the reduction in the expected size of the class, maintaining an
expected code length that is still optimal with respect to 7. In particular, such a code
can be derived from the FSM closure [15] of T" using known techniques for enumerating
sequences in FSM type classes. Finally, in Section 6 we present two approaches for the
twice-universal setting. The first approach is a standard plug-in scheme where the tree
is first estimated, and then the previously derived universal enumerative code is applied
as-is, using the estimated tree in lieu of the true one. In the second approach, we take
advantage of the observation above that for any given tree, there will be sequences that are
“atypical” for the tree, and will not estimate it regardless of the source parameters. Thus,
the enumerative code is significantly simplified in the twice-universal setting by excluding
such sequences from the coding space for the estimated tree.

2 Preliminaries

Let A be an alphabet of o > 2 symbols, and let A denote the empty string. We denote
by uf the string wju;i1 ... up over A, with uf = A when j > k, and we omit the subscript
when j = 1. For a string u = u® we let T = wpugp_1...u1 denote its reverse, lu| = k its
length, and we write hd(u) = w1, and tail(u) = u4 ; |S| also denotes the cardinality of a set
S. Concatenation of u and v is denoted wv, and u=v (resp. u<wv) denotes the prefix (resp.
proper prefix) relation.

Our models will be based on full a-ary trees® (or simply, ¢rees), in which each edge is
labeled with a symbol in 4, and each node with the string formed by concatenating the
edge labels on the path from the root (labeled by A) to the node. We identify a tree T' with
its set of nodes, and each node with its label, e.g., v € T indicates that there is a node
of T labeled u. Leaves of T are called states, and the set of states is denoted Sr. For a
sufficiently long sequence z", we refer to the (unique) prefix of 27 in Sp, denoted o(2"), as
the state selected by x™ (the dependence of o on T will be assumed from the context). For
the purpose of selecting states, we assume that z™ is preceded by an arbitrary fized semi-
infinite string 2% . This convention uniquely determines, for any given tree, an initial
state sg “selected” by A, and guarantees that any (short) sequence selects a state. Thus, 2™
uniquely determines a state sequence o(A)=so,o(zl), o(z?), ..., o(z™), with o(2") referred
to as the final state of ™ with respect to T. If o(z') = s, we say that the symbol z; 1
occurs in state s. The notion of occurrence is extended to arbitrary strings, namely, if for

3A a-ary tree is full if and only if every internal node has exactly a children.
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u = u* and some index ¢, 0 < ¢ < n, we have xﬁ_kH = u, we say that x;41 occurs in context
w in 2" (notice that if x;11 occurs state s, then it occurs in context 3).

Trees do not necessarily define a next-state function, since the occurrence of a symbol
in a state does not necessarily determine the following state. In the tree 77 of Figure 1, for
example, the occurrence of symbol 1 in state 0 does not determine whether the next state
would be 100 or 101. When a next state function exists for a tree T' we say that T" is FISM.
It is shown in [15] that T is FSM if and only if every suffix of a state of T belongs to 7. A
tree T' is a refinement of T if T C T". If a state s of T' is an internal node of a refinement
T', we say that T” refines s. The tree Tr obtained from 7' by adding all the suffixes of states
of T is called its F'SM closure; Tr is the minimal FSM refinement of 7' [15]. In Figure 1,
Ts is the FSM closure of T;.

A tree source is determined by a tree T and a set of |S7| conditional probability distrib-
utions Pr(-|s), s € Sp, over A. This induces, for each length n > 0, a natural probability
assignment for a random variable X™ over A" (“emitted” by the source), given by

Pr(X" =a") = [[Pr (zlo(="), n>0 (Pr())21). (1)
i=1

Different trees and sets of conditional probabilities can generate the probability assign-
ment (1); we refer to these as tree models for the source. A tree model (T, Pr) is minimal if
for every internal node u of T there exist states uv and ww such that Pp(-|uv) #Z Pr(-|uw).
We will loosely use the symbol T to refer both to a tree model and to its underlying tree,
the conditional distributions being understood from the context. All expectations in the
sequel will be with respect to Pp(-).

For a sequence z", a string s, and a symbol a € A, define

n{(@") = [{i: 0<i<n, @iy =5 21 —a}l,

namely, the number of occurrences of a in context § (or, if s € St, in state s) in ™. Define
also ng(a™) = 3 cu nga)(x"), the number of occurrences of context § (or state s) in x
(We omit the dependence of counts on 2™ when clear from the context.) Notice that we
also have ns = Y, 4 Tisq- Furthermore, denoting by i(u) and f(u) the indicator functions
of the predicates w = x(lluH-l and U =z, i.e., x1 occurs in context u and W occurs at

(

the end of ™), respectively, we have ngs + f(as) = n® 4+ i(as) for every a € A. To simplify
expressions, we will use a generic constant § to account for border adjustments due to terms
of the form i(u) and f(u). In coding situations these terms will be known to the decoder,
and in any case border effects will have no bearing on the agymptotic results.

From (1), using a simple algebraic argument, it follows that for sequences 2" and y",
we have Pp(a™) = Pr(y") for all choices of the distributions P(-|s), s € St, if and only
if nga> (z™) = nga)(y“) for all s € St, a € A. Thus, in the case of tree models (as in other
cases of interest), the notion of type defined in probabilistic terms in Section 1 admits a
combinatorial characterization. For a tree T, and a sequence z", we denote by N (T, z")

n—1

pupt €

the collection of counts {né") }sesy,aca- The type class of ™ with respect to T' can then
be defined as
T(T,z")={y" € A" : N(T,y") = N(T,z") }.

A tree T and a sequence z" determine a probability distribution, ]5T7 defined by the
empirical conditional probabilities Pr(als) = nga)(a:”)/ns(a?”) (as before, we omit the de-
pendence of the distribution Pp on ™ when clear from the context); Pp(z") is the maximum
likelihood probability of 2™ under 7.
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An enumerative (source) code for T is comprised of two parts: a description of N(T), z"),
and an index of 2" within 7(7',2"). By using a trivial bound |7(7,2")| < [[;cg, I el
ag

= (a)y?
Ams !
Stirling’s formula, and the application of bounds on expectations from [12], we obtain the
following lemma, which bounds the length of the second part of the enumerative code.

Lemma 1 Let T be a tree source with entropy rate H and all conditional probabilities
nonzero. Then,
L log [T(T, 2™ ] < H — Sel(a—1)"8" 4 o (1 )
n & ’ - r 2n n/)’
Denote by N,(T,z"), beA, the collection of counts {n&“@seST,aeA\{b}. The lemma

below follows from simple linear algebra arguments on the set of state-transition equations
for an FSM. The proof is omitted.

Lemma 2 If a tree T is FSM, then for any b € A, No(T,z"™) and the final state, o(z™), of
2" in T completely determine N (T, z").

A generalization of Lemma 2 for unrestricted tree models can be found in [17].

3 Non-uniform codes for symbol counts

Since all the counts in A,(T,z") are upper-bounded by n, it follows from Lemma 2 that
(a—1)|ST|log n+log|St| bits suffice to describe 7 (T, 2™) when T is FSM. Therefore, by (2),
an enumerative code for an FSM tree T, based on uniform coding of the type class, is
universal (in expectation), with an optimal normalized redundancy of |ST\(a—1)1°2% bits.
As discussed in Section 1, however, for a general tree model, an enumerative code with
a uniform encoding of type classes may be suboptimal. This motivates the discussion in
this section, where we present a class of non-uniform codes, dubbed SCCs (symbol count
codes) for describing symbol counts m(f,l ) in certain contexts w. These codes will be used
as a tool to bound the expected size of the tree type classes in Section 4, and, with a
further generalization, to construct the actual non-uniform code for N'(T,z") in Section 5.
Together, both contributions will lead to a universal, efficiently computable enumerative
code for general tree sources.

Consider a symbol a and a fixed context w such that s < w for some state s of T'. Define

(a)

g 1 2pe >0,

0 otherwise.

_ (a _
Zw,a = ngu) - Ty » Zw,a = |Zw,a

S

, and sgw’az{

As customary, denote by |z (resp. [2]) the largest (resp. smallest) integer satisfying |z| <

z < [z]. Given sgy, 4, | Zw,als s, n&“% and ny,, it is possible to reconstruct n® as

(a)
Zua) + [5m0] S =1,

(a) _
Ty” = (@
N Vﬁs an — |Zwp,a) , otherwise.

(3)

Hence, if ng, nga), and n,, are known by a decoder, encoding sg,, , and | Zy ] suffices to

describe m(,?). For ny, > 0 we will encode | Z,, o] using a Golomb code of parameter [w/n W
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Specifically, we use a unary code for the integer division LZWIJT = |Zw,al / [v/Tw], using

LZw,aJTJrl bits, and encode LZw,aJJ‘ = | Zw,) mod [\/nww uniformly with log [w/nww bits.

When n,, = 0, we have ng,f ) = 0 for all a, and encoding ng,f ) is not necessary; we define

LZw,aJT = 0 in this case, to simplify discussions on expectations.
The intuition behind this code, which we denote Cy 4 (nq(,fb >>, is that we can think of

(@)
Zw,a as the absolute difference between the true value of ng,f ) and the estimate %‘*an that
the decoder could guess from the known counters ng, né‘” and n,, for a typical sequence

(a)
of the source (7', Pr). The probability of the estimate “=—n,, differing from the true value
decays exponentially fast, which leads to a constant expectation of LZw,aJT, as stated in

the following lemma.

Lemma 3 Let T be a tree source with all conditional probabilities in states of T different
from zero. Then, the expectation FE [ LZw,aJT} is upper-bounded by a constant independent
of n.

For conciseness, the proof of Lemma 3 is omitted here. Although somewhat technical, it
follows rather straightforwardly using a large deviations argument based on [19, Theorem
2.

By Lemma 3, the expected length of the unary part of the Golomb code used in SCCs
is upper-bounded by a constant. On the other hand, when n,, > 0, a uniform encoding of
LZw,aJJ‘ = |Zy,q] mod [\/ﬁw takes log (\/m-‘ bits. The code length of this uniform part
can be upper-bounded by log (\/m + 1) <1+ % log n.

The foregoing discussion yields the following corollary to Lemma 3.

Corollary 1 The expected length of the code Cy o (ng,f)> is upper-bounded by % logn+0O(1).

Thus, under appropriate conditions, SCCs can code occurrence counts using, on average,
half the length of the naive encoding.

4 The expected size of T (T, X").

In this section we study the asymptotic behavior of F |7 (T, X™)|, thus estimating the
expected length of a uniform encoding of the index of ™ within its type class. The index can
be computed and uniformly encoded, efficiently, using the combinatorial characterization of
the tree type class in [17]. When T is FSM, the bound in (2) for %E [log|T (T,z™)|] is tight,
and as mentioned, it leads readily, by means of Lemma 2, to the optimality of enumerative
coding where type classes are encoded uniformly. For general trees however, the coefficient
$1S7|(er — 1) in the negative term of order k’% in (2) is not the best one can obtain, and
a larger coefficient is necessary to offset a corresponding length increase in the type class
description part. We derive a tighter bound later in this section.

We first show how an economic description of N(Tr,z"), the type class of x" with
respect to the FSM closure of T', can be obtained by means of SCCs from one of N(T), z").
This, together with the bound (2) applied to Tr, and a coding argument, will lead to the
desired tight bound. The description of A(T, X") itself will be discussed in Section 5, and
will require additional tools.
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Let Z(T) = T\ Sr denote the set of internal nodes of 7. We say that a state s€St
is forgetful if as € Z(T) for all a € A. In a forgetful state, a next-state transition cannot
be determined for any occurring symbol ¢ € A. A tree with no forgetful states is called
canonical. It can readily be shown that, by sequentially refining forgetful states until no
such state is left, a tree T is brought to a unique minimal canonical extension [17], which
will be denoted T¢. In a sense, forgetful states are the farthest away from satisfying the
FSM property, and 7. brings a tree T “closer” to its FSM closure Tp. Thus, we have
T C 1. C Tp. It is also readily verified that if an extension step on a forgetful state s
transforms, say, a tree 7" into 7", then N'(T”, 2") and the final state of 2" in T" completely
determine N(T”,2™). Thus, N (T, 2") is fully determined by N (T, z") and oc(z"), the
final state of z™ in T, leading to the following result.

Lemma 4 N(T,,z") can be reconstructed from a description of N(T,z") and a description,
of length log |St.|, of oc{z™).

We define the state transitions graph Gr=(Vr, Er) of a tree T, with vertex set Vr=>Sr,
and edge set Ep comprising all state pairs (u,v) such that some sequence causes a direct
transition from w to v in 7. It is readily verified that Fp is given by

Er = {{u,v) : u < tail(v) or tail(v) < u} . (4)

Lemma 5 ([17]) Let Gro=(Viy, Ex,) be the state transitions graph of Te. The number of
type classes of sequences of length n with respect to T is © (n'ETc|_|VTc|).

The value in the exponent of the bound of Lemma 5, |Ez,| — |Vz|, will arise also in
the coefficient of the term of order logn/n in the normalized expectation of log |7 (T, X™)|,
Ere =V,

which we will show to be upper-bounded by H — M logn + O(1/n). When T is
FSM, T is also canonical, and there are exactly « edges departing from each state in 7.
Thus, in this case, we have |Er.| — |Vr.| = |S7|(ac — 1), in agreement with Lemma 1 and
Lemma 2.

For a node t € Z(Tp)\Z (1) we define the (FSM) over-refinement of t as ky = |{a € A:
at ¢ Z(Tc)}|. The name given to ; stems from the fact that it counts symbols for which
an extension from ¢ was not needed in order to determine a next-state transition in T, yet
it was added in the process of constructing the FSM closure 7. The total over-refinement

of T is now defined as
kr= Y (a=1)(r—1). (5)
teZ(Tr)\I{1c)

The following lemma connects k7 with |Er.| — |Vrp| and |E7,| — V.| = |S1.| (0 — 1).
The proof, which is omitted here, follows essentially from the definitions in (4) and (5).

Lemma 6 Let St,. denote the set of states of Tp. Then,
w1 = = (|Ere|=Vre|) + |S7p[(2—1). (6)

As discussed above, the exponent in the asymptotic growth of the number of type classes
in T and Tr is given by |Er,|— |V, | and |S7,. |(e—1) respectively. Hence, by Lemma 6, there
is, asymptotically, a factor of n7 more type classes in Tr than in 7, which suggests that
roughly 7 counts of logn bits each would suffice to describe N(Tp,z") from N (T,z").
The next lemma confirms this intuition, and establishes the fact that the counts can be
encoded, on average, with a cost of at most %logn bits each.
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Lemma 7 Given N(T,z™), the collection N (Tr,x™) can be described with SCC encodings
of kT counts n&f) as discussed following (3), plus a constant number of bits used to describe

op(x™), the final state of ™ in Tr.

Proof. Since op(z") determines o.(x™), by Lemma 4, the decoder can reconstruct N (T, z")
from (T, z"). Let A = Z(Tp)\Z(T). We will describe niz) for every child tc of ¢t € A and
every a € A, proceeding in ascending order of length of t. We claim that proceeding this
way we are sure that ny. is known (has been described) when describing n,EZL), and, thus,
the latter can be encoded using SCCs. Indeed, if ¢t = bu € A, with b € A and u € T¢, then
Npy, = m@ + § is known. Otherwise, if ¢ = bu but u ¢ T, then u is an internal node of
Tr shorter than bu, and thus np,. = nSf’Q + ¢ is known for every child buc of bu. Thus, the
claimed order of description is satisfied. Consider now a node tc € A, ¢ € A. For every
symbol a such that at is an internal node of T¢, atc € T, and therefore nig) = Ngte + 0 is
known, and requires no further description. We take now a symbol b such that bt is not an
internal node of T¢, and, for each child ¢c of ¢ with ¢ # b, we describe k¢ —1 counts n,EZL), a#b

(6)

such that at is not an internal node of 7c. We can then compute ny, = nue— >, nﬁ? and

then anZ) = n§a> — D etb nig) for every a € A. Overall, we obtain N'(Tr,z") from N (T¢, z™)
and op(z™) by providing (aw— 1)(k¢— 1) counts for each ¢ € A, each of which can be encoded
using SCCs. |

In the following theorem, we apply the results of Lemma 7 and Corollary 1 in a coding
argument, to obtain the desired upper bound on the expectation of |7 (T, X™)|.

Theorem 1 Let X™ be a random sequence emitted by a tree source T with entropy rate H
and all conditional probabilities different from zero. Then,
‘ETC‘ _ |VTC|

2n
Proof. A sequence in 7(T,z™) can be encoded by describing the subset 7 (Tg,z™) to
which the sequence belongs, and then, uniformly, its index within that subset. Hence, by
Lemma 7, and Corollary 1, we have

B log | T(T, X™)| | < H - logn+ O(-). )

E[log |T(T, X™)|] < E [log [7(TF, X"™)[| + %Krlogn +0(1), (®)

the left-hand side of (8) being a lower bound on the expected length of any such description,
since the sequences in the type class are equiprobable. Normalizing, and applying Lemma 1
to Tr, we obtain

1 S -1 1
L5 llog [T (T, X)) < 1~ PO =D g0, oLy
n 2n n
which, together with (8) and Lemma 6, yields
! n ‘ETC‘ — |VTC| 1
- <H - el el =),
~E[log|T(T, X")|| < H 5 logn+0(~) (9)

O

Theorem 1 complements, by providing an asymptotic interpretation, the exact combi-
natorial characterization of the tree type class in [17]. While the combinatorial character-
ization is instrumental in implementing the enumerative code, the asymptotic result helps
us estimate the average code length.
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5 Encoding the type class

In this section, we present an efficiently computable description of the type class 7 (7, z")
(or, equivalently, the counts A (T, z")), which, together with the enumeration of the type
class, will yield the sought universal enumerative code for tree sources. We assume, through-
out, that the tree is not trivial, i.e., |Sp| > 1.

In analogy to Lemma 2 for FSMs, it is shown in [17] that A/(T, 2™) can be described with
|Er.| — |V | symbol counts. Using log n bits to encode each, and bounding the expectation
of %log |7 (T, X™)|, where X" is a random sequence emitted by 7', as in Theorem 1, we

obtain an upper bound of the form M log n+O( ) on the normalized “redundancy”
of the code length over the source entropy rate H. In general, however, |Er,| — |Vi,| may
be strictly larger than |S7|(cv — 1), and such code may be suboptimal. Therefore, a tighter
description of the type class is needed. We will show that encoding N(T,z") (which is
generally insufficient to characterize the type class) uniformly with |S7|(o — 1) counts of
logn bits each, we can complete the description of A (T,z") by encoding an additional
|Bre| — [Vie| — |STl(er — 1) counts requiring on average 3 Llogn + O(1) bits of description
each. Together with the bound of Theorem 1, this reductlon in code len th for the additional
counts will result in an optimal expected normalized redundancy of | T log n+0(1/n)
bits over H.

Let h and d denote, respectively, the minimal and maximal depth of leaves in T'. For
h < m < d, let T denote the truncation of T to depth m, and let Tgm] denote the canonical
tree of TI™. Notice that, by the definition of a forgetful state, no state of maximal depth
of Tt ig refined in Tc[m], and therefore T[ " has the same depth as T, We denote by
Sém] the set of states of Tc[m]7 and by a[m]( ) the state selected by v in Tc[m]. Algorithm
Encode TypeClass, shown in Figure 2, lists the main steps in the proposed encoding of
N(T,z"™). The algorithm starts by encoding, uniformly, the counts in A (T,z™) with logn
bits per count, and the final state of 2™ in 7¢, using a constant number of bits. It then
iterates to describe, incrementally, each count set A/ (T(E’H_l], a™) given a previously described
set N(T.g[k]7x”), for h+1 < k < d. Notice that since T is a full balanced tree, T+ is
FSM, and, hence, p e ey By Lemma 2, (T 27 is completely determined

by Np(T, 2™) and the given final state. Thus, a decoder can reconstruct N (T(Eh'H],
[d]

the information provided in Step 1 of EncodeTypeClass, and can recover N (T¢", 2™) from
the information encoded in the loop of Steps 3-4. Since T(Ed]
sufficient to reconstruct N (T, z™).

x™) from

is a refinement of 7', this is

Algorithm EncodeTypeClass (7, 2™)

1. Encode Ny(T,z") and the final state of z" in T¢.
2. Set h=min{|s|:s € Sr} and d = max{|s|:s € Sr}.
3. For k=h+1tod-1

4 Encode N(Tgkﬂ],m”) given N(Tc[k],m”).

Figure 2: Encoding of N (T, x™)

Clearly, the crucial step in EncodeTypeClass is the encoding of the refinement of coun-
ters from Tc[k] to TCUH'I] in Step 4. For u,v € A*, we denote by N, , the number of times a
transition from context @ to context T occurs in ™. In particular, when u and v are states
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of a tree, N, , denotes the number of times state v is selected immediately after state w.
Notice that, for a state t, we have

ne= Y Nyo= Y Nyy+3. (10)
SEST SEST

Our implementation of Step 4 will amount to describing all state transition counts Ny,
with s,t € S+
ng@ = Zaue k] N qu- However, not all the counters in the set will be explicitly described,

[

. This set of counts is sufficient to determine N (T£k+1]7;z:”) as we have

since some will be derivable from N(Ték],x") and earlier portions of N(Tékﬂ]m"). The
crux of the encoding is to find a minimum subset of transition counts, and the order in
which they are described, that suffice to determine all of them, and, at the same time, can
be described economically.

The following lemma presents conditions that will allow a further simplification in the
description of N (T, é’“*”, x™). The proof is straightforward, and is omitted here.

R such that tail(t) &

Lemma 8 For k such that h+1 <k <d—1, lett be a state ofTC[
I(Tc[kH]). Then, all transitions into t depart from a unique state s = Jgk“](taﬂ(t) ). Thus,

from (10), N = ny + 6, and encoding Ny is equivalent to encoding ny.

In our implementation of Step 4 of EncodeTypeClass, all explicit encodings will be for
counts IV, ; chosen with ¢ satisfying the conditions of Lemma 8, and the following additional
condition: there exists a state s’ of T such that s’ < tail(¢). It turns out that the SCCs
of Section 3, which are defined for individual symbols, do not suffice to implement these
encodings optimally. (They did suffice in Section 4, when used to encode symbol counts for
nodes that refined the original tree T'; here, however, we need to encode counts for nodes
of T.) Therefore, next, we generalize SCCs to string count codes (SCCs*)7 which, as their
name suggests, are defined on string counts rather than counts of individual symbols.

Consider a fixed string u = u? such that ' < u9=1 for some s’ € Sp. We define a code
for ng, and analyze its expected code length. Let [ = max{j:1<j<q¢g—1,w € T}. Since
wy € T, is well defined. Also, all proper prefixes u’ of u, | < i < g, are sufficiently long for
u to determine a state in 7. For [ < i < q, define the following short-hand notations:

a (wit1)
b

5; = o(ul), n; = ng, , ng = ng, mi = nz . (11)

The occurrence of context u? in z" under the above conditions implies the occurrence of
the state sequence {s;}, I4+1 < i < g—1, with symbol w;41 occurring in state s; (except
possibly in border situations, which we shall ignore). In the language of [17], this is a forced
state sequence. For example, in the tree T7 of Figure 1, an occurrence of state 100 must
be preceded by two occurrences of state 0, with forced occurrences of the symbols 0 and 1,
respectively. This knowledge is exploited in the following manner: given m;,, the number
of times context u't! occurs within ™, we can estimate ng by my4q H?:_lﬂ_l % Define (with
a slight abuse of notation previously defined for SCCs),

-1
! ng 1 z,>0,

Zy = Mg — M41 | | ) Zu = |ZU‘ ) and Sgu = .
iy T 0 otherwise.

In the encoding of ny with SCCs", denoted C%(ng), we encode | Z,| using a Golomb
code of parameter (‘ /mH_l-‘, namely, a unary code for the integer quotient LZujT =
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[ Z.]/ (\/W_H], using | Z,]" + 1 bits, concatenated with a uniform code for |Z,]t =
| Zu] mod [,/myr1| using log ([,/Miz1]) bits. When n; = 0 for some [ < i < ¢, or when
my41 = 0, we also have ng = 0, and no encoding is necessary; we define LZujT = 0 in this
case. The results below are analogues of Lemma 3 and Corollary 1.

Lemma 9 LetT be a tree source with all conditional probabilities different from zero. Then,
the expectation F [ LZUJT] is upper-bounded by a constant independent of n.

Corollary 2 The expected code length of Cy(nzg) is upper-bounded by %logn +0(1).

Corollary 2 shows that SCCS™ provide an efficient way to encode certain string occurrence
counts. Lemma 8 provides a way to recover transition counts NV, ; from string counts ny,
and certain subsets of these transition counts are sufficient to reconstruct N (T£k+1]7m”).
We will next show that it is possible to select a minimal set of counts for strings ¢ satisfying
Lemma 8, and the order in which they are described, to obtain a complete description of
N (Tgkﬂ], x™) using SCCs". We distinguish between states of Tgkﬂ] that are added to Tgk]
for they belong to T+ and states that arise in T(Ek'H] in order to take T%+1 to canonical
form. Let U, = (Tékﬂ]\T[kH])\Tgk] be the set of nodes of TI" which are not in the

original tree T¥+1] and are not in Tg@]. Let Ug41 be the set of parent nodes of elements of
U1 U1 = {2 : za € Upy,a € A}. The following lemma and corollary are instrumental
in identifying an appropriate set of counts to describe N (T(Ek'H], ™).

Lemma 10 For h+ 1<k <d—1, we have Upy; C S([zk].

Corollary 3 Forh+1<k<d-1, Tékﬂ] refines states of Tc[k] by at most one level.

The proof of Lemma 10 is deferred to Appendix A. The proof of Corollary 3 then follows
readily.

All the encodings in Step 4 of EncodeTypeClass will be done through the auxiliary
procedure P shown in Figure 3. We denote by Sém] (r) the set of states of Tc[m] that are
children of r, i.e., of the form ra, a € A. Given a node r and a symbol ¢, P(r, c) describes
N, for every s € g+l (r), and every state ¢t € SEY such that ¢ = hd(¢). We assume (and
will later verify) that when the procedure is called, these states ¢ satisfy the conditions of
Lemma 8, so that Ny; = n; + 6. In the procedure, b is a fixed but arbitrary symbol from
A, and A, = A\ {b}. Decoding steps are shown in brackets, to verify the losslessness of the
code.

Notice the use of SCCS" in Steps 2 and 9. In Step 2, ¢ = erd is a state of Tékﬂ] and,
thus, |er| < k + 1. Hence, r is a leaf of Tc[k] with |r| < k, which implies that there exists a
state in T that is a proper prefix of rd for all d € A, which is a condition for SCCS" to be
applicable. In the case of Step 9, it can be shown that the required condition is guaranteed
by Step 5, using similar arguments. Furthermore, in the application of SCCs" in Steps 2
and 9, all states s; in the definition (11), have a length smaller than k + 1. Thus, n;, ng,
and myy1 are known from N (T(Ek]7 x").

We are now ready to present the full implementation of Step 4 of EncodeTypeClass,
which is shown as Procedure RefineTypeClass in Figure 4. Procedure RefineTypeClass
selects transition counts and an order of description that allows Procedure P (and, thus,
SCCS*) to be used, and, as we shall prove, such that the total number of counts that
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Procedure P(r,c)

Assumption:

cr EI(TCUCH]), so Lemma 8 holds when coding n;.

1.

14.

If r and c¢r are leaves of Ték] but internal nodes of T¢

[k+1]

[xFrom Corollary 3, rd € SL’““] and crd € S([;Hl] vde A. «/
Use SCCs* to encode a—1 counts Ny = Nerg, d € Ap.

[Reconstruct nery = Ner — Zd# Nerd
and Ng;=nerg + 9 for all deA, with s =rd,
else, for each s SSHH(p)

If cs is an internal node of T[Hl]

t=crd].

Let W’ be the set of states W’ = {csv € To M} |
Let W = {w:wa € W'} be the parent nodes of W’.
For each csu € W jrcsu € T([;k] by Corollary 3. %/
Use SCCs* to encode a—1 counts Ny = Negud, d € Ap -
[Reconstruct nMegup = Nesy — > b Nesud
and N, ; = Negug + 0 for all d € A, with t = csud .]

For each state ¢t =csv ¢ W’ of Tékﬂ]

[Reconstruct Ng; = nes, + 9, from N(Tc[k],x") .]

else fcs is a leaf of Tl

[xEither cs € T[ ], or s € T[k]

by the assumptions. x/
Otherwise, by Corollary 3,

their respective parents cr and r, would belong
to S¥ and Step 1 would have not branched to 4. x/

[Reconstruct Ng; = nes+d, from /\/'(T(Ek]

"), for t=cs]

Figure 3: Encoding of state transition counts

Procedure RefineTypeClass

For each r € Ry, taken in ascending order of length |r|

If r € Upt1 S This implies also r E S[k] x/

Take d € A such that dr ¢I( ) . /xSuch d must exist;
otherwise, r would be a forgetful state of TW */

Use P(r,c) to describe Ng.s for all s GSIH'1 (r), ce Aq.

[Let Z\sdszng)—ns—zc#dng), for all seSkH( ).]

else, If the children of 7 belong to Té]

For each s €& SUCH]( ), and ¢ € A, such that cs %Tc[kﬂ]

Let s’ = ol " (es) .

[Take N,o =n, known from N(Ték],x"
For each s & S]chl (r), and ¢ € A, such that cs € T¢

).]

[k+1]

Use P(r,c) to describe counts Ng gy -

[k+l]< )
[k+1]<

else, for each s € S

[For a€ Ay, s’ =0 as), let Nso =

n(a) ]

[For s’ = o—[kﬂ](bs) let Ngg = ng — Za# n{®.]

Figure 4: Coding and decoding of N (T [kH
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are actually encoded is precisely |Er.| — |Vip| — |S7[(or — 1), as needed to achieve optimal
expected redundancy.

We define R; = {r € A* : ra € Sg] for some a € A}, namely, the set of parent nodes
of states of T[i]. Procedure RefineTypeClass iterates over nodes r € Rj41, and for each
s € S£k+1]( ), it describes all potentially nonzero state transition counts N, ; with ¢ € S¢ kel
The correctness of the procedure is established in the following lemma. The code length is
analyzed later in Lemma 12.

Lemma 11 Assuming that Ny(T,z"), N(T(Ek]7m”), and oc(x™) are known, Procedure Re-
fineTypeClass correctly encodes ./\/(T[k'H x™).

Proof. The algorithm iterates over all nodes r € Rp41. Then, in each of the three cases
distinguished by the conditions of Steps 2, 6, 12, its computations (possibly involving the
use of Procedure P) allow the the decoder to recover the counts for all state transitions

that depart from every child of r that is a state of Tgkﬂ]. What we need to show is that
required conditions at various points of the computation are satisfied, and, in particular,
that the assumptions of P are satisfied when the procedure is invoked. The losslessness of
P itself was established in Figure 3 and its discussion.

In Step 3 we ask for a symbol d such that dr ¢ I(Ték]). The condition r € Uy satisfied
in Step 2, together with Lemma 10, implies that r is a state of To[k]. If dr € I(Tc[k]) for all

d € A, then r would be a forgetful state, contradicting the definition of Ték]. Hence, the
symbol d called for in Step 3 must exist.

In Steps 4 and 11, Procedure P is used to encode state transition counts departing from

a state s with a symbol ¢, requiring ¢s € Tyﬁ'l], so that the enco[ged] counts are of the form

+1

N.csu for some string u. We claim that the condition cs € T¢ is satisfied in Step 4.

Indeed, since r € Uy (as tested in Step 2), and, as argued above, r is a state of To[k],

its refinement in Tgkﬂ] must have been part of the process of taking T+ §6 canonical

form. Therefore, r is forgetful in T[k“‘l], and, thus, cr is an internal node of T[k“‘l], which

implies that c¢r is also an internal node of Tékﬂ]. In Step 11, the condition cs € Tc[kﬂ] is

also satisfied since it is imposed in Step 10.

In Step 5 we compute Ny g4, as ngd), implicitly assuming that ds is a state of Tgkﬂ]. As
argued above for cr, dr must be an internal node of T(Ekﬂ]. However dr is not an internal
node of Tc[k] by definition in Step 3, thus by Corollary 3, dr is a leaf of Ték] and ds is a leaf

k+1]
of Tg .

The computations in Steps 5 and 14 require the knowledge of ng, the occurrence count
of a state s € S[kH]
an iteration of the loop in Step 1, the decoder knows ng for every s € S[ ]( ). Consider

a state s € S[k+1]( ), and let v = tail(s). If v is an internal node of TUC'H]7 verH by
(a)

Corollary 3, and with ¢ = hd(s) we have ngy = ny’ + 9, which is known, given the final

state in 7. If otherwise v is not an internal node of Tékﬂ]

Tgkﬂ]

. We claim that when the algorithm takes an element r of Ryq in

, all transitions into s come from
a single state s of by Lemma 8, and we have ny; = Ny s+ &. In Lemma 8, ¢ is
determined by T as the unique state s < v. Thus, ¢’ is shorter than s, and, so, Ny ¢ has
already been computed in a previous iteration of the loop in Step 1, as the elements of Ry
are taken in ascending order of length. Thus, the claim is proven, showing the validity of
the computations in Steps 5 and 14.
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In Step 6 we branch on whether the children of r belong to Tc[k]

case, the algorithm skips to Step 12, and for every s € SUH_H( ) we have that s ¢ Tg@], and
[k+1] (r)

or not. In the latter

sé Uk+17 since r ¢ Uk+1 in Step 2. Hence, by definition of Uk+17 all states s € S¢
belong to T+1] \TC , thus |s| = k + 1 and @3 is sufficiently long to determine a state in
Tc[kH] for every symbol a. This validates the definition of s’ in Steps 13 and 14, as well as
the use of NVy(T,z") to determine n{® in Step 13. O

We next analyze the expected length of the code defined by the Procedure EncodeType-
Class of Figure 2. Clearly, we require |S7|(a — 1)logn + O(1) bits to describe N(T, z"),
and the final state of ™ in T, in the first step. We are interested now in the number of
counts that are actually encoded by Procedure P as the algorithm iterates through the loop
in Steps 3-4 of EncodeTypeClass. By carefully following the different cases managed by
the algorithm, we will show that the number of counts given to refine the counters from
Tc[k] to TCUH'I] in Step 4 of EncodeTypeClass equals

(1B gl = Wyesnl) = (1Bpgal = [Vygal ) = (@ = D) (Sgucn| = 1S, (12)

where we recall that GT[m] = (VT[m], ET[m]) is the state transitions graph of Tc[m]. Adding
C C C

over all the iterations in the loop of EncodeTypeClass, Equation (12) gives rise to a tele-
scopic summation, which collapses to yield the following lemma.

Lemma 12 The number of counts encoded by EncodeTypeClass as the algorithm iterates
through the loop in Steps 3-4 is (|Er.| — |Vre|) — (o — 1)|S7|

The full proof of Lemma 12 is presented in Appendix B. A simplified outline for canon-
ical trees follows, which nevertheless contains most of the main ideas.

Assume that T is canonical. It is readily verified that then, all trees T+ Tl are
canonical, and all nodes added to Tgk] to form Tgkﬂ] do in fact belong to T and have depth
k + 1. For a state s of T(Ek], consider the set of edges in ET([:k] and ET([:kJrl] that depart from

s (or the children of s if it is refined in Tgkﬂ]). Consider also the set of descendants from

s in Vs, ie., {s} when s is not refined, or {sb : b € A} otherwise. Suppose first that
C

[k+1]

s remains a state in T¢"" . The set of edges in £ that depart from s is only altered in
C

[k

E iy if esu € S[ I'is refined in T U for some w. In this case, there is an increment of

TY
a — 1 in the number of edges from s to the children of csu in E L1 with respect to the

single edge from s to csu in E On the other hand the number of descendants from s in

R
V. T is not altered with respect to V o as s is not refined. Thus, we have a contribution
of & — 1 to the difference (\ET[k+1]| — [Vt \> — <|ET[k]\ - T["’]|>’ which is exactly the
C C C C

number of counts described by Procedure P in Step 9 (we rule out counts given in Step 2
of P since, by our assumption of 7" being canonical, only nodes at depth & are refined going
from Tgk] to Tng]; since r and rc¢ have different lengths, the condition in Step 1 cannot
hold).

Suppose now that s is refined with a full complement of children in . This causes
an increment of & — 1 in the number vertices in Vi {1 with respect to V . On the other

T[k+1]

hand, since T" is canonical, s must be at level k and therefore there are o edges in E
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departing from s, and also o edges in ET[k+1] departing from each of the « children of s.
C
Thus, we have an increment of o — o in the number of edges in ET[k+1] with respect to ET[k] ,
C
and an increment of ow— 1 in the number of vertices in V11 with respect to V_, yielding

C
a contribution of (or— 1)? to the difference <\ETC[k+1]| - \VTch] |> - <|ETC[k]\ - |VTC[k] |> Since

T is canonical, and s is refined in Tgk+1]7 the conditions in Steps 2 and 6 of RefineTypeClass
do not hold, and all transition counts departing from the children of s are reconstructed
in Steps 13 and 14. Thus, we do not need to describe counts in these cases, and since
we have a total of (|Spwi1| — [Sywm|) /(o — 1) states in this situation, the negative term
—(a = 1) (ISpm+n| = [Spw|) in (12) arises.

EnumCodeT (7, ™)

1. Encode N(T,z") using EncodeTypeClass
2. Encode the index of z" within 7(T,z")

Figure 5: Universal enumerative code for tree sources

All the components of a universal enumerative code for tree sources are now in place,
and the overall scheme is summarized in Figure 5. The enumeration of the type class for
Step 2 is studied in [17]. By Lemma 12 and the discussion preceding Figure 2, Algorithm
EncodeTypeClass for Step 1 gives an expected code length of

E |EncodeTypeClass(T, 2™)| =
1
(a = DISrllogn + ((|1Bre| = Vze|) = (@ = 1)|S7] )5 logn+0(1)  (13)

1
(a = 1)|Sr|logn + 5 (|Bre| — [Vre|) logn, (14)

1
2
where the first term in (13) comes from the number of bits used to encode Ny(T,z"), and
the second term from SCCs", which, by Lemma 12, are used (|Er,| — |Vi]) — (a — 1)[S7|
times taking, by Corollary 2, an average of at most %logn + O(1) bits each. Moreover, a
straightforward analysis of the computation shows that EncodeTypeClass can be executed
in time polynomial (at most quadratic) in |St|. Normalizing, and applying Theorem 1 to
bound the expected code length of Step 2, we arrive at Theorem 2 below, which summarizes
the main result of the paper.

Theorem 2 Let T be a tree source with entropy rate H and all conditional probabilities
different from zero. Then, EnumCodeT can be efficiently implemented, and its code length,
L(X™), for a random sequence X" emitted by T satisfies
L(X™ S - 1)1 1
B[EE] gy Sl Blosn oL
n 2n n
The foregoing results yield the following corollary, which will be useful to derive an
alternative enumerative coding strategy.

Corollary 4 The type class of x™ relative to the FSM closure, Tr, of T, can be described
using, on average, %(oz = 1) (|87 + |S74 ) logn + O(1) bits.
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Proof. By Lemma 7, given a description of N(T,z"), we can obtain one of N (T, z")
with a cost of %KJT logn + O(1) additional bits on average. Combining with the result of
Lemma 6, and accounting for the cost of the description of A(T,2™) from (14), yields the
claimed result. O

The result of Corollary 4 suggests the following alternative enumerative coding strategy:
To encode x", encode N (T, z") as described in the corollary, and then describe the index
of 2" in an enumeration of 7 (T, ™). Using the bound of Lemma 1, applied to TF, for
the expected code length of this index, we obtain an expected total normalized code length
of H+ 3(a— 1)|ST|%—H + O(1/n) bits. Notice that although the enumeration is done on
T(Tp,z"), the expected redundancy is still optimal with respect to the smaller model T'.

6 Twice-Universal Coding

In this section we switch to a twice-universal setting in which the actual tree T is unknown.
Our first approach follows a conceptually simple, standard plug-in strategy in which we
estimate 7' and then use EnumCodeT with 7 as if it were the true tree underlying the
model. Later, we will demonstrate an alternative approach in which EnumCodeT can be
greatly simplified for the twice-universal setting. We consider a class of penalized maximum
likelihood tree model estimators. Specifically, given a sequence z™, we assign to a tree
T a cost K(T,a") = —log Pr(z") + C(T)logn where the penalization function C(T) is
increasing with |St|. We have

(@)
K(T,2") =— 3 n®log ™~ 4 C(T)logn.
s€Sr,acA s

The tree model estimate T'(z") for " is defined as the tree that minimizes the cost
function K(T,z™) over all possible trees, that is,

T(z™) = argmjin{K(T7 ™}, (15)

Efficient algorithms are known for finding the minimizing tree 7'(z"); see, e.g., [20].
We define the code Twice-EnumCodeT algorithmically in Figure 6.

Twice-EnumCodeT (™)

1. Compute the estimate 7(z") of 7.
2. Describe T to the decoder.
3. Encode z" using EnumCodeT with respect to the tree 7'.

Figure 6: Twice universal enumerative code for tree sources

Using a natural code [20] for describing the full tree 7'(2"), Step 2 of Twice-EnumCodeT
requires one bit per node. To estimate the cost of Step 3, we must analyze the code length of
EnumCodeT when applied to T(x") rather than T'. The analysis will rely on upper bounds
on the probabilities of over-estimation and under-estimation of 7', which are stated in the
two lemmas below. Similar bounds are well known for several estimators, and proofs for
the lemmas can be readily adapted from [13].
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Lemma 13 Let T be a tree source and consider a penalization function of the form C(T) =
B|Sr| with 8 > o‘(og—_ll)fl Let O™ C A™ be the set of strings for which a state of T is refined
by the estimated tree T'. Then Pr{O"} <|Spln~" withy=f(a—1)—a{l+a)—1>0.

Lemma 14 Let (T, Pr) be a minimal tree model and consider a penalization fuZLction of the
form C(T) = B|St|. Let U™ C A™ be the set of sequences whose estimated tree T has a state
that is refined by T. Then Pr{U"} < R2™™ for positive constants R, D, and sufficiently
large n .

From Lemma 13 and Lemma 14 it follows that we can choose 3 to make the contribution
of sequences with estimated tree T # T to the expected code length negligible, as long as
the code length is upper-bounded by a polynomial in n. We verify this fact next. In
Twice-EnumCodeT we describe N (T, x™) by encoding the final state of " with respect
to Te, encoding NVy(T', ™) with |S7](c — 1) counts of logn bits each, and finally giving an
additional set of |E, | —[Vj | —|97[(a—1) counts described with SCCs", which take O(y/n)
bits each. Thus, the complete description of N'(T',2") takes O ((|ETC| - \VTC\) \/ﬁ) bits.
From the definition of a forgetful state, it is readily verified that |E, | — [V, | < |Eg| — (V3
and from the definition of | E| it is not difficult to see that |E;| = O(|S5]). Hence, the cost
of describing the type class of 2" with respect to 7' is O(|S¢]y/n). Since the index of z™
within its class takes no more than n bits, we upper-bound the total code length of Twice-
EnumCodeT by O (|S;|y/n + n). Finally, noticing that we must have |S;| = O(n/logn),
since otherwise 7" would be dominated by a single-state tree in (15), we obtain the desired
polynomial bound on the total code length, leading to the following result.

Theorem 3 Let T be a tree source with entropy rate H and with all conditional probabilities
different from zero. Tuking a penalization function C(T) = B|St| with 3 sufficiently large,
the normalized expected code length of Twice-EnumCodeT is

E{L(f”)} :H+W+o(1/n).

In the rest of the section we present an alternative code EnumCodeT’ which is a
simplification of EnumCodeT, applicable when the target tree is an estimate T, as in
Step 3 of Twice-EnumCodeT. Recall that a fundamental tool in EnumCodeT is the use
of SCCs" codes, a generalization of SCCs. The latter rely on the quantities A(w, s, a) =

(a) _1
nq(,f ) %nw nyw?, for properly defined strings s, w and symbol a, being small with high
probability. In other words, sequences with large values A(w,s,a) have small probabil-

ity under any model parameter, and we would expect an estimate T(x”) # T for such
sequences. The following lemma formalizes these claims.

Lemma 15 LetT £ T(2™) be a tree model estimate for ™, and let s and w be strings such
that s € Sj, s < w, and ng > 0. Then, for any refinement T' of T' that contains w, we have

0

n{® — Ny | < \/Q(C(T’) — C(T))nsInn.

s
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Proof.

Since C(T') is increasing in the number of states of T', it is sufficient to consider the case
in which 7" is the smallest refinement of 7'(z") that contains w, i.e., the tree that results
from refining 7'(z") by adding w'b for all proper prefixes w’ of w and all symbols b € A.
Let W = {su: su € Spv}. Since T'(2™) minimizes the cost function K (T, ™), we have

(@ . @ @
Sl log T+ CMlogn<— 3 mlog =+ C(I")logn.  (16)

teS,aeA teSys,acA
Therefore,
e > @ )
- > log 3 i log M < (O(T) — O(T) logn, (17)
teS acA teST/ acA T

which reduces to

a

@ (@ )
— Z n{® log + Z n{@ log Zﬂ < (C(T") - C(T))logn. (18)
acA sueW,acA su

Since ng > 0, we further obtain
né‘” ] nga> Nsy ng(ﬁ) 1 ng‘f) T oF logn
-Y Blog T 30 TS B < (o) —C(D) R, (19)

nsu nSU nS

Let p(:|s) be the probability mass function (PMF) over A given by p(als) = “g:) and

n

analogously for su € W, p(a|su) = Z%) Consider also a PMF p(-) over W given by
p(su) = 2=, Let X,Y be random variables such that Y takes values in W with ¥ ~ p(-),
and X takes values in A with conditional distribution P(X = a|Y = su) = p(a|su). Then,
the marginal distribution of X is X ~ p(:|s), and the joint distribution of X and Y is
(a) (a)

P(X =a,Y = su) = P(X =alY = su)P(Y = su) = p(alsu)p(su) = su s _ Tsu
Nsy Ms s

From Equation (19),

1Y) = H(X) — H(X|Y) < (C(1") - 0(1) 222

s

Let @Q be a joint distribution given by the product of the marginal distributions of X,Y, i.e.,
a)

QX =a,Y =su) = P(X =a)P(Y = su) = “T%S Bsu  Then, by Pinsker’s inequality [21,

Lemma 12.6.1], we have

1P — @I < DIPIIQ) — 10X:Y) < (C(2") — C(P) 222, (20)
Therefore,
2
S 1Pla,su) ~ Qasu)l | < 2A0(T) - o)L, (21)

n
a€A,sueW s
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which takes the form

n(s%) nga) Nsu

Inn

P g\/Q(C(T')—C(T)) —r (22)

a€A,sueW

In particular, taking only the term corresponding to su = w in the summation on the left
hand side of (22), we conclude that

\/2 C(T") ))nS Inn. (23)

O

With a linear penalization function of the form C(T) = 8|Sz, we have C(T") — C(T) =
BSr| -

Corollary 5 Let T'(z™) be a tree model estimate for ™ with a penalization function C(T) =
BISt|, s € Sp, s < w, and ng > 0. Then,

(@)
a s
) - 2

< V/Bajwnslnn.

‘Zw,a‘ = Nw

It follows from Corollary 5 that, when considering coding with respect to a tree T
estimated with a linear penalization function, it may be advantageous to replace the use of

SCCs with a uniform coding of zy, in the range (—\/ﬂa\wms Inn, \/Bajwlng In n) The

code length obtained would be %log ns + o(logn), which is of similar main order as the
expected code length of SCCs (cf. Corollary 1). Notice, however, that the upper bound
here is pointwise, and not just in expectation. The same idea can be generalized to SCCs"
by means of Lemma 16 below, for which we recall the definitions from (11).

Lemma 16 Let T' be a tree model estimate for ™ with a penalizatign Junction C(T) =
BISt|, and let u? be a string such that an SCC* code is applicable in T'. Then,

ng — Mig1 H

i=l+1

<¢*?\/Banlnn. (24)

|2u| =
’L

Proof. We prove the result by repeatedly applying Corollary 5 as follows. Notice that
m; = n(’j’_)l. Then, by Corollary 5, we have ‘ml i71m1 1‘ v/ Balulnlnn for all
l<i< qu(we extend the definition of m; for ¢ = q as mq = ngg). Applylng Corollary 5 again
and grouping terms, we further obtain ‘mi n?*mz e 2‘ < (1 + 5 s 1) \/m.
Starting from m; = mg = ngg, and repeatedly applying the same arguments, we finally
bound |z,| and the claim of the lemma follows readily. a

Using a uniform encoding for the numbers z,, leads, by (24), to an analogue of Corol-
lary 2 in the twice-universal setting. As before, we note that the bound here is point-
wise, as opposed to in expectation as in Corollary 2. The results take advantage of the
idea suggested in Section 1, namely, that for some type classes of T7 no sequence in the
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class will estimate 7. Therefore, these “atypical” classes can be excluded from the cod-
ing space. To implement this idea, we define the code EnumCodeT’ exactly as Enum-
CodeT, but replacing the use of SCCS’, C¥(ng), by a uniform encoding of z, in the range
(—|ul¥?y/BanTnn, |u*/?\/BanTan). In EnumCodeT, SCCS" are applied to strings u that
are prefixes of states of the canonical extension of the tree. Hence, |u| is bounded by the
depth of T'(z"). For sequences that estimate 7'(z") = T, |u| is bounded by the depth of
T, and the uniform encoding of z,, by (24), takes 1 logn + O(loglogn) bits. Thus, when
T(z") = T, the upper bounds of the expected code lengths of EnumCodeT’ and Enum-
CodeT differ by O(loglogn) bits. As a result, using essentially the same arguments as in
Theorem 3, we can prove the following theorem for Twice-EnumCodeT’, the code obtained
by substituting EnumCodeT’ for EnumCodeT in Twice-EnumCodeT.

Theorem 4 LetT beﬁa tree source with entropy rate H and with all conditional probabilities
nonzero. Estimating T'(x™) with a penalization function C(T) = pB|St|, with B sufficiently
large, the normalized expected code length of Twice-EnumCodeT' is

E{L(X )} P [S7|(a — 1)logn+0 <loglogn> .
n 2n n

A  Proof of Lemma 10

Proof. Suppose the claim of Lemma 10 is not true and let z € A*, ¢ € A such that
zc € Ugy1 is of maximal length among those elements of U1 which are not leaves of T(Ek].

Since the children of z¢ were added to TC[kH]

for zc was forgetful, we know that azc is an
internal node of Tc[kH] for every a € A. If azc € U1, azc is a leaf of Ték] for azc is longer
than zc. Therefore, az is an internal node of Tg@]. If aze & Up1, azed ¢ Uy, forany d € A.
Hence, by definition of U}, ,, either azcd € Tc[k] or azed € T, In any case we have that
azc € To[k], i.e., az is an internal node of Tc[k]. We conclude that az is an internal node of
Tc[k] for every a € A, thus zc € Tgk] by definition of canonical tree. Further, since zc € U1,

zed € U,QH for some d € A, thus zed ¢ Tgk] and zc is a state of Tgk], a contradiction. a

B Proof of Lemma 12

Proof. We will equate the number of counts given in each iteration of the loop to the
increment in ‘ET‘[:k+1]| - |VT([:k+1]‘ with respect to ‘ET([:k]| - |VT([:k]|. For u € A* we define
Vitw) = {uv € sliveAu {A}}, 4i(u) = {(uwv,w) € ET‘[;] :v € AU{A}} and, for a € A,
AECL) (u) = {{uv,w) € A;(u) : a = hd(w)}. Notice that since TCUH_H refines states of Tc[k] in
at most one level, Ag(r) and Vi(r) exhaust ET([:k] and V) respectively as r varies along
Ry11. Of course, Ap11(r) and Viy1(r) do also exhaust ETC[k+1] and VTC[k+1] respectively as r
varies along Rj41.

We claim that the number of counts given by an invocation to P(r, ¢) equals \Aﬁl(rﬂ —

|A§€c)(r)\. When the condition of Step 1 holds true, we describe o — 1 counts. There are «
edges from children of r to children of cr in Ag1;(r) and one edge from r to cr in Ag(r), i.e.,

the number of given counts coincides with the increment \Aﬁl(rﬂ - |A§€c) (r)]. Now, when

113



Festschrift for Jorma Rissanen

the condition of Step 5 is satisfied, we have for each csu € W, that there is an increment of
a—1 in the number of edges that depart from s to children of csu in Ag11(r) with respect to
the one single edge from on[:k] (3) to csu in Ag(r). The increment coincides with the number
of counts given in Step 9. On the other hand, in Step 12, where csv is a state of TCUH'I]
which is not in W', esv is also a state of To[k]. There is one edge from s to csv in Agyq(r)

[£]

and also one edge from &7 (3) to csv in Ag(r). Thus, there is no increment in the number
of edges. Finally, in Step 14, we have that c¢s is a leaf of To[kﬂ]. Then, as mentioned, either
cs € Tgk] ors e Tgk], for otherwise, by Corollary 3, their parents cr, r, would belong to Tgk]
and the condition of Step 1 would hold true. When ¢s € Tékh there is one edge from s to
¢s in Ag11(r) and also one edge from m[;k] (3) to ¢s in Ag(r). If, on the other hand, s € Tik],
there is one edge from s to ¢s in Ag41(r) and also one edge from s to o] (@) in Ag(r). The
claim is proved.

We now analyze RefineTypeClass. When reUg,1, the number of counts described in
Step 4 is |Ak+1(r)\A,(ﬁ1(r)| - \Ak(T)\A,(Cd) (r)]. For the symbols d € A of Step 3, we have
that dr is not an internal node of Ték] but, since r € Ug1, dr is an internal node of Tgkﬂ].
Then, dr is a leaf of Tgk] and the full set of children of dr are leaves of Tgkﬂ]. There are «
edges from the children of  to the children of dr in A;ﬁl (r) and one single edge from r to dr
in Agcd) (r). Hence, the number of counts described in Step 4 is [Ag1(r)| — [Ar(r)] — (= 1).
Since |Viy1(r)| — |Ve(r)| = a — 1 we have that the total number of counts described is
(| Ag1(m)] = Vs (M) — JAk ()| — |V (r)]). We now consider the case where r ¢ Ug,1 and
the children of r belong to T(Ek]. When ¢s & TCUH'I]7 the decoder computes state transition

counts in Step 9. In this case, for every state s € S£k+1] child of r, there is one edge from

sto s = ol (€s) in Apy1(r) and, since also s € S([zk], there is also one edge from o] (3)
to ch] (¢s) in Ag(r). Hence, \Al(gal(r)| = |A§CC) (r)]. For the remaining values of ¢, we use
|A§3_1(r)\ - \A,(CC) (r)| counts in Step 11. Since the children of r belong to Ték], we have
|[Vier1(r)| = |Vi(r)|. Thus, the total number of counts is (| Ax41(r)| — [Ve+1(r)]) — (| A (r)| —
|Vi(r)]). Finally, when the algorithm skips to Step 12, we have that all states s which are
children of r do not belong to Ték]7 and do not belong to U,’H_l, for r € Ugyq in Step 2.
Hence, by the definition of U}, 11, all states s which are children of r belong to T[k“‘l]\TC[k]
and, thus, |s| = k + 1 and @s is sufficiently long to determine a state in Tgk'H] for every
symbol a. There are o edges in Ag11(r) departing from each of the « children of r, for a

total of a? edges in Ay 1(r). On the other hand, r is a leaf of maximal length in 7 and
therefore there are o edges departing from r in Ag(r). Since |Vi11(r)| = a and |Vi(r)| = 1,
we have (|Ap41(r)] = Visa ()]) = (|4k(r)] = [V (r)]) = (o = 1)%

Over all, the number of counts described is <\ETC[k+1]| - \VTch] |> - (\ETC[kﬂ - \VTC[k] |> -
Biy1(a — 1)? where Bgyq is the number of elements r in Ryyq with |r| = k. Clearly, the

children in T(Ekﬂ] of such elements of Ry, are the nodes in THEHNTH and we can write
Byt = (|Spwru| — |Spm]) /(e — 1). It follows that the number of counts described can be

written as (|ET([:1<+1]‘ - |VT([;k+1] |) - (‘ET([:M - ‘VT[k] ‘) —(a = 1) (|Sqmsn] — |Spw )
The total number of counts described by EncodeTypeClass is, therefore,

d—1

> (1] = Wgpenl) = (1Bgl = Vpl) = (@ = 1) (Spasn] = |Szml) » (25)
k=h+1
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where we recall that d = max{|s|: s € Sr} and h = min{|s| : s € Sp}. The telescopic sum

in (

25) reduces to

(1Bre| = Vi) = (|Bgpen] = [Vygsnl) = (@ = 1) Szl = |Spoanl) . (26)
Now, since T is FSM, VT([:}H—I] = Vi = Spnr, ET([:h—f—l] = Epppsa, and |Eppyy| =
alSpintl, so that |E | — [Vopen| = (@ — 1)[Spmin | and (26) becomes
C C
(1Bl = Vae]) — (@ = 1)[S7]. (27)
O
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Abstract

Stochastic chains with memory of variable length constitute an interesting family of
stochastic chains of infinite order on a finite alphabet. The idea is that for each past, only a
finite suffix of the past, called context, is enough to predict the next symbol. These models
were first introduced in the information theory literature by Rissanen (1983) as a universal
tool to perform data compression. Recently, they have been used to model up scientific
data in areas as different as biology, linguistics and music. This paper presents a personal
introductory guide to this class of models focusing on the algorithm Context and its rate of
convergence.

1 Introduction

Chains with memory of variable length appear in Rissanen’s 1983 paper called A universal data
compression system. His idea was to model a string of symbols as a realization of a stochastic
chain where the length of the memory needed to predict the next symbol is not fixed, but is a
deterministic function of the string of the past symbols.

Considering a memory of variable length is a practical way to overcome the well known
difficulty of the exponentially growing number of parameters which are needed to describe a
Markov chain when its order increases. However if one wants to fit accurately complex data
using a Markov chain of fixed order, one has to use a very high order. And this means that
to estimate the parameters of the model we need huge samples, which makes this approach
unsuitable for many practical issues.

It turns out that in many important scientific data, the length of the relevant portion of the
past is not fixed, on the contrary it depends on the past. For instance, in molecular biology, the
translation of a gene into a protein is initiated by a fixed specific sequence of nucleotide bases
called start codon. In other words, the start codon designs the end of the relevant portion of the
past to be considered in the translation.

The same phenomenon appears in other scientific domains. For instance in linguistics, both
in phonology and in syntax, there is the notion of domains in which the grammar operates to
define admissible strings of forthcoming symbols. In other terms, the boundary of the linguistic
domain defines the relevant part of the past for the processing of the next linguistic units.

*This work is part of PRONEX/FAPESP’s project Stochastic behavior, critical phenomena and rhythmic
pattern identification in natural languages (grant number 03/09930-9), CNPq’s project Stochastic modeling of
speech (grant number 475177/2004-5) and CNRS-FAPESP project Probabilistic phonology of rhythm. AG is
partially supported by a CNPq fellowship (grant 308656/2005-9).
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Rissanen’s ingenious idea was to construct a stochastic model that generalizes this notion of
relevant domain to any kind of symbolic strings.

To be more precise, Rissanen (1983) called context the relevant part of the past. The stochas-
tic model is defined by the set of all contexts and an associated family of transition probabilities.

Models with memory of variable length are not only less expensive than the classical fixed
order Markov chains, but also much more clever since they take into account the structural
dependencies present in the data. This is precisely what the set of contexts expresses.

Rissanen has introduced models having memory of variable length as a universal system of
data compression. His goal was to compress in real time a string of symbols generated by an
unknown source. To do this, we have to estimate at each step the length of the context of the
string observed until that time step, as well as the associated transition probabilities.

If we knew the contexts, then the estimation of the associated transition probabilities could
be done using a classical procedure such as maximum likelihood estimation. Therefore, the main
point is to put hands on the context length. In his seminal 1983 paper, Rissanen solved this
problem by introducing the algorithm Context. This algorithm estimates in a consistent way
both the length of the context as well as the associated transition probability.

The class of models with memory of variable length raises interesting questions from the
point of view of statistics. Examples are the rate of convergence and the fluctuations of the
algorithm Context and other estimators of the model. Another challenging question would be
how to produce a robust version of the algorithm Context.

But also from the point of view of probability theory, this class of models is interesting. In
effect, if the length of the contexts is not bounded, then chains with memory of variable length
are chains of infinite order. Existence, uniqueness, phase-transitions, perfect simulation are deep
mathematical questions that should be addressed to in this new and challenging class of models.

Last but not least, models of variable length revealed to be very performing tools in applied
statistics, by achieving in an efficient way classification tasks in proteomics, genomics, linguistics,
classification of musical styles, and much more.

In what follows we present a personal introductory guide to this class of models with no
attempt to give a complete survey of the subject. We will mainly focus on the algorithm
Context and present some recent results obtained by our research team.

2 Probabilistic context trees

In what follows A will represent a finite alphabet of size |A|. Given two integers m < n, we
will denote by x};, the sequence (..., z,) of symbols in A. Let A% be the set of all finite
sequences, that is

(o)
AY = U Al=k—1}
k=1
We shall write A = At~ =2-1} and denote by :v:clx) any element of A.
Our main object of interest is what we shall call context length function.

Definition 2.1 A context length function ! is a functionl: A} — {1,2,...}U{occ} satisfying
the following two properties.
(i) For any k > 1, for any 9[::,1C € A%, we have

Wz}) € {1,...,k} U {+o0}.
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(i) For any x=% € A, if l(x"}) = k for some k > 1, then

l(x=}) =00, foranyi<k
Wz~ =k, foranyi> k.

Intuitively, given a sequence ;z’:})m the function [ tells us, at which position in the past we
can stop since we have reached the end of the context. The first condition is a kind of adaptivity
condition. It tells us that we can decide whether the end of the context has already been reached
at step k just by inspecting the past sequence up to that step. If [ equals +o00, we have to look
further back in the past. The second condition is a consistency condition. It tells us that once
we have reached the bound of the context, we do not have to look further back in the past, and
that the context of a longer sequence ;z’:}7 i > k, is also the context of ;r:}c. In other terms, once
the identification of the context is made at a given step k, this decision will not be changed by
any further data present in the past before k.

By abuse of notation, we shall also call [ the natural extension of the context length function
to A, given by

WaZl) =inf{k >1: l(z7}) < +oo},

with the convention that inf ) = +o0.

-1

Definition 2.2 For any :c:éo € A, we shall call 'r—l(ac_l )

the context associated to I of the

infinite sequence a::})o.

Definition 2.3 Let [ be a given context length function. A stationary stochastic chain
(Xn)nez taking values in A is a chain having memory of variable length, if for any infinite
past :c:éo € A and any symbol a € A, we have

P (Xo =a|XZL = x:}m) =P (XO = a|X:ll(w:;> = x:}m;)) . (2.1)
We shall use the short hand notation
p(a|x:,1€) =P (Xo = a|X:; = a::i) . (2.2)

We are mainly interested in those values ofp(a\:c:k) where k = 1(z=L).

Observe that the set {£(X~1) = k} is measurable with respect to the o-algebra generated
by X :,1. Thus we have

Proposition 2.4 Let (X,) be a stationary chain as in definition 2.8, having context length
function l. Put Fy, = o{X_p,..., X_1},k > 1. Then (X~ is a (IF}),—stopping time.

—0o0
Given a context length function I, we define an associated countable subset 7 C A% by
T=1l= {a7} tk=1(x}), k> 1}.
To simplify notation, we will denote by x and y generic elements of 7.

Definition 2.5 Given a finite sequence x:k, we shall call suffix of ar::/,lC each string x:} with
J<k Ifj <k we call :c:; proper suffix of x:k. Now let S C A%, We say that S satisfies the
suffiz property if for no x:k € S, there exists a proper suffix x:} €S of x:k.
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The following proposition follows immediately from property (ii) of definition 2.1.

Proposition 2.6 Given a contest length function I, the associated set T satisfies the suffix
property.

As a consequence, 7 can be identified with the set of leaves of a rooted tree with a countable
set of finite labeled branches.

Definition 2.7 We call probabilistic context tree on A the ordered pair (1,p), where

p={p(|z), ze 7}

is the family of transition probabilities of (2.2). We say that the probabilistic context tree (7,p)
is unbounded if the function l is unbounded.

Definition 2.8 Let (Xp)nez be a stationary chain and let (1,p) be a probabilistic context
tree. We shall say that (X )nez s compatible with (7,p), if (2.2) holds for all x € 7.

In order to illustrate these mathematical concepts, let us consider the following example.

Example 2.9 Consider a two-symbol alphabet A = {0,1} and the following context length
function
Wzl ) =inf{k:z_p=1}.

Then the associated tree T is given by
7= {10,k > 0},

where 10% represents the sequence (x_p1, gy, @—1) Such that x_; =0 for all 1 <i <k and
T_fp—1— 1.
The associated transition probabilities are defined by

P(X(): 1‘X_1 =... =X_k =0,X_k_1 = 1) =C]k,k2 O,
with 0 < g < 1.

Clearly, the stochastic chain associated to this context length function [ is a chain of infinite
order. This raises the mathematical question of existence of such a process. It is straightforward
to see that the following proposition holds true.

Proposition 2.10 Suppose that Xo = 1. Put Ty = inf{k > 1 : X, = 1}. A necessary and
sufficient condition for T1 < +oo almost surely is

> qp = +oo. (2.3)

k>0

This means that if (2.3) is satisfied, then — provided the chain starts from 1 — almost surely
there will be appearance of an infinite number of the symbol 1. This implies that there exists a
non-trivial stationary chain associated to this probabilistic context tree.
Observe that the process X, is actually a renewal process with the renewal times defined as
follows.
To =sup{n < 0: X, =1},
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and for k> 1,
Ty =inf{n > Ty : X, =1} and T_j :=sup{n< T (h—1): Xn = 1}.

This example shows clearly that the tree of contexts defines a partition of all possible pasts
with the exception of the single string composed of all symbols identical to 0. The condition
(2.3) shows that it is possible to construct the chain taking values in the set of all sequences
having an infinite number of symbols 1 both to the left and to the right of the origin.

However, we could also include this exceptional string to the set of possible contexts by
defining an extra parameter goo. This is the choice of Csiszdr and Talata (2006). If g is strictly
positive, then condition (2.3) implies that after a finite time, there will appearance of the symbol
1, even if we start with an infinity of symbols 0. In other terms, this exceptional string does not
have to be considered if we are interested in the stationary regime of the chain.

In case that g, = 0 and (2.3) holds, we have the phenomenon of phase transition. One of
the phases is composed of only one string having only the symbol 0.

The renewal process is an interesting example of a chain having memory of unbounded
variable length. In the case where the probabilistic context tree is bounded, the corresponding
chain is in fact a Markov chain whose order is equal to the maximal context length. However, the
tree of contexts provides interesting additional information concerning the dependencies in the
data and the structure of the chain. This raises the issue how to estimate the context tree out
of the data. This was originally solved in Rissanen’s 1983 paper using the algorithm Context.

At this point it is important to discuss the following minimality issue. Among all possible
context trees fitting the data, we want of course to identify the smallest one. This is the tree
corresponding to the smallest context length function. More precisely, if | and I’ are context
length functions, we shall say that [ < I if [(z=1) < I'(zZL,) for any string =1 € A. From now
on we shall call contezt of a string :c:})o the context associated to the minimal context length
function. Estimating this minimal context is precisely the goal of the algorithm Context.

3 The algorithm Context

We now present the algorithm Context introduced by Rissanen (1983). The goal of the algorithm
is to estimate adaptively the context of the next symbol X,, given the past symbols X(’f_l. The
way the algorithm Context works can be summarized as follows. Given a sample produced by a
chain with variable memory, we start with a maximal tree of candidate contexts for the sample.
The branches of this first tree are then pruned starting from the leaves towards the root until
we obtain a minimal tree of contexts well adapted to the sample. We associate to each context
an estimated probability transition defined as the proportion of time the context appears in the
sample followed by each one of the symbols in the alphabet. We stop pruning once the gain
function exceeds a given threshold.

Let Xo, X1,...,X,—1 be a sample from the finite probabilistic tree (7,p). For any finite
string l’:; with j < n, we denote Nn(;r:}) the number of occurrences of the string in the sample

n—j )
Na(zZh =31 {X;f“—l = x:}} . (3.4)
t=0
Rissanen first constructs a maximal candidate context Xﬁ:}wn) where M (n) is a random length
defined as follows
Ny _ Con
M(n) = min {z =0,1,...,|C1 logn] : No(X7}) > \/lzﬂ} . (3.5)
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Here C; and Cj are arbitrary positive constants. In the case the set is empty we take M (n) = 0.
Rissanen then shortens this maximal candidate context by successively pruning the branches
according to a sequence of tests based on the likelihood ratio statistics. This is formally done
as follows.
If > pca Nu(xzZgb) > 0, define the estimator of the transition probability p by

A Na(a”ja)
pulalaTl) = kY (3.6)
Ypea Nu(z1h)
where x:}a denotes the string (z_j,...,,r_1,a), obtained by concatenating z_ and the symbol

a. I Ype s Nu(x71b) = 0, define p(alz"}) = 1/]A].
For ¢ > 1 we define

— 2 Y Nalela)los {M} 7 (37)

yeA acA (alz 1)
where ym:} denotes the string (y,z_;,...,2_1), and where

No(yz~;a)

pnlalatly) = =————
( )= Ypea No(yaZib)

Notice that An(x_l) is the log-likelihood ratio statistic for testing the consistency of the

-
sample with a probabilistic suffix tree (7,p) against the alternative that it is consistent with

(7',p') where 7 and 7/ differ only by one set of sibling nodes branching from z=}. A,(z~}) plays

the role of a gain function telling us whether it is worth or not taking a next step further back
in the past.
Rissanen then defines the length of the estimated current context 4, as

Ln(X31) =1+ max {z =1, M(n) —1: A(XTH) > Gy logn} , (3.8)
where Cs is any positive constant.
Then, the result in Rissanen (1983) is the following.

Theorem 3.1 Given a realization Xo, . .., Xn_1 of a probabilistic suffix tree (7, p) with finite
height, then
P (X5 # 657 — 0 (39)

as 1n — O0.

Rissanen proves this result in a very short and elegant way. His starting point is the following
upper bound.

P (la(X57Y) # 4<X"—1>) <
P (zf (XY £ x5 (Xg - ) \/%)P (Nn (ng(xg_l)) > \/%)
+P <wLéJT{N (w) < \/%D . (3.10)
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Then he provides the following explicit upper bound for the conditional probability in the
right-hand side of (3.10)

~ _ _ _ Con Y -
P (B0 2 00N (X ) > w:gn) < Cylogne™ VIS (311)

where C1, Cy and C} are positive constants independent of the maximum of the context length
function.
With respect to the second term he only observes that, by ergodicity, for each x:k €T we

h
- p(N, (=) < ) g 3.12
n <x_k) - 1/logn ( . )

as m — oo. Since 7 is finite the convergence in (3.12) implies the desired result.

4 The unbounded case

In his original paper, Rissanen was only interested in the case of bounded context trees. However,
from the mathematical point of view, it is interesting to consider also the case of unbounded
probabilistic context trees corresponding to chains of infinite order. It can be argued that also
from an applied point of view the unbounded case must be considered as noisy observation of
Markov chains generically have infinite order memory.

The unbounded case raises immediately the preliminary question of existence and uniqueness
of the corresponding chain. This issue can be addressed by adapting to probabilistic context
trees the conditions for existence and uniqueness that have already been proved for infinite order
chains. This is precisely what is done in the paper by Duarte et al. (2006) who adapt the type
A condition presented in Ferndndez and Galves (2002) in the following way.

To simplify the presentation, let us introduce some extra notation. Recall that x and y

1

denote generic elements of 7. Given x = z_;

E<min{¢,j} and 21 = y_1,..., 2} = Y.

and y = y:;, we shall write x i y if and only if

Definition 4.1 A probabilistic suffiz tree (1, p) on A is of type A if its transition probabilities
p satisfy the following conditions.

1. Weakly non-nullness, that is

> inf p(alz) > 0; (4.13)
aGAEET
2. Continuity, that is
B(k) = maxsup{lp(ale) — plaly),y € Tz € T with 2y} — 0 (4.14)
ac s

as k — o0o. We also define

5(0) = rgea}sup{\p(a\z) —plaly)|,yem,z€7 with x_1 # y_1}.

The sequence {3(k)}r € IN is called the continuity rate.
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For a probabilistic suffix tree of type A with summable continuity rate, the maximal coupling
argument used in Ferndndez and Galves (2002) implies the uniqueness of the law of the chain
consistent with it.

We now present a slightly different version of the algorithm Context using the same gain
function A, but in which the length of the maximum context candidate is now deterministic and
nor more random. More precisely, we define the length of the biggest candidate context now as

k(n) = Cylogn (4.15)

with a suitable positive constant Cf.

The intuitive reason behind the choice of the upper bound length C; logn is the impossibility
of estimating the probability of sequences of length much longer than logn based on a sample
of length n. Recent versions of this fact can be found in Marton and Shields (1994, 1996) and
Csiszar (2002).

Now, the definition of {, is similar to the one in the original algorithm of Rissanen, that is

(X5 = 1 max{i =1, k(n) = 1: Ma(X22)) > Cologn} (4.16)
where Cs is any positive constant.

The reason for taking the length of the maximum context candidate deterministic and no
more random is to be able to use the classical results on the convergence of the law of An(xj)
to a chi-square distribution. However, we are not in a Markov setup since the probabilistic
context tree is unbounded, and the chi-square approximation only works for Markov chains of
fixed finite order.

To overcome this difficulty, we use the canonical Markov approximation of chains of infinite
order presented in Ferndndez and Galves (2002) that we recall now by adapting the definitions
and theorem to the framework of probabilistic context trees. The goal is to approximate a chain
compatible with an unbounded probabilistic context tree by a sequence of chains compatible
with bounded probabilistic context trees.

Definition 4.2 For all k > 1, the canonical Markov approximation of order k of a chain
(Xn)nez is the chain with memory of variable length bounded by k compatible with the proba-
bilistic context tree (¥, plFl) where

W= {zeri@ <k} u{eTize (@) > k) (4.17)
foralla e A, z €7, and where
pHl(alaT}) == P(Xo =a|X} =a7}) (4.18)

for all x:} e 7l

Observe that for contexts x € 7 which length does not exceed k, we have plfl(a|x) = p(alx).
However, for sequences x:i which are internal nodes of 7, there is no easy explicit formula
expressing plil(-[z}) in terms of the family {p(:|v),v € 7}.

The main result of Ferndndez and Galves (2002) that will be used in the proof of the con-
sistency of the algorithm Context can be stated as follows.
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Theorem 4.3 Let (X, )nez be a chain compatible with a type A probabilistic context tree
(1,p) with summable continuity rate, and let (XL’“])%Z be its canonical Markov approximation
of order k. Then there exists a coupling between (X )nez and (X,[Lk])nez and a constant C > 0

such that
P <X0 # X([)k]) < CB(k). (4.19)

Using this result and the classical chi-square approximation for Markov chains, Duarte et al.
(2006) proved the consistency of their version of the algorithm Context in the unbounded case
and also provided an upper bound for the rate of convergence. Their result is the following.

Theorem 4.4 Let Xo, Xo, ..., Xn_1 be a sample from a type A unbounded probabilistic suffix
tree (1,p) with continuity rate B(j) < f(j)exp{—j}, with f(j) — 0 as j — oo. Then, for any
choice of positive constants Cy and Cs in (4.15) and (4.16), there exist positive constants C and
D such that

P (én(xg-l) 4 e<xg—1)) < Cylogn(n= + D/n) + Cf(Cy logn).

The proof can be sketched very easily. Take k = k(n) = Cjlog(n) and construct a coupled
version of the processes (X;):cz and (Xt[k(n)])tez. First of all notice that for k& = k(n),

P (n(Xo,--, Xn1) # UXo, -, Xn1) ) <
PGt xl el xB)) e p (CJ{XZ« # X}”}) : (4.20)
i=1

Using the inequality (4.19) of Ferndndez and Galves (2002), the second term in (4.20) can be
bounded above as .
k
P (U{Xi # X ]}> < nC Blk(n).
i=1
The first term in (4.20) can be treated using the classical chi-square approximation for the
log-likelihood ratio test for Markov chains of fixed order k.
More precisely, we know that for fixed xj, under the null hypothesis, the statistics A (27} ),
given by (3.7), has asymptotically chi-square distribution with |A| — 1 degrees of freedom (see,
for example, van der Vaart (1998)). We recall that, for each 27} the null hypothesis (H}) is that

the true context is z~!.

3
Since we are going to perform a sequence of k(n) sequential tests where k(n) — oo as n
diverges, we need to control the error in the chi-square approximation. For this, we use a well-
known asymptotic expansion for the distribution of Ay(z~}) due to Hayakawa (1977) which
implies that

P (An(x:}) < t|H3) e (X2 < t) +D/n, (4.21)

where D is a positive constant and x? is random variable with distribution chi-square with
|A] — 1 degrees of freedom.
Therefore, it is immediate that

P (An(x:l) > Cy logn) < g~ Cologn +D/n.

K3
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By the way we defined £, in (4.16), in order to find én(Xg_l) we have to perform at most
k(n) tests. We want to give an upper bound for the overall probability of type I error in a
sequence of k(n) sequential tests. An upper bound is given by the Bonferroni inequality, which
in our case can be written as

k(n)
P (U {An(@T)) > Cologn}|HY) < S P(An(aT}) > Oy logn|HY).
=2

This last term is bounded above by C logn(n~=¢2 + D/n). This concludes the proof.

Theorem 4.4 not only proves the consistency of the algorithm Context, but it also gives an
upper bound for the rate of convergence. The estimation of the rate of convergence is crucial
because it gives a bound on the minimum size of a sample required to guarantee, with a given
probability, that the estimated tree is the good one. This is the issue we address to in the next
section.

5 Rate of convergence of the algorithm Context

Note that Rissanen’s original theorem 3.1 as well as theorem 4.4 only show that all the contexts
identified are true contexts with high probability. In other words, the estimated tree is a subtree
of the true tree with high probability. In the case of bounded probabilistic context trees this
missing point was handled with in Weinberger et al. (1995). This paper not only proves that
the set of all contexts is reached, but also gives a bound for the rate of convergence.

More precisely, let us define the empirical tree

2 Jj-1 R
Tn = {Xj—ij(Xg_l) 1j=mn/2,... ,n} . (5.22)
Actually, this is a slightly simplified version of the empirical tree defined in Weinberger et al.
(1995). In particular, we are neglecting all the computational aspects considered there. But
from the mathematical point of view, this definition perfectly does the job. Their convergence
result is the following.

Theorem 5.1 Let (1,p) be a bounded probabilistic context tree and let Xo, ..., X be com-
patible with (7,p). Then we have

Z P(7n # 7)logn < +o0.
n>1

In the unbounded case, this issue was treated without estimation of the rate of convergence
in Ferrari and Wyner (2003) and including estimation of the rate of convergence in Galves and
Leonardi (2008).

This last paper considers another slightly modified version of the algorithm Context using a
different gain function, which has been introduced in Galves et al. (2007). More precisely, let
us define for any finite string m:,lc € A% the gain function

-1 . -1 . -1
An(m_k) = rgg}f ‘pn(akv_k) - Pn(a‘m_(k_n”-
This gain function is well adapted to use exponential inequalities for the empirical transition

probabilities in the pruning procedure rather than the chi-square approximation of the log-
likelihood ratio as in theorems 3.1 and 4.4.
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The theorem is stated in the following framework. Consider a a stationary chain (X, )nez
compatible with an unbounded probabilistic context tree (7, p). For this chain, we define the
sequence (o )nemn by

ag = Y infp(alx),
acA”
anp = inf inf plaly).

27, ged rETl(y)>ny=zT)

We assume that the probabilistic context tree (7,p) satisfies the condition (4.13) of weakly
non-nullness, that is ap > 0. We assume also the following summability condition

a=Y (1-ap) < +oo. (5.23)
n>0
Given a sequence le = (21,...,2;) € A7 we denote by

Then for an integer m > 1, we define

D, — i -1y -1 5.24
m= max{ [p(ajzZy) — plaleZg_4)l} (5.24)

and
€m = min{ p(x7}):k <m and p(z_}) > 0}. (5.25)

Intuitively, Dy, tells us how distinctive is the difference between transition probabilities associ-
ated to the exact contexts and those associated to a string shorter one step in the past. We do
not want to impose restrictions on the transition probabilities elsewhere then at the end of the
branches of the context tree. This has to do with the pruning procedure which goes from the
leaves to the root of the tree.

In the unbounded case, a natural way to state the convergence results is to consider truncated
trees. The definition is the following. Given an integer K we will denote by 7|x the tree 7
truncated to level K, that is

Tlxk = {27} € 71k < K} U {2~} such that z;;' € 7 for some k > K}.

Actually, this is exactly the same tree which was called 7157 in (4.17). The notation 7| is more
suitable for what follows.
The associated empirical tree of height & is defined in the following way.

Definition 5.2 Given § > 0 and k < n, the empirical tree is defined as

AR = faTh 1< <k ATl > 6 A ATt <6 vy 1< g < ki),

—rs —J

) —(r+1)
In case r = k, the string y_é:+j>) is empty.
Note that in this definition, the parameter § expresses the coarseness of the pruning criterion
and k is the maximal length of the estimated contexts.

Now, Galves and Leonardi (2008) obtain the following result on the rate of convergence for
the truncated context tree.
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Theorem 5.3 Let (,p) be a probabilistic context tree satisfying (4.13) and (5.23). Let
Xo, ..., Xy be a stationary stochastic chain compatible with (7,p). Then for any integer K, any
k satisfying

k > max min {{(y): y € 7, :_Egy}, (5.26)

gET\K

for any § < Dy and for each
2(]A[ + 1)
min(é, Dk — (5)6k tk (5.27)

we have that

. Dy—35 Al+1
min(3, 2&=0) — zjn—_‘m]%%c]

-5,k < Aot |Alk+2 —(n—
Ptk # 7lx) <dex|A exp[—(n—k) AAR(E+ 1)

2

where

~ 8e(a+ap)’

In this theorem, the empirical trees have to be of height £ > K for the following reason.
Truncating 7 at level K implies that contexts longer than K are cut before reaching their end,
and associated transition probabilities might not differ when comparing them at length K and
K — 1. That’s why we consider the bigger empirical tree of height k satisfying condition (5.26).
This guaranties that for each element x of the truncated empirical tree there is at least one real
context y which has x as its suffix.

As a consequence of theorem 5.3, Galves and Leonardi (2008) obtain the following strong
consistency result.

Corollary 5.4 Let (1,p) be a probabilistic context tree satisfying the conditions of theorem
5.3. Then
2k = 7k, (5.28)

eventually almost surely, as n — oo.

The main ingredient of the proof of theorem 5.3 is an exponential upper bound for the
deviations of the empirical transition probabilities. More precisely, Galves and Leonardi (2008)
prove the following result.

Theorem 5.5 For any finite sequence 90:,1C with p(x:,lc) > 0, any symbol a € A, any t > 0

and any n > tl;?ﬁl-tl_) + k the following inequality holds.
Tk

P(|pn(alzZ}) — plalzZy)| > t) <

_ [Al+1 42 —1\2
[ (n—k)p(x:ki)} p(x—k) C

1
2|A| e< exp[—(n—k) TAR(E = 1) I, (5.29)
where o

The proof of this theorem is inspired by recent exponential upper bounds obtained by
Dedecker and Doukhan (2003), Dedecker and Prieur (2005) and Maume-Deschamps (2006).
It is based on the following loss-of-memory inequality of Comets et al. (2002).
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Theorem 5.6 Let (X,,)nez be a stationary stochastic chain compatible with the probabilistic
context tree (T,p) of theorem 5.3. Then, there exist a sequence {pi}iev such that for any i > 1,
any k >4, any j > 1 and any finite sequence ), the following inequality holds

sup |P(XF! = 2| XT = o) — p(a])| < jprii- (5.31)
oczle‘ K

Moreover, the sequence {p; e is summable and

2c

Eﬂz < 14 —.
leN ao

Theorem 5.3 generalizes to the unbounded case previous results in Galves et al. (2008)
for the case of bounded context trees. Note that the definition of the context tree estimator
depends on the parameter ¢, the same appearing in the constants of the exponential bound. To
assure the consistency of the estimator we have to choose a § sufficiently small, depending on
the true probabilities of the process. The same thing happens to the parameter k. Therefore,
this estimator is not universal, meaning that for fixed § and k it fails to be consistent for all
variable memory processes for which conditions (5.26) and (5.27) are not satisfied. We could
try to overcome this difficulty by letting 6 = 6(n) — 0 and k = k(n) — +o0 as n increases. But
doing this, we loose the exponential character of the upper bound. This could be considered
as an illustration of the result in Finesso et al. (1996) who proved that in the simpler case of
estimating the order of a Markov chain, it is not possible to have a universal estimator with
exponential bounds for the probability of overestimation.

6 Some final comments and bibliographic remarks

Chains with memory of variable length were introduced in the information theory literature
by Rissanen (1983) as a universal system for data compression. Originally called by Rissanen
tree machine, tree source, context models, etc., this class of models recently became popular in
the statistics literature under the name of Variable Length Markov Chains (VLMC), coined by
Bithlmann and Wyner (1999).

Rissanen (1983) not only introduced the notion of variable memory models but he also
introduced the algorithm Context to estimate the probabilistic context tree. From Rissanen
(1983) to Galves et al. (2008), passing by Ron et al. (1996) and Biithlmann and Wyner (1999),
several variants of the algorithm Context have been presented in the literature. In all the variants
the decision to prune a branch is taken by considering a gain function.

Rissanen (1983), Bithlmann and Wyner (1999) and Duarte et al. (2006) all defined the
gain function in terms of the log likelihood ratio function. Rissanen (1983) proved the weak
consistency of the algorithm Context in the case where the contexts have a bounded length.
Biithlmann and Wyner (1999) proved the weak consistency of the algorithm also in the finite
case without assuming a prior known bound on the maximal length of the memory but using a
bound allowed to grow with the size of the sample.

A different gain function was introduced in Galves et al. (2008), considering differences
between successive empirical transition probabilities and comparing them with a given threshold
8. An interesting consequence of the use of this different gain function was obtained by Collet
et al. (2007). They proved that in the case of a binary alphabet and when taking § within a
suitable interval, it is possible to recover the context tree in the bounded case out from a noisy
sample where each symbol can be flipped with small probability independently of the others.
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The case of unbounded probabilistic context trees as far as we know was first considered by
Ferrari and Wyner (2003) who also proved a weak consistency result for the algorithm Context in
this more general setting. The unbounded case was also considered by Csiszdr and Talata (2006)
who introduced a different approach for the estimation of the probabilistic context tree using
the Bayesian Information Criterion (BIC) as well as the Minimum Description Length Principle
(MDL). We refer the reader to this last paper for a nice description of other approaches and
results in this field, including the context tree maximizing algorithm by Willems et al. (1995).
We also refer the reader to Garivier (2006a, b) for recent and elegant results on the BIC and
the Context Tree Weighting Method (CTW). Garivier (2006¢) is a very good presentation of
models having memory of variable length, BIC, MDL, CTW and related issues in the framework
of information theory.

With exception of Weinberger et al. (1995), the issue of the rate of convergence of the
algorithm estimating the probabilistic context tree was not addressed in the literature until
recently. Weinberger et al. (1995) proved in the bounded case that the probability that the
estimated tree differs from the finite context tree is summable as a function of the sample size.
Assuming weaker hypotheses than Ferrari and Wyner (2003), Duarte et al. (2006) proved in the
unbounded case that the probability of error decreases as the inverse of the sample size.

Leonardi (2007) obtained an upper bound for the rate of convergence of penalized likelihood
context tree estimators. It showed that the estimated context tree truncated at any fixed height
approximates the real truncated tree at a rate that decreases faster than the inverse of an
exponential function of the penalizing term. The proof mixes the approaches of Galves et al.
(2008) and Csiszar and Talata (2006).

Several interesting papers have recently addressed the question of classification of proteins
and DNA sequences using models with memory of variable length, which in bio-informatics are
often called prediction suffix trees (PST). Many of these papers have been written from a bio-
informatics point of view focusing on the development of new tools rather than being concerned
with mathematically rigorous proofs. The interested reader can find a starting point to this
literature for instance in the papers by Bejerano et al. (2001), Bejerano and Yona (2001), Eskin
et al. (2000), Leonardi (2006) and Miele et al. (2005). The same type of analysis has been
used successfully to classification tasks in other domains like musicology (Lartillot et al. 2003),
linguistics (Selding et al. 2001), etc.

This presentation did not intend to be exhaustive and the bibliography in many cases only
gives a few hints about possible starting points to the literature. However, we think we have
presented the state of the art concerning the rate of convergence of context tree estimators.

In the introduction we said that Rissanen’s ingenious idea was to construct a stochastic
model that generalizes the notion of relevant domain (in biology or linguistics) to any kind of
symbolic strings. Actually, God only knows what Jorma had in mind when he invented this
class of models. The French poet Paul Eluard wrote a book called Les fréres voyants. This was
the name given in the middle-age to people guiding blind persons. So maybe Rissanen acted
as a frére voyant using his intuition to push mathematics and statistics into a challenging new
direction.
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Some Information-Theoretic Computations
Related to the Distribution of Prime Numbers

I. Kontoyiannis*

March 27, 2008

Abstract

We illustrate how elementary information-theoretic ideas may be employed to provide
proofs for well-known, nontrivial results in number theory. Specifically, we give an elementary
and fairly short proof of the following asymptotic result,

1
Eﬂwlogn7 asn — o9,
p<n

where the sum is over all primes p not exceeding n. We also give finite-n bounds refining
the above limit. This result, originally proved by Chebyshev in 1852, is closely related to
the celebrated prime number theorem.

1 Introduction

The significant depth of the connection between information theory and statistics appears to
have been recognized very soon after the birth of information theory [17] in 1948; a book-length
exposition was provided by Kullback [12] already in 1959. In subsequent decades much was
accomplished, and in the 1980s the development of this connection culminated in Rissanen’s
celebrated work [14][15][16], laying the foundations for the notion of stochastic complexity and
the Minimum Description Length principle, or MDL.

Here we offer a first glimpse of a different connection, this time between information theory
and number theory. In particular, we will show that basic information-theoretic arguments
combined with elementary computations can be used to give a new proof for a classical result
concerning the distribution of prime numbers. The problem of understanding this “distribution”
(including the issue of exactly what is meant by that statement) has, of course, been at the heart
of mathematics since antiquity, and it has led, among other things, to the development of the
field of analytic number theory; e.g., Apostol’s text [1] offers an accessible introduction and [2]
gives a more historical perspective.

A major subfield is probabilistic number theory, where probabilistic tools are used to derive
results in number theory. This approach, pioneered by, among others, Mark Kac and Paul Erdés
from the 1930s on, is described, e.g., in Kac’s beautiful book [11], Billingsley’s review [3], and
Tenenbaum’s more recent text [18]. The starting point in much of the relevant literature is the

*Department of Informatics, Athens University of Economics and Business, Patission 76, Athens 10434, Greece.
Email: yiannis@aueb.gr. Web: http://pages.cs.aueb.gr/users/yiannisk/.
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following setup: For a fixed, large integer n, choose a random integer N from {1,2,...,n}, and
write it in its unique prime factorization,

N = Hpo, (1)

psn

where the product runs over all primes p not exceeding n, and X, is the largest power k > 0
such that p* divides N. Through this representation, the uniform distribution on N induces a
joint distribution on the {X, ; p < n}, and the key observation is that, for large n, the random
variables {X,} are distributed approximately like independent geometrics. Indeed, since there
are exactly |n/p®| multiples of p* between 1 and n,
. . % 1| n 1\ %

Pr{X, > k} = Pr{N is a multiple of p*} = - L?J R (5) , for large n, (2)
so the distribution of X, is approximately geometric. Similarly, for the joint distribution of the
{Xp} we find,

1 n 1 \ki/ 1 \ke 1\ Fkm
Pr{X,, > kp, for primes p1,p2,...,pm <N :—{7Jw<—> <—> <—>
P =y R T prplphed T \p/ A\ps pm/

showing that the {X,} are approximately independent.

This elegant approximation is also mathematically powerful, as it makes it possible to trans-
late standard results about collections of independent random variables into important properties
that hold for every “typical” integer N. Billingsley in his 1973 Wald Memorial Lectures [3] gives
an account of the state-of-the-art of related results up to that point, but he also goes on to make
a further, fascinating connection with the entropy of the random variables {X}.

Billingsley’s argument essentially begins with the observation that, since the representa-
tion (1) is unique, the value of N and the values of the exponents {X,} are in a one-to-one
correspondence; therefore, the entropy of N is the same as the entropy of the collection {Xp},1

logn =H(N)=H(X,; p<n).

And since the random variables {X,} are approximately independent geometrics, we should
expect that,

logn — H(X, ; pSn)%ZH(Xp)%Z[;Oéq ~log <1—%)], (3)
p<n p<n

where in the last equality we simply substituted the well-known expression for the entropy of
a geometric random variable (see Section 2 for details on the definition of the entropy and its
computation). For large p, the above summands behave like 10% to first order, leading to the
asymptotic estimate,

1
Z 08P logn, for large n.
p<n

Our main goal in this paper is to show that this approximation can indeed be made rigorous,
mostly through elementary information-theoretic arguments; we will establish:

'For definiteness, we take log to denote the natural logarithm to base e throughout, although the choice of the
base of the logarithm is largely irrelevant for our considerations.
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Theorem 1. As n — oo,

C(n):= Z logp ~ logn, (4)
p<n b

where the sum is over all primes p not exceeding n.?

As described in more detail in the following section, the fact that the joint distribution of the
{Xp} is asymptotically close to the distribution of independent geometrics is not sufficient to
turn Billingsley’s heuristic into an actual proof — at least, we were not able to make the two “~”
steps in (3) rigorous directly. Instead, we provide a proof in two steps. We modify Billingsley’s
heuristic to derive a lower bound on C(n) in Theorem 2, and in Theorem 3 we use a different
argument, again going via the entropy of N, to compute a corresponding upper bound. These
two combined prove Theorem 1, and they also give finer, finite-n bounds on C(n).

In Section 2 we state our main results and describe the intuition behind their proofs. We
also briefly review some other elegant information-theoretic arguments connected with bounds
on the number of primes up to n. The appendix contains the remaining proofs.

Before moving on to the results themselves, a few words about the history of Theorem 1
are in order. The relationship (4) was first proved by Chebyshev [7][6] in 1852, where he also
produced finite-n bounds on C(n), with explicit constants. Chebyshev’s motivation was to
prove the celebrated prime number theorem (PNT), stating that 7(n), the number of primes
not exceeding n , grows like,

n

w(n) ~ as n — oo.

logn’
This was conjectured by Gauss around 1792, and it was only proved in 1896; Chebyshev was
not able to produce a complete proof, but he used (4) and his finer bounds on C(n) to show
that 7(n) is of order logn. Although we will not pursue this direction here, it is actually not
hard to see that the asymptotic behavior of C(n) is intimately connected with that of 7w(n). For
example, a simple exercise in summation by parts shows that w(n) can be expressed directly in

terms of C'(n):

n+1 = k: k1 ok
For the sake of completeness, this is proved in the appendix.

The PNT was finally proved in 1896 by Hadamard and by de la Vallée-Pousin. Their proofs
were not elementary — both relied on the use of Hadamard’s theory of integral functions applied
to the Riemann zeta function ((s); see [2] for some details. In fact, for quite some time it was
believed that no elementary proof would ever be found, and G.H. Hardy in a famous lecture to
the Mathematical Society of Copenhagen in 1921 [4] went as far as to suggest that “if anyone
produces an elementary proof of the PNT ... he will show that ... it is time for the books to be
cast aside and for the theory to be rewritten.” It is, therefore, not surprising that Selberg and
Erdss’ announcement in 1948 that they had produced such an elementary proof caused a great
sensation in the mathematical world; see [9] for a survey. In our context, it is interesting to note
that Chebyshev’s result is again used explicitly in one of the steps of this elementary proof.

Finally we remark that, although the simple arguments in this work fall short of giving
estimates precise enough for an elementary information-theoretic proof of the PNT, it may not
be entirely unreasonable to hope that such a proof may exist.

2As usual, the notation “a, ~ b, as n — co” means that lim, .o an/b, = 1.
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2 Primes and Bits: Heuristics and Results

2.1 Preliminaries

For a fixed (typically large) n > 2, our starting point is the setting described in the introduction.
Take N to be a uniformly distributed integer in {1,2,...,n} and write it in its unique prime
factorization as in (1),

Xor(n
N = HpXP = p_1X'1 pg{z ..... pﬂ’(n())’

where 7(n) denotes the number of primes p1, pa, .. ., Pr(n) up to n, and X}, is the largest integer
power k > 0 such that p* divides N. As noted in (2) above, the distribution of X, can be
described by,

n

Pr{X, >k} = %bﬂ for all k> 1, (6)

This representation also gives simple upper and lower bounds on its mean E(X,),

INE 1)p 1
pp = E(Xp) = Y Pr{X, >k} <> (=) = -— (7)
= = <p> 1-1/p p-1
and p, > Pr{X,>1}> % — % (8)

Recall the important observation that the distribution of each X, is close to a geometric.
To be precise, a random variable Y with values in {0,1,2,...} is said to have a geometric
distribution with mean x> 0, denoted Y ~ Geom(p), if Pr{¥ = k} = u®/(1 + p)*+1, for all
k> 0. Then Y of course has mean E(Y) = u and its entropy is,

h{p) := H(Geom(u)) = — ZPr{Y =k}logPr{V =k} = (u+ 1) log(pe + 1) — plogp.  (9)
k>0

See, e.g., [8] for the standard properties of the entropy.

2.2 Billingsley’s Heuristic and Lower Bounds on C(n)
First we show how Billingsley’s heuristic can be modified to yield a lower bound on C(n).
Arguing as in the introduction,

(a)

©
logn @ H(N) Y :

(d) e
H(X,; p<n) < ZH(XP) % ZH(Geom(pp)) © Zh(ﬂp)7 (10)

psn p<n p<n

where (a) is simply the entropy of the uniform distribution, (b) comes from the fact that N
and the {X,} are in a one-to-one correspondence, (c) is the well-known subadditivity of the
entropy, (d) is because the geometric has maximal entropy among all distributions on the non-
negative integers with a fixed mean, and (e) is the definition of A{y) in (9). Noting that h(p) is
nondecreasing in y and recalling the upper bound on p, in (7) gives,

logn < 32 hluy) < SR/ - 1) = X [ lon () - e (25)]

p<n psn psn

Rearranging the terms in the sum proves:
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Theorem 2. For all n > 2,

T(n):= Z [% —log (1 — %)} > logn.

p<n

Since the summands above behave like 10—‘-;2 for large p, it is not difficult to deduce the following

lower bounds on C'(n) =3, -, 10_";2 :

Corollary 1. [LOWER BOUNDS ON C(n)]

(2) lim inf i) >1;
n—oo logn

(i4) C(n) > % logn — 2.35, for all n > 16.

Corollary 1 is proved in the appendix. Part (¢) proves half of Theorem 1, and (é¢) is a simple
evaluation of the more general bound derived in equation (16) in the proof: For any Ny > 2, we
have,

1

1
>(1-—)({1—- ———— - > No.
C(n) > (1 N0> <1 T log N0> logn + C(No) — T(Ny), foralln> Ny

2.3 A Simple Upper Bound on C(n)

Unfortunately, it is not clear how to reverse the inequalities in equations (10) and (11) to get
a corresponding upper bound on C(n) — especially inequality (c¢) in (10). Instead we use a
different argument, one which is less satisfying from an information-theoretic point of view, for
two reasons. First, although again we do go via the entropy of NV, it is not necessary to do so;
see equation (13) below. And second, we need to use an auxiliary result, namely, the following
rough estimate on the sum, ¥(n) := > ., logp:

Hn) = Zlogp < (2log2)n, foralln > 2. (12)
p<n

For completeness, it is proved at the end of this section.

To obtain an upper bound on C(n), we note that the entropy of N, H(N) = logn, can
be expressed in an alternative form: Let @) denote the probability mass function of N, so that
Q(k)=1/nfor all 1 <k <n. Since N <n =1/Q(NN) always, we have,

H(N) = E[-1og Q(N)] > Ellog N| = [1oa 11 po] 3 E(X,)logp. (13)
p<n p<n
Therefore, recalling (8) and using the bound (12),
log p ( logp
logn > e _ N 8p > —2log 2,
P R o
p<n p<n p<n
thus proving:
Theorem 3. [UPPER BouND] For all n > 2,

1
Z 08P <logn + 2log 2.
p<n
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Theorem 3 together with Corollary 1 prove Theorem 1. Of course the use of the entropy could
have been avoided entirely: Instead of using that H{(N) = logn in (13), we could simply use
that n > N by definition, so logn > E[log N|, and proceed as before.

Finally (paraphrasing from [10, p. 341]) we give an elegant argument of Erdds that employs
a cute, elementary trick to prove the inequality on ¥(n) in (12). First observe that we can
restrict attention to odd n, since ¥(2n) = ¥(2n — 1), for all n > 2 (as there are no even primes
other than 2). Let n > 2 arbitrary; then every prime n+ 1 < p < 2n + 1 divides the binomial

coefficient,
m+ 1\ (2n+ 1)
B = ="
n nl(n+1)!
since it divides the numerator but not the denominator, and hence the product of all these
primes also divides B. In particular, their product must be no greater than B, i.e.,

II »r<B= %(%Jr 1) + %(2n+11) < %(1 4 1)+l = 9%,
n+1<p<2n+1 n n+

or, taking logarithms,

d2n+1)—Hn+1)= Z logp = log [ H p] < (2log 2)n.
n+1l<p<2n+1 n+1l<p<2n+1

Iterating this bound inductively gives the required result.

2.4 Other Information-Theoretic Bounds on the Primes

Billingsley in his 1973 Wald Memorial Lectures [3] appears to have been the first to connect
the entropy with properties of the asymptotic distribution of the primes. Although there are
no results in that work based on information-theoretic arguments, he does suggest the heuristic
upon which part of our proof of Theorem 2 was based, and he also goes in the opposite direction:
He uses probabilistic techniques and results about the primes to compute the entropy of several
relevant collections of random variables.

Chaitin in 1979 [5] gave a proof of the fact that there are infinitely many primes, using
algorithmic information theory. Essentially the same argument proves a slightly stronger result,
namely that, 7(n) > logll‘;%, for all n > 3. Chaitin’s proof can easily be translated into
our setting as follows. Recall the representation (1) of a uniformly distributed integer N in
{1,2,...,n}. Since p*» divides N, we must have p*» < n, so that each X, lies in the range,

0< X, < {lognJ < logn

logpd ~ logp’

and hence, H(X,) < log (112% + 1). Therefore, arguing as before,

logn=H(N)=H(Xp; p<n) < ZH(XP) < Zlog (11(;?; + 1) < w(n)(loglogn + 1),
p<n p<n

where the last inequality holds for all n > 3.
It is interesting that the same argument applied to a different representation for N yields a
marginally better bound: Suppose we write,

N=M*[]»",
p<n
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where M > 1 is the largest integer such that M? divides N, and each of the Y, are either zero
or one. Then H(Y,) < log?2 for all p, and the fact that M? < n implies that H(M) < log|\/n].
Therefore,

logn = H(N) = H(M,Yp,, Yy, Yp_,)) < HM) + > H(Y, %lognJrTr(n) log 2,
p<n

which implies that 7(n) > Qlcl’é—‘g%, for all n > 2.

Finally we mention that in Li and Vitdnyi’s text [13], an elegant argument is given for
a more accurate lower bound on 7(n). Using ideas and results from algorithmic information
theory, they show that, m(n) = Q(W) But the proof (which they attribute to unpublished
work by P. Berman (1987) and J. Tromp (1990)) is somewhat involved, and uses tools very
different to those developed here.

Appendix

PROOF OF THE SUMMATION-BY-PARTS FORMULA (5). Note that, since w(k) —7(k— 1) is zero
unless k is prime, C'(n) can be expressed as a sum over all integers k < n,
log k
C(n) = Z [7(k) — (k= 1)] o (14)

2<k<n

Fach of the following steps is obvious, giving,

w(n) = Y [n(k) —w(k—1)]
k=

n k k+1
- zcu«)@ - ;CWW

2
n+1 & k+1 k 2
N g (log k+1) logk)c(k) ~ log?2 ca),

where (a) follows from (14). This proves (5), since C(1) = 0, by definition. O

PrOOF OF COROLLARY 1. Choose and fix any Ny > 2 and let n > Ny arbitrary. Then,

logn < T(n) = T(No)+ Y. [;qu—logo—%)]gT(No)Jr > L logp, No 1]7

_1 Ny —1
No<p<n No<p<n 1 P p 0 p
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where the last inequality follows from the inequality —log(l —z) < z/(1 —¢), forall 0 < z <
0 < 1, with 6 = 1/Ng. Therefore,

1 logp No logp 1
logn < T(No)+ Z [1 1 - N, —llogN _]
No<p<n T N b 0 sop

703) + (52 (14 o) (G - C)). (15)

Dividing by logn and letting n — oo yields,

. . C(TL) (No — 1)10gN0
1 f >
R logn = No(1 +log Ng)’

and since Ny was arbitrary, letting now Ny — oo implies (4).
For all n > Ny, (15) implies,

1 1
> _ [ _
o> (1- ) (112 og ;) logn + C(No) — T(No), (16)
and evaluating this at Ny = 16 gives (). O
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MDL Model Averaging for Linear Regression

ERKKI P. LISKI' and ANTTI LISKI?
University of Tampere! and Tampere University of Technology?
Finland

Abstract

Estimators formed after model selection really are like mixtures of many potential es-
timators. Sometimes it is advantageous to smooth estimators across several models, rather
than rely only on the model that is suggested by a single selection criterion. The main theme
of this paper is the problem of selecting the weights for averaging across estimates obtained
from a set of models. Some existing model average (MA) methods are based on exponential
AIC or BIC weights (e.g. Burnham and Anderson 2002). Bayesian model averaging is a re-
lated technique (see e.g. Hoeting et al. 1999). Recently Leung and Barron (2006) and Hansen
(2007) have developed methods for combining estimators from various models. This paper
considers selecting the model weights by using Rissanen’s MDL criterion and compares the
potential performance of alternative MA estimators in simulation experiments.

2000 Mathematics Subject Classification. 62B10, 62J05, 62F99.
Key words or phrases. Model selection, NML, AIC, BIC, Mallows’ C,,.

1 Introduction

In statistical practice one typically has multiple plausible models available. Model selection is
most often regarded as a way to select just the best model, and then inference is conditioned on
that model. In regression a common practice is to decide which variables to include in the model,
and to use these variables to fit the response. A large number of criteria has been developed
over the past few decades to select the best model.

It is known that model selection procedures can be unstable, as a small perturbation in the
data may lead to significant changes in model choice. If the inference done with an estimate on
the chosen model does not take into account model uncertainty, it often means underreporting of
variability. Model averaging (MA) is an alternative to model selection. There is a large Bayesian
literature on MA, for literature reviews see e.g. Draper (1995) and Hoeting et al. (1999). Given a
set of models, we may find several plausible models according to some model selection criterion.
In this case, it has been suggested estimation strategies that utilize more than just a single model.
This entails a weighted average estimator for many alternative models. Buckland et al. (1997)
suggested exponential AIC and BIC weights (see also Burnham and Anderson 2002). Hjort and
Claeskens (2003) developed a general large-sample likelihood apparatus for MA estimators.

The Minimum Description Length (MDL) principle provides a generic solution to the model
selection problem. By viewing models as a means of providing statistical descriptions of observed
data, the comparison between competing models is based on the stochastic complexity (SC) of
each description. The Normalized Maximum Likelihood (NML) form of the SC (Rissanen 1996)
contains a component that may be interpreted as the parametric complexity of the model class.
Once the SC for the data, relative to a class of suggested models, is calculated, it serves as
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a criterion for selecting the optimal model with the smallest SC. This is the MDL principle
(Rissanen 1978, 1986, 1996, 2000, 2007) for model choice.

In this paper we consider the NML density as an implementation of the MDL principle
for model selection in the linear regression context, where attention is restricted to Gaussian
linear models. Then we propose a model average estimator with weights selected by the MDL
criterion. It turns out that, under squared error loss, the resulting mixture estimator usually
performs better than the corresponding selection based estimator.

2 The Model

We have n pairs of observations (y1,@1), ..., (Yn, ®n), where y; is real valued and x; is a kpr x 1
vector, 1 < ¢ < n. Assume that the data follow a classical nonparametric regression model

yizﬂ(wi)+05ia 1= 15"'7”7 (1)
where €1, ..., g, are independent random variables such that for each 1 <i <mn
E(gilz;) =0 and E(2|z;) =1

and the positive constant ¢ defines the scale of the additive error og;.

Model (1) is called a nonparametric regression model when p belongs to some general (infinite
dimensional) function class. Here we assume that g is in the space of square integrable functions
Lo whose elements admit representations as infinite dimensional linear models for which

(o)
plx) = Bij() (2)
j=1
for some set of known functions {¢1, 2, ...} and real valued coeflicients 31, 0z, .... We assume

that (2) converges in mean square, i.e.
Blu(z) — pm(@)]* =0 as m — oo,

where

pim () = iﬂj%(w)-
j=1

The practical significance of (2) is that any u € La may be well approximated by pm, (x) with a
finite number of m terms. In the sequel we denote generally z;; = @;(x;). Note that the above
approach is a standard technique in nonparametric regression (see e.g. Efromovich 1999 and
Eubank 1999). This approach is also similar to series estimators in econometrics (see e.g. Newey
1997).

Now the model (1) can be written as a linear model

yi= > @B tbm tos,  i=1,2,...n, (3)
JEMm

where M, = {1,2,...,ky} with &, <n,

[o.¢]
bim =y Bz

J=km+1
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is the approximation error and the random errors €1, ..., €, are like in (1). Here the quantity
km plays the role of a smoothing parameter. Sometimes pn,(x) is called a truncated series
approximation of p and ky, a truncation point.

To obtain an estimate of ;1 one may employ an approximating linear model by omitting b;
which effect is considered negligible. In matrix notation an approximating model M,, takes the
form

Y = pm + 0, (4)
where y = (Y1,--,Yn), bm = XmBm, € = (¢1,...,&n) and B, = (B1,...,Bk,,) is the ky x 1
vector of unknown regression coefficients. Here X, is the n x k; matrix with ij element x;;.
We shall consider a set of approximating models { M, ..., Mas} such that My C My C--- C
My € {1,2,...,n}, where M,, refers to the model (4). We suppose that M is an integer for
which the matrix Xy,, is of full column rank. Thus k1 < k2 < -+ < kyy, and consequently all
X,, with 1 <m < M are of full column rank.

Then the least-squares estimate of 3, is

Bn(y) = (X1, Xm) ' X1y,
and the corresponding estimate of i, is
b = Hpyy, (5)

where H,, denotes the projection matrix X, (X;nXm)_lX;n. Often the regression literature
refers to the matrix H,, as the hat matrix. Denote by, = (bim,...,bnm)" and note that pu =
m + by, Thus (I — Hp)p = (I — Hy,)byy,, and consequently po — fiy, = (I — Hp,)by, — 0 Hpe.
Therefore the model error 7, = ||t — furm||? is

T = bl (I — Hy)by, + 0% Hye — 2b), (I — Hy,)Hype. (6)
Taking the conditional expectation of r,, we obtain
E(rm|z1, ..., @n) = b, (I — Hy)by, + 0%k,

since by assumptions of the model (1) the conditional expectation of the last term in the ex-
pression (6) is zero and E(o%e'Hpel|xy, ..., xn) = 02kn.

Example. Assume that (2) is an orthogonal series representation for u(z), = € [0, 1], where

1
b= [vi@p@ s, j-12...
0

and {1, 2, @3, ...} is an orthonormal basis for p € L2[0, 1]. An example of such a basis is
oi(@) =V2cos((j — V)mzx),  j=1,2,.... (7)

Other popular examples of orthogonal basis functions are orthogonal polynomials and wavelets.
In this example we also assume that the basis functions are orthonormal with respect to the
uniform design z; = (j — 1/2)/n, j = 1,...,n like the cosine basis (7):
- {0, Jtk

> (@) er(a:) = n ek (8)

i=1
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for all j,k €{1,2,...} and 1 = 1.
Using the orthogonality properties (8) it is easy to show that the least-squares estimate of
ﬁj is
A 1 &
i=1

If we assume the model like (4) and independent errors, then the coefficients Bi,..., By are
mutually independent and asymptotically

N 1 & o2 .
B; NN(— E u(mi)gaj(xi)7—>7 ji=1,...,n.
n = n

3 The MDL Model Selection and Averaging

In the MDL model selection we assume the approximating model (4) with normally distributed
random errors, i.e. € ~ N, (0, I), where I is the n x n identity matrix. The response data y are
modelled with the normal density functions

1 1
: 2y _ |y — 2
§ @3By o) = o @5 (= g ¥ = X ), (9)
where || - || denotes the Euclidean norm of a vector and 1 < m < M. Under these assumptions

B, is the maximum likelihood (ML) estimate of 3, and
G =y — fnl*/n

the ML estimate of 2.
Consider the normalized maximum likelihood (NML) function (Rissanen 1996 and 2007,
Barron, Rissanen and Yu 1998)

Flyim) — L2000, (10)
where 8, = (3/,,62,) and
Cm) = [ 16w dy (1)

is the normalizing constant. Thus f(y;m) is a density function, provided that C(m) is bounded.
Rissanen (1996) considers the NML function in the context of coding and modelling theory and
takes

—log f(y;m) = —log f(y; O (y)) + log C(m) (12)

as the “shortest code length” for the data y that can be obtained with the model M, and calls
it the stochastic complexity of y, given M,,. The last term in the equation (12) is called the
parametric complexity.

Here we consider the model class

My, ={f(y;0n) :me{l,...,M}} (13)
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defined by the normal densities (9). The aim of variable selection is to find the optimal value of
index m. According to the MDL (Minimum Description Length) principle we seek to find the
index value m = M that minimizes the stochastic complexity:

—log f(y; ) = min{~log f (y; Om(y)) + log C(m)}.

Since 7 maximizes (10), we may call it the NML estimate of m within the model class M,,.

For the normal distribution (9), however, the normalizing constant C{m) is not bounded
and hence the NML function is not defined. One approach to this problem is to constrain the
data space properly (Rissanen 2000). For the constrained data space the stochastic complexity
C(m) is bounded, but it will depend on certain hyperparameters (Rissanen 2007 p. 116). The
negative logarithm of f(y;m) multiplied by 2 is given by

210e flu: _ A2 Hﬂm“Q (n = km (km

—2log f(y;m) = nlogdz, + kny log P 2logF<T> — 2logF<7> + L{m) +e¢,
m

where the constant ¢ is common to all models and therefore it can be ignored in model selection.

The code length L(m) for m is small and will be omitted. If we denote MDL,, = —2log f(y:; m)

and omit L(m) + ¢, the NML model selection criterion takes the form (Hansen and Yu 2001,

Liski 2006)

MDL,, = nlog S, + ky, log Fy, + loglkm(n — k)],

where 3, = |ly — fiml|*/(n — k) and F = ||/ (knSh,)-
Consider a mixture density

M . M
Z w f(y;m)  with Z W = 1,
m=1 m=1

where f (y;m) are NML densities and w,, nonnegative weights 1 < m < M. If we select the
model m = Mm and encode the data using the selected model m, then the code length for
the data is log[1/ws f(y;M)]. On the other hand, the mixture model yields the code length
log[1/ >, wm, f (y;m)] which is always shorter if wy, # 1. Therefore, it seems advantageous to
encode with a mixture (cf. also Liang and Barron 2005). However, the problem of finding the
weight vector still remains.

Given the data y, f(y;m) can be interpreted as the likelihood of the model M,,, m =
1,2,..., M. This leads to the NML distribution

~ flyym)  exp(—MDL,, /2)
XM flysi) T exp(— MDL; /2)

for models (13). Thus the MDL distribution (14) may be used to define the empirical selected
weight vector

pm;y) (14)

W = (p(L;y), .., H(M; y)) (15)
(cf. Rissanen 2007, Subsection 5.2.2).

4 Alternative Model Average Estimators

It is well-known that a model selection procedure can be unstable, as small changes in the data
may lead to significant changes in model choice. The inference done with a single estimate 3y,
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based on the chosen model M, does not take into account model uncertainty, and therefore
may be too optimistic. To deal with uncertainty in model selection we study model average
estimation. Let fi,, denote an MA estimator of p. It is a convex combination of estimators (5)
such that

M M M
fo = > Wi = > W Hny = (Y wnHa)y = Huy, (16)
m=1 m=1 m=1

where H,, denotes the implied hat matrix Z%I:l W Hy,. Note that although every hat matrix
H,, is idempotent, the implied hat matrix H,, is generally not. Selecting the model weights by
the NML distribution (15) yields an operational model average estimator.

Bayesian model averaging is widely used in the literature and so we refer to these works by,
among others, Draper (1995) and for literature reviews see Hoeting, et al. (1999). An alternative
can be based on the analogue of Bayesian model probabilities for frequentist statistics. Such a
weigh scheme has been implied in a series of papers by Akaike (see e.g. Akaike 1978 and 1979)
and expounded further by Buckland, et al. (1997) and Burnhan and Anderson (2002). Akaike’s
suggestion derives from the Akaike information criterion (AIC). The Akaike weights are defined
as

Wy x exp(— AIC,, /2)

normalized to have unit sum. In the present context of ML estimation AIC,, = nlog 63n + 2kyp,.
For a Bayesian the weights
Wy, o exp(— BICy, /2)

can serve as a rough approximation to the posterior probabilities for models M,,, where BIC,,, =
nlog 62, + ki logn is the Bayesian information criterion (Schwarz 1978) for M.
Hansen (2007) proposed the Mallows’ criterion

C(w) = |ly — ful* +20°K"w, (17)

where k = (k1, ..., kyr)". The empirical Mallows’ weight vector 4 is selected so that the criterion
(17) attains its minimum. In practice o2 should be replaced with some consistent estimator. In
the simulation experiments our choice is 02 = §2,. There is no closed form solution to minimizing
of (17) and the weight vector must be found numerically.

Leung and Barron (2006) considered MA estimators under the Gaussian model (9) when o2
is assumed to be known. They defined the weights to be

~

T'm

Wy X exp(—ozm)7 a >0, (18)
where

P = |y = Banl® + 0% (2 — 1) (19)
is an unbiased estimate of the model error

P = |l — Rl (20)
in the sense that E(?y,) = E(ry,) (Akaike 1970 and 1973, Mallows 1973, Stein 1973 and 1981).
The tuning parameter a adjusts the degree of concentration of the weights on the models with
small model error estimates. They derived simple and accurate bounds on (20) and its estimate
(19). The weights (18) are not directly operational, however, since o2 and « should be estimated.
Note that also C'(w) — no? is an unbiased estimate of the model error in the sense that
E|C(w) — no®| = E(ry),

where 7, = ||t — fi|*> (Hansen 2007).
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5 Simulations

In this section we report on simulation investigations of the performance potential of the MDL,
AIC, BIC and Mallows” MA estimators. The setting is the regression

K
i = Y il + i, (21)
j=1
where K = 100 and ky; < K. We fix in (21) z;; = 1, and the remaining elements x;; are
mutually independent and follow the normal distribution N(0, 1). The errors ¢; are independent
of #;; and are N(0, 1). We impose the structure of gradual decay on 3 and varied
A(a)
Fi =i

with different values a and ¢. Here A(a) is such a normalizing constant that Var(zszl z;35) = 2.
The parameter a controls the speed of decay and the coefficient ¢ determines the value of
R?% = ¢2/(1 + ¢?), a measure of explained variation. In the reported experiments the sample size
is set to n = 50 and the maximum model order kjp; varied between 10, 20, 30, 40, 45.

Let MDL(w), AIC(w), BIC(w), MalC(w) denote the MDL, AIC, BIC and Mallows’ MA
estimators, respectively. To evaluate estimators we compute the model error (20). We then
summarise the overall performance by computing the average model error (AME) over 10000
iterations in each of our various set-ups. We normalize the AME by that of the estimator ,C:l A, SO
that unity indicates equivalence with ,@M in the AME sense. Then the AME curves as a function
of R? are displayed.

In the first experiment (Figure 1) we illustrate the effect of a (the speed of decay) on the
performance of estimators. The parameter a varied between 0.5, 1.0, 1.5 and 2 when M = 40
and n = 50. The results from the first experiment show that the performance of MDL(w) and
BIC(w) are close to each others. Overall, the AIC(w) estimator has clearly higher AME relative
to its competitors. For large values of a (1.5 and 2) the MalC(w) has slightly higher AME than
MDL(w) and BIC(w), but for the values 0.5 and 1 there are some crossings of the AME curves.
In all cases the AME curves are increasing functions of R2.

The second experiment (Figure 2) depicts the dependence of the AME on the maximal model
order kjs that varied between 10, 20, 30 and 45. The main message is clear: the AME curves
of the MA estimators MDL(w), BIC(w) and MalC(w) are pretty close to each others and their
performance relative to the AIC(w) improves when kj; increases. Results of further simulation
experiments (not reported here) confirmed the finding, that the performance of MDL(w) and
BIC(w) relative to the AIC(w) improves when M /n increases.

Note that although the AIC(w) does not do too well in our experiments, its relative per-
formance improves when M/n is small. Hansen (2007) reported simulation results showing that
the AIC(w) and MalC(w) are superior to the BIC(w) when M/n is small. In his experiments
both M and n varied (K is sufficiently large).

Finally, in Figure 3 we illustrate by simulation how MDL(w) is superior to the MDL model
selection estimator in the AME sense. The MDL(w) consistently outperforms the MDL model
selection estimator.
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Abstract

The notion of information has so far been quantified mostly in statistical terms, giving
rise to Shannon’s information theory and the principles of digital data transmission. Studies
of systems involving complex, intelligent, and autonomous agents, not uncommon in con-
temporary science, call for a new look at the measures of information that place importance
on context, semantics, structures, and rationality. In this essay we propose a framework
for measuring information inspired by the event-driven approach. We then illustrate our
definition with several examples ranging from distributed computer systems to biology and
economics.

1 Introduction

In this essay we muse on the notion of information, hoping to capture some of its essential
aspects and provoke a discussion. We point out the need for a new definition of information that
might be applied in contemporary science and engineering ranging from biology to chemistry,
economics, and physics. We shall proceed inductively, giving examples from which hopefully a
formal framework will arise.

Advances in information technology, the abundance of information systems and services, the
much-trumpeted advent of information society, or even the Information Age (recently embodied
in the communities of Web 2.0), almost obscure the fact that the common buzzword — the i-word
— remains undefined in its generality, though considerable collective effort was harnessed into its
understanding (cf. [6, 8, 20, 21, 31, 36, 38]). Shannon wrote in [32]: “The word “information”
has been given many different meanings ... it is likely that at least a number of these will prove
sufficiently useful in certain applications and deserve further study and permanent recognition.”

Shannon’s successful theory of information defines statistical information that quantifies to
what extent a recipient of data can reduce statistical uncertainty associated with its source by
observing the output of a source-recipient channel. Shannon also argued in his 1948 paper:
"These semantic aspects of communication are irrelevant to the engineering problem.” The
channel error rate, on the other hand, does matter: for example, with a 50% binary error rate,
the amount of statistical information sent through a binary symmetric channel is zero. But it

*The work of this author is sponsored by the AFOSR Grant FA8655-08-1-3018 and the Ministry of Science
and Higher Education, Poland, Grant PBZ-MNiSW-02/11/2007.

"This work was supported in part by the NSF Grants CCR-0208709, CCF-0513636, and DMS-0503742, NIH
Grant R01 GM068959-01, and the AFOSR Grant FA8655-08-1-3018.
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seems that the intuitive understanding of information cannot be formalized without bringing
into the picture the timing of data (consider a train departure notice served a recipient after
the stated departure time), spatial aspect of information (imagine the same notice arriving at a
different location), the objective its recipient wants to achieve (consider the same notice served
a recipient not going anywhere), and the knowledge of the recipient’s internal rules of conduct,
or protocol for short (consider a recipient at the output of a channel with a high bit error rate,
whose protocol dictates that the channel be regarded as perfect, hence received data be used
bona fide).

The context of data cannot be abstracted from, either. Even at a high error rate some
information may be recovered from the context e.g., a math textbook transmitted over such a
channel might still be recognized as such. This point becomes particularly valid in the realm
of biosystems — most biological information depends on where it is retrieved e.g., its location
within a cell, a piece of DNA or protein. This important aspect is not yet well understood or
analyzed in information theory. Biology is above all about context, and so a periodic pattern,
while containing less statistical information than a random sequence, may contain a lot more
biological information. In fact, in a recent paper [11] the authors argue that a random string and
an exactly duplicated string add nothing or almost nothing to a biological information content.
On the other hand, any context-dependent information measure must take into account the
relationship between a given string and other related strings.

So what is information? In this essay, following C. F. von Weiszsécker, we first argue that that
there is no absolute meaning of information. Then, using an event-driven approach, we propose
a definition that encompasses two of Weiszsécker’s premises, namely that “Information is only
that which produces information” (relativity) and “Information is only that which is understood”
(rationality) [36]. We then present some examples illustrating new aspects of information within
the framework that we adopt here. We conclude with remarks suggesting some future work and
leading to more questions. As a matter of fact, we hope to put forward some educated questions
as to the issues and tools that lie before researchers interested in information, rather than come
up with definite answers.

A preliminary version of this essay was prepared for the October 2005 workshop Information
Beyond Shannon at Orlando FL. We thank the participants of the workshop for lively and
constructive comments, some of which have found their way into the present version.

2 Event-Driven Approach

An intuitive relationship between data (any sequence of interpretable symbols) and information
is that data may or may not carry information. One may observe that a piece of data carries
information if it helps its recipient achieve some objective. In fact, this observation, stated more
or less explicitly, was the point of departure of early textbooks on information technology [28].
There has been little formal apparatus, however, to quantitatively account for all its facets. To
generalize and add precision we observe that a piece of data carries information if it can impact
a recipient’s objective, under a given protocol and within a given context.

Thus information has a flavor of relativity and rationality: it derives from the recipient’s
knowledge (gathered from the context), capability (implied by its protocol), and the pursued
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objective. Underlying the latter are also temporal and spatial aspects, for the usefulness of data
may depend on the timing and location of its generation and reception.

We offer more examples to illustrate the role of protocol. Clearly, a speaker of Chinese (a
more knowledgeable recipient) can make out a lot more of a textbook on VLSI circuit design
written in that language than a non-speaker (a less knowledgeable recipient). However, the
latter can by default regard some strings of symbols that do not look like an ethnic language
as a blueprint of a VLSI circuit; hence, the protocol can make up for the lack of knowledge (if
applied only to the drawings in the textbook) or bring about catastrophic results (if applied to the
Chinese characters of the text body). Furthermore, a duplicate notice of a train departure time
does not contribute to the objective of catching that train and therefore is of no informational
value (the recipient already knows it), unless the recipient’s protocol stipulates that at least
one confirmation of the train departure time be received. Finally, in a secret sharing scheme,
decryption keys separated in time and space seem to carry zero information until they are
brought together into one location at the same time. Indeed, information carried by data is not
only related to its context, but also to a recipient’s protocol, the rule dictating how to handle
received data.

Having said this, we still need a quantitative definition, an analogue of Shannon’s statistical
information, retaining the flavors of relativity and rationality, and with a potential to reflect
temporal and spatial aspects. Can we attempt formal definitions of the amount of information
and maximum amount of information carried by a channel — capacity — without a lengthy
specification of the semantics of data? One possibility is to adopt an event-driven approach
which we sketch below.

An event-driven approach offers a few advantages. First, it is well-established among the
engineering community thanks to the work of C. A. R. Hoare and others in the field of operating
systems and distributed algorithms. Second, it is discrete and timeless in nature, yet allows for
dynamic characterization of systems evolving in continuous time. Finally, it is able to formalize
such intuitions as causality and consistency of local views without specifying the semantics of
the involved events. At the same time, it generalizes the data-information relationship: now
it is events that may or may not carry information; in particular, an event may correspond to
reception of a piece of data, a clock tick etc. The event-driven approach-inspired formalization
goes along the following lines:

e A universe is populated by systems (living organisms, institutions, communities, software
agents, Internet domains etc.) pursuing specified objectives.

e A system’s current state is expressible through a number of system variables (e.g., mem-
ory content, parameter configuration, operational status of constituent subsystems); an
observable change of state marks an event (e.g., clock tick, execution of a specific opera-
tion, reception of a piece of data from another system).

e A partial order on the set of events may be defined as the order in which the events occur
at a given system (with simultaneous events not precluded); the set of events preceding
an event is called the context of the event.

e Events may have attributes e.g., time of occurrence and semantics, as defined by the
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system’s protocol i.e., specification of how the system handles the events in order to pursue
its objectives.

We would like to regard information as another (measurable) attribute of an event reflect-
ing our previous discussion. To this end, define an objective functional that maps a system’s
protocol P and a context C' (a sequence of events related to the communication between the
source and recipient systems) into any space with ordered points; further we only consider the
one-dimensional Euclidean space i.e., real axis. The idea is that P along with C determine
objective(P,C), the extent to which the recipient system’s objective has been achieved. For
simplicity assume that P remains fixed throughout the system’s lifetime. In particular, mono-
tonicity of objective(P,C) in C is desirable, for it implies that successive events help achieve
the objective. That is, we would like objective(P, C + E) > objective(P,C) for any event E and
context C, where C + E is the new context extended by event E. Before defining a possible
measure of information we discuss more examples to support our approach.

Example 1. [Decimal Representation] Assume that a system’s objective is to learn the num-
ber m# and P has the system compute successive decimal digits approximating m from below.
Each computed digit is then regarded as an event and objective(P, C') is a real-valued function
monotonically increasing and asymptotically stabilizing in C'. As an illustration, imagine we are
drawing circles of circumferences 3,3.1,3.14,3.141 etc., and measure the respective diameters
i.e., .9549,.9868,.9995,.9998, which asymptote to the ideal 1.

Example 2. [Shannon Information| In Shannon’s information theory [31] objective is defined
as statistical ignorance of the recipient or statistical uncertainty of the recipient. It is measured
by the number of binary decisions to recognize the event FE, that is, — log P(E), where P(E)! is
the probability as computed by the recipient. For various generalizations the reader is referred
to [18, 21]. Observe also that spatial and temporal aspects of information were mostly left out
in Shannon’s theory.

Example 3. [Distributed Information] In an (N, N)-threshold secret sharing scheme [29], N
subkeys of the decryption key roam among geographically dispersed systems. By the protocol
P, the event corresponding to the reception of another subkey from a fellow system does not
give access to the secret unless receptions of all the other subkeys are already in C. Likewise, an
observed pixel of a digital image may increase a viewer’s ability to understand the image depend-
ing on how many neighboring pixels have already been observed (this example illustrates that
the event-driven approach also covers spatial, rather than temporal, contexts — in general, there
is no difficulty evaluating the objective functional as long as events are processed sequentially).
In passing we may wonder what is the difference between distributed and local information; is
one bit here equivalent of one bit there?

Example 4. [Temporal Information] The impulses exchanged along nerves or processed within
neural cells of a living organism critically depend on timing e.g., a stimulus generated by a pain

We shall write P(E) for the probability of an event E since from the context one easily distinguishes it from
the protocol P.
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receptor is useless if it arrives too late to administer a defensive gesture. Spatio-temporal coding
is widely acknowledged to be the most important information processing feature of networks
of neurons [17]. This remarkable coding scheme forces groups of neurons, involved in the same
learning or memory retrieval task, to communicate and process information through timing
and location. The spatial aspect of this form of coding arises due to functional differentiation of
neurons. Usually, neurons involved in processing of related tasks or designed to respond to similar
cues are clustered in the same region of the brain. Examples include the well known receptor
maps in the olfactory bulb, the cochleotopic (frequency) regions in the primary auditory cortex
(where different regions of neurons respond to different frequencies in the stimulus), and the
topographic feature maps in the visual area of mammalian brains (where neurons discriminate
against different orientations of the visual stimulus).

Similarly, clock ticks are relevant when judging the usefulness of successive speech or video
frames sent over a packet network. Since they share network resources with unpredictable data
traffic, the frames arrive at the destination irregularly, as quantified by delay jitter. Premature
and overdue arrivals (events with too few or too many clock ticks in the context) are equally
unwelcome, though are handled in a different way: the former have to be buffered before delivery
and the latter are typically discarded. In general, incurred delay (e.g., in biological and computer
networks) is a nontrivial issue not yet successfully addressed by information theory [14].

Example 5. [Wireless Networks] In a wireless ad hoc network, each mobile terminal (MT)
can physically communicate only within its transmission range. To maintain network-wide
connectivity and so achieve the objective of each MT (i.e., a high throughput of data packets),
P prescribes setup and maintenance of relay paths between remote MTs. These are temporary
in nature due to the terminal mobility. Thus there are both path discovery and path disruption
events; consequently and somewhat counterintuitively, objective(P,C') may not increase in C.
Recent research [12, 13, 15] indicates that for objective( P, C') to increase in C, a quite unorthodox
P is needed that restricts paths to two-hop and trades buffer space for bandwidth, a thought at
the core of the so-called time capacity paradox.

Example 6. [Herding, Web 2.0, DNA] The conclusion of the previous example suggests that
objective( P, C') increases in C' provided that P is somehow "rational.” Unfortunately, studies of
the so called herding effects disprove that intuition too: an individual contemplating an action
behaves rationally by observing and following the majority of other individuals (as shown by
Bayesian analysis). After a short while, however, further observations provide no more insight
into the benefits of the action [4]. Perhaps, then, one can only assert that objective(P,C) is
nondecreasing in C provided that P is rational? There are examples that run counter even
that intuition. Imagine a user session with a Web search engine in which too much data, or
the presence of conflicting data, paralyze the user’s ability to act; from another perspective,
a growing number of users contributing their ideas to a digital Web 2.0 community may at
some point prevent a required broad consensus. Equally daunting is the well-known fact that
the sheer amount of data contained in a biological database (e.g., human genome) may blur
patterns leading to the identification of relevant human traits. In fact, in a massive data set,
such as a biological database or results of an Internet search, the situation is not unlike a radio
channel crossed by interfering signal paths: what is noise for one receiver (query) may well be
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useful information for another. The problem of discovering and quantifying the amount of useful
information thus acquires a new meaning.

Example 7. [Cooperative and Noncooperative Settings] Consider now a system where the ob-
jective functionals defined at different subsystems are in conflict (e.g., the problem of Byzantine
generals, DoS or selfish attacks on communication protocols such as IEEE 802.11 [19]). The
simplest example are two data sources contending for a multiple access channel (e.g., ALOHA
system). Various forms of P may then calibrate the sources’ behavior from cooperative (where
objective( P, C') increases in the total number of data transmission events in C i.e., in the overall
channel utilization) to noncooperative (where objective(P,C) increases in the number of own
data transmission events) to malicious (where objective(P,C) decreases in the number of the
other source’s data transmission events).

Example 8. |[Rissanen’s Stochastic Complexity and MDL] Included in objective( P, C') may be
the cost of the very recognition and interpretation of C'. Imagine a recipient knowing that the
source uses an optimal code for its stream of data, but having to learn on the fly the stochastic
mechanism according to which the source generates data. As time passes, the model reveals itself
to the recipient who can then hypothesize about data sent. In 1978 Rissanen [23, 24, 25, 27]
introduced the Minimum Description Length (MDL) principle, an incarnation of Occam’s Razor
stating that the best hypothesis is the one that gives the shortest description of data. Realizing
that Kolmogorov complexity is uncomputable, MDL selects a code for which the total description
length of code and data is minimal. Rissanen stresses that we should “make no assumptions”
about a true data generating process. In practice, we must restrict the class of process models.

More precisely, let My = {Qg : 0 € O} be a set of finitely parameterized distributions of
dimension k. One could argue, and some did, that the best (shortest) description of a string
z = (z1,...,2y,) should be —logQy(x), as suggested by the Kraft correspondence for prefix
codes. As pointed out by Rissanen and others, this is not correct since one must also describe the
distribution @y itself. But this can be accomplished by a universal data compression algorithm.
Rissanen proposed two possible solutions, namely two-part codes and the normalized maximum
likelihood (NML) code that we briefly describe below.

In the two-part coding, one first describes a distribution ¢y and then describes the string «
using Qp. Let C be a code that maps © to {0,1}*. Then the stochastic complezity S(z) is

5(x) = min length(C(9)) — log Q()],

and the MDL principle states that one should choose #* that achieves the above minimum.

In the normalized maximum likelihood (NML) code, first the parameter 0 is chosen to min-
imize — log Qg(z) (as in the classical maximum likelihood estimate), and then the “ideal” code-
length —log Q;(x) is used as a yardstick against which code performance is measured. This
leads to the so called minimax problem that finds the best code for the worst distribution and
the worst data. It is well known [3, 9, 26] that the regret function defined as

Q@(x)}
Qa(x)

*

(M) = mén max {log
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achieves its optimal value log ", Q4(x) for the normalized mazimum distribution

Qnmir(z) = ZQQT%

The optimal code-length is then —log Q@nnsz(x). Rissanen in [26] proved, among others, that
the minimax regret for My is

rE(My) = gln% -l—ln/e JI10)]d0 + o(1)

where I(6) is the Fisher information. Further generalization can be found in [3, 9, 16, 33]. In
passing, one still may ask why to restrict analysis to prefix codes? Is there a fundamental lower
bound for general codes (cf. [1, 34, 37])7

3 Information and Capacity

We are now in a position to set out a framework for defining the amount of information consistent
with the intuition based on our examples and discussion.

Definition 1 The amount of information carried by event E in context C as perceived at a
system with protocol P is

infop o (E) = weight[objective(P,C + E), objective(P, C)], (1)

where “weight” measures the change between two (objective) points according to the order defined
on the space of values of the objective functional.

Thus an event only carries nonzero information if it changes objective(P,C), a statement
consistent with the intuitive flavors of relativity and rationality. The dependence on P and C
reflects the obvious observation that one and the same event can produce different information
at different recipients, locations, and times. Also note that in view of Example 6, negative
information is not unthinkable. In fact, this might lead to an interesting distinction: noncon-
foundable systems, contrasted with confoundable ones, are those whose protocol P precludes
negative information regardless of C'. One can imagine a smart Web user always able to remove
conflicting data from the context and proceed monotonically towards an objective. Whether
and for what types of data sources and objective functionals such P exist is an open problem.
Finally, it is natural to surmise that both P and C are subject to various constraints implied,
respectively, by the systems’ architecture and the nature of the event sources. In the spirit
of Shannon, one may define the channel capacity between the event source and the recipient
as a maximum-type measure on a collection of amounts of information carried by successive
events, within the regions of feasible P and C (subject to the said constraints). For a given
C = (B, Es,...)and E; € C, let C; := (En,...,E;_1) be the prefix of C consisting of events
preceding E;.

Definition 2 The capacity of the channel between the event source and recipient is
capacity = Prfrégs)icblecrfrelaasﬁcbleF ({infop e, (E;), i > 1}). (2)

for some function F(-).
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Depending on the specific case, the function F' can be conveniently defined as the sum of all
elements of its set argument, the maximum element, etc. If the total amount of information and
the feasible C are infinite, it may be convenient to define F' as the limiting average information
per event:

F ({infopc,(E;), > 1}) = lim — ZlnfOPC (E;) (3)

n—oon

provided the limit exists. With so structured a definition it is possible to confine interest to the
inner maximum if for some reasons P is regarded as the only feasible.

We now return to some of the previous examples in order to give a quantitative illustration
of Definitions 1 and 2.

Example 1. [continuation] In Example 1, the objective in a given context can be measured as
the deviation of the corresponding diameter from the ideal 1, so that the amount of information
carried by successively computed digits of 7 is the difference between successive deviations.
Hence, the event 73" carries (1 —0) — (1 —.9549) = .9549, ”1” carries (1 —.9549) — (1 —.9868) =
.0319, 747 carries (1—.9995)— (1—.9868) = .0127, the other ”1” carries (1—.9998)—(1—.9995) =
.0003 units of information etc. If F' is as in (3), then the capacity of such a channel is zero: an
infinite number of events carry a finite total information.

Example 2. [continuation: Shannon Information and Temporal Capacity] Does the event-
driven approach include Shannon information as a special case? As suggested by the previous
discussion, the objective in Shannon information can be viewed as the statistical uncertainty.
Consider a memoryless channel and a memoryless source transmitting symbols chosen from a
finite set according to some probability distribution. The amount of information carried by an
event E = (x,y), where z and y are respectively the transmitted and received symbol, can be
measured by the difference between the recipient’s degree of uncertainty as to x before and after
reception of y i.e.,
infopc(E) = —log P(x) — [—log P(z|y)].

Note that because of our memoryless setting, there is no explicit dependence on C. If the channel
is noiseless (error-free), then P(z|y) = 1 iff & = y, thus infopo(E) = —log P(z). Taking F in

our definition of capacity as in (3), we find for a context C = (E1,..., Ey)
F ({infop.c;(E;), i>1}) = lim meoPc ZP x)log P(z) = H(X).

Here, X is a random variable describing the source. The right-hand side of the above relationship
we recognize as Shannon’s entropy of the source. In a noisy channel, the limiting average
information per event becomes

Jim &3 inforc (7, )= 2 P )=log Ple) = = log Ply)) = 1Y),
T,y

where Y is a random variable describing the output of the channel. This we recognize as
Shannon’s mutual information. It is easy to see now that, with the protocol P fixed and the
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Figure 1: Temporal capacity as a function of 7.

maximization only taken over C', the channel capacity in the sense of Definition 2 coincides with

Shannon’s capacity
n

1 .
C feasible 1 Z,zzlmeP’Ci(Ei) TP HX:Y),
where the right-hand side maximum is taken over all possible distributions of X. This is so
because in our memoryless setting, any feasible context must have been produced by some
P(X).

Recall that Shannon’s celebrated channel coding theorem states that as long as the transmis-
sion rate does not exceed the channel capacity, information can be sent with as small a frequency
of errors as desired provided unlimited time and resources are available to encode and decode
the message. Thus, temporal (or spatial) aspects of information are not considered. However,
they can easily be addressed in this setting, and the relevance of optimizing the protocol can be
demonstrated.

Consider a memoryless binary symmetric channel with ”temporal errors”: the longer a binary
symbol takes to reach the recipient, the lower the probability of a successful transmission. Each
transmitted symbol is received in error with probability ®(e,t), where ¢ is the ”instant error”
rate and ¢ is the incurred channel delay. A plausible function @ should increase from 0 to 1
for ¢ € (0,1), and increase from e to 1 as ¢ varies between 0 and co. Assume further that
the recipient’s protocol P enables determination of ¢ when a symbol is received, and if ¢t > 7
prescribes erasure of the received symbol. Thus X € {0,1} and Y € {0, 1, erasure}. Let the
source be memoryless with P(X = 1) = p and the channel delay be represented by a random
variable D with a known probability distribution function F'(t) = P(D < t). We only need to
slightly modify the amount of information carried by an event E = (x,y), namely

log P(zy, D <7)—log P(x) ify=0,1

i _
m OP,O(Zva) { 0 if y = erasure.

Then the limiting average information per event again coincides with the mutual information
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I(X;Y). To calculate the latter let us introduce the conditional probability

$:=PY =1X=0,D<7)=PY =0X=1,D<7)= 754)(;’(?;[“@,

which plays the role of the ”"temporal error” rate. Standard calculation yields

I(X;Y) = [Hy((1 = ¢)(1 = p) + ép) — Hy(9)|F(7), (4)

where Hy(u) = —ulogu — (1 — uw)log(l — u) is the binary entropy function for u € [0,1]. By
a similar argument as above, the maximization of (4) over p corresponds to maximization over
feasible C' in (2). The maximum is attained at p = 1/2 and yields

[1 = Hy(¢)|F(7),

the maximum mutual information for a given 7, that is, Shannon channel capacity. In Figure 1
we plot this quantity against 7 assuming F(t) = 1 —e™* and ®(g,t) = 1 — (1 —¢)**! for £ = 0.3.
(Note that the average channel delay is the time unit.) We see that in the case of a stringent
delay bound the capacity of the channel is adversely affected by frequent erasures; when the delay
bound becomes ineffective, frequent temporal errors dominate infrequent erasures to produce
a somewhat counterintuitive drop in mutual information. We now recall that 7 represents the
recipient’s protocol P; hence if we maximize over 7, which corresponds to the outer maximum
in (2), we get a clear estimate of the channel capacity.

Example 3. [continuation] Let N subkeys move at random and independently of one another
among A X A stations regularly spaced within a square area. For simplicity let the movements of

e e ... L XXX X XXX
e e .. X X XXX XX XXX
e e XXX XXX X XXXX .
e XXX XXX XXXXX o
e X XXX % X ¥ XXX XXX
e X XXX XXXXXXXX.
e e X XXX XXX XXXXX.

XX XXX XXX %X XXX .
e e X XXX XXX XXXXX.
e e X XXX XXX XXXXX.
e XXX XXX XXX oo
e .. X XXX XL

Figure 2: Access to the secret (N = 3, A =20,d = 8).

the subkeys be synchronized to unit time slots. In each slot a station can improve its objective
by having temporary access to the secret, which happens if it is within Euclidean distance d
from each of the subkeys. This is illustrated in Fig. 2, where the current subkey locations are

99 %9

marked and stations with access to the secret are marked ”x.”
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Assume that the larger N, the more valuable the secret, which results in each ”x” station
improving its objective proportionally to N. If all the stations act as one system, then an event
FE defines N new locations of the subkeys. Here, N is a parameter of the set of feasible C, d is
a parameter of P, and

infopc(E) = N x {# of stations having access to secret}.

Note that since the movement of the subkeys is memoryless, there is no explicit dependence
on C. The limiting average information per event per station, which thus equals N times the
probability of access per event, is plotted in Figure 3 (obtained by a Monte Carlo simulation).
The maximum of each curve corresponds to the channel capacity as expressed by the inner

maximum in (2) i.e., with respect to C, given P.

2

average information per event

Figure 3: Normalized average information per event for secret sharing (A = 20).

Example 7. [continuation: Noncooperative Settings; Value of Information] We should point
out that calculating the capacity in the above framework seems to be particularly difficult in a
distributed system featuring multiple autonomous agents. For example, in economics one often
considers the value of information [21] which measures (perhaps in dollars) the difference between
the payoffs of an informed action and an uninformed action. Consider a simple entry deterrence
game [10]. Suppose an Internet service provider (ISP) has a major business client (Incumbent)
who can use either Standard or Premium service. Another business (Entrant) is considering
entry i.e., becoming the ISP’s client with only Standard service available. Both Incumbent and
Entrant choose their strategies (Standard/Premium and enter/not enter) simultaneously and
without prior coordination. Thus a one-shot noncooperative game arises with payoffs given in
Table 1. Here, K is the surcharge Incumbent pays for Premium service (0 < K < 3). While the
other payoff components are rather arbitrary, the relationships between them are important:
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Table 1: Entry deterrence payoffs (arbitrary units): Incumbent’s (left) and Entrant’s (right)

enter not enter
Premium | 3— K, —-1|5—-K, O
Standard 2, 1 3, 0

e Entrant’s payoff is neutral if she does not enter, otherwise it is negative if Incumbent
chooses Premium (Entrant pays entrance fee, but receives a less-than-fair share of ISP’s
resources), and is positive if Incumbent chooses Standard (Entrant receives a fair share of
ISP’s resources),

e Incumbent is better off if Entrant does not enter (there is no competition for ISP’s re-
sources), and given Entrant’s choice, Incumbent’s well-being depends on K e.g., K > 2
(K < 1) makes Standard (Premium) a dominating strategy.

It is easy to see that for K > 2 the only Nash equilibrium (NE) is (Standard, enter), while
for K < 1 the only NE is (Premium, not enter). For 1 < K < 2 there exists a unique NE in
mixed strategies:

1 1
(5 * Premium + 3* Standard, (1 — (K — 1)) = enter + (K — 1) % not-enter) ,

where p x s + ¢ * 8 denotes a mixed strategy ”play s with probability p and s’ with probability

q.”

A more realistic model assumes that (a) Entrant has only an estimate K’ of K, (b) Incumbent
knows both K and K’, moreover, is in a position to communicate K to Entrant if she thinks it
worthwhile. The question is whether and when Incumbent will indeed communicate K and how
much information passes between Incumbent and Entrant. Let EF" and E{"¢ denote the events
of acquiring the knowledge of K’ by Entrant, and of K and K’ by Incumbent. The objective is
the expected payoff and the protocols of both players prescribe NE strategies. For Entrant, the

NE strategy is:

not enter, K' <1
s(BE"™y = ¢ [1—(K'—1)] % enter + (K’ — 1) not_enter 1< K’ <2
enter K' > 2.

Incumbent, who knows the above strategy, chooses hers so as to maximize the expected payoff.
The result is obvious except when 1 < K < 2 and 1 < K’ < 2. Incumbent’s expected payoff
conditioned on choosing Premium is then

- (K'-1]- B-K)+(E -1) (5-K)
and conditioned on choosing Standard is
- (K'-1)]-2+(K'—1)-3.

Incumbent chooses Premium if the former payoff is greater than the latter, i.e., if K < K', and
Standard if K > K'. (If K = K’, Incumbent plays 1/2 * Premium + 1/2 * Standard.) Hence,
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Table 2: Expected payoffs at NE: Incumbent’s (left) and Entrant’s (right)

K <1 1<K <2 K'>2
K>2 |3 0| 1I—(K' —1)] -2+ (K—1)-3, M- (K -1]-1]2 1
1<K<2|5-K, 0 as above (if K>K') |2, 1
M- (K —1)] -2+ (K —1)-3, 0(if K=K
as below (if K<K')
K<l |5-K, 0|[1-(K-1] G-K+(K -1) 6-K), [1-(K -1 (-1)|3-K, -1

Premium K<lor(1<K<2and K'<1)
[Entrant does not enter]
or(1<K<2and1 <K' <2and K < K')
[Entrant plays mixed strategy],

s(Efmey = { 1/2 * Premium + 1/2 * Standard 1< K <2and 1< K’ <2and K = K/,

Standard K>2o0or (1<K<2and K'>2)
[Entrant enters|
or(1<K<2and1 <K' <2and K > K')
[Entrant plays mixed strategy].

For the payoffs in Table 1, the possible Incumbent’s and Entrant’s expected payoffs at NE are
given in Table 2, which both players can compute using game theory basics, but only Incumbent
knows which row gives actual payoffs.

Imagine now that just before the game, Incumbent has a chance to communicate K and
thus correct Entrant’s wrong estimate K’ (denote the corresponding event E¥™). This she will
not consider worthwhile if K > 2 and K’ < 2 for it would encourage Entrant’s entry, thereby
decreasing Incumbent’s expected payoff (from 3, or a value between 2 and 3, to 2). Similarly
for1< K<2and K'<1. If 1 < K <2 and K’ > 2, the communication of K would lead to
the mixed strategy NE; this will increase Incumbent’s payoff (from 2 to a value between 2 and
3), but at the same time decrease Entrant’s payoff (from 1 to 0). If Entrant is noncooperative,
she will ignore EF™ regarding it as incredible (presumably part of Incumbent’s entry deterrence
strategy). Knowing that, Incumbent will simply communicate nothing. In all the above cases,
the channel between Incumbent and Entrant is as good as closed (unable to carry information).

Only when K < 1 and K’ > 1 will the communication of K become worthwhile from
Incumbent’s viewpoint and credible to Entrant, for Entrant’s expected payoff then would rise
(from —1, or a value between —1 and 0, to 0). According to (1), the amount of information
received by Entrant in this case is:
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info(Eo, E1) = payoff (E§"™, Ef™) — payoft(E§™)
0—(-1)=1, K'>2
O—(-1)-1—(K'-1)]=1-(K'-1), 1<K <2
If the game is played repeatedly, e.g., on a session basis, and each time K and K’ are drawn
independently from a uniform probability density function on [0, 3], then their joint probability

density is 1/9. The average amount of information received by Entrant (i.e., the average increase
in Entrant’s objective) per game is:

/01 Vlz[l—(K’—l)]dK’—&—/jldK’} "

9 T 2.9

avg-info =

What if neither Incumbent nor Entrant were noncooperative and so K were communicated and
Ef™ were accepted regardless of the expected payoffs? Then

9. avg info — /1 U[ (K’ 1]dK’+/ 1dK’] dk+/ U OdK’+/ dK’]
+/ / 1dK’+/ dK’}dK_Q

thus avg-info= 2/9. In summary, the 25% difference between the latter two figures reflects the
reduction of channel capacity merely due to noncooperative nature of the involved protocols

4 Final Remarks

Our definition (1) is somewhat similar in spirit to that of the wvalue of information discussed in
Luenberger [21]. In the presence of a single source of uncertainty about the state of the world
among the many possible states, Luenberger considers a decision-maker maximizing the average
payoff and calculates the net benefit of receiving an imperfect signal about the true state of the
world. Clearly, the net benefit is zero if the signal does not reduce the uncertainty. In such a
Bayesian setting, negative values of information are impossible. Although we propose a broader
framework, with context and protocol explicitly accounted for, we still need a generalization of
imperfect signals (or imperfect events in our wording); ours is a faultless communication system,
where events do not get corrupted or misinterpreted. While partly justified by contemporary
high-quality transmission and processing infrastructure, this is a serious restriction.

A no less fundamental issue is related to the very notion of information. The foregoing
discussion focused upon communicable information, which is why events played so central a role:
a system remaining in one and the same state cannot change its perception of the achieved
objective. However, another strong intuition of information holds it to be embedded in the
structure of an object and thus independent of any rational activity — this we may refer to
as structural information. F. Brooks articulates in [5] : “Shannon and Weaver performed an
inestimable service by giving us a definition of information and a metric for information as
communicated from place to place. We have no theory however that gives us a metric for
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Figure 4: Access to the secret with two different subkey locations (N = 3, A = 20,d = 8)

the information embodied in structure ... this is the most fundamental gap in the theoretical
underpinning of information and computer science. ... A young information theory scholar
willing to spend years on a deeply fundamental problem need look no further.” Along with
spatial and temporal aspects of information, this is, in our opinion, the most urgent challenge
facing our community.

Yet another understanding arises from a conjecture of an organizing principle, a hidden
mechanism behind a given object, and the amount of structural information may be related to
the remaining uncertainty as to the nature or parameters of the hidden mechanism. In this
way a sequence with clear patterns of symbols may be attributed more structural information
than a piece of gibberish after all. This is particularly true about biological information as
discussed above and in [11]. To illustrate our point, consider again our secret sharing scheme,
as in Example 3, and suppose we only know the current ”x” stations. Two sets of such stations,
corresponding to two different subkey locations, are depicted in Fig. 4. They may be regarded
as two states of our system, or two objects of some informational value, the hidden mechanism
being the movement of the subkeys. Where can the subkeys be? They can be no further than d
from any ”x” station, which leaves a number of possible subkey locations marked ”?” in Fig. 5.
(Particular N-tuples of locations can then be eliminated at the cost of more computation.) We
might conclude that the left state (object) contains more structural information than the right
one.

In summary, we propose to fundamentally enhance six decades of work in information theory
by incorporating the following elements that were, to large extent, not adequately addressed in
the past and therefore threaten to raise severe impediments to diverse applications:

Structure: We still lack measures and meters to appraise the amount of organization and infor-
mation embodied in artifacts and natural objects.

Delay: In typical interacting systems, timeliness of signals is essential to function. Often timely
delivery of partial information carries higher value than delayed delivery of complete information.
For example, in a signaling cascade associated with a specific cell function, delay or loss of signals
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Figure 5: Possible subkey locations

can be lethal.

Space: In interacting systems, spatial localization often limits information exchange — with
obvious disadvantages as well as benefits. These benefits typically result from reduction in
interference (common examples range from wireless systems to immune response).

Information and control: In addition to delay-bandwidth tradeoffs discussed above, systems often
allow modifications to underlying design patterns (e.g., network topology, power distribution and
routing in networks). Simply stated, information is exchanged in space and time for decision
making, thus timeliness of information delivery along with reliability and complexity constitute
basic objectives.

Semantics. In many scientific contexts, one is interested in signals, without knowing precisely
what these signals represent (e.g., DNA sequences, spike trains between neurons, whale songs),
but little more than that can be assumed a priori. Is there a general way to account for the
actual “meaning” of signals in a given context?

Dynamic information. In a complex network, information is not just communicated but also
processed and even generated along the way. How can such considerations of dynamic sources
be incorporated into an information-theoretic model?

Learnable information. One may argue (and some have) that in all scientific endeavors, the only
task is to extract information from data. How much information can actually be extracted from
a given data repository? In Shannon theory, one starts from a (possibly unknown) model for
the data-generating mechanism and calculates its entropy, but in practice the starting point is
only the data. Is there a general theory that provides natural model classes for the data at
hand? What is the cost of learning the model, and how does it compare to the cost of actually
describing the data?
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Limited Resources: In many scenarios, information is limited by available resources (e.g., com-
puting devices, living cell). How much information can be extracted and processed with limited

resources?

Quantum Information: Microscopic systems do not seem to obey Shannon’s postulates of infor-

mation. In the quantum world and on the level of living cells, traditional information often fails

to accurately describe reality [6].
Value of Information: The impact of rational and noncooperative behavior upon information as

well as the value of information, should be studied in more generality.
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Abstract

The paper presents exact and implementable solutions to the problem of universal coding
of approximate repeats by using the normalized maximum likelihood model for the class of
Markov sources of first order, incorporating constraints which are standard in the context
of fast searching similarities over full genomes. A coding scheme combining universal codes
for memoryless sources and for sources with memory is then presented. The results when
compressing the full human genome show that the combined scheme is able to provide slight
improvements over the existing state of the art. As a side result, interesting pairs of sequences
may be found, which are highly similar by the new NML model for Markov sources, but have
a lower similarity score when evaluated with the NML for memoryless sources.

1 Introduction

The DNA compression problem was studied thoroughly in the last two decades resulting in a
wealth of contributions applying various data compression principles [3,4,6,7,9,10,12,16,18].
The most successful schemes for lossless genome compression are exploiting the existence
of an important number of approximate repetitions in DNA sequences. There are also other
sources of redundancy in DNA and for this reason most DNA compression methods integrate
several algorithms, including always a clear coder (representation of the four bases, A,C,G,T
using 2 bits/base) and a symbol-wise adaptive coder of low order (e.g., one or two). However,
when checking the contribution of each of the encoders in the ensemble, the algorithm for
compressing the approximate repeats is the most important and difficult to design. We
recently have developed DNA compression schemes where the compressor for approximate
repeats was based on a NML universal model for a class of memoryless models in [9],[18] and
later for a class of Markov models of first order in [10], to obtain the state of the art for the
human genome compression. Section 2 reviews the overall encoding scheme which combines
several encoders, each targeting a typical form of redundancy found in DNA sequences.

In this paper we continue the study of the NML model for Markov sources, introduc-
ing further refinements. In Section 3 we discuss the NML model for markovian sources of
arbitrary orders. Subsequently in Section 4 we only concentrate on first order Markov mod-
els and introduce the additional constraint that all considered approximate matches have
at least a given number of consecutive exactly matching positions. This constraint enables
a fast search time, and is implicitly considered in many modern similarity searching tools.
Since the size of genomes is large, typically several giga-bases long, exhaustive search for
similar sequence pairs is impossible and the compression results will be highly affected by
the compromise between speed of search and sensitivity of finding the most relevant matches.

175



Festschrift for Jorma Rissanen

In order to allow a fast search, all algorithms for finding similar sequences which are in daily
use in bioinformatics implement a seed based search, where a number of contiguous matches
is assumed (or more recently an arbitrary but fixed pattern of matching is assumed [11]).
Marking in advance the blocks having a fixed number g of contiguous matches is very fast
(g is relatively small, e.g., ¢ = 11), and then, starting from these seeds, longer approximate
matches are formed and evaluated. We include this contiguous matching constraint in the
definition of our model class and then proceed with developing the NML model for this class.

2 Overview of a generic DNA compression scheme com-
bining several encoders

The compression scheme operates blockwise along the DNA sequence, parsing the sequence
into non-overlapping blocks of equal size. The current block to be encoded will be compressed
with the winner of several competing methods: #1) a symbolwise adaptive Markov model
of first order (not to be confused with encoder #3, the latter using the NML model for
Markovian sources for encoding a ”"matching pattern”); #2 the clear representation using
two bits per base; and #3) coding by reference to the best approximate matching block in
the past, using the NML for encoding the matching pattern of the current block relative to
one of the previously encoded blocks. For each competing method the required codelength is
evaluated or quickly fetched from the lookup tables, which store the codelength corresponding
to the current sufficient statistics of the block, and only the winner method is subsequently
used in the more elaborate process of building the bitstream, using arithmetic coding in
conjunction with the implementable coding distributions.

Actually combining the three coders and selecting the candidate blocksizes is an intricate
problem and earlier we derived suitable solutions with moderate complexity while achieving
excellent overall compression [9], in the spirit of MDL principle. The selections involved at
the overall scheme level can be naturally tackled by using the adaptively tracked statistics
of the usage of each coder and its individual parameters. We defer to [9] for details of this
architecture and continue here with a formal description of the more difficult and important
module, that for encoding based on reference to a past block. To not clutter with details, we
are omitting the separate description of direct-palindrome matching, the palindromes being
obviously treated by reversing the string forming the current block and changing its bases
A< T and C < G, as it is well established with all existing DNA compressors.

We consider the DNA sequence to be encoded 4™ = y1,¥2, . .., Yn, where y; € {A,C, G, T}
and a sequence of the same length 2" = 2, 2,,...,2, which will be used as a regressor
sequence, located at an arbitrary position (to be determined) in the past. By using a regressor
sequence one hopes to better encode y™, if the two sequences y™ and 2™ possess a high
degree of similarity, or equivalently a low distance, in a sense to be defined. The natural, but
quite simplistic, Hamming distance dg (2™, y™) counts the number of mismatches between
the corresponding symbols z; and y;, ¢ = 1,...,n, and one can define a match sequence
" = xy,..., &, with 2; = 0if 2, = y; and 2, = 1 if z; # y;. One can generalize the
Hamming distance in several ways, by defining many of the meaningful sequence distance
measures, where one accounts for insertions, deletions, or instead of binarized matching
decisions considers matrices of substitution probabilities, resulting in a wealth of possible
distances, which sometimes after a proper normalization are referred to in bioinformatics as
”odd-scores”. Many of the biologically defined distances or similarity measures were shown
to be useful in revealing interesting biological facts, e.g., PAM scores tuned for evaluating
evolutionary distances between different species, but were not found yet to be useful in
obtaining a good compression/description of full genomes.

Here we pursue however a principled way to account for the possible Markovian depen-
dence of the matching sequence z™, which also induces a novel similarity score. In order to
recover y" the decoder needs to receive the following: a pointer to the selected optimal re-
gressor 2" (transmitted in a predictive way described in detail in [9]); the matching sequence
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z™, which is transmitted using a universal code; and the mismatching symbols. In the case of
a mismatch, when z; = 1, the symbol y; is encoded by using arithmetic coding for the distri-
bution P(y|z;,z; = 1), and based on experimental evidence we chose a uniform distribution
for the three possible symbols, i.e., P(y|z;,2; = 1) = 1/3, where y can be uniformly any of
the symbols A, C,G, T, except the symbol z;, which is excluded since the decoder already
knows that «; = 1 is for a mismatch. Our universal model of P(y™) will thus be based on
a universal model for P(z™), where by the assumed independence P(y™) = P(z™)/3™ with
m the number of mismatches between y™ and z™, i.e., m = dg(z"™,y") is the number of ones
in the sequence ™. The universal coding of the sequence =™ will be achieved by using the
NML model for various classes of Markov models, as described next.

3 NML model for Markov sources of order k

We assume that the sequence x™ was generated by one model in the class of Markov sources
of order k, My, = {P(z¢|xt—1,...,21—k) : ©t—; € A}. For notation simplicity we denote the
states in the form j = [2;_j ... 2:—1] and since here the alphabet A is binary we will identify
j with the integer having the binary representation [z¢—f ...2;—1]. The parameters of the
model will be denoted 0;; = P(24|2s—1,...,%¢—p), wherei =2 € A, j = [24_p ... 24—1] € Ak

In the string 2 = 2 ... 2, we observe the catenation ji € A**! a number of nj; times,
with j € A¥,4 € A. We denote nj. =3, 4 nji and n.; = 3, , ny;. The set of all counts is
organized as a m¥ x m matrix n having nj; as the (j,4)’th element. The necessary constraints
on the counts obtained from any sequence which starts in state r € A¥ and ends in state
s € A* can be seen to be

ng = 8—0s, Vjc AP (1)

nj. —
Z n;. Z n;=n-—Fk, (2)

jEAFR jEAR

where 6,; = 1if r = j and 6,; =0 if r # 5 .

If one knows the starting state r and all counts n he can find easily the final state s as
the value of j for which d,; —n;. + n.; is one. Although the final state s is fully determined
by the initial state r and the set of counts n we prefer to specify it explicitly in the triplet
(r, s,m) together with the initial state and the sufficient statistics to characterize any string
™. Maximum likelihood of the parameters of the Markov chain is a function solely of the
matrix of counts n [1]

A Njj
i =12 3)

The number of strings starting from the initial state r, ending in the final state s, and

having the matrix of counts n is given by [19]

HjEAk n]'

N(r,s,n) = T(rs,n)=——"-="—"—
( ) ( )HiEA HjeAk nj;!

(4)
where T'(r, s,n) is the sr-th cofactor of the mF x mF matrix M defined as follows: initialize
M with all zero elements and then for each pair (j,i) € A* x A define ¢ = ja...j,i € A*
(s nji

and set M(j,q) = ;4 — o

When some of the states j € A are not observed in the string 2™, the formula (4) has
to be applied taking into account only a process containing the observed states. The set of
valid triplets (7, s,n), i.e., those observed over all sequences ™ when starting from state r,
is denoted ;. ,,.

Therefore the NML model can be written

R n<xn)n(m")
P(x™ ny = =
<I ‘T’(I ) T’) z(nsf’n)eﬂﬁn N(T’, s, n)nn

(5)
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s
"™ is a shorthand notation for [];c 4 eam (%u) " We note that the normalization
, 5

where n
constant in the denominator of (5) was evaluated in an asymptotic manner in a number of
previous works: e.g., [5][8][14][17], but our concern is on exact evaluations, as required in an
implementable coder.

Computing the set ., and all cardinalities of the Markov types N(r,s,n) can be done
by directly checking if (r, s, n) fulfills the conditions (1), (2), and supplementarily, checking
if T(r,s,n) is nonzero. A more appealing alternative is to build Q,, and compute the
cardinalities N(r, s, n) recursively in n. For that we will take into account for each (r, s, n)
the possible extensions to a triplet (r,s’,n’) € Q41 which are obtained when appending
the symbol ¢ € A to any 2™ having sufficient statistics (r,s,n). The transformation will
leave most of the elements of n unchanged, the only updating operations needed are easily
seen to be

s’ = so...8ki (6)
Ng = MNg+1 (7)

where the final state was written as a sequence of binary symbols, s = s1...s,. The car-
dinality N(r,s’,n’) will result immediately by adding all cardinalities N(r,s,n) of those
(r, s,n) that are transformed to (r,s’,n’). The initial conditions for the recursions can be
easily set at n = k + 1. As an example, if |A| = 2,k = 2, the 4 X 2 matrix of counts is
7 = [R000, M00o; R010, P011; 7100, P101; P110, R111) and for all eight distinct binary strings 3
we get a different matrix of counts, each such matrices having just one nonzero element, e.g.
one of the eight nonzero cardinalities N(r,s,n) is N(01,10,[0,0;1,0;0,0;0,0]) = 1.

We have constructed the set ., and computed all cardinalities of the Markov types
N(r,s,n) in our experiments with m = 2,k = 2, in two different ways and checked the
identity of results. First we propagated recursively in n the elements of the set 2, ,, and their
associated cardinalities N(r,s’,n'), by the transformations (r,s,n) — (r,s',n') € Qy 11 as
shown in (6),(7). We also implemented an alternative method where out of all possible
(r,s,m) only those satisfying the three conditions: (1), (2), and T'(r,s,n) # 0, are included
in the set Q. ,, and then (4) is used for the computation of cardinalities N(r,s’,n’). Both
methods resulted in identical sets 2, and provided identical cardinalities N(r, s, n) for all
values of n up to the maximum tested one, n = 36, in the case of m = 2,k = 2. The
exact computation of the cardinalities N(r,s,n) was performed in a practical time up to
values of n = 36, with the recursive method being several times faster. For the considered
DNA application, the length of the block was taken n = 32, for easy comparisons with the
previously reported results in [10], where m = 2,k = 1, and the length n = 32 was found to
be optimal, out of tested values up to n = 128.

4 Exact computation of the NML model for Markov
sources of first order

4.1 NML model for unconstrained Markov sources of first order

In the following we concentrate on the description of a particular Markov model, which proves
to be very efficient for the relatively short sequences (n = 32) used in the block based encoding
of full genomes. Let us define the parameters in the Markov model 6y; = P(x; = jlzi—1 = £)
with j, £ € {0,1} and group all parameters in the vector 8 = (oo, 610, 001,611). From the
definition of the conditional probabilities, we require

Ooo + 001 =1; Gio+011=1 (8)

We note that in our block-wise encoding for all but the first block the decoder already knows
the value of zg = §, from the preceding block matching performed. The probability of

0207
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the sequence z™ will thus be
n
P(a™[wo, 0) = [ [ Plaalzi1) = 055°073° 050 071 ©)
i=1
where nyy, is the number of times the symbol z; = k was observed after symbol z;_; = £ for

i=1,...,nand k, £ € {0,1}. Letting nj be the number of times z; = k for i = 1,...,n and
k € {0,1} we have the simple connecting relationships n = ng + n1,

ng = MN.0 = Ngo + Nio
n.; = No1 + N1 (10)

n
Maximizing the log-probability
log P(2"|zo, ) = noo log Opp + no1 log(1 — Ooo) + nio log(l — 6011) + nyq log 044, (11)

subject to the constraints (8) leads to the ML parameters

oo = mo0/(noo + no1) (12)
b = no1/(noo + no1) (13)
0o = n10/(n10 + n11) (14)
oy = n11/(n1o + na1). (15)

We observe in passing that njo might differ of ng; by at most 1, and consequently ng =
n.9 = ngo + n1o may be different of ng. = ngyg +np1. This situation in general can be avoided
by taking the counts in the string 2™ in a circular manner, but we want to keep the exact
evaluations, as required by the assumed model (9). The matrix containing the sufficient
statistics n = [ngo, no1; N10, n11] uniquely determines §. Now we continue in the usual way
to normalize the maximized likelihood [14]

P(a"|wo, 0) = 55 075° 05 031 (16)

in order to get the corresponding NML model

o
Platzy) = —L@lmd) (17)
Yereqoayn P@"|zo,0)
_ Oose0iseOp o 1)
S eosen ey N (@0, T )00 050 010 B2

where we denote by N(zo,2,,n) the number of strings having the same sufficient statistics
vector n, and by Qg , the set of all possible sufficient statistics vectors. As before, p,
which corresponds to the final state s, can be determined from zy and m, but in line with
Section 3, we have specified it for clarity.

We present the evaluation of N(z,z,,n) by resorting to a simple decomposition of the
original string into two strings, which will also be useful later, for the simple implementation
of the coding.

We split the string ™ into two strings ¢™ = c¢;...cp, and d™ = dy ...dy,. The string
c™ lists in order all symbols situated before a 0 in the string 2™ and the string d™* lists the
symbols situated before a 1 in z™. In the string ¢*° we have ng zeros and nio ones, while
in the string d™* we have ng; zeros and nq; ones.

Once we know ngi1,n19 we can find by x, = no1 — nio + o the last bit in the string.
Knowing the last bit in the string we can go backwards and find z,,_1,2,_2, ... by checking
the sequences ¢™ and d™.
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As a simple example take 2o = 0 and z® = 11001, for which ny = 2,71 = 3,n00 =
1,n91 = 2,n10 = 1,n11 = 1, while the related strings are ¢ = 10 and d* = 010. We show
now how to reconstruct the string 2° by knowing n = 5,n9 = 2,n90 = 1,711 = 1 and ¢? = 10
and d® = 010. We can find at once nig = ng — ngo = 1 and ng1 = n; — n11 = 2. Then we
get &, = ng1 —n1o+ 2o =2 — 1+ 0= 1. The symbol preceding x,, = 1 can be found as the
last symbol in the sequence d°, and thus z, ; = 0. The symbol preceding z, 1 = 0 can be
found as the last symbol in ¢? thus we have z,,_o = 0. We can continue the same way till
we complete finding all symbols of 5.

As a final issue, one of the sequences ¢ and d™ is redundant. Take the case zo = 0.
We know that in d™ the first symbol is a 0 (because to get to the first 1 in the sequence we
need to start from a 0). In a similar way, when xy = 1, the first symbol in ¢™ is necessarily
a 1. Thus we need to store only the last 7y — 1 symbols from the sequence ¢, when xo = 1,
while when zy = 0 we need to store only the last n; — 1 symbols of the sequence d™*'. Let
us denote €™ the non-redundant sequence which is identical to ¢** when xzy = 0 while for
zo = 1 we have €™ = cg,...,¢p,. Similarly we denote by f™! the sequence d™* when
2o = 1 and the sequence da, ..., d,, when 2o = 0. Other redundancies do not exist, and we
can find the number of sequences starting with xy and having the same sufficient statistics

n = (T% nomoo,nu) as
n np—1 )
0)( 1 if x9=0

N(2o,¥n,n) = Ttoo i (19)
o= 1) ( " if x9=1
noo ni o

This number can be seen to be identical to the number found in [2]. Moreover, our decom-
position into the strings e™° and f™ is also helpful for solving the case when the string z™
is constrained to have ¢ contiguous zeros.

4.2 Constraining the number of contiguous zeros in the string z” to
at least ¢

Let us denote a(n,m, ¢) the number of strings with n symbols having a total number of m
zeros from which at least ¢ are contiguous. This number can be computed recursively, by
the following recursion [9]:

0, if (n<m)V(m<yq)
1, if m=m)A(n>q)
aln—=1,m,q)+an—1,m—-1,q)
+(niq71)_a(n_q_1rm_Q7Q)7

m—q

aln,m,q) =

(20)

else.

Now consider an arbitrary string ™ having the sufficient statistics n and its decompo-
sition in two strings ¢ and d®'. A contiguous run of ¢ zeros in z™ will be translated into
a run of ¢ — 1 zeros in ¢™. So the number of all strings with sufficient statistics n starting
from zq is

-1 )
a(no, noo, g — 1) (n}nn ) if zo=0
N(Io,In,n) = ny (21)
a(ng —1,n00,¢ — 1) - if xo=1.

4.3 A DNA encoder based on the order-1 NML model

In this section we describe a practical implementation of the order-1 NML algorithm, and its
application for DNA sequences. This algorithm uses the model (18) and the constraint on
the string counts of same sufficient statistics according to (21). For greater adaptivity, the
algorithm also uses several other models, namely order-0 NML and order-1 context coding,
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as described in [9] and [10]. In brief, the algorithm decomposes the input file into a sequence
of fixed size macroblocks. Each macroblock is tested independently by various NML orders
(0 or 1) and block sizes (such as 24, 32, 48 and 96). Among these, the order and block
size that yield the shortest encoded macroblock length are signaled in the output, and the
corresponding model is used to compress that macroblock. This way the NML order and
block size are fixed in each macroblock, but may change in the next one. If no satisfactory
regressor has been found, the algorithm reverts to encoding the current block by an order-1
context coder. To make the process even more adaptive, each context coder has a parameter
that specifies how frequently the coder should downscale its model [9], making the impact
of older statistics less significant. Context coders of different parameters are then combined
with the various NML models. Finally, we also add clear encoding as an alternative to
prevent significant size expansion.

4.3.1 Initialization

The algorithm requires the initialization of some values prior to the encoding or decoding
process. These values need to be stored for fast and frequent access later. First we have to
compute and store the numbers N (zq, 2, n) = N (¢, 2, 1) for all the possible combinations
of z9 and n (we will use from this point on for simplicity the notation N(z¢,zn, n), since z,
is uniquely determined by zo and n). The formulae (20) and (21) provide a very fast means
of generating these values, so this computation is carried out at run-time, and the results
are stored only in memory.

The other necessary values are the probabilities of the strings with same sufficient statis-
tics. Let us introduce the symbol C for the denominator in (18), that is,

c = > N(zo,zn,n)055 0720657 071 (22)
(20,M)EQeg,n

Then by (18) we can write the probability of the sufficient statistics as

Pnlzy) — N(zo, zn, n)eggoeféoegfleﬁl ‘ (23)
This formula gives a straightforward method for computing the values P(n|zo), but this
computation is time-consuming, hence it is best done just once at compilation phase, and the
results are stored on disk for run-time access. Furthermore, since (23) involves floating-point
calculations, arithmetic precision errors may occur, but their effect is insignificant so long as
the probabilities sum up to 1. In practice, the values P(n|zy) are converted to integers after
multiplying by a large number M, and then the sum of these integers (which may differ from
M due to rounding errors) is used as a normalization factor to get back to the probabilities.
The value M should be selected satisfying two constraints: first, M - P(n|zo) > 1 for all
sufficient statistics, and second, that M should be within the range of Arithmetic Coding
[13] which is used to encode the corresponding probabilities.

As an illustration of the model costs, in Arithmetic Coding our test implementation uses
64-bit integer operations, which enables an interval resolution of 22°. For the block size of
n = 32 and the contiguous seed length ¢ = 11 we have min{P(n|zy)} = 2.7984592 - 10753,
and we set M = 10%. The pre-computed binary model for (23) takes only 6104 bytes.

4.3.2 Search for the best regressor

For the similarity metric used for the comparison between candidate regressors, we have
to take into account that non-matching symbols must be corrected, and this increases the
overall cost. Hence for DNA sequences with alphabet S = {4, C, G, T} our probability model
becomes

Peo) = i P@"eo) (24)
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1 1
= ———P . 25
3" N(zg, zp, M) (nlzo) (25)
(26)
Therefore the cost of encoding a block with a known regressor 2" is
—log P(y"|zo; 2™) = —log P(n|zo) + log N(xg, zp, 1) + ny log 3. (27)

Equation (27) provides an efficient and easily computable similarity metric for any regressor
and the current block y™. The candidate regressors are selected from a dictionary assigned
to y™: Dyn C 8™, which is constructed from the contents of the current sliding window,
including both normal and complemented palindrome segments, but subject to the constraint
that a sufficiently long contiguous run of matching symbols exists between each element of
Dy~ and y™ [9]. In the search phase the current sufficient statistics is determined by a
symbol-by-symbol comparison between w™ € Dy~ and y", after which the cost function is
given by (27) using the tabulated values of N(zg,zn,n) and P(n|zg). The result of the
search is going to be the block which minimizes (27), that is,

7" =arg min —log P(y™|xo; w™). (28)
wrE€Dyn

4.3.3 Encoding algorithm for the matching mask z" and segment y"

Following Equation (27) the coding of a block is done by the following steps:
1. Obtain z( from the previous position, based on the current regressor.

2. Encode the regressor location in log W bits (W is the current window size), and the
match type in 1 bit (normal or palindrome).

3. Compute the sufficient statistics vector m = (ngg, 210, 701, 711) and encode it by using
the tabulated probabilities P(n|zg) from (23).

4. Encode the string conditional on the sufficient statistics

1
) Iy

5. Correct the non-matching bases in log, 3 bits each for all z; = 1.

To overcome the computational complexities raised by Step 4 (for n = 32 the values
N (zg,x,,n) are typically much larger than the practical Arithmetic Coding limit 22%), this
step is split into two tasks: decompose the string z™ into ¢ and d"*, then first encode by

— 1 if x9=0
P(c™n,z) = { alronog 1) Z; xo 1 (30)
a(no—1,n00,4—1) 0=

then by

1 1 _
W lf Iofo

ni1
1

()

Encoding by (31) can be done in a straightforward manner [18], iterating through the
positions and counting the numbers of 0’s and 1’s seen so far, from which we form our
probability estimation of the next symbol, and use that for encoding. The procedure of
encoding by (30) is achieved by another iterative algorithm first described in [9].

P(d™|n,z0) = (31)

Zf CE():l
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Figure 1: Comparison of NML orders 0, 1 and 2 with block size n = 32 for the human growth hormone
HUMGHCSA. The bars count the number of blocks for which the corresponding order resulted in strictly smaller
code length, than the other two.

5 Discussion and results

In this section we give for the algorithms presented earlier an empirical evaluation on DNA
sequences.

5.1 Higher order NML models

The rationale behind using higher order NML models for DNA sequences stems from the fact
that neighboring symbols in the matching bitmask usually have some correlation between
them, and this correlation cannot be detected by the order-0 model. Perhaps the most typical
case is a partial match inside a block, in which case spontaneously alternating sequence of 0’s
and 1’s suddenly turn into a run of 0’s, or vice versa, indicating the presence of a significant
exact match. To exploit this redundancy in the best way, one would attempt to test models
with orders higher than one. However, several factors impede the efficient use of higher
orders. On the practical side, the cardinality of the set of possible sufficient statistics is
growing exponentially with the order, which makes difficult both the computation of the
normalization constant and the implementation of coding with the NML model. Another
factor is that based on tests we have carried out, many relevant matching bit masks for DNA
sequences are best processed by order-0 NML, whereas higher order models tend to assign
low costs for matches that rarely or never occur in DNA, inflating the costs for the rest.
In practice we have found that while a careful combination of order-1 with order-0 NML
performs slightly better than order-0 alone, adding order-2 NML (and probably any higher
orders) never results in noticeable improvements. Figure 1 illustrates this fact on the human
growth hormone HUMGHCSA, showing the number of blocks and their percentages when
each order (0, 1 or 2) performed better than the other two.

Figure 2 shows the compression efficiency along the sequence HUMGHCSA of NML for
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Figure 2: (a) The performance of NML-0 on the sequence HUMGHCSA for block size 32, averaged over 50 blocks.

(b) The average codelength of NML with orders 1 and 2, as well as SNML variants, minus the average codelength
of NML order-0 on HUMGHCSA.
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Markov models of various orders. For better visibility, Figure 2 (a) shows the performance
of NML order-0 alone, then Figure 2 (b) gives the difference of other models compared to
order-0. We note that NML order-1 is the only model that occasionally improves over order-0
on this file.

5.2 Sequential NML models

Recently, Rissanen and Roos [15] introduced the conditional NML or sequential NML (SNML),
which is a sequential universal model intended also for sequences generated by Markov
sources. An important practical advantage of SNML over NML is that it can be used for
encoding arbitrarily long strings due to its recursive application, while for the block based
NML model described in this paper the computation of z(nsﬁn)eﬂr,n N(r,s,n)n" and han-
dling of its partial terms encounter practical difficulties due to memory storage requirements
and effects of finite precision computations, when the size of n is large.

The Sequential NML model has three variants, two of which, for the class of Bernoulli
models, coincide with the Laplace and Shtarkov estimators, respectively. These estimators
are defined by

Prap(0la") = -5 (32)
and 1
Papy (0a") = fos et ) (33

no + De(ng) + (n1 + 1)e(ny)’

where e(n) = (1 + 1/n)". In our application for DNA compression, we can use these esti-
mators to encode the matching bit masks for each block, then to correct the non-matching
bases as before, resulting in a fast and simple algorithm.

For the search of the best regressor we point out that (32) assigns a code length that is a
function of only ng, so we can use the Hamming distance as the similarity metric, like in the
case of NML order-0. The estimator (33) depends on the actual bit pattern 2™, however, an
exhaustive search carried out on all sequences with n < 32 revealed that for these short blocks
the regressor minimizing the cost of (33) always minimizes the Hamming distance as well,
80 again our comparison routine is based on the match score with no loss in performance.

Figure 2 (b) shows the performance of these estimators compared to NML order-0, on
the sequence HUMGHCSA. We found the results obtained on other sequences to be mostly
consistent to this one. The improvement of NML order-0 over SNML indicates that the
probabilities of the sufficient statistics of NML order-0,

. () ) (g | "
S () (2)" (252)" "

approximate the empirical probabilities gained from the sequences better than those used
implicitly by the Laplace and Shtarkov estimators.

5.3 Compressing the human genome

We illustrate the compression performance of the order-1 NML model (18) using the con-
straint (21), when integrated in the GeNML DNA compression framework [9], on the April
14, 2003 release of the human genome [20]. Table 1 shows the encoded rate for all human
chromosomes in two flavors: in the left panel the whole sequences were compressed, which
also include a substantial number of non-specified bases (denoted by “N” in the FASTA for-
mat). In the right panel the non-specified bases are omitted, leaving only the nucleobases A,
C, G and T. This second test is important due to the fact that the N symbols usually come in
very long runs, and thus their presence is not indicative to the common type of redundancies
found in DNA sequences. The “NML-0 + constr. NML-1” column shows the compression
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rate of the program using the constrained order-1 model described in this article, and for
comparison we include in the “ NML-0 + NML-1” column the results of an earlier version
[10], which did not account for the constraint on the contiguous seeds and used a different
policy on encoding the first bit of the matching bit mask. It can be observed that the new
method either improves or has the same average performance over each of the chromosomes,
but these average improvements are only marginal. However, local improvements can be
quite important, and they may signal better biological similarities.
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Chromosome || NML-0 + NML-0 + NML-0 + NML-0 +
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chr3 1.624 1.621 1.672 1.669
chr4 1.610 1.608 1.653 1.651
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chrY 0.513 0.513 1.149 1.149
| Average || 1.450 1.449 [ 1618 1.616

Table 1: Comparison of NML-based algorithms on the human genome, when the matching pattern is encoded
by the winner between order-0 NML and order-1 NML (column marked as NML-0 + NML-1) and by the win-
ner between order-0 NML and constrained order-1 NML (column marked as NML-0 + constr. NML-1). The
compression efficiency is expressed as the ratio between the compressed size measured in bits, and the number of

symbols (the smaller the better).
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Abstract

We consider probabilistic graphical models where a directed acyclic graph represents a
factorization of a joint probability distribution: the joint probability of the variables is rep-
resented as a product of conditional probabilities, one for each variable conditioned on its
immediate parents in the graph. For this type of models, computing the normalized maxi-
mum likelihood (NML) is computationally very demanding. We suggest a computationally
feasible alternative to NML, the factorized NML, where the normalization is done locally for
each conditional distribution, and not globally.

1 Introduction

The Complex Systems Computation research group! (CoSCo) was established in the early 1990’s
at the Department of Computer Science of University of Helsinki. The group was first led by
Professor Henry Tirri until 2002, and after that by Professor Petri Myllyméki. The first contact
between CoSCo and Jorma Rissanen took place in 1996, in an evaluation of the HYPE research
project, which was a part of a large research programme on Adaptive and Intelligent Systems,
funded by Tekes, the Finnish Funding Agency for Technology and Innovation. For the evaluation,
Jorma interviewed Henry in a one-to-one meeting, which did not go along quite the way we had
expected. Namely, the very first thing Jorma did was to write the formula for Jeffreys prior
on the board, and ask “What is this?”. When Henry recognized the formula Jorma commented
that he has read the papers and evidently Henry knows them so let’s do some science. Then the
rest of the session was spent on a pleasant conversation on recent developments of MDL. As a
memento of this meeting, we still keep on the wall of our institute the drawings done during the
session (see Figure 1).

All in all, it was apparent that Jorma had very carefully studied the material we had sent
him beforehand, and he already had a clear opinion of our work. In his evaluation report, Jorma
commends our work and points out that

The material in this paper was presented in part at the 2008 Information Theory and Applications Workshop
(ITA-08), San Diego, CA, January—February 2008.
'nttp://cosco.hiit.fi

189



Festschrift for Jorma Rissanen

Figure 1: Jorma’s notes from his first meeting with Henry Tirri in 1996.
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“ It is particularly noteworthy that the difficult and important problem of determining
the proper complexity of the models is done by new information-theoretic methods
rather than resorting to usual ad hoc ones. ”

He also had a quite clear opinion of the overall research programme, which focused on neural
networks and genetic algorithms, which were popular at the time. Indeed, it is well known that
Jorma is not scared to express his opinion quite directly, even if it is a negative one. In the
evaluation of the research programme as a whole, Jorma chose to express his dissatisfaction
somewhat indirectly, formulated cleverly in a seemingly positive statement:

“ On the whole, the research level of the teams using mainly the neural network
techniques is in my opinion comparable to the general international level, which itself
with a few exceptions, such as the work of A. Barron, is not particularly high. ”

We were kind of an oddball in the programme, as we were just in the middle of a process of
moving from neural networks and case-based reasoning to parametric probabilistic models. For
the models we had started to explore—Bayesian networks, finite mixture models, Naive Bayes and
other logistic regression type of classifiers—model regularization was clearly one of the central
problems, and we were immediately intrigued by MDL. This interest had nothing to do with
Jorma being Finnish, perhaps it was the information-theoretic approach that appealed to us as
computer scientists. Actually, for a long time we discussed with Jorma in English only, and only
later we have started to use more Finnish, at least for less technical discussions (involving often
important topics like good food, beer, and soccer).

Our view of MDL was initially pretty ad hoc, and we, as many researchers still do, first
employed the simple two-part/BIC types of codes, and later the “Bayes mixture” approach with
various parameter priors [1-4]. Nevertheless, we soon felt increasing uneasiness with the arbi-
trariness of choosing the parameter priors, and we shared with Jorma the feeling that taking the
subjective Bayesian approach is not as unproblematic as people often think, and that playing
with the parameter priors is not an intuitively easy task after all, leading easily to anomalies in
practical applications.

We kept seeing Jorma more and more often either in Helsinki or somewhere around the globe,
and our appreciation towards him as a person and as a scientist was increasing. In addition to
the pleasure of having a personal contact with Jorma, our work on MDL was greatly influenced
by Peter Griinwald from CWI, Amsterdam, who met Petri Myllyméki in 1996 in a workshop
organized by the NeuroCOLT working group of the European Union. Peter helped the CoSCo
people to understand the new theoretical framework behind MDL, like the normalized maximum
likelihood code, and we started working together in this field. Peter also came to Helsinki for
a two month visit in 1997. Our joint work concentrated on issues like supervised learning,
predictive distributions and choosing the parameter priors [5-11]. Quite interestingly, we were
already then considering sequential (predictive) variants of MDL, which have recently gained
popularity—more about them later. The co-operation between CWI and Helsinki has continued
to this day, e.g. in the Pascal Network of Excellence?, where Myllymiki and Griinwald are
currently leading the Pascal Special Interest Group on Information-Theoretic Modeling. We are
also jointly maintaining a popular web site® offering a (hopefully) uscful portal to MDL-related
work world-wide.

One of the active research areas in CoSCo nowadays is to study how to compute the NML
criterion for Bayesian networks. This parametric model has become quite popular, and one

*http://www.pascal-network.org
*http://www.mdl-research.org
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of the most popular freely available tools, the B-Course software!, was developed and is being

maintained by CoSCo. However, for practical applications, this model family introduces a couple
of serious problems. First, the model structures are represented as acyclic directed graphs,
which are superexponential in number. This makes the search for the best model structure a
most difficult problem, which can currently be solved in reasonable time only for moderate size
networks [12]. Nevertheless, perhaps even more crucial problem than how to find a good model,
is the question of optimality: good in what sense?

Traditionally, in the Bayesian network community the models are evaluated by their posterior
probability, which in the discrete Multinomial-Dirichlet setting can be computed in closed form,
which leads to the popular BDe (Bayesian Dirichlet equivalent) score [13]. However, our recent
work shows that the shape of the posterior is quite sensitive with respect to the choice of the
hyperparameters of the Dirichlet prior [14]. NML would of course avoid this problem by offering
a non-informative score that is not dependent on any parameter prior, but unfortunately, no
efficient method for computing NML for Bayesian networks in general has yet been discovered.
In the CoSCo group, we have gradually moved towards this goal by developing computationally
efficient algorithms for independent multinomial variables, or equivalently, a Bayesian network
with no arcs [15], for the Naive Bayes model [16, 17], and for tree-structured Bayesian net-
works [18, 19]. As an interesting application of the algorithm for computing the NML efficiently
in the multinomial case, we can mention the minimax-optimal histogram density estimator sug-
gested in [20].

As another active area of collaboration with Jorma, we have been focusing on MDL-based
approaches to signal denoising. Starting from the original MDL denoising paper [21], we have
been able to develop improved denoising methods [22], which are more robust with different levels
of noise, achieve better frequency adaptivity, and employ the “soft thresholding” technique found
very useful in denoising methods based on other approaches. For an illustration of denoising, see
Figure 2. (The image in the example represents an Inter Milan soccer player in the 1950’s. As
many of us know, Jorma has always been a great fan of soccer, and a talented player himself: he
even got an invitation in the early 1950°s for a try-out in Milan, but the entrance examination
for the Helsinki University of Technology was at the same time, and Jorma made, according to
his own words, "a wrong decision" and chose science over football. Later he hurt his knee doing
pole vault during his military service in the Finnish army, which finally ended any ideas about
a potential carcer as a professional football player. This was a lucky strike for the IBM soccer
team, who enjoyed having Jorma play for them for many years.)

One of the conclusions of the still ongoing work on denoising is the observation that the “model
index”, identifying the optimal subset of wavelet coefficients, forms a practically important part
of the overall code length, and should not be ignored like was done in the original denoising
paper. A similar phenomenon was observed already in the context of clustering [16]. However,
Jorma was not after all very surprised by the result: he had of course always been aware of the
missing part of his code, he just never thought it would make a difference in practice.

As the problem of computing NML for Bayesian networks is so difficult, we started to consider
alternative solutions, other similar type of scoring functions that could be used instead of NML.
It is probably appropriate to point out that also the non-informative Bayesian solution of using
the Jeffreys prior is computationally NP-hard [10]. As already noted, we were already early
on quite interested in predictive forms of MDL, while Jorma did not seem to share our interest.
“Forget about prediction” was a frequently heard comment made by him when we tried to suggest
exploring this area. One could have thought that Jorma did not want to touch the elaborate

‘http://b-course.hiit.fi
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Figure 2: The MDL denoising methods in action. Top row (from left) Original (size 128 x 128); noisy
(noise std.dev. 20.0); original MDL denoising [21]. Bottom row: Left to right, gradual improvements of
the MDL denoising method [22].

NML framework he had created, but as it would turn out, nothing was further from the truth.
Already since 2004-2005, having studied a paper by Takimoto and Warmuth [23], we had started
discussing the idea of sequential type NML variants in our group. Even though we found the
topic potentially worthwhile, we couldn’t see any obvious extensions beyond the basic idea. When
we finally introduced the idea to Jorma in 2006, he was suddenly full of new ideas, leading to
sequential NML (see Sec. 3 below) and many other novel innovations, and he was more than
ready to abandon the “old” NML as obsolete much more than we were! All in all, Jorma has
often proved to be so fast and dynamic in his work that we, many being less than half of his age,
have had hard time trying to keep up.

As the most recent result of our research on NML-like universal models for Bayesian networks,
we introduce in this paper the factorized NML (fNML) model. The rest of the paper is organized
as follows: In Sections 2 and 3 we discuss the normalized maximum likelihood (NML) and
sequentially normalized maximum likelihood (sSNML) models, respectively. In Section 4 we review
the basics of Bayesian networks. The factorized NML model is introduced in Section 5, where
it is also shown to be computationally feasible for all Bayesian networks. The new model is
philosophically a relative of the sequential NML models discussed in Section 3. Finally, in
Section 6, we present experimental results, demonstrating that fNML compares favorably in a
model selection task, relative to the current state-of-the-art.
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2 Normalized Maximum Likelihood Models

Before describing the sequential NML and factorized NML models, we fix some notation and
review some basic properties of the well-known NML model. Let

Tl T2 Tim X1,:
T21 X222 0 T2am X2,:
T = . . . . = . = (X:,lx:,2 ce X:,m) 5
Tpl Tp2 °° Tpm Xn,:
be a data matrix where each row, x;. = (;1,2i2,...,%im), 1 < ¢ < n, is an m-dimensional
observation vector, and columns of 2™ are denoted by X. 1,...,X.m.

A parametric probabilistic model M := {p(a™ ; 0) : 0 € ©}, where © is a parameter space,
assigns a probability mass or density value to the data. A wuniversal model for M is a single
distribution that, roughly speaking, assign almost as high a probability to any data as the the
maximum likelihood parameters 6(z").

Formally, a universal model p(z") satisfies

lim llnp =0, (1)

)
i.e., the log-likelihood ratio, often called the ‘regret’, is allowed to grow sublinearly in the sample
size n. The celebrated normalized mazimum likelihood (NML) universal model [24, 25]

p(z" 5 0(z™))

") = ,
PNML(2™) .

Com [ plam s b)) do”

is the unique minimax optimal universal model in the sense that the worst-case regret is minimal.
In fact, it directly follows from the definition that the regret is a constant dependent only on the
sample size n:

| Pl 0@"))
pNmr(a™)
For some model classes, the normalizing factor is finite only if the range X™ of the data is

restricted, see e.g. [21, 24, 26]. For discrete models, the normalizing constant, C,, is given by a
sum over all data matrices of size m X n:

Co= 32 pla™; 0™ .

TneXxn”

=InC, .

The practical problem arising in applications of the NML universal model is then to evaluate
the normalizing constant. For continuous models the integral can be solved in closed form for
only a few specific models. For discrete models, the time complexity of the naive solution, i.e.,
summing over all possible data matrices, grows exponentially in both n and m, and quickly
becomes intractable. Even the second-most naive solution, summing over equivalence classes of
matrices, sharing the same likelihood value, is usually intractable even though often polynomial
in n.

The usual Fisher information approximation [24]

InC, = gln%—&—ln/ Vet 1(0) d6 + o(1) |
[S)
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where k is the dimension of the parameter space, is also non-trivial to apply due to the integral
involving the Fisher information I(#). Using only the leading term (with or without 27), i.e.,
the BIC criterion [27], gives a rough approximation which, as a rule, performs worse in model
selection tasks than more refined approximations or, ideally, the exact solution, see e.g. [28,
Chap. 9].

3 Sequentially Normalized ML Models*

A recent family of variants of NML, called the sequentially (or conditional) normalized mazimum
likelihood (sNML) [29, 30] has similar minimax properties like NML but is often significantly
easier to use in practice.

For data matrix 2" = (x1,.,X2.,...,Xp,.)/, the SNML-1 model is defined as
n A i
X | &'~
ponmra (@) == [ [ Pl | = '1) o) ; (2)
i=1
Ki(a ) = / Pl |27 5 B(a)) dx 3)

where normalization ensures that each factor in the product is a proper density function.

In some cases it is necessary to use a separate density, say g(x™), for the first ng observations,
with ng large enough, so that the maximimized likelihood is well-defined for longer sequences
2 with 4 > ng. For instance, in linear regression ng has to be at least the number of regressor
variables plus one.

Second variant (sSNML-2). There is also another variant of sSNML, which we call here sSNML-
2. It can be defined in analogy with (2) as follows:
2

n A ;
p(z
DsNML2(T | | K ;zﬂ 1 ) (4)

i=1 1
Kl(zi71) = /p(a?i; é(ajl))dxz .

Using the sSNML-2 model is equivalent to predicting the ith observation using the standard
NML model defined for sequences of length . Formally we have

P (X, | 27 = panara(xi, [ 271

Note that the standard NML model is not in general a stochastic process, which makes it possible
that

DA D o i Xigs [ 2770 (5)

Xit1,:

PNML (X,

and hence, typically two NML models, defined for sequences of different lengths, give different
predictions. In contrast, both sNML-1 and sNML-2 are by definition stochastic processes, so
that for them we always have an equality in (5).

4This section is mostly based on as yet unpublished work by Rissanen, Myllymiki, and Roos.
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Regrets Visualized. Figure 3 gives a visualization of the regrets of four universal models in
the Bernoulli case: the Laplace predictor (“add-one”), the Krichevsky—Trofimov predictor (“add-
half”), sNML-2, and NML. For NML, the initial sequence probabilities, ¢(z*), are obtained from
a fixed NML model, defined for n = 5, by summing over the possible continuations of length
n—t.

Note that for NML, while the intermediate regrets, for ¢ < n, depend on the prefix z¢, the
total regret for &” is a constant. For sNML, the difference between the regret for 2! and z*+! is
constant with respect to z; but varies with z~'; in the figure this means that each pair of edges
originating from the same branching point are of equal length, but their length depends on the
path from the origin. For the Bernoulli model, SNML-1 is equivalent to the Laplace predictor.
Figure 4 shows the regrets with n = 5 as a function of the number of 1s.

Related Work. The sNML-2 model has been analysed earlier in conjuction with discrete
Markov models, including as a special case the Bernoulli model, by Shtarkov [25] (see his Eq. 45).
Also, Takimoto and Warmuth [23] analyze a slightly more restricted minimax problem, the solu-
tion of which agrees with sSNML-2 for Markov models. Griinwald [29] uses the term “conditional
NML” (CNML) for a family of universal models, conditioned on an initial sequence without
considering the joint model obtained as a product of such conditional densities. Our sNML-1
corresponds to his CNML-3, and our sNML-2 corresponds to his CNXML-2. The conditional mix-
ture codes studied by Liang and Barron [31] are also closely related to sNML, and have similar
minimax properties.

4 Bayesian Networks

In Sec. 5, we describe a new NML variant, similar to the SNML models discussed in the previous
section. This new variant gives a computationally feasible universal model, and a correspond-
ing model selection criterion, for general Bayesian network models. This section presents the
necessary background in Bayesian networks.

First, let us associate with the columns, X.1,...,X.m, a directed acyclic graph (DAG), G, so
that each column is represented by a node. Each node, X;,1 < j < m, has a (possibly empty)
set of parents, Pa;, defined as the set of nodes with an outgoing edge to node X;. Without
loss of generality, we require that all the edges are directed towards increasing node index, i.e.,
Pa; C {1,...,j — 1}. If this is not the case, the columns in the data, and the corresponding
nodes in the graph, can be simply relabeled, which does not change the resulting model. Figure 5
gives an example.

The idea is to model dependencies among the nodes (i.e. columns) by defining the joint
probability distribution over the nodes in terms of local distributions: each local distribution
specifies the conditional distribution of each node given its parents, p(X; | Pa;),1 < j < m. It
is important to notice that these are not dependencies among the subsequent rows of the data
matrix ", but dependencies ‘inside’ each row, x;.,1 <4 < n. Indeed, in all of the following, we
assume that the rows are independent realizations of a fixed (memoryless) source.

The local distributions can be modeled in various ways, but here we focus on the discrete
case. The probability of a child node taking value x; ; = r given the parent nodes’ configuration,
pa; ; = s, is determined by the parameter

ej\Paj(ns):p(mi,j:,r|pai,j:s; ej\Paj) , 1<isnl<j<m,

where the notation 0;p,, (r,s) refers to the component of the parameter vector 0;|pa; indexed by
the value r and the configuration s of the parents of X;. For empty parent sets, we let pa; ; = 0.
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Laplace Krichevsky—Trofimov

sNML-2 NML

Figure 3: Regrets of four universal models in the Bernoulli case. Each path from the origin (center) to
the boundary represents a binary sequence of length n = 5. Red edges correspond to 1s, black edges to
0s. The path for sequence 01111 is emphasized. The distances from the origin of the branching points
are given by the regrets In[p(z® ; 6(z))/q(«?)] for each prefix «*. The blue circle shows the regret of
NML. Note the similarity between sNML-2 and NML.
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PER-SYMBOL REGRET

o6 Laplace - |
Krichesky-Trofimov --%:--

+ SNML-2 (average) ---%-- 4
0.5 NML -]
0.4 ’x.""- .'."""
0.3

+.. A

0.2 + 4
0.1 :

0 1 2 3 4 5

number of 1s

Figure 4: Per-symbol regrets of four universal models in the Bernoulli case as a function of the number
of 1s in the sequence with n = 5 (for the same figure with n = 30, see [30]). For sNML-2 the regret
depends not only on the number of 1s, but also on the actual sequence. (The dependency is very slight,
see Fig. 3.) The graph shows the average regret.

Figure 5: An example of a directed acyclic graph (DAG). The parents of node Xg are {X1, X5, X7}. The
descendants of X, are {X5, Xs}.
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For instance, consider the graph of Fig. 5; on each row, 1 <1¢ < n, the parent configuration of
column j = 8 is the vector pa; g = (%i1,2s,5,%i,7); the parent configuration of column j = 1 is
pa; 1 = 0, etc.

The joint distribution is obtained as a product of local distributions:

m
p(x”; 0) = Hp(xz,j | Paj; 0)pa;) - (6)

j=1
This type of probabilistic graphical models are called Bayesian networks [32]. Factorization (6)
entails a set of conditional independencies, characterized by so called Markov properties, see [33].
For instance, the local Markov property asserts that each node is independent of its non-descendants
given its parents, generalizing the familiar Markov property of Markov chains.

It is now possible to define the NML model based on (6) and a fixed graph structure G:

T plx.y | Pay ; 6(a"))
Cy ’

pnun(z™ 5 G) = (7)

where

Cn=>"T]rx s O(™)) (8)

" j=1

The required maximum likelihood parameters are easily evaluated since it is well known that the
ML parameters are equal to the relative frequencies:

‘{z : =7,pay; ; s}‘
‘{z’ D pay ;= s}‘ ’
where |S| denotes the cardinality of set S. However, as pointed out in Sec. 2, summing over all

possible data matrices is not tractable except in toy problems where n and m are both very small.
Efficient algorithms have been discovered only recently for restricted graph structures [17-19].

9)

éj\Paj (T, S)

5 Factorized NML Models

As a computationally less demanding alternative to NML in the context of Bayesian networks,
we define the factorized NML (fNML) in a similar spirit as sSNML. We let the joint probability
distribution be given by a product of locally normalized maximum likelihood distributions:

] p(x. ;5 | Paj 6(z™))
pvL(@” H Z,(Pay) (10)
Zp(x.; | Paj; O (x"
_ H]_1p( . | Pag s 0(2™)) 7 (1)
Z(x™)
where each of the local normalizing factors
Z;(Pay) Zp (X] | Pa ; 6(X], Pay)) (12)

is a sum over all possible instantiations of column x. ;, and the global normalizing factor

") =TI D p(X) | Pay; 00X, Pay)) (13)

;— 7
j=1 Xj
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is a product of the local normalizing factors. The local normalizing factors Z;(Pa;) can be
decomposed further into simple multinomial NML normalization constants, one for each parent
configuration in Pa;. Using the recently discovered linear-time algorithm [15] for the multinomial
case, the total computation time becomes feasible even for large sample sizes and for many
variables (columns).

In practice, we not only want to evaluate the likelihood of the data under a given model
class, but we also wish to find the structure that maximizes the likelihood of the data. This is
made hard by the fact that the number of possible DAG structure is superexponential. Unlike
the standard NML criterion, the fNML criterion is ‘modular’ in the sense that it decomposes
column-wise into independent terms. This enables the use dynamic programming techniques
that find the global optimum in o(n2") time, see [12], which is manageable for networks with up
to about 30 nodes. For larger networks, local search heuristics are necessary.

Note that, as can be seen from (9), the maximum likelihood parameters of each local distri-
bution, 0;p,,, depend only on column x.; and column(s) Pa;. In particular, since we require
Pa; C{1,...,j — 1}, we have

px; | Paj 5 0(a™) = p(x.; | Paj 5 0(x.1,...,%.;)) = p(x.; | Pa; ; O(x.;,Pa;)) , (14)

of which the second form, where only the first j columns appear, is the one that should be used
in (10) by analogy with (2). Due to the above identity, the expressions are used interchangeably.

The sum-product view. It is interesting to compare the NML and fNML models. Consider
Egs. (7) and (11): the constant normalizer of NML, C),, an exponential sum of products, is
replaced in fNML by Z(2™), a product of sums that depends on the data. The fNML model
can therefore be seen as ‘cheating’ by using a sum-product algorithm, where the distributive law
(see [34])

{f(xl’“) =) D fanae)glen,as) = <Zf(x1)> <Zg(x1)>

g(z1,z2) = g(w2) o1,

is applied to compute the sum in C, even though the terms do not actually factor column-wise
into independent parts. No cheating is necessary when the graph is empty, i.e., when Pa; =
for all 1 < j < m. This means that we have Z(z™) = C,,, which by (7) and (11) implies that for
empty graphs pnwvr and penur, are equivalent.

The regrets of the two models are easily seen to be InC), and In Z(z™), for NML and fNML
respectively. Notice also that the regret of {fNML, In Z(z™), depends on the data only through
the parents, Pa;, 1 < j < m, and hence, is independent of all the leaf nodes, i.e., nodes that have
no descendants. Again, if the graph is empty, all nodes are leafs and Z(z") = C,, for all 2"
that the NML and fNML models are equivalent.

Finally, we observe that for fNML the two variants of SNML, sSNML-1 and sNML-2, coincide.
Letting x(j) := (x.1,X.2,...,X. ;) denote the first j columns, we obtain

J
pa(5) s 0(x()) = [ [ x| Pag s 0(x.4,Pay))
=1

j-1
= p(x. | Pay; 0(2™) [[ p(x.y | Pay ; O(x.0,Pay))
=1
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where both equalities depend on (14). The last factor on the right-hand side is independent of
column x. ;. When the above is normalized with respect to x. ;, this factor cancels and we are
left with p(x.; | Pa; ; 0(z")), which is exactly what is normalized in (10). Hence, it doesn’t
matter whether we define fNML as in (10) or as the product over 1 < j < m of the normalized
versions of p(z(5) ; 0(z(5))), and SNML-1 is equivalent to sNML-2 for Bayesian network model
classes.

6 Experiments

To empirically test performance of the fNML-criterion in Bayesian network structure learning
task, we generated several Bayesian networks, and then studied how different model selection
criteria succeeded in learning the model structure from data. The most often used selection cri-
terion for the task is the BDe (Bayesian Dirichlet equivalent) score [13], but due to its sensitivity
to the choice of prior hyperparameter, we chose two different versions of it: BDeg 5 and BDeq g.
We also included the Bayesian Information Criterion, BIC. All these scores can be interpreted
as implementing some version of the MDL criterion or an approximation thereof.

We present the results for an experiment in which we generated 1800 different Bayesian
network models, which we tried to learn back using the data generated from these models.
We generated the networks using 5, 10 and 15 variables, and also varied the density and the
parameters of the networks. We then generated 1000, 10000 and 10000 data vectors from each
network, and tried to learn the models back using these data samples and different scoring
criteria. It turned out that learning the models back with these sample sizes was practically
possible only for smallest networks containing 5 nodes. However, varying the number of arcs and
parameters did not seem to have a strong effect on the outcome. This made it possible us to
concentrate on comparing the performance of different scoring criteria for different sample sizes
(Figure 6).

The results clearly show that {NML excels with small sample sizes. With large sample sizes,
the difference is not that big, which is hardly surprising, since asymptotically, they all converge
to the data generating model. This result is significant, since BDe score(s) can be regarded as the
current state-of-the-art. Furthermore, the fNML score is computationally no more demanding
than the BDe score.
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Abstract

The minimum description length (MDL) wavelet denoising approach based on minimizing the
normalized maximum likelihood code length can be extended to incorporate more than one non-noise
component. We give an informal outline of a multicomponent approach, and present preliminary
results showing that minimizing the code length for the three-component model leads to a separation
of components with different characteristics.

1 Introduction

Removing noise from measurements is an important step in many applications. Wavelet denoising has
been shown to give good results and it is no surprise that research in this field has been very active. A
large number of methods based on different thresholding strategies have been proposed in the literature;
see [1] for a comparison of performance of several popular methods. The minimum description length
(MDL) principle has proven to be a useful tool also in wavelet denoising, for example, see [2, 3, 4, 5, 6,
7, 8].

Typically denoising is based on a model with an underlying informative signal and additive i.i.d. random
noise. However, it is possible that in addition to the random noise there may be other disturbing signal
elements, or that the informative signal is comprised of several different components which we may want
to observe, separate or remove. For example, in monitoring the condition of a rotating machine a bearing
fault may be seen as a new component in the measured vibration signal, or in image analysis the varying
lighting conditions for a line camera may add a new component in the resulting image. If there is more
than one informative component in the noisy measured data, a multicomponent approach may result in
better performance than the denoising approach with an informative and a noise component, whether the
aim is denoising or also the separation of components.

2 Wavelet denoising

Usually the wavelet denoising methods are based on the Discrete Wavelet Transform (DWT), ¢ =
W7Zz™, of the data ™. The wavelet basis vectors are often chosen to span a complete orthonormal basis
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so that the Parseval’s equality ||c"|| = ||z™|| holds. In this article we consider the hard thresholding
approach, in which the wavelet coefficients assumed to correspond to noise are set to zero, while the
remaining coefficients are taken to represent the underlying informative signal. Typically k coefficients
with largest magnitude are retained according to some optimality criterion. Given the modified coef-
ficients ¢" (k retained and n — k zeroes) the reconstructed signal can be defined as the inverse DWT

" = W¢". The solution by Rissanen [4] for obtaining ¢" is to choose the subset of basis vectors
resulting in the shortest description of the data ™, determined as the normalized maximum likelihood
(NML) code length. Calculating the NML code length requires evaluating a normalizing integral which
is undefined unless the integration range is restricted. This is equivalent to introducing hyperparameters
restricting the maximum likelihood estimates. The hyperparameters are removed by a renormalization
and a second-level NML model is obtained. The resulting code length can be approximated by a simple
criterion.

Roos et al. [6, 7, 8] have shown that a criterion similar to the renormalization result can be obtained by a
different derivation, details of which can be found in [7, 8]. In short, they define a model

o N(0,07), ifjery 0
J N(0,0%),  otherwise

for the wavelet coefficients, in which each coefficient is distributed according to a zero-mean Gaussian
density with variance a? if it belongs to the set of informative coefficients indexed by +, or according
to a zero-mean Gaussian density with variance (TJQV if it represents noise, with the restriction (T? > 0]2\,.
The code length for the data given the model class indexed by -y is obtained as the normalized maximum
likelihood code length

fa™; ?f? )
—1In famL(z™;7y) = ) 2
( BT R
and the optimal index set -y is obtained by minimizing the joint code length,
min (—In fame (2™ 7) + L(y)], 3

where L() is the code length for the model class. Roos et al. [7, 8] suggest using code length L(v) =
In (7). where  refers to the number of coefficients for which j € ~.

The orthonormality of the DWT allows to calculate the integral in the ¢ domain. In order to calculate
the normalizing integral also this derivation requires hyperparameters to bound the maximum likelihood
estimates of the variances. However, the effect of hyperparameters can be ignored and the minimization
of the total code length can be approximated by

mln —ln—z ¢ kz - lnk n—k)+1n<Z> . 4)

jev

The criterion for the NML code length in Eq. 4 (first three terms) is the same as the one proposed in [4].

3 Multicomponent MDL Denoising

The basic model described in Section 2 can be extended by adding another Gaussian signal component,
such that there will be three different zero-mean Gaussian components with variances o7 and o3 for
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the two informative components, while J§ refers to noise with the restriction J% > J% > 0% holding.
Following the treatment in [7, 8], the extended basic model for the wavelet coefficients is given by

N(0,0%), ifjem
cj~<4 N(0,03), ifjer , Q)
N(O7 J§)7 1f] €73

where index sets ; and -9 define the two informative components and -3 defines the noise compo-
nent. The Gaussian model for the informative components may not be the most realistic, but it allows
calculating the NML code length.

The NML code length for this model can be calculated in a manner following the derivation in [7] for the
two-component denoising criterion. The derivation turns out to be straightforward since the normalizing
integral factors into three parts, each depending only on the coefficients determined by the respective
index set ;. Therefore, we may use the same approach for calculating the integrals as in [7] for the
two-component approach. Given the index sets 1, 72 and 3 we can approximate the joint code length
with
N | , 1
izzl Elnk_ijEZWCjJrilnki + L(71,72,73) (6)

where k; refers to the number of coefficients for which j € ~; and L(v1, 72, 73) is the code length for the
model class. Following similar reasoning as in [7], we may use code length L{1,72,7v3) = In (k1 ,?2 kg)'

Instead of performing an extensive optimization over all possible index sets y1, 2 and 3, we perform
the minimization so that we assume the coefficients in -y; to consist of the k; coefficients with largest
magnitude and 7, of the ko next largest coefficients. This approximative approach is due to practical
reasons: in addition to allowing fast computation, it also usually provides results where the restriction
0% > 02 > o2 holds.

This treatment is trivially generalized into arbitrary number of components by introducing a model with
m Gaussian components. Following the same treatment as in the three-component model we obtain a
criterion

m

ki1 5 1 o2
; Elnk_ijezmcj—’_ilnki +L('yl,...7'ym)+mloglogﬁ+const, @)

where const refers to terms constant with respect to the index sets and m, and 02, and 02, are the

hyperparameters for the maximum and minimum variance, respectively. The last two terms can be
ignored if we wish to find the optimal m-component result. On the other hand, if we want to compare
the results for two approaches with different number of components, for example m; = 3 and my = 4,
we cannot remove the term involving the hyperparameters as it affects the code length.

4 Experiments

We show example results for applying the three-component approach in two different test cases. The first
test signal is a one-dimensional time series data set used in the European Symposium on Time Series
Prediction 2007 (ESTSPO7) prediction competition, available in [9]. In this signal we can see a varying
baseline making a distinctive bump after time index 400, a periodic element and noise. The second test
signal is a capillary electrophoresis signal resulting from DNA microsatellite genotyping application; for
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more information on denoising electrophoresis signals see [10]. This very noisy test signal contains two
important components: a varying baseline and a set of peaks.

The three-component approach results for the time series data are presented in Figures 1 and 2. Figure 1
shows the original signal and the three obtained components. Figure 2 shows the sum of the two infor-
mative components (the trend and the periodic component) plotted over the original data points. As can
be seen the proposed three-component approach is able to separate well the components of interest in the
given signal.

28 26
26 o5
22 23
20 20
200 400 600 800 200 400 600 800
(a) (b)

4

2

0
-2

200 400 600 800 200 400 600 800
© (@

Figure 1: The results for the ESTSPO7 prediction competition data. The wavelet basis is the Daubechies
'db5’, and the DWT has N = 6 levels. (a) The original signal; (b) the first component, which is seen to
describe the varying trend in the signal; (c) the second component, which describes the periodic element;
(d) the third component describing noise.

The results for the capillary electrophoresis data are presented in Figures 3 and 4. Figure 3 shows the
original signal and the three obtained components. Figure 4 presents the denoising result (two informa-
tive components summed) plotted over the original data. For comparison, the original MDL denoising
result is also shown. It can be seen that the three-component approach improves the results significantly;
the proposed three-component method is able to retain more of the important peaks, and it also retains
the peak heights better than the original denoising approach.

5 Discussion

Here we have proposed a multicomponent MDL approach for wavelet denoising to be used in applica-
tions where the separation of signal components with different characteristics is needed. Although the
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Figure 2: The results for the ESTSPO7 prediction competition data. The sum of the two informative

components (Fig. 1 (b) and (c) ) plotted over the original noisy data. The first component is also plotted
alone to show the baseline.

research in multicomponent MDL approach is at its first stages, the results are already promising. Mod-
eling with several non-noise components can be useful in different ways: in some cases it may lead to
better denoising results while in other cases the separation of the informative components is the more
interesting result. For instance, in some applications the signal baseline removal may be critical in fur-

ther analysis, which means that one is interested in using the resulting signal consisting of the other two
components.

At the moment the criterion approximating the NML code length is calculated by a brute force approach,
which is too slow for large signals such as images. Therefore, instead of an exhaustive optimization over
the index sets the computations are performed so that the coefficients in the first component indexed by
~1 are assumed to consist of the k; coefficients with largest magnitude, the coefficients in -y, of the ko
next largest coefficients, and so on. In order to overcome these computational limits for example greedy
approximations can be considered. Also, one way of improving the approximation could be to include
information about the levels and subbands of the wavelet transform to the minimization problem.

In general, the properties of the NML based multicomponent approach are not yet known very well.
However, it is known that the approach proposed here includes the same hyperparameters as the MDL
denoising approach. These hyperparameters make comparison between models with different number of
components difficult. The recently proposed conditional normalized maximum likelihood (CNML) [11]
(also known as the sequential NML) approach could be potentially very useful also for multicomponent
denoising, as it does not require hyperparameters. Furthermore, incorporating other density models than
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Figure 3: The results for the capillary electrophoresis data. The wavelet basis is the Symmlet 'sym3’, and
the DWT has N = 9 levels. (a) The original signal; (b) the first component, which is seen to describe
varying baseline; (c) the second component describing the peaks; (d) the third component describing
noise.

Gaussians should be easier in the CNML framework, so that more realistic models could be used.

Acknowledgements

This work was supported in part by the Graduate School in Computational Methods of Information Tech-
nology at Helsinki University of Technology, the Finnish Technology Agency under project KUKOT, and
the Center of Excellence Program of the Academy of Finland.

References

[1] L Fodor and C. Kamath, “Denoising through wavelet shrinkage: an empirical study,” Journal of
Electronic Imaging, vol. 12, no. 1, pp. 151-160, 2003.

[2] N. Saito, “Simultaneous noise suppression and signal compression using a library of orthonor-
mal bases and the minimum description length criterion,” in Wavelets in Geophysics, E. Foufoula-
Georgiu and P. Kumar, Eds. New York: Academic, 1994, pp. 299-324.

[3] H. Krim and I. Schick, “Minimax description length for signal denoising and optimized represen-
tation,” IEEE Transactions on Information Theory, vol. 45, no. 3, pp. 898-908, April 1999.

210



Festschrift for Jorma Rissanen

450
vvvvvvvvvvvvvvvvvvvvvvvvvv Ol‘lglnal S|gna|
Component 1 + Component 2
400 MDL denoising

350

300

250

200

150 -

1 1 1 1 1 ]
500 1000 1500 2000 2500 3000 3500 4000 4500 5000

100 !
0
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Abstract

With the advent of sequential arithmetic coding, the focus of highly efficient lossless data
compression is placed on modelling the data. Rissanen’s Algorithm Context provided an elegant
solution to universal coding with optimal convergence rate. Context based arithmetic coding laid the
grounds for the modern paradigm of data compression based on a modelling and a coding stage. One
advantage of contexts is their flexibility, e.g. choosing a two-dimensional (2-D) context facilitates
efficient image coding. The area of image coding has greatly been influenced by context adaptive
coding, applied e.g. in the lossless JBIG bi-level image coding standard, and in the entropy coding
of contemporary lossless and lossy image and video coding standards and schemes.

The theoretical work and analysis of universal context based coding has addressed sequences
of data and finite memory models as Markov chains and sources. This paper discusses relations
between context based coding of images and the context formation in some image models. Image
models include Markov random fields (MRF), which have a non-causal description, and the special
case of Pickard random fields, which are causal. These fields represent generalizations to 2-D of a
finite memory source. Further developments of causal image models, e.g. to approximate MRF, lead
to considering hidden states in the context formation. These causal image models provides image
coding models and they are here related to context based image coding. The entropy of the image
models is also considered.

Finally it is outlined how the techniques by duality may play a role in 2-D constrained coding
for high density storage by switching the roles of encoding and decoding.

I. INTRODUCTION

Context based techniques for sequentially assigning conditional probabilities to elements of a data
set is a very powerful tool. In this paper, context techniques as introduced in source coding will be
treated in the light of lossless image coding. While the techniques are general, for practical image
coding applications, they have mostly been used in their direct form for coding bi-level images.
Combined with (pre-)processing of the data, the concepts are widely used in the entropy coding part
of efficient image and even video coding schemes of today. The treatment will focus on the direct
application of context based approaches to assigning conditional probabilities in images with the
implicit assumption that these techniques may also be applied in the entropy coding of other image
and video coding schemes.

By the minimum description length (MDL) principle the techniques may also be used more widely
in modelling image data.

A. Lossless source coding

With the advent of sequential arithmetic coding the focus of highly efficient lossless data compres-
sion is placed on modelling the data. A very general and efficient approach is the use of contexts,
which are given by a mapping of the causal data. For (bi-)level image coding, the mapping may
simply be defined by a template in form of a selection of causal pixels.

213



Festschrift for Jorma Rissanen

Real world data including images are generally not generated according to any specific mathematical
model. Thus the issue of determining a context function and its parameters is raised. A (coding) model
class may be defined. In two part coding schemes, the model parameters are sent in a header as a
preamble and thereafter the coding of the sequence based on these parameters. With this approach the
parameters explicitly constitute a cost. In adaptive coding schemes, the parameters within the model
class are learned adaptively. Rissanen’s Algorithm Context provided an elegant solution of adaptively
determining both the model within the class of tree-structured contexts functions and the parameters
of the model. Algorithm Context provided a universal coding solution with optimal convergence rate.
The universality applies to finite memory sources.

B. Image coding

The area of image coding has been greatly influenced by context adaptive coding, applied e.g. in
contemporary lossless and lossy image image coding, as well as in video coding schemes. Context
based arithmetic coding is directly applied in the international bi-level image coding standards, JBIG
[8] and JBIG2, where the context function is given by a template of causal pixels. For lossless
coding of (gray-level) images, the international standard JPEG-LS applies prediction to reduce the
parameter space followed by context based coding. In JPEG-LS part 2 the actual coding may be
based on arithmetic coding. For lossy (and lossless) coding of gray-level images, JPEG2000 applies
a wavelet transform to the images as an initial decorrelation of the data. The wavelet coefficients
are coded in bit-planes using context based coding. Also in the most recent video coding standard,
MPEG4 part 10/H.264, context based arithmetic coding may be applied in the entropy coding for
high-performance. The use of contexts has enabled flexible and efficient application to image coding.
We shall consider issues of context based coding starting with template coding for (bi-level) images as
well as the relations to image modelling. The application considered is compression, which for context
based coding is based on conditional probabilities. Thus prediction and other estimation problems are
closely related. The minimum description length principle formalizes some of the relations.

In Section II, lossless image coding and Algorithm Context are outlined. In Section III, Markov
random fields and Pickard random fields (PRF) are presented. One approach to determining the
parameters of a PRF is also presented. In Section IV, image models with hidden states are presented.
Results from applying the image models to bi-level image coding is presented in Section V. A short
remark is made on applying the techniques to coding for 2-D constrained coding in Section VL

II. LOSSLESS IMAGE CODING

Arithmetic coding may take a sequence of symbols, ¥ = y” = y1,...,yr, and corresponding
probability assignments, P(1|y*~") and code the symbols, such that the total code length is very
close to — >, log P(y|y'~1).

This has lead to the modern paradigm of data compression separating the coding into a modelling
step to attain P(y;|y*!) and a coding step based on arithmetic coding. We shall pursue this and
consider the modelling step for image data assuming arithmetic coding is used subsequently.

Let y;; denote the picture element at (¢, j) drawn from a finite alphabet, A. For compression, the
images are processed sequentially in a predefined scanning order. Let 3, denote element ¢ in the
sequential representation of the image and y” = y7 the whole image. The pixel position (i,7) is
mapped to a sequence index ¢ by a traversal of the image. We shall use the conventional row-by-row
raster scan.

For coding the image, a probability is assigned by P(y”) = [] P(us|ly?™"), where P(y:|y*~?) is
expressed by P(y;|y'™') = P(y,|F(y*~1)). The function F(y'~!) defines the context in terms of
a mapping of the causal elements. We shall mainly consider context functions defined by a subset
of elements of the past with given position relative to the current element, y; at position (z,7),
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but also context functions defined by calculations over past values possibly including hidden states
are considered. Arithmetic coding is applied sequentially to the conditional probabilities. Thus the
definition of the context function F'(31*~!) becomes crucial in the design of a lossless compression
algorithm.

In context based adaptive coding the probability assignment P(y;|y is updated sequentially.
Initially a probability assignment based on occurrence counts in each context is considered. Let
ry = F(y') be the context value at ¢ and n:(a|r:) be the number of times that value a appears in
context 7, the sequence y*~!. The probability assignment is

nelalry) +1/2

t—l)

P(alr) = ; )
> oyean(ylrs) + | Al/2
where |A| is the size of the alphabet.
The ideal code length of occurrences in context, s is given by
L(s) ==Y log P(yi|r = 5). @)

tlri=s

The ideal code length is given by summing L(s) over all contexts.

A. Context based coding of binary images

The approach to compression outlined above may be applied to coding binary images achieving
very efficient compression. In [9] sequential arithmetic coding based on conditional probabilities was
applied to bi-level images. The contexts were defined by a template. For a sequence of variables
Y =Yi,...,Y,, the context is expressed by a subset of K of the variables, (Yi—t,, Yi—t,,- .+, Yiet,)-
The arithmetic coding was the so-called Q-coder avoiding multiplications by approximations. This
approach was refined in the ISO JBIG standards. First JBIG defined a 10 pixel template and later
JBIG2 followed up allowing different templates sizes up to 16 pixels of which 4 may be placed
adaptively (in the causal part). The arithmetic coders used are further developments of the Q-coder.
The probabilities assigned for coding are based on (1), but implemented by a finite state machine for
higher speed.

Given an image, the decision of template size and pixel location may be determined by searching
using multiple passes of the data if possible. A simple greedy search often provides good results, but
also more advanced searching may be applied. For domain specific applications a predefined template
will often provide good results as reflected by the standards.

B. Algorithm Context

In template based coding as outlined above, the context function is fixed, but the probability values
are learned adaptively (1). To achieve universal coding the context function must also be learned from
the data.

Algorithm Context [14] provided an elegant solution to this. It replaced the template by a dynamic
context tree, where the context length is also decided adaptively. Given an (unbounded) ordering of
context elements, (Y;—¢,, Yi—4,, -+ ) it consists of two steps: 1) A tree building step over the context
elements defining (and limiting) the potential contexts and 2) for each new element, 4, a node selection
rule defining the context value, F'(y*~!) which in turn by (1) defines the probability assignment. Each
node maintains occurrence counts of the context it represents.

The tree is updated after each new element, y;, by following the path in the context tree given by
the previous elements, (Y;—¢,, Yt—t,, - - ), until a leaf node of the tree is reached. If the counts of the
leaf node becomes at least two, a new node is added and the occurrence counts initialized, i.e the
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counts defining the probability assignment reflects occurrences in the context in the past starting from
the creation of the node.

The selection principle is given by choosing the up till now, in some sense, best node of the path.
Efficient selection may be based on father-son comparisons. Different variations have been presented,
e.g. [14], [15],[17]. Here we state the MDL based selection rule of [15] for a binary alphabet. Let
s denote the father node and sO and sl the two son nodes. Calculate the ideal code lengths (2) of
these contexts. Now pick the father node s over the sons if L(s) < L(s0) + L(s1). (Note the code
lengths are easily updated (2) and the decision may be based on L(s) — L(s0) — L(s1).) A simple
solution is given by evaluating, starting from the root until a father node is better than the sons [15].
For universal coding the full path should be evaluated.

In [14] the deepest node on the path, which is better than the sons is selected. In [17] the deepest
father node which is better than the son on the path is selected. In both of these solutions where the
full path is searched, there is a restriction to (the growth rate of) the context length (smaller than
clogt, where ¢ is a constant), in order to ensure universality.

A machine defined by the nodes of a complete tree is called a tree machine. Such a machine may be
defined by the nodes selected by Algorithm Context [17]. Algorithm Context is universal in the class of
finite memory sources or tree machine sources. It provides optimal convergence both in the mean sense
and almost surely [17]: Compared to any minimal complete tree, 7, with K leaves, and probabilities,
P(als) > 0, the finite-memory source defined by Algorithm Context [17] asymptotically achieves a
code length for y™ within £(].A| — 1)logn + O(1/n) of the code length of the tree, —log Pr(YT).
Thus this term may be seen as (a bound on) the model cost paid for learning the model parameters.
The proof is based on showing that the probability of over- or under-estimating the context length
tends to zero and does so fast enough. Thus asymptotically the algorithm also identifies the correct
context within the class almost surely.

In [17], the selection rule is formulated by entropies rather than code lengths as in the MDL
formulation of a decision rule in [15]. The selection rule and the proof of universality [17] was based
on deriving stationary probabilities from a Markov chain derived from the description.

The tree machine of Algorithm Context differs from finite state machines in that the next context
is not necessarily given by the last context and the last symbol. As pointed out this distinction is
important for image data [17]. For image data, Algorithm Context may be applied using say a raster-
scan traversal of the image. When defining the context, an ordering of the causal data is applied. Finite
context image models are considered in the next section. As for template based coding, Algorithm
Context may readily capture two-dimensional (2-D) dependencies in images by defining the context
in 2-D while performing sequential coding. This also generalizes to contexts in higher dimensions or
the inclusion of any relevant side information.

Empirical results have indicated that to achieve good results on finite data sets, e.g. image date, the
selection rule should have some bias towards long contexts. This was addressed in [17] for non-binary
data. In [11] applying Algorithm Context to bi-level images was considered. In order to combine speed
and high compression efficiency, the father-son comparison was extended to compare a father with
the descendants in the path. This gave increased performance, using root to leaf traversal, but still
allowing quick access to long contexts without being stopped by pixels on the path with little additional
information. For analysis, a maximum context length was imposed as part of the selection rule.

C. Gray level images

In principle, template based coding and Algorithm Context may directly be applied to natural images
as 8 bits per pixel or color images. In practice the alphabet size leads to a parameter space, which is
too large for the desired context sizes in relation to typical image dimensions.

To alleviate the context dilution problem, two measures may be taken for gray level images, namely
prediction, to initially decorrelate the image data, and context quantization [18]. While these two steps
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are special cases of conditioning on the full context, the parameter space is greatly reduced, illustrating
the potential importance of restricting the model class, for a more efficient parameterization in relation
to a given data set.

The idea of Algorithm Context was applied to competing models in a tree-structured manner which
is a generalization of the basic algorithm context [18]. These issues are not pursued further in this
text.

[II. IMAGE MODELS AND ADAPTIVE CODE LENGTHS

The concept of contexts has as noted enabled efficient application of context based techniques to
image coding. In this section we consider, Markov random fields and the special case of Pickard
random fields. These fields represent 2-D generalizations of a finite memory source. This leads
to considering hidden states as part of the context formation of the (bi-level) image compression
modelling stage. The non-causal models and models based on hidden states are related to the image
coding schemes and expressions for the adaptive code length are given. For stationary sources entropy
expressions are given.

In context-based image coding, the contexts provide the flexibility of capturing two-dimensional
structure while coding the elements sequentially. As mentioned the per symbol code length of Algo-
rithm Context asymptotically converges to the entropy for finite memory sources. Also template based
coding implies a notion of finite memory for image. Methods to infer the conditional probabilities
are discussed. Given probability estimates, expressions for the adaptive code length may be applied
to single images regardless of whether the images belong to a model class or not.

A. Extending a local measure - finite contexts

Consider a template with three pixels, A, B, and C used for conditioning the current pixel D,

A B
C D

We may code an image based on the conditional probability, P(D|ABC) and given a probability
distribution calculate an ideal code length for a given image. It is also possible to generate an image
according to P(D|ABC). Two questions arise: what characterizes image models where P(D|ABC)
describes the conditional probability of D given the past? Can we define H(D|ABC) consistent with
a stationary (shift invariant) distribution of ABCD over the field?

Given the distribution on the 2 x 2 lattice, (ABCD), one can extend this to a measure fi,x,m, on
an n x m lattice & = (x;;) in the following manner: First the element x1; is drawn according to
the distribution (A). Then the first row @12. .. Z1y, is drawn according to the conditional distribution
(B|A) one element at a time. Thereafter the first column 9 . .. 21 is drawn according to (C|A) one
element at a time. x99 can then be drawn using (D|ABC). Proceeding in this manner one has (using
shorthand notation for probabilities given by the argument):

tinxm () =P (z11) - Ly P(z1|21,5-1)
ALy Pwir|i1,1) 3
AT P(@ij|wi1,j—1, Ti1,5%i j—1)-

The union of the elements of the first row and the first column is called the boundary. The extended
measure is stationary if the joint distribution of (ABC'D) does not depend on which 2 x 2 rectangle
within the n x m rectangle we regard.

The context of element D is given by A, B, and C. Decomposed expressions as (3) with larger

contexts (leading also to wider boundaries) are straightforward and the implicit model of template
based coding, though the boundary need not be Markov chains. The question of stationarity or rather
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Fig. 1. Markov random field neighborhoods divided in the causal and non-causal parts of a row-by-row scan
of the field.

shift-invariance is naturally raised in relation to the probability of a given context. If we consider an
image as a segment of a larger image, it would be natural to require that the context probabilities at
a given point will not depend on where the segment starts nor the scanning policy, i.e the order of
traversing the pixels. Shift-invariance is consistent with this requirement. Below this is considered for
finite contexts.

B. Markov random fields

Markov random fields (MRF) may be defined by the probability of a pixel given the surrounding
pixels called the cliques or neighborhood (Fig. 1). This leads to a natural extension of Markov chains to
two dimensions. Consider an interior set of elements and a boundary given by the clique, such that the
pixels of the cliques of any interior pixel is either an interior pixel or part of the boundary. An interior
set with this property is independent of the exterior set in the sense that the conditional probability of
the interior set conditioned on the complement is given by conditioning on the boundary. While the
generalization given above is simple to state, the Markov random fields do not yield a simple causal
description as desired in image coding. For a row-by-row traversal of an image, the context becomes
infinite (or for an image of finite width, it will be given by the boundary of the past) given by one or
more rows across the image depending on the neighborhood. Consider e.g. the neighborhood given
by the four direct neighbors (Fig. 1). The infinite context, of a row-by-row scan, is given by a one
pixel wide boundary across the plane, namely the last causal pixel in each column. This boundary
will separate the past from the future. For both neighborhoods of Fig. 1, one row of the plane will
separate the the field above this row from the field below the row.

The Markov random fields are max-entropic given the probabilities conditioning a pixel on the (non-
causal) neighborhood. A drawback, in relation to analyzing image coding, is that it is not possible in
general to compute the so-called partitioning function, which is a normalizing function equivalent to
the entropy.

An exception are the Pickard random fields, which are considered next. We shall also consider
ways to approximate the MRF in the next section. The starting point is to describe a number of rows
by a Markov chain or a function of a Markov chain.

C. Pickard random fields

A special case is given by the Pickard random fields [12]. Let A, B, C, D be random variables over
Ain a 2 x 2 rectangle as above. A set of conditions on the probability distribution (ABC D) shall be
presented ensuring Markovian and stationary properties of extensions to measures (3) on rectangles
of arbitrary size.

Let XY, Z be random variables and let X | Y | Z denote that X and Y are independent given Z.
The independence conditions B L C' | A and B L C | D shall be assumed for the models considered
in this section.

The model is completely specified by the probability distribution on (A) as well as the three
conditional probability distributions (B|A), (C|A) and (D|ABC).
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The probabilities of (ABC D) are expressed by
P(ABCD) = P(D|ABC)P(ABC) 4)
and due to the independence condition B L C' | A,
P(ABC) = P(B|A)P(C|A)P(A). 5)

In order for the measure p22 to be stationary on the 2 x 2 lattice, it is sufficient (and necessary)
that the distributions on (AB) and (CD) be identical and the distributions on columns (AC) and
(BD) be identical. The stationarity obviously implies that, the stationary distributions for (B|A4) and
(C|A) must be identical.

The following Theorem due to Pickard [12] gives a sufficient condition on (ABC D) for the extended
measures (3-4) to be stationary.

Theorem 3.1: Let paxo be a stationary measure induced by (ABCD) satisfying B L C | A. If
B L C | D then the extended measure fi,xm, based on (3-4) is Markovian and stationary for any
n,m > 2.

Theorem 3.1 provides sufficient conditions for the measure poyx2 to be extended to a stationary
measure. Since B L C | D < P(BCD) = P(D)P(B|D)P(C|D), assuming stationarity, the right
hand terms are readily derived from (ABC) (5).

The independence property (5) of the PRF leads to the finite memory Markovian property: P(y; =
dlyt~!) = P(y; = d|abc). Further it follows [5] that

Theorem 3.2: The entropy per symbol of a stationary measure fi, s, defined by Theorem 3.1 is
bounded by

H(ur) > H(D|ABC). ©)

In the limit (n,m — oo) H(up) = H(D|ABC) as the difference for the PRF is restricted to the
one pixel wide upper and left boundary. H(D|ABC) is readily defined and by the stationarity of the
PREF, this is the expected contributions of all pixels of the interior.

A PRF has the property that any number of rows form a Markov chain [12]. For Pickard ran-
dom fields, Algorithm Context provides a universal code achieving the PRF entropy asymptotically,
assuming the nearest pixels, A, B and C are in the context set.

1) Consistency of PRF parameters: For context-based coding, the conditional probability, P(D|ABC),
is the main concern. Besides the conditional probability, the distribution on the boundary is given by
the MCs on the rows and columns (5). In 1-D the stationary distribution of a MC may be derived
from the transition probabilities. This is not the case in 2-D, e.g. for the PRF. Now we consider
the consistency of the boundary distribution and the conditional probabilities of the interior. Given
the conditional probabilities, P(D|ABC'), we would be interested in deriving a boundary distribution
resulting in a stationary distribution. As this is not tractable, the boundary distribution is taken as the
starting point.

Consider a stationary distribution on the four basic PRF variables, A, B,C, D. It is a necessary
condition for (ABC) and (BCD) to be marginal distributions of (ABCD), that their marginal
distributions on (BC') be identical. This may be expressed by

> P(A=a,bc) =Y Plbe,D = d),¥(b,c) € A”. (7
acA deA

This condition may also be expressed in matrix form. The stationarity condition implies that the
horizontal transition probabilities are identical, P(A|B) = P(C|D), as well as the vertical transition
probabilities, P(C|A) = P(D|B). Let R and S denote the corresponding transition probability
matrices, respectively.
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The independence conditions, imply that the triples CAB and C'DB are given by a horizontal and

a vertical transition each but in reverse order. Thus (7) may be expressed by requiring the matrices
to commute,

RS = SR, ®

which is the only way to ensure consistency of the PRF [4].

A simple solution starting from two commuting transition matrices is to derive the conditional
probability from RS, which leads to P(D|BC), i.e. a two pixel template. For a fixed choice of S
and R, which commute, this is also the max-entropic choice as including conditioning on A besides
BC will not increase the entropy once the distribution on ABC'is fixed.

Having identical Markov chains horizontally and vertically, (S = R), these matrices obviously
commute and a two-pixel template PRF may be derived from any (irreducible) Markov chain. We
will now return to the full PRF, which has more modelling power.

2) Iterative techniques for stationary solutions: If a stationary boundary distribution, P(ABC) (5)
and a conditional distribution P(D|ABC) is given, but the combination Q(ABCD) = P(ABC)P(D|ABC')
is not an PREF, the following PRF approximation may be derived.

The PRF stationarity conditions and the independence conditions provide sufficient conditions for
a probability distribution (ABCD) described by (4-5) to satisfy Theorem 3.1. How to determine
parameters of the PRF model is considered next.

3) Iterative scaling: Given a boundary description in terms of the distribution (ABC) satisfying
(8), iterative scaling [2] may be used to find conditional probabilities P(D|ABC).

For each configuration B = b,C = ¢, consider P(AD|bc). The distribution (ABC) determines
P(Albe),

a; = P(A =ilbc) = 9
P(A = i,b0)) Y04 P(A = j,be) i € A, ©)

The distribution (ABC), the stationarity and the independence B L C' | D determines (BC D), which
in turn determines P({D|bc),

B = P(D = jlbc) =

P(be, D = §)) Syen Plbe, D = 1), 5 € A (1%
The probabilities of P(AD|bc), must satisfy the linear relations due to (9-10):
> P(A=i,D = jlbc) = ay,i € A (1)
jeEA
> P(A=i,D = jlbc) = B;,j € A. (12)
icA

Thus we seek a solution in the intersection, £, of the two linear families defined by (11) and (12),
respectively, each determined by a partition (which may be described as row- and column-sums of a
matrix given by elements py.(¢,7) = P(A =4, D = j|be)).

Iterative scaling [2] may take an initial distribution, Q(z) and a class of distributions as £ and find
a distribution, P* which minimizes the divergence, D(P*||Q) for P* € L, where the divergence is
given by D(P||Q) = > P(x)log(P(x)/Q(x)), if a distribution satisfying (11) and (12) and possibly
joint constraints exists.

This leads to the scalings defining new probabilities, pj, (7, j), within each of the families,

Pieliy §) = cpuelir ) e = i/ D preli, §),j € A. (13)
€A
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Pie(in ) = dpee(i, ), d = B3/ > preliy )i € A, (14)
jeEA

The iterative scaling will converge to an approximative distribution to the initial distribution Q{ABCD),

in the case that this does not satisfy the PRF conditions.

In general we may have two distinct Markov chains defining the boundaries, R and S. In case
that given B = b,C = ¢, A and D are not independent (for constraints see the last section), the
dependencies between A and D are determined in a consistent way. Given Q(ABCD), the conditional
distribution P(AD|BC') may be calculated, such that in combination with P(ABC) (5), the so derived
(ABCD) defines a PRF.

Theorem 3.3: It is a necessary condition for two irreducible Markov chains, with transition matrices
R and S, to form the boundary of a Pickard random field, that the matrices commute (8). If so iterative
scaling of P(AD|BC) determines whether a PRF with boundary given by the irreducible R and S
exists and if so determines the conditional probabilities P(D|ABC'), which minimizes the divergence
between P(AD|BC) and Q(AD|BC).

If the goal is to approximate a given Q(ABCD) and if the description of valid boundary Markov
chains are given by parameters, a search over these parameters may be applied to these to minimize
D(P(ABCD)||Q(ABCD)) determining the optimal P(AD|BC) by the iterative scaling.

For Pickard random fields (and other finite context 2-D models), Algorithm Context can determine

the context pixels and the set of conditional probabilities, P(D|ABC).

D. Block Pickard random fields

The PRF introduced above is restricted to the three pixel template, ABC, but may be defined
on any finite alphabet. A block based PRF was considered in [4],[5], where (rectangular) blocks of
pixels were treated by alphabet extension. Thus a larger context is defined. How to control that this
description is shift-invariant on the original pixels (and not only on the blocks) is a question though.

IV. IMAGE MODELS WITH HIDDEN STATES

In the previous section, we considered PRFs, which have the properties that the context is finite,
the field is stationary and the rows form Markov chains. One may say that the PRF is defined by the
stationary solution to a two-row Markov chain (the distribution on 2 x 2 elements) subject to certain
conditions.

To extend this class, we consider the case where the rows are still described by Markov chains or
more generally by functions of Markov chains, but the model context need not be finite.

First consider a stationary Markov chain defined on two-rows and further assume that the distribution
is symmetric in the two rows. Thus the distribution in each row is identical and the construction may
be a repeated adding a new row such that and two rows are drawn from the original Markov chain
distribution. If the distribution does not possess the independence property, B L C | A, the next
element in a row may be dependent on the the rest of the preceding row. This dependency may be
treated by considering the non-causal elements of the current row as hidden variables. This will be
treated as a special case of the more general frame work with hidden states introduced below.

To define the models, hidden states are introduced. The common grounds of the PRF and the other
models is that the current row will be conditioned on one or more previous rows. Thus these rows
separate the past and the future as it was the case for the MRF.

The aim is to develop models and thereby probability assignments for coding schemes of reasonable
complexity (linear in the data length) which may use hidden states with unknown parameters. As part
of this we consider models with a finite parameter set, whereas the model context is infinite.
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Deriving a stationary image model from a description on /N rows enables expressing the per symbol
entropy, H, by
H=Hy— Hy_1, (15)

where Hy_1 and Hy are the per column entropies of N — 1 and N rows, respectively. We shall
consider how to express these entropies.

We start by introducing two parameterizations of a function of a Markov chain, which are later
developed into two distinct image models. The approach may be described as combining hidden
Markov models and contexts to introduce hidden states in image modelling. Let y denote the observable
output variables and z the hidden part.

For a function of a Markov chain [1], we have, for £ finite

Pyt oty = Py, 2" ) Py, s [Yi_ g Th_p), (16)

fort=k+1,...,T—1.
We define two context functions s; = Fg(y!) and 7, = Fg(y') which are used in the Partially
Hidden Markov Model (PHMM) [6]. A (PHMM) is defined by the axiom schema

P(yt+1axt+1) = P(ytamt)P(yH-l'xH-hrt)P(xH-l'xt?st)7 (17)

fort=0,1,...,7 — 1, where 29 = yo and therefore also 7o = sg are taken as the null string.

The Markovian property of the combined variables (z,y) means that knowing the hidden variable
x; along with y; will separate the past and the future of the observed sequence motivating the forward
variable,

a(z) = Py, ). (18)

Efficient implementation may be based on a trellis structure, where the hidden states are nodes of
the trellis and the transition probabilities are conditioned on the context given by a mapping of the
causal part of the output.

The implications of (16) and (17) will be presented below. Image models will be derived by applying
the recursions row by row leading to two distinct image models.

1) Function of a Markov chain: For Markov random fields, let NV — 1 refer to the number rows
that will separate the current row from the past. Thus the current row may be described conditional
on the previous N — 1 rows. (For an image which is a segment of a Markov random field this will
apply assuming special treatment at the boundaries.)

Here we consider a joint description of N rows (possibly including hidden states) and derive the
expression for the current row conditioned on the N — 1 previous rows from this.

To pursue this view point, we may consider the observations to be vectors given by the N variables
in a column. For simplicity the rows are indexed 1 to N. The N elements 14, ...yn; in column j are
denoted y;. The output sequence is y{. Likewise let x; denote the hidden variables associated with
¥;» such that y;, x; defines the value of a state of a Markov chain. A forward variable is introduced
to capture the influence of the first j vectors,

a;(x;) = P(y7, ). (19
A backward pass is introduced to capture the influence of the elements after vector j. As the
non-causal elements in the current row are still not seen, these will be treated as hidden, i.e. there
are only NV — 1 elements in the observed output vector, denoted yg and the element of the current
row is included in the hidden vector denoted x;«. Let W denote the width of the image. A backward
conditional probability is defined by 3}(x;) = P(y}’f{_l\xj, ;). The conditional probabilities 3}(x;)
satisfy the recursion
Bi(x5) = Y P(xj41, Y51 %5, ¥5) B (%)), 20)

Xj+1
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Combining the forward variable and the backward pass, at j the probability of the causal part of the
N rows may be expressed by

Pyl ™y =30 aoa(x-1) PR, ¥ilxg o1, y-1) B (). 21

Xj—1 X

Taking the ratio of the probabilities (21) one step apart gives the probability of the next element

given the causal past, 0
od=1 Wy P(Y{_ 7)’;//)
Plynilyl 5 v;)) Pyl Ly ) (22)

The model may be applied to an image row by row, conditioning on the N — 1 previous rows.

If there are no hidden elements in the states i.e. (y;,%;) = y;, the model amounts to a Markov
chain description on /N consecutive rows and the only hidden part in ﬂ;(xj) is the non-causal elements
of the current row. In this case the parameters and N may be determined by Algorithm Context, but
the coding may still be based on (22), where /3’ will provide a backward pass over the elements of
the current row to be coded.

2) Fartially Hidden Markov Models: Returning to the context version of the function of a Markov
chain, it is seen that the PHMM axioms (17) immediately imply the recursion

ai(z) = Pyl ee) = Y PO at) = Plydlws,reo1) Y Plalai, seo1)ai (w-1), (23)

pt—1 Ti_1
where ag(xg) = 1.
This gives
Py = ay(w) (24)
Ty
and
P(ysaly’) = > Py |z, rowe(wiga|se) 25
Ti41
where

> e, P(@er1lme, se)ou(me)

wi(Ze1]se) = > g, () -

It may be noted that P(y:11|y?) is a convex mixture of output distributions over the hidden states.

The partially hidden Markov model is described by the parameter set A = (w, A, B), where 7 gives
the probabilities of the initial hidden state, A the conditional hidden state transition probabilities, and
B the conditional output probabilities for each of the states.

A context formulation of the PHMM is used, where the parameters of the partially hidden Markov
model A = (7, A, B) consist of the following

m; = P(x1 = 1) 27
a(i, j, k) = P(xi41 = jlog = 4,8 = k) (28)
b (3,1) = P(ys = m|zy = d,rp1 = 1). 29

Let a¢(7,7) denote a(%,j,1) where [ is given by s; and let b:(¢,1) denote by, (4,1) where m is given

by .
Given the model parameters, A and the observation sequence until ¢, 3’, we may sequentially
calculate the probability of being in a specific hidden state x; at ¢,

Ozl(i) = Wibl(i, ’l‘o)7 1<i<N 30)
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N
a1 (f) = {Zat(i)at(i:j)} biv1(f,k), 1<t<T-1, 1<j<N €Y
i=1
If the context, which may be called the seen part, for each state can assume only one fixed value, we
have the formulation of a Hidden Markov Model (HMM) given in e.g. [13].

The ideal code length is given by — log[P(y7|\)] = — 3. log[P(ys11/4F, A)]. An actual coding may
be performed by applying arithmetic coding to the sequence of conditional probabilities.

3) Reestimation of PHMM parameters: If the model parameters are not given, we have the problem
of estimating the parameters, including those involving the hidden states. For a given data set and a
given model order of a HMM, the Baum-Welch method iteratively converges towards a local maximum
of P(O|X) over the parameters A [10]. The model parameters are reestimated after each pass of the
data set. The reestimation formulas were generalized to the PHMM [6] as specified below.

We define a backward variable, 3;(z;) = P(y{44 |2+, %), which may be perceived as representing
the completion of the « forward pass for a given hidden state, z¢, at ¢. (This differs from the 3’
backward pass by having the same set of hidden and seen variables as for the a forward pass.)

The conditional probabilities B;(z;) satisfy the recursion

Br(ae) = Z P(yegr|zeer, re) P(zegr|oe, 80)Bipr (Tegr), (32)

Te41

where Sr((x;)) = 1.
Given the entire observation sequence and the model parameters A, the forward variable may be
supplemented with a backward variable to obtain the probability of being in a given hidden state x;

at time ¢, (20 B(z1)
. a\ Tt ) O\ Tt
i) = Plagly!) = =———22" 33
= P ) = a8 o
The induction formula determining the backward variable § becomes
Br(i) =1, 1<i<N. (34)
N
Bi(d) = > ari, o (4, k) B (), t=T—1,T—=2,..,1, 1<i<N. (35
j=1
The reestimation formula of =; is given by
T = 71(d) (36)
For a(i, j, k) the reestimation formula is
T—1p (s -
ali g b) = Z I, a7
> i1 7e()0(se, k)
where . . . .
gt(i ]) _ O‘t(l)at(zz J)bt+1 (.77 k)ﬁt-‘rl (.7) (38)
’ PlyTIN) ’

and 6(4,7) is 1 if i = j and O otherwise. For b,,,(4,1), the reestimation formula is

Bm(j7l) _ Zz:lrzf(])5(Tt—17l)5(yt7m) (39)
D1 Nt (7)0(re-1,1)
If the seen parts of the states can assume only one fixed value, we have the reestimation formulation
for the HMM given in e.g. [13].
As for the HMM, the PHMM reestimation formulas ensures convergence to a local maximum of
P(yT|)) [6]. This may be used in either a two-pass or an adaptive coding scheme [7].
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In the PHMM, we may consider y; and the real valued distribution over x; given by oy as a state.
Assuming the contexts make this composite state independent from Sy given the contexts, ry and
s¢, the o values does determine the conditional probability of y; given the past.

We can not expect this independence in general though. And even addressing the issue seems
intractable. Instead a 3’ backward pass may be introduced and combined with the « forward pass.
The reestimation formulas may still be applied using 3 in a learning phase followed by using the
B’ backward pass when coding or assigning an adaptive code length or a probability to an image.
We define a backward variable, 3;(y;, z}) for the PHMM, where the elements of the current row are
hidden. Thus y; is hidden and z} reflects that the context elements on the current row are hidden.

The conditional probabilities 3;(x}) satisfy the recursion

Bilyoa) = Y Plymalehir, o) P |2, 5081 Werr, whp)- (40)

’
Yet1,Ti4

All the parameters are derived from the PHMM model, A. The « and the 3’ variables maybe combined
as in (21) leading to an estimate the probability of P(y;11|y?).

4) Functions of a Markov chain revisited: Consider a probability distribution on N rows. Station-
arity is of interest both in order to have a translation invariant description and to be able to express the
entropy. Stationarity is obtained by having identical distributions on the top and bottom N — 1 rows
of the N row description. The implications of this requirement is not clear, though. As mentioned
for N = 2, a way to achieve this without hidden states, i.e. x; just assumes one fixed value, is given
by requiring that, the top and bottom row are symmetric with respect to the joint two-row Markov
chain. A way to achieve this using hidden states is to place the joint states (yy,x;) on a cylinder
and require rotational invariance around the cylinder [3]. This is referred to as the Cylinder Partially
Hidden Markov Model (CPHMM).

5) Entropy of models with hidden states: Once stationarity is obtained, the entropy may be ex-
pressed by (15). For PRF, both one and two rows form Markov chains, thus the entropies are easily
measured and we have Hy — Hy = H(D|ABC). If the N rows form a Markov chain, but not the
N — 1 rows, the latter is a function of a Markov chain. Finally both the N — 1 and the N rows may
be described by a function of a Markov chain, as for the CPHMM. If the N — 1 rows and possibly the
N rows are described by a function of a Markov chain, the entropies Hy—1 and Hx maybe bounded.
The entropy of a function of a Markov chain is bounded by [1]

H(Y[Y{™, X1) S HY) < HY,|Y{™), 1)

where Y; denotes the output variable at ¢t and X the hidden state at ¢ = 1. Thus the entropies in (15)
may be bounded by bounding the right hand terms which are given by functions of Markov chains.

A. Hierarchical structures, mixtures and models

Above an image model based on functions of Markov chains was introduced. Expressions for re-
estimation of the parameters were also presented, but not a universal coding scheme. For the subset,
were N rows actually form Markov chains may be treated by using Algorithm Context to learn
this Markov chain, its order and parameters. For the even more restricted subset defined by the PRF,
Algorithm Context may be applied directly. If the image model class is unknown, all three approaches
may be combined using the MDL principle. When using hidden states and a backward pass, the length
of backward pass could be restricted again using an MDL approach.

Contexts may efficiently describe local relationships within images. Many natural images as well as
documents also have high-level or long range structures. To some extent, the contexts may distinguish
these as well but generally not completely.
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The hidden states of the PHMM may also represent switching sources, where the hidden states
represent different sources, the output coming from one of these or a mixture. Shtarkov [16] presented
a universal coding scheme for sequences from switching sources (with unknown parameters) which
include the HMM as a special case. Unfortunately, this universal coding scheme involves summing
over exponentially many sequences involving hidden states. The PHMM provides an efficient albeit
not universal approach to switching sources.

Another approach is model-based coding with a high-level model combined with local coding. An
example is the application of pattern matching for coding binary documents. In JBIG2 a dynamic
dictionary of patterns are created. Context based coding is used both for refinement coding when the
matching is not perfect and for parts which are not represented efficiently by the patterns.

V. BI-LEVEL IMAGE CODING RESULTS

The results of applying context based techniques to two bi-level images are given for illustration. The
two bi-level test images are denoted S06a400 (S06) and S09a400 (S09). S06 is a mixture of text and
halftone (4352 x 3072 = 13, 369, 344 bits). SO9 is an error diffused image (1024 x 1024 = 1, 048, 576
bits). These are challenging image, for which the binary image fax coding standard (MMR), prior to
the use of context based methods, provides little or no compression [6].

Template based coding is represented by a 10 pixel template as in JBIG. The results are given both
for 10 fixed pixel and 9 fixed and one adaptive pixel. Adaptive context pixel positions are chosen by
greedy search. Algorithm Context is a fast full path version presented in [11]. Results are given for
fixed predefined and adaptive image dependent context pixel positions. Results for PHMM coding is
from [7]. Templates are used with 8 (Fs), 8 (Fr), and 4 (Hidden state) binary pixels for SO6 and
6 (Fs), 5 (Fr) and, 4 (Hidden state) binary pixels for S09. The model was initialized by counting
over the image (two-part coding) or part of the image (adaptive coding), where the hidden state in
the initialization represents non-causal pixels given by the template. Details are given in [7].

Also results for the so called free tree coding is given [11]. The tree is heavily adapted to the data
by selecting new context pixels dependent on the past context so far, i.e. for each node in the tree a
context pixel decides the split, whereas for Algorithm Context, the same pixel is applied at a given
level of the tree. A two part code, coding the tree structure and associated context pixels as part of
the header is used. The conditional probabilities are updated sequentially.

The prior fax standard method (MMR) resulted in 7,970,024 bits for S06 and even expanded the
code length for s09 to more than twice the uncoded code length, 1,048,576. Thus, all the context
based methods gives efficient coding compared to the prior standard (MMR).

Further, it may be noted that the more elaborate context based models do provide better performance
than the template based coding.

Template | Template | Context | Context | PHMM | Free Tree
10 pix 10 (9+1) Fixed Free

S06 | 2049160 | 1703472 | 1254912 | 1212416 | 1376562 | 1054816
S09 595312 584688 587936 538816 547758 544080
TABLE 1
LOSSLESS CODE LENGTHS (BITS) FOR CONTEXT BASED CODING OF BI-LEVEL IMAGES (S06 AND S09).

By the MDL principle, optimizing an image model by adaptive code length will lead to an efficient
model and possibly the image model class could also be selected based on the adaptive code length.
Thus the advanced context based models including the use of hidden states represents new efficient
approaches to image modelling. Hidden states in HMMs are widely used in recognition schemes for
sequences.
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VI. CODING FOR TWO-DIMENSIONAL STORAGE

The techniques and concepts in image coding may by duality be applied to two-dimensional
constrained coding for storage applications.

Some configurations of pixel values may be undesirable due to the physical media if a high data
density is to be achieved. One approach is to design a code, which avoids certain undesired patterns.
A simple example for a binary field is the constraint that the four neighbors of a 1 must all be zero.
This may be described by a Pickard field [3]. Another example for a binary field is the no isolated
bits constraint, where a pixel may not have four four-neighbors all having the complement value. This
is not readily described by a Pickard field but it may be if the alphabet is extended by considering
blocks of pixels and a PRF is described on the extended alphabet [5].

For the constrained code, the task may be formulated by taking an i.i.d. stream and code it to the
redundant format satisfying the constraint. This mapping may in principle be performed by the inverse
of arithmetic coding, based on conditional probabilities derived for the 2-D constraint. In this case the
entropy of the model describing the coding process determines the capacity of the storage process,
so the goal is to optimize the entropy under the 2-D constraint.

Returning to the Pickard random field and iterative scaling, we now consider selecting the initial
distribution, Q(AD|BC), to be uniform over the configurations admissible according to the 2-D
constraint. Consider the divergence D(P||Q) = >, P(z)log(P(z)/Q(x)). Assigning a fixed value
of Q(AD|BC) for admissible z and minimizing the divergence, D(P*||Q) for P* € L, leads to the
maximizing the entropy [4] [5].

Maximum entropy iterative scaling of P(AD|bc) is defined by (13) and (14) with the initial
distribution Q(AD|bc) here set to a uniform distribution over the admissible configurations abed
for each be. For each be a sequence of distributions is generated by iterating (13) and (14).

Thus by Theorem 3.3 we may check if two Markov chains can be the boundaries of a PRF and
if so if a distribution P(D|ABC) exists satisfying the PRF conditions. The entropy of the interior,
H(D|ABC), may be written as H(D|ABC) = H(ABCD)— H(ABC) = H(BC)+ H(AD|BC) —
H(ABC). If a solution exists, the Maximum entropy iterative scaling will find the max-entropic
solution to H(AD|BC), which in turn will maximize H (D|ABC) for the given boundary distribution
and the given constraint.

VII. DISCUSSION

The combination of arithmetic coding and context based techniques for assigning conditional
probabilities provides efficient tools for source coding, e.g. Algorithm Context provides universal
coding. Contexts are also efficiently used in image coding, e.g. template based coding.

The class of a finite memory sources, for which source coding schemes as Algorithm Context are
proven universal, is not easy to generalize to 2-D image data. The exception of the Pickard random
field was introduced. To extend the class, hidden states were introduced in the modelling. Issues as
stationarity and parameterization were discussed with context adaptive image coding in mind, but e.g
deriving a stationary solution from the conditional probabilities even for a PRF poses a challenge.

Open issues remain related to defining and describing stationary causal 2-D models for which the
model parameters may efficiently be determined.
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Estimation of sinusoidal regression models by stochastic
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Abstract

Stochastic complexity (SC), or equivalently, the negative logarithm of the NML (Normal-
ized Maximum Likelihood) was proven to be successful for the estimation of model structure
in the linear quadratic regression problem. Recently, the results have been extended to au-
toregressive (AR) and autoregressive moving average (ARMA) models, whereas most of the
information theoretic methods currently applied for determining the number of sine-waves
in additive Gaussian noise still rely on asymptotic two-terms formulae where the first term
is given by the minus maximum log-likelihood, and the second one is a penalty coefficient
that depends on the number of parameters and the sample size. Additionally, the noise is
assumed to be white, which is not realistic in most of the practical applications. Our main
purpose is to apply sharper approximations of SC for estimating the number of sinusoidal
terms in a time series contaminated by AR noise. This is known to be challenging because we
have to solve a mixed-spectrum estimation problem. We elaborate on two different SC cri-
teria that involve the Fisher information matrix (FIM) of the investigated model. For small
and moderate sample sizes, the experimental results show that SC compares favorably with
other well-known criteria such as: Bayesian information criterion (BIC), corrected Kullback
information criterion (KICc) and the generalized Akaike information criterion (GAIC).

1 Introduction and preliminaries

We address the estimation of the number of sinusoids observed in additive noise with unknown
correlation structure. To formulate the problem, we consider the data model

Yy = T+ e, tG{O,...,N—ljh
K

xp = Zakcos(wkt+¢k)7 M
k=1

*The contribution extends the results of the paper “Stochastic complexity for the estimation of sine-waves in
colored noise”, authored by C.D. Giurcaneanu and presented at ICASSP 2007, Honolulu, Hawaii, USA.
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where y; denotes the measurements, x; is the noise-free signal and e; is the colored Gaussian
noise.

To ensure the identifiability of the parameters, we assume as usual that the amplitudes oy,
are strictly positive and the frequencies wy, belong to the interval (0, 7) [1]. The frequencies are
distinct and, without loss of generality, w1 < - - < wg. Both the amplitudes and the frequencies
are non-random parameters that will be estimated from the available measurements.

Two different hypotheses will be considered for modeling the phases ¢y € [—7,7): Hgy, - the
phases are unknown deterministic constants; Hrp - the phases are independent and uniformly
distributed random variables that are also independent of e;. For both assumptions, the statis-
tical properties of y; have been investigated in previous studies, and more details can be found,
for example, in [2].

In line with the approach from [2][3][4] and the references therein, we model the noise e; as
a stable autoregressive (AR) process with order M:

M
e = — Z Gm€t—m + W, (2)

m=1

where w; is a sequence of independent and identically distributed (i.i.d.) Gaussian random
variables with zero mean and variance 7. Since we consider only the case of real sinusoids in real
AR noise, we emphasize that the white random process w; and the coefficients a,,, 1 < m < M,
are real-valued.

When the noise is white, or equivalently M = 0, it is well-known the definition of the local

2

2

SNR for the k-th sinusoid: SNRj, = %. An extension of this definition, namely SNRy =
T

2

ai/2

ki/,y was also introduced in the literature [5] for the case when the additive noise is
[ H (exp(juwy))]

modeled as the output of an exponentially stable and invertible linear filter H(¢~*) whose input
is a sequence of i.i.d. Gaussian random variables with zero mean and variance 7. We note that
g is the unit delay operator and j = +/—1. For the AR noise defined in equation (2), we get

immediately

a?/2
N = AP )
where A(wg) =1+ Zf\,{:l am exp{—jmwg). A similar formula can be written without difficulties
for the case when the additive noise is a moving average process.

Based on (1) and (2), we observe that the parameters of the model are @ = [£€ a 7|7, where
€= [&] - €))7 with the convention &, = [a wg ¢x|" for the k-th sine-wave. The notation a
is employed for the vector of the AR coefficients [a; - - - ans] .

Because the model structure v = (K, M) is not known a priori, we resort to the traditional
model selection procedure that comprises two steps:

(a) for all pairs of integers v = (Kz M) that satisfy 0 < K < Kpge and 0 < M < Mg,
estimate the model parameters 6, from the observations YN = Yo, YN-1 :
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(b) evaluate an information theoretic criterion for all 4’s considered at the first step, and
choose the model structure 4 that minimizes the criterion.

The most popular rules for model selection can be reduced to a common form with two terms:
the first one is the minus maximum log-likelihood, and the second one is a penalty coefficient
that depends on the number of parameters of the model and, for some criteria, also on the
sample size N [6]. In general, the criteria used in practical applications are derived for N — oo,
and the asymptotic approximations could potentially yield false conclusions when the sample
size is small or moderate.

During recent years, the advances in stochastic complexity (SC) have led to new exact
formulae or to sharper approximations for large classes of models [7][8][9], but the use of the
new results in signal processing is scarce. We illustrate next how SC can be applied to estimate
the structure for the model of sine-waves in Gaussian AR noise.

The rest of the paper is organized as follows. In Section 2, two different approximative
formulae for SC are revisited: one proposed by Rissanen in [8], and another one introduced by
Qian and Kiinsch in [7]. As the computation of the Rissanen sharp approximation is difficult for
the sinusoidal regression model, we focus on the Qian and Kiinsch formula, and we investigate
its properties in Section 3. Because the SC expression involves the determinant of the Fisher
information matrix (FIM), the calculation of FIM is addressed in Section 4. SC and three other
well-known model selection criteria are compared in Section 5 to evaluate their performances in
estimating the number of sinusoids from simulated data.

2 SC for sine-waves in AR noise

We focus on the expression of SC for the class of the density functions {f(y";0)} defined
by the equations (1) and (2). For the maximum likelihood (ML) estimates we employ the
notation @(y") whenever it is necessary to emphasize on the data set. If it is clear from the
context which measurements are used for estimation, then the simpler notation 0 is preferred
to @(y"). Therefore In f(yV;8) = In f(y™V; 0(y")) is the maximum log-likelihood, © denotes

2 1n f(y; 0)
E _71—

06000

The Normalized Maximum Likelihood (NML) density function is given by [10][8],

rw;04™M)
fwm’:é(mz\")eg [ 9(3171\7))dxj\,7

the parameter space, and Jy(6) = } is the Fisher information matrix (FIM).

FNs K, M) =

and the stochastic complexity is defined as

SC(y"Ys K, M) = In (1/f(y™; K, M) )
The NML criterion has two important optimality properties [11] that recommend it to be used
as a yardstick in model selection. The application of the NML criterion is appealing, but its

computation is not very easy for all classes of models. Under mild assumptions on ML estimates,
SC is approximated in [8] with a formula that involves the integral of the squared root of the
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FIM determinant. The approximation is valid only if FIM divided by N, the number of samples,
has a finite limit as N — oo. The condition is verified for most of the models used in signal
processing, but not for the sinusoidal regression model [6]. We show next how the results from
[8] can be extended to the sinusoidal regression model, and we also point out the difficulties
with evaluating the integral term. Due to the troubles with the integral, we resort to another
SC approximation that was introduced by Qian and Kiinsch in [7].

2.1 Sharp approximations of SC

As the Rissanen formula involves the asymptotic FIM, the following result is very useful for
our application: when N is large, under both Hdp and Hyp, Jn(0) is block-diagonal such that
the block Jn (&) corresponds to the parameters of the k-th sine-wave and the block Jy(a,T)
corresponds to the parameters of the AR noise [2][5]. More precisely, we have

In(&)
In () - ) (4)
K
JN(aﬂ')
where

InEr) = QNG(&,a,7)Qu, (5)

NYZ 0 0 1Jof 0 0
Qv=| 0 N3 o and G(€,,a,7)=SNRx | 0 1/3 1/2 |. (6)

0 0 N2 0o 1/2 1

Here SNRy, denotes the local SNR for the k-th sinusoidal component and its formula is given in
(3). The entries of Jy(a,7) are not influenced by the parameters £, hence Jy(a, 7) is the same
as in the pure AR case. Based on results from [12], we can write

N[ R(a) 0
JN(aaT) - 7 |: 0 1/(27_) :| s (7)
7‘0 e rM—l
where R{a) = : : is the covariance matrix of the AR process defined in (2).
rM—l e 7‘0
. . . | Ix®Qn 0
Additionally we define the diagonal matrix Cy = 0 N2 Tuys |’ where the sym-

bol ® denotes the Kronecker product, and for a strictly positive integer p, I, is the p x p identity
matrix. We adopt the convention that O denotes a null vector/matrix of appropriate dimensions.

1
Based on (4)-(7), we note that ]\}im NJN(O) is not finite, whereas J(8) = A}im CHIn(0)Cy
—0o0 —00
is finite [6]. Moreover, the ML estimates satisfy the Central Limit Theorem: the distribution
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of Cn(6 — @) converges to the Gaussian distribution of mean zero and covariance J(8)™! [4].
These properties allow us to extend the results from [8] to the sinusoidal regression model for
which the SC formula is given by

5K+ M+1
2

We use the notation SCr to differentiate this particular approximation of SC by other formulae
that will be discussed later.
Remark that J(6) is a block-diagonal matrix, and 1R(a,7) is the block corresponding to

the parameters of the Gaussian autoregressive noise. Computing the integral of ‘%R(cy T)‘l/ 2
over the parameter space is a problem that arose also in the context of order estimation for AR
processes [13]. Since it is hard to find a closed-form expression of the integral, the authors of
[13] resorted to Monte Carlo techniques for its evaluation. Our task here is even more difficult
because the other blocks of J(0) must be also considered when calculating the integral term.
Hence the computational burden discourages us to apply formula (8) for estimating the number
of sine-waves in Gaussian autoregressive noise. We show next that SC expression (8) becomes
simpler when the noise is white (M = 0). In this case, @ = [¢" 7]T, and elementary calculations
lead to

SCr(y™; K, M) — —1n f(y":0) + In % + ln/@ 13(0)|/2d6 + o(1). (8)

K 2

SCr(y™; K,0) = —In f(y"; ) + 5K2+ ! ln% +ln/@ 21/2916[{/2 E’EQ‘;‘/’; 46 +o(1).  (9)
To ensure that the integral term is finite, we have to assume that all amplitudes have an upper
bound, oy < Qe < 00, and the noise variance has a strictly positive lower bound, 7 > 7,3, > 0.
Once these conventions are adopted, the estimated number of sine-waves will depend on ;4.
and Typin. Note that quner and Tm, are just arbitrary values if we do not have a priori knowledge
on the analyzed signals. The troubles with the computation of SCr make us to prefer the SC
formula that was derived in [7]:

R . 3K4+M+1 )
SCN; K, M) = —Inf(y™;0) + I [In(0)[2+ Y In(|d;] + N~/ (10)
i=1

A similar approximation of SC was already utilized in [14] to estimate K, the number of
sinusoids. In [14], the noise variance 7 is treated as a nuisance parameter in the sense that the
code length to describe it is not included in the SC formula. Here we consider in (10) the cost for
transmitting the value of the 7 parameter, and this is the main difference between our approach
and the one from [14]. We check in the Appendix how the conditions for the derivations from
[7] are fulfilled for the model of sinusoids in Gaussian AR noise. We also give in the Appendix
more details on the accuracy of the approximation in formula (10).

In the next Section, we investigate the asymptotic behavior of the SC criterion and we
show its relation with well-known selection rules like Bayesian information criterion (BIC) [15],
Minimum Description Length (MDL) [16], and the mazimum a posteriori (MAP) probability
criterion [17]. During the asymptotic analysis, we check also the necessary conditions for the
consistency [18] of SC. For small and moderate sample sizes, we draw a parallel between SC and
two other recently introduced model selection methods: Conditional Model Estimator (CME)
[19] and the Exponentially Embedded Families (EEF) [20].
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3 Some properties of SC and its relation to other model selec-
tion criteria

3.1 BIC, MDL and MAP

Based on the results from the Appendix, we obtain readily the well-known asymptotic identity

- SK+M+1
J\;im In|[Jn(0)1/2 = %ln N, and it is easy to notice that the sum of the first two
— 00

terms in SC is equivalent with the Bayesian information criterion:

BIC(y™; K, M) = —lnf(yN;9)+5K+2¢1nN. (11)
More details on the derivation of BIC can be found in [6] and the references therein. In [21], it is
investigated the possibility of improving the performances of BIC for small and moderate sample
sizes by considering two terms that are neglected in the asymptotic formula (11): the first one
involves the logarithm of the determinant of the observed FIM, and the second one is mainly
determined by a prior over the family of the analyzed models. As the sinusoidal regression model
is not discussed in [21], we restrict our interest to the celebrated BIC selection rule (11), and we
do not consider in simulations any sharp approximation of the Bayesian information criterion.
We mention for completeness that formula (11) was also obtained in [3] as a crude version of
the MDL, and its consistency was demonstrated in the same study. In [17], the use of the MAP
methodology in conjunction with asymptotic approximations led also to (11) for the particular
case of white noise.

3.2 A short note on the consistency of SC for M =0

For ease of presentation we investigate the consistency of the criterion SC'(yV; K, 0) = SC(yV; K, 0)—
% In N. It is evident that SC’ and SC are equivalent selection rules because % In N is independent
of K. We focus on the last term in (10), and for simplicity we assume M = 0. If zero does not
belong to the domain of the parameter ¢;, then 0; # 0 and ln(|0 |+ N-Y4 4 is much smaller than
2In N [7]. Hence the term In(|0;] + N=1/4) becomes important only when 6; ~ 0. Since among
the & parameters only the phases can be equal to zero, the penalty term in SC’ formula takes
values between % In N and % In N when N is large. Based on formula (10), we can write

SC'(yN; K,0) = —In f(y™;0) + K((N,0),

. . . N é) .. CUN é)
and asymptotically 7In N < {(N,0) < 3InN. Thus lim N 0 and 1}\1711 inf N >
1. If supplementarily the model (1) verifies 5% € {—]{,, e L—ZLN_]\} Q}Vk € {1,...,K}, all the

conditions for the application of the Theorem from [18] are satisfied. We select K to be the
minimum nonnegative integer for which SC’'(yV: K,0) < SC'(y™; K + 1,0), and the Theorem
guarantees that K converges almost surely to the true number of sinusoids.
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3.3 CME, EEF and an example from [20]

In [20], it was shown that using the determinant of FIM as a penalty term could lead to modest
results when the sample size is small. As the example from [20] involves sinusoidal signals, we
briefly discuss it in the sequel: the noise-free signal x; is generated like in (1) by a sum of K =3
sine-waves whose parameters are & = [1 0.27 0]7, & = [1 0.227 0]T and &; = [1 0.247 0]T.
The white noise e; is Gaussian with variance 7 = 10, and the selection is restricted to the class
of nested models M, k € {2,4,...,16}, defined by

K/2
Mg oy = Zakcos(wktJr@k) +e, t€{0,...,N—1},
k=1

where wy, = 27 (0.1 + %). Since the frequencies are known, M, reduces to the linear regression

for which the observation matrix has the expression

1 0 e 1 0
H, = : : : : ;
cos(wi(N — 1)) sin(wi(N —1)) -+ cos(wya(N —1)) sin(we/2(N —1))
and the vector of the unknown parameters is given by v, = [A1 Bi--- Ay BN/Q]T, where
Ak = ay cos ¢y, and By, = —agsin ¢y, for all k € {1,...,x/2}. The noise variance 7 is assumed to

be known. Remark that the number of parameters for the M, model is x. Applying the CME
criterion is equivalent with choosing the model My that minimizes [19]

CME(y"; k) =

)

RSS, | IHHIHK
2T

where RSSy; is the residual sum of squares obtained when fitting the M, model to the observa-
tions V. In [20], it was utilized the approximation H]H, ~ (N/2)I, to show that the second
term in the equation above is negative when N < 125, thus the penalty term of the CME cri-
terion decreases when k increases. Since for the models considered in this example, %HZH,{
coincides with the FIM [1], Kay concluded in [20] that all criteria whose penalty factor is given
by the determinant of FIM will always choose the most complex model when the sample size
is small or moderate. To circumvent such difficulties, he introduced the EEF criterion that, for

linear regression models, amounts to select the M model that minimizes

EEF(yV; k) = |:—Q,{+/{<ln%+l>:|u<@——l>, (12)

K
K

H. v 2
where Q, = —H AV

step unit function [20].

We use the same example to investigate if similar drawbacks appear when the model selection
relies on the SC criterion. The FIM-based SC approximation [8] was computed in [22] for the
linear regression case, and it involves the ranges of the parameters, which is not convenient as

, the entries of ¥, are the ML estimates of the parameters, and () is the
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we have already pointed out in Section 2.1. Fortunately we do not need to resort to such an
approximation because Rissanen gave in (9] a very elegant solution to the problem of evaluating
SC for the linear regression model. For the analyzed example, we prefer to apply the result from
[9] in the form that was worked out in [23]:

| N1 Q
SClr(yN;n):;ny Q —O—fe(n—ﬁ—&-l) +Ink,

i=0

where the notations are the same like in (12). We observe that unlike the CME criterion, SClr
does not contain the term given by the determinant of FIM. Moreover, the expressions of SClr
and EEF are very similar. It is easy to note that —Q, decreases with x. Let us consider first

Q” @y

the case when — > 1. In general, the term & (ln increases with & [20], hence it

K
is a penalty term for both EEF and SCIr. Remark that in this case, due to the Inx term,
the penalty will be more stringent for SClr than for EEF. Formula (12) can be re-written as
EEF(y"; k) = kh(Qu/K), where h(z) = —z + Inx + 1,Y2 € (0,00). Because h(z) is strictly

negative for x > 1, the criterion EEF has the same property. Whenever TH < 1, EEF(yV; k)
takes value zero, and consequently the model M,; will not be selected. For SClr, if % is small,

the term & <ln % + 1) could become negative and In x will remain the only penalty term.

For Gaussian linear regression with known noise variance, another SC criterion was derived
in [24] by using the universal mixture model instead of the NML:

SChy(y 27’2% { QK—H@(n%—&-l)—HnN}u(%—l) (13)

As it was pointed out in [24], SChy coincides up to the %lnN additive term with the empirical
Bayesian selection rule proposed in [25]. Comparing (12) and (13) we also note that EEF and
SChy are essentially the same.

4 Computational issues

The use of (10) is very appealing from computational viewpoint, but it was already pointed
out in [7] that (10) is not invariant under re-parametrization. Due to this reason, we prefer to
use as parameters for the AR noise the magnitudes and the angles of the poles instead of the
coefficients.

More precisely, let us assume that the poles of the AR noise model are g1, ..., gy if the
poles g1,..., g, are real-valued, then the pure complex poles gas 41, - .., gy occur in complex
conjugate pairs because the coefficients a are real-valued. Instead of 8 = [¢ a 7]T, we will apply
the parametrization 7 = [¢ g 7|7, where g = [g1 ... 9as, |98521] Ygnryar - lgn—1 gy 1T, and
for a complex pole g;, the symbol ¥, denotes its angle. Remark the range of the entries of g: we
have g; € (—1,1) for 1 < ¢ < My, and for the rest of the parameters |g;| € (0,1) and vy, € (0, 7).
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SC | Hypothesis In(€) In(g)
SCp Hrp exact exact
SCa Hrp/Hdp asymptotic | asymptotic
SCe Hdp exact exact

Table 1: Nomenclature for SC when various formulae for FIM are used in calculations.

To calculate the determinant of the FIM with the new parametrization, we use the general
result on the transformation of parameters [1] in conjunction with the result of equation (15)
from [2]. For writing the equations in a more compact form, we define the (M + 1) x (M + 1)
D(a,T) dan,

D(g, ) Jgn
and otherwise takes value zero. Next we obtain the following identities:

matrix { } whose (m,n)-th element is ifl<m,n< M,itisoneifm=n=M+1,

Isk 0 In(€) 0 Isx 0
In(m)| = piam T \ v \ Das)
0 [Dw;H 0 Jy(a,7) |l O [DWJ

In(©IIn(g,7)|

The block Jn(€) that corresponds to the signal parameters can be evaluated with the fast
algorithms from [2]: the exact Jy (&) is different for Hgp, and Hrp, but the asymptotic In ()
has the same form under both hypotheses. This asymptotic form is well-known [5], and it is
also given in Section 2.1. Jy(a,7) has the same expression as in the pure AR case, and for its
calculation we resort to the exact and the asymptotic formulae from [12]. The conversion from
Jn(a,7) to In(g, ) can be easily performed with the results from [26]. A discussion on the
asymptotic form of Jy (g, 7) can be found in [13].

Applying the exact or asymptotic formulae for Jx (&) and Iy (g, 7) leads to various expres-
sions for SC. In Table 1, we explain the nomenclature for SC when FIM in (10) is evaluated
with various formulae.

For better understanding the differences between SCp, SCa and SCe we resort to one of the
examples used in [2] to analyze the Cramer-Rao bound (CRB). Let us consider the case of one
single sinusoid (K = 1) in AR noise with order M = 2. We choose a; = 1, w1 = 7/2, the
modulus of the AR poles is [g1| = 0.9, and the sample size is N = 35. The angle ), takes values
between 0.02 and (7 — 0.02), and the variance 7 is selected such that to keep constant SNR; =
3 dB. Evaluating the differences between SCp, SCa and SCe reduces to calculate In |J y(n)]"/?
with various formulae. Because under Hdp the exact Jy(€) depends on the phase ¢1, for

each 14, we compute In |J ~(m)|V/2 for sixty different values of ¢ that are equally spaced in
[-7, ), and the largest (v7) and the smallest (A) results are plotted in Figure 1. We plot in
the same Figure the values of In |Jn(1)|"/? used in the calculation of SCp (dash-dot line) and
SCa (continuous line). For sake of comparison, we draw also a horizontal line that corresponds
to % In N. We can easily extend the conclusions on CRB drawn in [2], by observing the
significant difference between the asymptotic approximation of In|Jx (n)|'/? and its exact value
when the line spectrum is close to the spectral peak of the noise. Remark also in Figure 1 that
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1/2
In] Jy ()

14! ! : :
0 0.1 0.2 0.3 0.4 0.5
AR pole phase

Figure 1: The term In |Jx(17)|*/? versus the phase ¢y, of the AR pole when the sample size
is N = 35. In the case of the SCe formula, In|Jy(n)|"/? is calculated for sixty different
values of ¢ € [—m, ), and the largest (/) and the smallest (A) results are plotted. The
dash-dot line and the continuous line are for the values of In |Jx(n)|*/? as they are used
in the evaluation of the SCp and SCa, respectively. The horizontal line with a x at each
data point corresponds to % In V.

the value of In |J 5 (n)|"/2 used to compute SCp is approximately equal with the average of the

maximum and the minimum of In|Jx(n)|'/? employed in the calculation of SCe.
In the next Section we investigate how the structure estimation performances of SC are
influenced by the use of various formulae for FIM.

5 Experimental results

In all the examples presented next, we resort to the RELAX algorithm that performs a de-
coupled parameter estimation for the sinusoids and the AR noise [4]. In our simulations we
have used for the implementation of RELAX the Matlab functions that are publicly available
at hittp://www.uni-kassel.de/fb16 /hfk/neu/toolbox.
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Asymptotically both RELAX and the maximum likelihood (ML) yield statistically efficient
estimates, and the use of RELAX is recommended due to its lower computational burden [4][5].

For v = (K, M), let ék be the parameters of the k-th sinusoid estimated with RELAX.
We denote é; = y; — >y Gy cos(wit + o), and let @ be the coefficients of the AR noise
determined from the sequence ép,...,énx_1. We further define the residual sum of squares as
RSS, = Zi\;l [ét + Zj\m/le dmét_m]27 with the convention that é; = 0 for ¢ < 0.

The performances of SC are compared in our simulations with BIC (11) and two other
criteria: GAIC and KICc. GAIC is a generalized Akaike Information Criterion that was tradi-

tionally used in conjunction with the RELAX algorithm [4]. It seeks for the model structure -y
that minimizes

GAIC(y™; K, M) = NInRSS, + 83K + M + 1) In(In N).

KICc was derived in [27] as a unbiased Kullback Information Criterion for linear regression
models with i.i.d. Gaussian noise. Since then its application was extended also to other classes
of models, see for example [28] and the references therein. Applying KICc is equivalent with
selecting the model structure v that minimizes [27]

(k+1)N —Nzl;(N_K

N, I — N. g
KICe(y™; K,M) = —2In f(y ’0)+2N—ra—2 5
where k = K + M and ¥(-) is the digamma function [29]. In SC (10), BIC (11) and KICc (14),
—In f(y"; é) is evaluated as % InRSS, after discarding the terms that do not depend on .

In our settings, the maximum number of sinusoids is Kpqe = 8, and the maximum order of
the AR process depends on the number of the available measurements: My, = Lan N J — 1.
The formula for M4, is derived from the condition used in [3] to ensure the consistency of the
BIC criterion. Supplementarily, each pair (K, M) must verify the inequality 3K + M < N — 2
to be a candidate for the model structure.

Examples 1-3 are taken from [3], where the estimation results are reported only for N > 128.
Since our main interest is on small and moderate sample sizes, we evaluate the performances
of the information theoretic criteria for N € {25,...,100} and various levels of the local SNR.
In Examples 1-3, we consider K = 2 sinusoids whose parameters are £, = [2/2 1 0] and
& = [271/2 2 0]T. The additive noise is generated as follows:

Example 1: e; = ; (white noise),

Example 2: e, = —0.81e,_3 + ;¢ (autoregressive noise),

Example 3: e; = g, + 1.6g,_1 + 0.64e;_o (moving average noise),

where ¢; is a sequence of i.i.d. Gaussian random variables with zero mean and variance chosen
such that the local SNR’s take the desired values.

Example 4 is taken from [4] and modified such that the observations ¢ are real-valued. The
number of sinusoids is K = 3 and their parameters are &; = [2 0.107 0|7, & = [2 0.807 0|7
and &5 = [2 0.847 0]T. The noise is simulated by the autoregressive process e; = 0.85e;_1 + &4,
where the significance of ¢, is the same as above.

We focus on the capabilities of the tested criteria to estimate correctly the number of sinusoids
K. For the Examples 1-4, we count the number of correct estimates for 100 runs when the local
SNR’s and the sample size N take various values. The results are reported in Tables 2-5.

>+ng7 (14)
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SNR3=-3.00 dB
N 30 40 50 60 70 80 90 100
SCp |41 61 79 86 94 94 97 100
SCa |41 63 76 84 94 93 97 100
SCe |26 52 64 63 78 84 8% 89
BIC |25 41 58 68 87 8 90 96
KICc |54 80 77 74 61 45 44 40
GAIC | 3 6 13 22 38 59 65 67

SNRy=-1.00 dB
N 30 35 40 45 50 60 80 100
SCp |62 72 88 93 95 99 98 99
SCa |64 67 71 8 8 91 94 98
SCe |44 59 71 8 82 8 8 96
BIC |43 56 69 78 80 91 99 100
KICc |81 81 79 77 78 67 49 38
GAIC | 7 19 40 40 53 73 93 100

SNR»=0.00 dB
N 25 30 35 40 45 50 75 100
SCp |60 79 93 96 97 98 98 99
SCa |60 68 76 76 8 838 94 97
SCe |45 68 75 80 81 90 92 96
BIC |37 51 68 82 8 83 98 99
KICc |75 89 89 92 91 80 56 40
GAIC | 6 18 37 52 67 74 97 100

Table 2: Example 1: the counts indicate for 100 runs the number of times the number of sinusoids
was correctly estimated by each criterion. The best result for each sample size N is represented
with bold font.

We note that the estimation results are similar with those reported in [14]. SCp is the best
among the SC formulae and its performances are closely followed by SCa. For both SCp and
SCa, FIM of the sinusoidal components are decoupled [2], which is a serious computational
advantage. From the results reported in [2] together with the outcome of the Example discussed
in Section 4, we can draw the conclusion that the shape of the noise spectrum has more influence
on SCp than on SCa, and this explains the superiority of the SCp criterion. The performances
of SCe are very modest because FIM used in SCe can be ill-conditioned for small and moderate
sample size when the number of sinusoids is two or larger [2].

When the sample size N is smaller than 80, SCa is superior to BIC and GAIC. This is a
straightforward consequence of the asymptotic approximations applied in the derivations of the
BIC and GAIC criteria. KICc estimates for the number of sinusoids are remarkably correct
when N < 40, but the number of correct estimations yield by KICc declines when N increases
such that for N > 80 the reported results are very modest.
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SNR»=1.00 dB
N 30 40 50 60 70 80 90 100
SCp |26 63 76 81 90 87 87 92
SCa |25 53 74 78 87 84 86 92
SCe |24 34 74 79 89 87 87 91
BIC 9 41 61 76 8 8 89 93
KICc | 23 36 35 37 42 36 33 43
GAIC | 5 12 28 42 64 78 89 93

SNR»=3.00 dB
N 30 35 40 45 50 60 80 100
SCp |50 61 76 96 92 95 96 97
SCa |44 52 60 8 83 93 95 97
SCe | 41 46 34 50 88 88 96 97
BIC |22 41 53 71 77 91 95 98
KICc | 29 44 45 38 42 43 46 45
GAIC | 7 17 28 38 54 75 97 98

SNR3=5.00 dB
N 25 30 35 40 45 50 75 100
SCp |36 63 81 88 90 95 95 99
SCa |41 58 73 51 67 91 93 99
SCe |27 54 57 21 15 89 94 99
BIC |16 28 65 57 77 83 99 100
KICc | 29 40 57 54 47 52 50 44
GAIC | 14 16 32 47 60 72 100 100

Table 3: Example 2: the performances in estimating the number of sine-waves reported with
the same conventions as in Table 2.

We extend our analysis by counting the Type I and Type II errors. Let fr = wy/(27) and
similarly f = wg/(2m). Since K and K are not necessarily equal, we take K = min(K, K).
We select the indices {i1,...,ix} C {1,..., K} and {ji,...,jc} C {1,..., K} such that [f;, —
fj1|7~~«7|fi;g - fj,c| are the smallest entries of the set {|f; — f}\ :1<i<K,1<j<K}. For
each k € {1,...,K}, f]k is deemed to be the estimate for f;,. As usual, a Type I error is counted
in connection with the frequency fi if none of the estimated frequencies are assigned to fx, and
a Type II error is counted whenever K > K. We compute also the mean-squared errors (MSE)
for the frequency estimates.

For brevity, we report in Tables 6-9 the Type I and Type II errors together with the MSE
for one single experiment conducted in each Example. In our comparisons, we consider SCp and
the asymptotic criteria BIC and GAIC.

Because in Example 2 the simulated noise is an autoregressive process, we propose to analyze
more carefully the data shown in Table 7. Remark that only GAIC has difficulties in recovering
the first harmonic when N > 35, and recovering the second harmonic whose local SNR is smaller
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SNR;=1.00 dB
N 30 40 50 60 70 80 90 100
SCp |64 85 85 91 78 88 88 85
SCa |51 58 61 69 67 8 82 81
SCe |59 75 83 91 77 8 88 85
BIC |32 55 538 73 70 78 70 78
KICe | 60 69 65 75 59 58 bBH8 59
GAIC | 11 39 45 62 63 72 63 73

SNR;=3.00 dB
N 30 35 40 45 50 60 80 100
SCp |93 86 94 96 92 94 93 87
SCa |60 60 60 61 67 71 841 86
SCe |8 74 81 91 89 94 93 87
BIC |53 55 72 8 82 8 89 91
KICe | 82 74 75 76 77 72 62 57
GAIC |50 60 70 84 80 8 90 &9

SNR;=5.00 dB
N 25 30 35 40 45 50 75 100
SCp |97 96 95 97 94 96 92 W
SCa |61 58 61 68 61 59 82 89
SCe | 83 8 85 8 838 96 92 94
BIC |53 71 72 8 80 8 93 93
KICe | 90 89 81 8 79 81 63 59
GAIC | 45 75 8 95 93 93 95 95

Table 4: Example 3: the performances in estimating the number of sine-waves reported with
the same conventions as in Table 2.

posses problems to all the criteria. Note for SCp that the number of Type I errors connected
with fo decreases fast with the increase of the sample size. For GAIC, the number of Type II
errors is always small, but many Type I errors occur even for N = 60. This is a clear sign that,
for small N, GAIC underestimates the number of sinusoids. The computed MSE is almost the
same for all the investigated criteria and this is natural because the evaluation of SCp, BIC and
GAIC is based on the estimates provided by the RELAX algorithm.

Final remarks

The new results on SC for the sinusoidal regression model illustrate very nicely the main idea
that SC is not just the minus maximum log-likelihood term penalized with gln N, where k is
the number of parameters and NV is the number of samples. The most important achievement
is to show that, for small and moderate sample sizes, the adequate use of SC could improve the
estimation performances even for problems that have been intensively researched in the past, as

242



Festschrift for Jorma Rissanen

SNR;=-5.00 dB
N 30 40 50 60 70 80 90 100
SCp |24 65 81 74 70 70 81 &4
SCa |22 65 81 74 70 70 81 85
SCe |32 64 70 66 63 66 79 83
BIC |15 53 79 64 65 69 70 79
KICc |49 75 79 70 70 67 73 71
GAIC| 0 3 19 39 49 64 64 72

SNR;=-3.00 dB
N 30 40 50 60 70 80 90 100
SCp |20 82 88 86 90 93 91 95
SCa |20 83 88 86 90 91 84 89
SCe |33 71 80 78 83 87 86 92
BIC |13 72 88 79 78 83 90 94
KICc |51 83 84 81 80 78 74 72
GAIC | 0 23 48 56 66 70 75 81

SNR;=-1.00 dB
N 30 35 40 45 50 60 80 100
SCp |30 80 90 93 99 90 94 92
SCa |30 8 8 93 97 8 77 73
SCe |40 72 74 8 90 83 91 87
BIC |27 8 8 87 95 90 92 95
KICc |61 91 8 8 90 82 76 65
GAIC| 0 13 38 68 79 74 90 97

Table 5: Example 4: the performances in estimating the number of sine-waves reported with
the same conventions as in Table 2.

it is the case with the mixed-spectrum estimation.

Acknowledgements

This work was supported by the Academy of Finland, project No. 113572, 118355 and 213462.
The author is thankful to Gabriel Dospinescu from Ecole Normale Superieure, Paris, for the

help with the proof of the Remark 2 in the Appendix.

243




Festschrift for Jorma Rissanen

Freq N 30 35 40 45 50 60 80 100

fi Err.1 | SCp 0 0 0 0 0 0 0 0
BIC 19 11 8 4 4 3 0 0
GAIC 73 48 25 4 4 0 0 0

MSE | SCp | -55.92 -56.45 -57.59 -60.01 -59.30 -62.62 -65.32 -68.79

BIC | -56.15 -56.37 -57.52 -60.01 -59.17 -62.65 -65.32 -68.79

GAIC | -56.61 -56.60 -58.30 -59.59 -59.04 -63.12 -65.32 -68.79
fa Err.1 | SCp 38 25 10 7 5 0 0 0
BIC 51 40 26 21 20 8 1 0
GAIC 93 81 60 60 47 27 7 0

MSE | SCp | -49.04 -51.43 -52.38 -54.00 -54.82 -56.64 -59.96 -63.19

BIC | -46.09 -51.59 -51.90 -53.67 -54.47 -56.67 -59.92 -63.19

GAIC | -46.08 -52.16 -51.71 -54.58 -55.88 -56.15 -59.97 -63.19
Err.2 SCp 0 3 2 0 0 1 2 1
BIC 6 4 5 1 0 1 0 0
GAIC 0 0 0 0 0 0 0 0

Table 6: Type I and Type II errors for Example 1 when SNRy =

-1.00 dB. MSE is computed

for the estimates of the frequencies and it is expressed in dB. The results are reported for 100

runs.

Freq. N 30 35 40 45 50 60 80 100

fi Err.1 | SCp 5 1 0 0 0 0 0 0
BIC 9 8 1 0 0 1 0 0
GAIC 28 20 14 12 9 9 1 0

MSE | SCp | -58.96 -60.13 -61.20 -63.05 -64.48 -65.73 -71.68 -80.15

BIC | -59.54 -59.87 -61.72 -63.53 -64.04 -65.69 -71.68 -80.15

GAIC | -59.20 -60.62 -61.99 -63.66 -64.35 -65.66 -71.10 -80.15
fa Err.1 | SCp 32 21 14 1 2 1 0 0
BIC 24 29 20 7 7 4 1 0
GAIC 83 74 66 61 42 22 1 0

MSE | SCp | -49.97 -53.42 -55.07 -56.00 -42.96 -59.76 -64.03 -64.98

BIC | -40.71 -39.15 -55.34 -56.82 -42.73 -60.11 -64.09 -64.98

GAIC | -50.24 -53.27 -54.20 -56.21 -58.35 -59.84 -64.09 -64.98
BErr.2 SCp 18 18 10 3 6 4 4 3
BIC 54 30 27 22 16 5 4 2
GAIC 10 9 6 1 4 3 2 2

Table 7: Type I and Type II errors for Example 2 when SNRy = 3.00 dB.
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Freq. N 30 35 40 45 50 60 80 100
fi Err.1 | SCp 0 1 0 0 1 0 0 0
BIC 5 8 1 2 3 1 0 2
GAIC 43 32 20 14 18 9 4 6
MSE | SCp | -52.69 -55.06 -56.26 -58.26 -59.12 -60.96 -64.09 -66.39
BIC | -53.15 -54.38 -56.05 -58.34 -59.23 -60.97 -64.09 -66.50
GAIC | -52.54 -55.38 -56.47 -58.01 -59.51 -60.93 -64.02 -66.52
fa Err.1 | SCp 2 3 2 0 3 1 4 5
BIC 20 21 16 11 13 11 10 7
GAIC 50 40 27 16 19 15 10 11
MSE | SCp |-53.61 -54.90 -58.91 -57.97 -60.02 -62.41 -65.47 -69.76
BIC | -53.43 -56.14 -59.50 -58.48 -60.90 -62.32 -65.48 -69.67
GAIC | -53.23 -54.98 -59.15 -57.59 -60.48 -62.21 -65.70 -69.87
Err.2 SCp 5 11 4 4 5 5 3 8
BIC 24 24 12 9 5 4 1 2
GAIC 0 0 3 0 1 1 0 0
Table 8: Type I and Type II errors for Example 3 when SNRy = 3.00 dB.
Freq. N 30 40 50 60 70 80 90 100
fi Err.1 | SCp 79 17 5 8 3 2 2 1
BIC 85 23 8 18 17 13 6 4
GAIC | 100 77 52 43 34 29 22 17
MSE | SCp | -42.86 -45.75 -51.69 -54.32 -55.19 -57.47 -58.26 -60.92
BIC | -42.75 -46.07 -51.54 -47.16 -55.20 -57.33 -58.22 -60.76
GAIC - -47.81 -52.23 -54.07 -56.13 -46.15 -58.84 -61.14
fa Err.1 | SCp 79 6 1 0 0 0 0 0
BIC 84 8 3 1 0 0 0 0
GAIC 100 62 46 17 4 1 1 0
MSE | SCp |-4832 -55.79 -54.60 -59.31 -65.52 -65.26 -65.58 -65.73
BIC | -50.14 -56.16 -54.60 -59.28 -65.49 -65.24 -65.58 -65.73
GAIC - -55.54 -55.39 -59.32 -65.41 -65.24 -65.59 -65.73
fs Err.1 | SCp 79 6 1 0 0 0 0 0
BIC 84 8 3 1 0 0 0 0
GAIC | 100 62 46 17 4 1 1 0
MSE | SCp | -45.49 -61.30 -58.20 -60.70 -68.24 -70.78 -82.14 -82.14
BIC | -46.99 -61.45 -58.25 -60.31 -68.24 -70.78 -82.14 -82.14
GAIC - -60.73 -59.16 -60.13 -68.40 -70.90 -82.14 -82.14
Err.2 SCp 0 1 7 6 7 5 7 4
BIC 0 5 4 3 5 4 4 2
GAIC 0 0 0 1 0 1 3 2

Table 9: Type I and Type II errors for Example 4 when SNR; = -3.00 dB.
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APPENDIX

On the derivation of SC formula (10)

To check the conditions for the applicability of the SC formula of Qian and Kiinsch in our
particular case, we resort to the closed-form expression of Jn (@) from the equations (4)-(7). We
list below the conditions as they are given in [7]:

C1.

C2.

C3.

C4.

Jn(0) is positive definite.

It is easy to check that all the eigenvalues of Jx(€,) are strictly positive. The covariance
matrix R(a) is positive definite for any M [30], therefore Jn(a, 7) is also positive definite,
and the condition C1 is verified.

The minimum eigenvalue of Jx(0) is of order O(N) as N — oc.

Two of the eigenvalues of Jy(&;) are O(N) and the third one is O(N?). As each eigenvalue
of In(a,7) is O(N), we conclude that C2 is satisfied.

IIn(01) | In(01)] — [In(82)]] < c||01 — 02]|, V1,02 € O, where ¢ is a finite constant.

For any 6, we have

I(0)] = xR RS H e o). (15)

which implies that the left-hand-side term in the inequality C3 is finite and it does not

depend on N. As the condition C3 is easily verified for 1 = 65 , we analyze only the

case 01 # 603. Thus we have gnien |61 — 62]] > J, where § is given by the precision
1,02

used to store the values of the parameters. To circumvent some technical difficulties,
we consider firstly one sine-wave (K = 1) in white noise (M = 0). Without loss of
generality, we assume 0 < Qmin < @1 < Qmag < 00 and 0 < Tiin < 7 < Tz < 0.
Elementary calculations lead to the inequality max |In(80) TN (01)] — [In(62)]]| < A,

where A = (amaz/ amm)4 (Tmaz/ Tmm)5. Therefore, condition C3 is verified by selecting
¢ = A/6. To gain more insight, we assume next X = 1 and M = 1. As the noise
model is stable, the AR coefficient is a non-zero number from the interval (—1,1). If
supplementarily, the precision ¢ is used to store the value of the AR coefficient, then we
get immediately a1 € [—1 + 6, —d]J[d,1 — d]. Taking a; and 7 to be bounded as in the
white noise case, it is not difficult to show that mex TN (8)] 7 [In(01)] — | Tn(82)] < 7T,

where Y = (Qmaz/@min)* (Tmaz/Tmin)® (2 = 6)/6)5. Since gnien |01 — 82|| > v, we choose
1,92

¢ = YT/v and the condition C3 is verified. We emphasize that the precision used in this
proof for the model parameters does not depend on the number of samples N.

In[Jx(0)] = o(N).

In | Iy (0)|

Using the expression (15) for |Jn(6)|, we readily obtain hrn N

=0, thus C4 is

verified.
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We apply next the SC criterion from [7]. For simplicity we ignore the terms that do not depend
on N, and the SC formula becomes:

R 5 . 3K+M+1 )
—log f(y™;0) +1og [In(0,y™M)' 2+ > log(lf: + N~
i=1
3K+M+1 .
+ Y WG]+ 1) + O(N T, (16)
i=1

P fN;0)

20007 0=6
is the observed FIM. For any = > 0, r*(z) = log(logz) + log(log(logz)) + - - -, where the sum
continues as long as the iterated logarithms are strictly positive. The approximative formula

(10) is obtained from (16) after operating the following changes:
o Jn(0,yN) is replaced with Jy(8).

where log(-) is the logarithm base 2, 6 denotes the ML estimates, and Jx (8, 5V ) =

e An O((3K + M + 1)loglog N) term is discarded.
e log(-) is replaced with In(-).

Remark 1 The two-step encoding procedure adopted in [7] employs first a uniform quantization
of © that is performed with the same precision for all the parameters. The term N~/4 in (10)
is due to the option from [7] to select this precision based on the minimum eigenvalue of FIM.
Remark 2 Tt is recommended in [7] to consider in the SC expression also the term given by the
number of parameters divided by two and multiplied by log p, where p is the largest eigenvalue of
IN(O) 2T 5 (0,y™)I N (0)~1/2. We prove below that, under mild conditions, p does not depend
on N, hence we ignore the log p term in (10).

Inspired by the expression of the asymptotic FIM, we assume there exist the non-singular
matrices A and B, and the diagonal matrix Cy such that JN(é) = CyACy and jN(é, yN) =
CnyBCy. Supplementarily all the diagonal entries of Cn are powers of N, and the entries of
A and B do not depend on N. With the notation Z = Jn(8)~Y2I5(0,y™)IN(0)"1/2, we
have Z = Jn(0)1/2 (jN(ayN)JN(é)_l) Jn(0)Y2, thus Z and Jn(6,y™)In ()" are similar.

Moreover, Jy(8,yV)In(8)~! = CyBA~'Cy!, which leads to the conclusion that Z and BA™!
are also similar. As the eigenvalues of BA™! do not depend on N, p is also independent of N.
References

. M. Kay, Fundamentals of statistical signal processing: estimation theory. Prentice Hall,
1] S. M. Kay, Fund l istical signal ] } } h P ice Hall
1993.

[2] M. Ghogho and A. Swami, “Fast computation of the exact FIM for deterministic signals in
colored noise,” IEEFE Trans. Signal. Proces., vol. 47, no. 1, pp. 52-61, Jan. 1999.

[3] L. Kavalieris and E. Hannan, “Determining the number of terms in a trigonometric regres-
sion,” Journal of time series analysis, vol. 15, no. 6, pp. 613625, 1994.

247



[4]

[5]

[11]
[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Festschrift for Jorma Rissanen

J. Li and P. Stoica, “Efficient mixed-spectrum estimation with applications to target feature
extraction,” IEEE Trans. Signal. Proces., vol. 44, no. 2, pp. 281-295, Feb. 1996.

P. Stoica and A. Nehorai, “Statistical analysis of two nonlinear least-squares estimators of
sine-wave parameters in the colored-noise case,” Circuits, Systems, and Signal Processing,
vol. 8, no. 1, pp. 3-15, 1989.

P. Stoica and Y. Selen, “A review of information criterion rules,” IEFE Signal. Proces.
Mag., vol. 21, no. 4, pp. 36-47, Jul. 2004.

G. Qian and H. Kiinsch, “Some notes on Rissanen’s stochastic complexity,” IEEE Trans.
Inf. Theory, vol. 44, no. 2, pp. 782-786, Mar. 1998.

J. Rissanen, “Fisher information and stochastic complexity,” IEEE Trans. Inf. Theory,
vol. 42, no. 1, pp. 40-47, Jan. 1996.

——, “MDL denoising,” IEEE Trans. Inf. Theory, vol. 46, no. 7, pp. 2537-2543, Nov. 2000.

A. Barron, J. Rissanen, and B. Yu, “The minimum description length principle in coding
and modeling,” IEEE Trans. Inf. Theory, vol. 44, pp. 2743-2760, Oct. 1998.

J. Rissanen, Information and complexity in statistical modeling. Springer Verlag, 2007.

B. Friedlander and B. Porat, “The exact Cramer-Rao bound for Gaussian autoregressive
processes,” IEEE Tr. on Aerospace and Electronic Systems, vol. AES-25, pp. 3-8, 1989.

C. Giurcaneanu and J. Rissanen, “Estimation of AR and ARMA models by stochastic
complexity,” in Time series and related topics., H.-C. Ho, C.-K. Ing, and T. L. Lai, Eds.
Institute of Mathematical Statistics Lecture Notes-Monograph Series, 2006, vol. 52, pp.
48-59.

C. Giurcaneanu, “Stochastic complexity for the estimation of sine-waves in colored noise,”
in Proc. of 2007 Int. Conf. on Acoustics, Speech, and Signal Processing. Honolulu, Hawaii,
USA: IEEE, Apr. 2007, vol. 3, pp. 1097-1100.

G. Schwarz, “Estimating the dimension of a model,” The Annals of Statistics, vol. 6, no. 2,
pp. 461-464, Mar. 1978.

J. Rissanen, “Modeling by shortest data description,” Automatica, vol. 14, pp. 465-471,
1978.

P. M. Djuric, “A model selection rule for sinusoids in white Gaussian noise,” IEEE Trans.
Signal. Proces., vol. 44, no. 7, pp. 1744-1751, Jul. 1996.

B. G. Quinn, “Estimating the number of terms in a sinusoidal regression,” Journal of time
series analysis, vol. 10, no. 1, pp. 70-75, 1989.

S. Kay, “Conditional model order estimation,” IEEE Trans. Signal. Proces., vol. 49, no. 9,
pp. 1910-1917, Sep. 2001.

248



[20]

[21]

[29]

[30]

Festschrift for Jorma Rissanen

——, “Exponentially embedded families-new approaches to model order estimation,” IFEE
Trans. on Aerospace and Electronic Systems, vol. 41, no. 1, pp. 333345, Jan. 2005.

A. Neath and J. Cavanaugh, “Regression and time series model selection using variants of
the Schwarz information criterion,” Communications in Statistics - Theory and Methods,
vol. 26, pp. 559-580, 1997.

A. Hanson and P. C.-W. Fu, “Aplications of MDL to selected families of models,” in Ad-
vances in Minimum Description Length: theory and applications, P. Griinwald, I. Myung,
and M. Pitt, Eds. MIT Press, 2005, ch. 5, pp. 125-150.

E. Liski, “Normalized ML and the MDL principle for variable selection in linear regression,”
in Festschrift for Tarmo Pukkila on his 60th birthday, E. Liski, J. Isotalo, J. Niemeld,
S. Puntanen, and G. Styan, Eds. Univ. of Tampere, 2006, pp. 159-172.

M. Hansen and B. Yu, “Minimum description length model selection criteria for generalized
linear models,” in Science and statistics: a festchrift for Terry Speed, D. Goldstein, Ed.
Institute of Mathematical Statistics Lecture Notes-Monograph Series, 2002, vol. 40, pp.
145-164.

E. George and D. Foster, “Calibration and empirical Bayesian variable selection,” Bio-
metrika, vol. 87, no. 4, pp. 731-747, 2000.

S. Bruzzone and M. Kaveh, “Information tradeoffs in using the sample autocorrelation
function in ARMA parameter estimation,” IEEE Trans. on Acoustics, Speech and Signal
Processing, vol. ASSP-32, no. 4, pp. 701-715, Aug. 1984.

A .-K. Seghouane and M. Bekara, “A small sample model selection criterion based on Kull-
back’s symmetric divergence,” IEEE Trans. Signal. Proces., vol. 52, pp. 3314-3323, 2004.

M. Bekara, L. Knockaert, A.-K. Seghouane, and G. Fleury, “A model selection approach
to signal denoising using Kullback’s symmetric divergence,” Signal Processing, vol. 86, pp.
1400-1409, 2006.

J. Bernardo, “Psi (digamma) function,” Appl. Statist., vol. 25, pp. 315-317, 1976.

P. Stoica and R. Moses, Introduction to Spectral Analysis. New Jersey: Prentice-Hall,
1997.

249



Festschrift for Jorma Rissanen

250



Festschrift for Jorma Rissanen

A Stochastic Complexity Perspective of
Induction in Economics and Inference in
Dynamics

K. Vela Velupillai*
Department of Economics!
University of Trento
Via Inama, 5
1-381 00 Trento
Italy
&

Girton College
Cambridge CB3 0JG
UK

April 7, 2008

*I am very particularly indebted to Francesco Luna, John McCall, Shu-Heng Chen and
Stefano Zambelli. They encouraged my early and continuing interest in Jorma Rissanen’s
work from their own particular viewpoints of Bayesian statistics, Gold’s model of learning, de
Finetti’s theory of probability, MDL and Chaitin’s algorithmic information theory. However,
they are not responsible for any of the remaining infelicities. My own view was, from the
outset, shaped by my determination to fashion the subject of computable economics on the
foundations of recursion theoretic and constructive mathematics - i.e., on the works of Tur-
ing, Kolmogorov, Brouwer and Bishop. Thus, I came to stochastic complexity, as Rissanen
originally did, from ‘Kolmogorov complexity’ theory.

TCorresponding e-mail address: kvelupillai@gmail.com

251



Festschrift for Jorma Rissanen

Abstract

Rissanen’s fertile and pioneering minimum description length principle (MDL)
has been viewed from the point of view of statistical estimation theory, informa-
tion theory, as stochastic complexity theory' — i.e., a computable approxima-
tion to Kolomogorov Complexity — or Solomonoft’s recursion theoretic induction
principle or as analogous to Kolmogorov’s sufficient statistics. All these — and
many more — interpretations are valid, interesting and fertile. In this paper I
view it from two points of view: those of an algorithmic economist and a dy-
namical system theorist. From these points of view I suggest, first, a recasting
of Jevons’s sceptical vision of induction in the light of MDL; and a complexity
interpretation of an undecidable question in dynamics.

1T am using ‘stochastic complexity’ in a kind of ‘generic’ way. Rissanen has, over the past
three decades, gradually refined the exact formal meaning of the phrase and I believe his most
mature views are now represented in [1]. The kind of meaning I have in mind is what I learned
from Rissanen’s early writings on MDL, for example in [24], p.1080, emphasis in the original:

"Jf ... a shortest description of the data, to be called STOCHASTIC COMPLEXITY
is found in terms of the models of a selected class, there is nothing much further
anyone can teach us about the data; we know all there is to know."
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1 A Personal Preamble

To paraphrase the famous reply of Laplace to Napoleon, who won-
dered why the word ’God’ did not appear in Mécanique Céleste, we
could state that ‘the assumption of a ‘true’ distribution is not needed
in this theory’.

Jorma Rissanen

I have shared many moments of intellectual and personal splendour with
Jorma Rissanen. One serendipitous conjunction relates to my first published,
technical, article, which was in 1978, in Volume 14 of Automatica, [27]. T did
not, of course, know, then, that Jorma Rissanen’s first published, pioneering,
paper on stochastic complexity — or, the Minimum Description Length princi-
ple (henceforth, MDL) — was also in that same volume of the same Journal®!
Justifiably, that paper on MDL spawned a path-breaking research program that
has, in one strand, developed into Algorithmic Statistics. It gives me great and
undiluted pleasure to state that my own, much humbler piece, in that same
volume of Automatica, was also the fountainhead for what I have developed
into the research program on Algorithmic Economics!

In the intervening 30 years, particularly in its second half, I have had the
pleasure and privilege of hosting Jorma Rissanen at numerous venues, exotic
and otherwise, trying to make his fertile and fascinating research program more
familiar to obdurate economists. I believe a measure of success can now be seen,
albeit taking place at snail’s pace.

I had read, quite by chance (sic!), an expository piece on stochastic complez-
ity in an issue of the IBM Research Magazine® around the time I was trying to
establish the Center for Computable Economics (CCE), in the department of
economics, at UCLA, in the academic year 1990-91. The modest initial success,
together with funds for a seminar series on Computable Economics, gave me the
chance to invite Jorma Rissanen to give a talk at the CCE seminar series, as one
of its first speakers, in autumn, 1991. Soon after that I organised a ‘Summer
School” in Computable Economics, in July, 1992, sponsored by Aalborg Univer-
sity in Denmark, at the beautiful Dronninglund Slot in Nordjylland. Naturally,
Jorma Rissanen was one of the key speakers at that event.

2Rissanen’s classic was published in the September issue of Volume 14, 1978 and mine in
the November issue of the same Volume ([23], [27]). Mine had been presented an an IFAC
meeting in Vienna the year before. My path towards what I now call Algorithmic Economics
began with computational complexity theory. I like to think there is a further serendipity
even here: one strand of the tradition from which Jorma Rissanen created MDL arose from
algorithmic complexity theory, as is well documented in several articles tracing his thought on
these matters.

3The ‘expository’ piece, by Rowan Dordick of IBM’s ‘communications department’, [7],
had an eye-catching title - Understanding the ‘go’ of it, quoting Maxwell — and an attractive
blurb, (with a photograph of Jorma Rissanen at the blackboard (those were the days...!),
which said:

"A novel approach to statistical inference — the theory of stochastic complexity
— holds that the best description of data is the shortest one. "
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Most recently I set up the Computable and Behavioural Economics Research
Agis* (COBERA) in the department of economics at the National University
of Ireland, in Galway. One of the first events sponsored by COBERA was a
‘Spring School” on Computable Economics, in March, 2005. Naturally, Jorma
Rissanen was again one of the key lecturers at this event, too.

In all of the above events the audience was predominantly made up of ad-
vanced graduate students, senior and junior faculty and interested outside par-
ticipants, almost all of whom were economists. However, the distinguished
speakers — like Jorma Rissanen — were not all economists; apart from Jorma
Rissanen, there were recursion theorists (Piergiorgio Odifreddi, F.A. Doria), al-
gorithmic information theorists (Greg Chaitin), game theorists (Ken Binmore),
dynamical system theorists (Ralph Abraham, Joe McCauley), and others, all
of whom were united by being motivated by an algorithmic approach to theory
and application in the sciences, both pure and applied.

Jorma Rissanen was always a persuasive lecturer and an engaging participant
at all of these events. Economists of widely varying persuasions — in statistical
methodology and mathematical epistemology — were always fascinated by his
wonderful lectures, always prepared with utmost care and delivered with im-
maculate clarity. On many occasions his talks were interrupted by genuinely
perplexed members of the audience who were struggling to absorb a whole new
set of concepts with which to understand a fascinating framework and method-
ology. On occasions there was also one or another famous, but obdurate, econo-
mists, entrenched in orthodoxy, who was unable to dissociate himself from the
traditional frameworks that shackled his thoughts and practice.

I would like to end this brief personal preamble with a pleasant recollec-
tion of an event that I have had occasion to repeat almost every time I have
chaired a session where Jorma Rissanen has been the lecturer. On this partic-
ular occasion, after Jorma Rissanen’s beautifully crafted lecture on stochastic
complexity and statistical estimation, the following brief dialogue occurred be-
tween a very distinguished game theorist (referred to as DGE), not known for
any competency in statistical methodology, and Jorma (JR):

DGE: (In an irritated tone), ‘You seem to be suggesting that your method
is the only one around. You must know that there are many other methods,
and some have survived the test of time, too.’

Pin-drop silence in the lecture hall (at Dronninglund Slot).

JR: (In a perfectly calm and conciliatory tone), ‘Oh, T am so sorry; I did
not mean to suggest that MDL was the only statistical method around. I do
apologise if I gave that impression.’

Pause and continued silence in the lecture hall; not even a whisper or a
murmur among the distinguished collections of lecturers and auditors, among
whom were very famous economists like Bob Clower, Axel Leijonhufvud, Michael
Intrilligator, John McCall; computer scientists like Berc Rustem, Greg Chaitin
and Piergiorgio Odifreddi; and so on.

Then, after only a brief pause, which seemed like eternity:

{Now defunct.
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JR: ‘But it is the best [method available]!

The whole hall erupted in appreciative and almost unanimous (i.e., except
one member of the audience!) laughter and applause.

Jorma Rissanen continues a distinguished Finnish tradition of making Induc-
tion a scientifically respectable enterprise, free of the nihilistic scepticism prop-
agated by ill-informed scholars of Hume and Mill?, particularly in economics
and the philosophy of science. His great predecessors and contemporaries in
the rich Finnish tradition of the mathematical epistemology of induction are,
among others, of course Georg Henrik von Wright, Jaako Hintikka, Ilkka Ninilu-
oto and Risto Hilpinen®. In my own economics education at Cambridge in the
early 1970s, under the inspiring supervision of Richard Goodwin, I was advised,
wisely as it turned out later, to attend the lectures given by Ian Hacking in the
philosophy department. Fortunately, Hacking was just then lecturing, broadly,
on issues of induction and probability and, of course, the works of Wittgenstein’s
immediate successor as the Knightbridge Professor of Philosophy at Cambridge,
Georg Henrik von Wright, were often brought into focus. Margaret Anscombe
was often at those lectures and, occasionally, a brief dialogue took place between
Hacking and Anscombe, to which we — students — were privileged auditors.

It is a pleasure and a privilege to pay homage to a pioneer scientist of un-
compromising integrity and undiluted personal warmth.

The paper is divided into four subsequent sections. A brief methodological
discussion, of lessons learned from Rissanen’s modelling philosophy, is the con-
tent of the next section. In section 3, the main, substantively economic section
of the paper, I try to reinterpret a celebrated sceptical — even hostile — vision
of inductive inference by one of the pioneers of modern economic theory from
the point of view of MDL. In section 4, motivated by an issue in economic
dynamics, I try to pose an undecidable problem in dynamical systems theory
as an inference problem and formulate its Kolmogorov complexity. The con-
cluding section 5 consists of speculative thoughts on Algorithmic Economics as
a companion in arms of Algorithmic Statistics, Algorithmic Randomness and
Algorithmic Information Theory.

5T have in mind, in particular, Jevons in eocnomics and Popper in the philosophy of science.
What I ahve to say about Jevons is given in section 3, below; I have had my say on Popper,
from the point of view of MDL in [30]. Li and Vitanyi quite pungently, but accurately (I
think) note, [31], p.448:

"Unsatisfactory solutions [to the problem of scientific inference] have been pro-
vided by philosophers like R.Carnap and K.Popper."

I suppose they should ahve been a little more precise and designated these two worthy
individuals as ‘philosophers of science’! In any case, my case against Popper from the point
of view of MDL, substantiating the Li-Vitanyi claim, is fully described and discussed in detail
in [30].

Svon Wright’s magisterial exposition of induction in the probabilistic tradition is in [32] &
[33]; for Hintikka’s views (and Niniluoto’s) , in a Carnapian tradition, the best source may
well be, [11] & [12]. A different source for Niniluoto’s work on induction is, of course, his
early joint monograph with another distinguished Finn, Tuomela, in, [21]. One reference for
Hilpinen’s work on inductive logic is [9].
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2 Extracting Methodological Precepts for Algo-
rithmic Economics from Rissanen’s Modelling
Philosophy

"Regarding the ultimate model, no algorithmic procedure to find
it can exist, as shown in the theory of the algorithmic complexity,
Solomonoff (1964), Kolmogorov (1965), Chaitin (1973), which also
is the spiritual father of our main notion."

Jorma Rissanen, [25], p.224; italics added.

Rissanen’s philosophy of stochastic complexity suggests a way of exorcising
the search for that traditional ‘Will o’ the Wisp’ in formal modelling exercises:
the ‘true’ model underpinning observable, empirical data. Secondly, in one of
its recent incarnations, the modelling philosophy of stochastic complexity has
evolved into algorithmic statistics. As defined by the three pioneers, algorithmic
statistics is the theory of the ‘relation between an individual data sample and
an individual model summarizing the information in the data’, [8], p. 2443. In
this theory the search is for an ‘absolute notion’ of such a ‘relation’ in analogy
with the way ‘Kolmogorov complexity is the accepted absolute measure of in-
formation content of an individual finite object’ (ébid). Thirdly, the concept of
universality — either of the Universal Turing Machine in recursion theory, or of
the prior in the Solomonoff scheme or of models in Rissanen’s recent work on
stochastic complexity.

Finally, I want to return to one of the earliest insights and interpretations
of ‘stochastic complexity’ as a computable approximation of the uncomputable
Kolmogorov complexity (or, equivalently, of Solomonoff’s uncomputable ‘uni-
versal prior’). The orientation of my own research in algorithmic economics has
been almost entirely determined by this particular insight. Therefore, let me,
touch on this point, very briefly, before going on to the main sections of the
paper.

In his original paper introducing the stochastic complexity approach to sta-
tistical inference as inductive inference from finite data sequences, Rissanen
acknowledged his indebtedness to Kolmogorov ([18], p. 465). It is generally un-
derstood, by scholars who have closely studied the origins and evolution of Ris-
sanen’s ideas on stochastic complexity, that this horn of the original motivation
— the other being Akaike’s ATC model” - led to the idea of stochastic complexity
being a computable approximation to the uncomputable Kolmogorov complex-
ity. In this original paper, Kolmogorov defined the notion that has forever since

"Even with some reservations, Rissanen is handsome in his acknowledgement to Akaike,
[23], p.224:

"[W]e are indebted to Akaike’s pioneering and innovative work for inspiration in
our own efforts."
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then been associated with his name in the following way:

ming (. 0)=y L (p)
Ky (ylz) = ‘ 1
o Wle) {wﬁp&t@(pw):y @
where:
¢ (p,x) = y : a partial recursive function — the ‘method of programming’ —
associating a (finite) object y with a program p and a (finite) object z.
Kolmogorov went on to observe, crucially, that (ibid, pp.299-300):

"[T]he function Ky (y|x) need not be effectively computable (gener-
ally recursive) even if it is a fortiori finite for any « and y."

Remark 1 The proof that K4 (y|z) is nonconstructive, freely appealing to ter-
tium non datur. I consider this an infelicity. But since it is not an existence
proof, rectifying the infelicity by a constructive proof may not be essential

To the best of my knowledge most proofs of the uncomputability of Ky (y|x)
are based on the unsolvability of the Halting problem for Turing Machines®.
Shortly after Kolmogorov’s above paper was published, Zvonkin and Levin, [34],
p.92, Theorem 1.5,b, provided the result and proof that rationalises the basic
principle of stochastic complexity providing the computable approximation to
the uncomputable K (y|x) .The significant relevant result is:

Theorem 2 Zvonkin-Levin
3 a general recursive function H (t,x) , monotonically decreasing in t, s.t :

Jim H (8, @) = Ky (y]x) (2)

Remark 3 This result guarantees, the existence of ‘arbitrarily good upper esti-
mates’ for K4 (ylx) , even although Ky (y|x) is uncomputable. I am not sure this
is a claim that is constructively substantiable’. How can a noncomputable func-
tion be approximated? If any one noncomputable function can be approrimated
uniformly, then by ‘reduction’ it should be possible, for example, to ‘approxi-
mate’, say, the Busy Beaver function. I suspect an intelligent and operational
interpretation of the Zvonkin-Levin theorem requires a broadening of the notion
of ‘approzimation’.

8For example in [6], §7.7, pp.162-8. Incidentally, the section on Models of Computation
(87.1, pp.146-7), in this book is quite unreliable and strange, to put it mildly. The presentation
of the genesis of the Turing Machine and Church’s Thesis are both incorrect to the point of
being absurd.

9My view on tis further strengthened by some of the remarks in [6], particularly, p.163,
where one reads (italics added):

"The shortest program is not computable, although as more and more programs
are shown to produce the string, the estimates from above of the Kolmogorov
complexity converge to the true Kolmogorov complexity, (the problem, of course,
is that one may have found the shortest program and never know that no shorter
program exists).

These remarks border on the metaphysical! How can one approximate to a true value which
cannot be known, by definition?
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Universality, (approzimate) computability, data compression, the eschewing
of ‘truth’ (in model selection) — these are, in my reading, the four fundamen-
tal building blocks of Rissanen’s methodology. They form the methodological
building blocks of algorithmic economics, which in earlier writings I called Com-
putable Economics (cf. [28]).

3 Re-reading Jevons in the Light of MDL

"Doubtless there is in nature some invariably acting mechanism,
such that from some fixed conditions an invariable result always
emerges. But we, with our finite minds and short experience, can
never penetrate the mystery of these existences .... . We are in the
position of spectators who witness the production of a complicated
machine, but are not allowed to examine its structure. We learn what
does happen and what does appear, but if we ask for the reason, the
answer would involve an infinite depth of mystery."

[13], p.222; italics added.

William Stanley Jevons, a pioneer of neoclassical economics was implaca-
bly opposed to the inductive method. His methodological precepts against the
inductive method were cogently presented in his monumental treatise on The
Principles of Science (ibid, henceforth referred to as TPOS). However, a close
reading of its almost 800 pages, against the backdrop of some knowledge of the
principles underpinning the MDL principle has convinced me that the Jevonian
opposition to the inductive method is untenable. In this section a sketch of
my re-interpretation of TPOS as a treatise supporting what I have in earlier
writings called The Modern Theory of Induction ([28], Chapter 5) is outlined.

3.1 Background

"What especially characterised Jevons’s view of logical method was
the prominence he attached to the combination of formal and empir-
ical principles through the inverse application of the theory of prob-
ability"

[14], p.638; italics added

TPOS, a book of almost 800 dense pages refers to almost every known West-
ern natural philosopher without, however, a single mention of William of Ock-
ham, Occam’s Razor or Ockham’s Principle!®! The closest he gets to anything
like a (dismissive) mention of Occam’s Razor is when he rejects Newton’s Rule 1

10T he general literature seems to refer to William of Ockham but Occam’s Razor; hence T
retain this schizophrenia in my own spelling. Furthermore, Ockham’s own most often stated
version of the principle named after him seems to have been: ‘Pluralitas non est ponenda
sine necessitae’ — plurality is not be posited without necessity.The more commonly attributed
version: ‘Entia non sunt multiplicanda sine necessitate’ — entities must not be multiplied
without necessity — appears not to have been used by him {cf. [3], p.xxi).
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for Natural Philosophy in the Principia as irrelevant for any inductive purpose,
let alone for acting as an anchor to eliminate inductive indeterminacy:

"t is by false generalisation, again, that the laws of nature have been
supposed to possess that perfection which we attribute to simple
forms and relations. ... Newton seemed to adopt the questionable
axiom that nature always proceeds in the simplest way; in stating
his first rule of philosophising, he adds: ‘To this purpose the philoso-
phers say, that nature does nothing in vain, when less will serve; for
nature is pleased with simplicity, and affects not the pomp of su-
perfluous causes.’..... Simplicity is naturally agreeable to a mind of
limited powers, but to an infinite mind all things are simple."

TPOS, p.625; italics added.

Is Jevons suggesting, in the context of his times, beliefs and traditions, that
the omnipotence and omniscience of the architect of the laws of nature — the
designer of the ‘complicated machine’ — are such that we are as likely to witness
the ‘productions of a complicated machine’ as to a simple one!!. Jevons may
have been trying to make the point that Newton’s was a metaphysical assump-
tion and that we have no grounds for assuming anything about structure in
the absence of empirical evidence to the contrary?. However, Jevons, who was
almost as obsessed with consistency as he was with deduction'®, did not obey
his own precepts when it came to choosing the order and degree of equations to
fit observed data. In such an example he argues clearly in favour of choosing
the simplest hypothesis, at least in the first instance:

"Tt is a general rule in quantitative investigation that we commence
by discovering linear, and afterwards proceed to elliptic or more
complicated laws of variation."

TPOS, p.474; italics added.

Perhaps, given the times and context, one can be generous to Jevons — more
generous than he was to Newton and more, also, than Marshall was to Jevons —
and suggest that he was doubtful about any reliance on Occam’s Razor because
he did not feel it possible to give a rigorous, invariant, analytical definition of
simplicity. 1 think, therefore, it may be reasonable to assume, counterfactually,
that Jevons would have accepted the use of Occam’s Razor in hypothesis se-
lection and inductive inference had it been possible to demonstrate that it was

T cannot but reflect on Einstein’s wise maxim when faced with the Great Scorer’s devises,
‘Subtle is the Lord, but malicious he is not’ — Raffiniert ist der Herrgott aber boshaft ist
er nicht — and wish Jevons had shown some humility in the face of Einstein’s undisputed
predecessor’s, i.e., Newton’s, own methodological maxims.

12The Einsteinian example of the way he reasoned his way towards the general theory of
relativity from the special theory is clearly described and discussed by Kemeny, [15]. This
example is paradigmatic, of the role of simplicity in hypothesis selection and formation, in
the logic of scientific practice.

13He would, surely, find it uncomfortable to live in a post-Godelian world where consistency
has been dethroned from its crowing place in the deductive enterprise!
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possible to define, rigorously, the notion of simplicity. After Solomonoff — not
a little influenced by Keynes — and Rissanen, re-reading Jevons and substanti-
ating a rigorous method of inductive inference is not the most difficult task for
a philosophy of science. This will be attempted in the last sub-section of this
section, after first summarising the Jevonian vision of inductive indeterminacy
in the next sub-section.

3.2 The Jevonian Vision on Induction and its Indetermi-
nacy

"Combining insight and error, he spoilt brilliant suggestions by er-
ratic and atrocious arguments. His application of inverse probability
to the inductive problem is crude and fallacious, but the idea which
underlies it is substantially good. ... There are few books, so super-
ficial in argument yet suggesting so much as Jevons’s Principles of
Science."

Keynes, [17], p.204

[ shall summarise, rather telegraphically and in an inelegant numbered-list
format, Jevons’s precepts on inductive inference. This will, then, enable me to
refer to them conveniently in the next section when a simple case is made to
encapsulate the Jevonian vision in the modern inductive fold.

The following twelve points summarise, however audacious the task of encap-
sulating summarily, a sustained criticism of the inductive method, spread over
a discursive book of almost 800 pages (all quotes in this list are from TPOS):

1. "The theory of inductive inference stated [in TPOS] was suggested by the
study of the Inverse Method of Probability." (p.265)

2. Induction is the inverse operation of deduction. (p.121)

3. Induction is perfect when an enumeration of all possible instances of the
phenomenon under consideration is feasible, at least in principle. (pp.146-
7)

4. Induction is imperfect in case the ‘enumeration’, as in (3), is infeasible.

5. The results of imperfect induction are, therefore, never more than proba-
ble:

"Only in proportion as our induction approximates to the character of
perfect induction, does it approximate to certainty. The amount of un-
certainty corresponds to the probability that other objects than those
examined may exist and falsify our inferences; ...". (p.229; italics added)

6. The number of instances of any inductive phenomenon is, at most, denu-
merably infinite; and the number of alternative hypotheses that may be
entertained to account for any given inductive phenomenon is, at most,
denumerably infinite.
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7. Inductive processes are those, and only those, that generate general laws

10.

11.

12.

such that the hypothesis underlying them ‘yield deductive results in ac-
cordance with experience.’

. "That process only can be called induction which gives general laws, and

it is by the subsequent employment of deduction that we anticipate par-
ticular events. .... I hold that in all cases of inductive inference we must
invent hypotheses, until we fall upon some hypotheses which yields deduc-
tive results in accordance with experience." (p.226-8)

. The extraction of general laws, from a denumerably infinite set of plausible

hypotheses, proceeds by way of applying the ‘inverse method of probabil-
ity’ (i.e., using Bayes’s Rule):

"[Mn all cases ... of inductive inference where we seem to pass from some
particular instances to a new instance, we ... form an hypothesis as to
the logical conditions under which the given instances might occur; we
calculate inversely the probability of that hypothesis and compounding
this with the probability that a new instance would proceed from the
same conditions, we gain the absolute probability of occurrence of the
new instance in virtue of this hypothesis. But as several, or many, or even
an infinite number of mutually inconsistent hypothesis may be possible,
we must repeat the calculation for each such conceivable hypothesis, and
then the complete probability of the future instances will be the sum of
the separate probabilities." (p.268)

This description indicates tat Jevons’s inductive method, despite its rhetoric
about being simply ‘the inverse of deduction’; is nothing other than a sim-
ple Bayesian procedure.

However, there is no rule or uniform principle on the basis of which it is
possible to assign priors to implement ‘the inverse method of probability’
in the mechanical way in which deductive rules can be applied:

"To assign the antecedent probability of any proposition, may be a matter
of difficulty or impossibility, and one with which logic and the theory of
probability have little concern." (p.211-2)

"All logical inference involves classification [and it] is not really distinct
from the process of perfect induction. [But] there will be no royal road
to the discovery of the best system and it will even be impossible to lay
down the rules of procedure to assist those who are in search of good
arrangement.” (pp.673-90; italics added)

The Ramean Tree (pp.702-3), is an encapsulation of the exhaustive method
of classification.
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3.3 Disciplining Jevonian Inductive Indeterminacies in a
Post-Solomonoff MDL World

"[TThe most probable cause of an event which has happened is that
which would most probably lead to the even supposing the cause to
exist."

TPOS, p.243; italics added.

I claim that ‘most probable’, in the above Jevonian sense of being encap-
sulated within the inverse probability framework, is equivalent to the precise
recursion theoretic inductive inference concept of simplest and it removes, effec-
tively, the much vaunted indeterminacy of induction. The fundamental notion
of the modern theory or recursion theoretic induction can be stated as the fol-
lowing proposition:

Proposition 4 An event with the highest probability of occurring is also that
which has the simplest description

Let me give a brief and elementary sketch of the kind of analysis that makes
such an equivalence possible — i.e., to be able to use Occam’s Razor to eliminate
the indeterminacy in the ‘inverse probability’ method, correctly identified by
Jevons. Consider a standard version of Bayes’s rule:

b (i) — P EH) P ) 5
> P(E|H;) P (H,)

Where, apart from absolutely standard, textbook interpretations of all vari-
ables and notations, the only implicit novelty — for a Jevonian vision — is the
assumption of a denumerable infinity of hypotheses (i.e., above, §3.2:(6)-(7)).
This, in a standard inverse probability exercise, F, the class of ‘observed’ events,
and P(H;) are given; Jevons’s inductive inference problem is, then, to find the
‘most probable’ H; that would ‘most probably’ lead to the observed event of
relevance. To get the perspective I want, rewrite (3) as:

—log P(H;|E) = —log P (E|H;) —log P (H;) + log P(E) (4)

where the last term on the r.h.s of (4) is a shorthand expression for the
denominator in (3) which, in turn, is the normalising factor in such inverse
probability exercises.

Now, finding the Jevonian ‘most probable hypothesis’ is equivalent to de-
termining that H;, w.r.t which (4) is minimised. However, in (4), log P(E) is
invariant w.r.t H;; hence the problem is to minimise (w.r.t., H;) :

~log P (E|H,)  log P (H,) (5)

However, it is clear that the problem of indeterminacy remains so long as
we do not have a principle on the basis of which the prior cannot be assigned
universally.
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Recall, now, that the Jevonian inductive enterprise is supposed to interpret
a class of observations, events, data, etc., — ‘the production of a complicated
machine’ — in terms of a denumerable infinity of hypotheses, in such a way that
a general law is formalised from which, by deductive processes, the outcomes
with which one began are generated (cf. above, §3.2, (2), (7)-(9)). These entities
are formalised — in pre-set theoretic days — in terms of logical and mathematical
formulas. As far as the requirements of the logic of the inductive method recom-
mended in TPOS is concerned, we need only formalise, at most, a denumerable
infinity of outcomes in an observation space, and there is a similar quantita-
tive upper bound for the number of hypotheses. Thus the space of computable
numbers is sufficient for this formalisation exercise.

Suppose, now, that every element in the outcome space and every potential
hypothesis — being denumerably infinite — is associated with a positive integer,
perhaps ordered lexicographically. In TPOS every outcome and every hypothe-
sis is framed as a logical proposition. Every such proposition can, therefore, be
assigned one of the computable numbers and they, in turn, can be processed,
say, by a Turing Machine. Next, the binary codes for the assigned computable
numbers can be constructed, and thereby they can also be given a precise quanti-
tative measure in terms of their counts in bits. Thus the basic result of modern
recursion theoretic inductive inference, summarised in the above proposition,
results from the following Rissanen Rule of MDL Inductive Inference:

Proposition 5 Rule of Induction'*

The ‘best theory’ is that which minimizes the sum of:

(a). The length, in bits, of the number theoretic representation of the denu-
merable infinity of hypothesis;

(b). The length, in bits, of the elements of the space of outcomes (also, by
assumption, at most, denumerably infinite);

The conceptual justification for this ‘rule’ as the underpinning for Proposi-
tion 4 is something like the following reasoning> if the elements of the observa-
tion space (E) have any patterns or regularities, then they can be encapsulated
in a law, on the basis of some hypothesis. The idea that the best law is that which
can extract and summarise the mazimum amount of regularities or patterns in
E and represent them most concisely captures the workings of Occam’s razor
in an inductive exercise. In homely terms: if two hypotheses can encapsulate
the patterns in the data, then choose the more concise one.

The final link in this inductive saga is a universal formula for the prior in
the inverse probability exercise.

Proposition 6 3 a probability measure m (.) that is universal (in the sense of
being invariant except for an inessential additive constant) such that:

logym () &~ K () (6)

!4The problem of summing an infinite sum has to be resolved by some kind of standard
normalization procedure in the case, as here, of denumerable infinity of hypotheses. I shall
ignore this detail here.
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where, K (.): the Kolmogorov complexity of the best theory generated in the
implementation of the rule of induction.

I think this closes the circle consistently with the aims set forth in TPOS
for an inductive exercise. Thus, I rest my case for Jevons, after Solomonoff-
Rissanen, as an inductivist.

4 Complexity of an Undecidable Inference in a
Dynamical System

"[T]he question of the decidability of the Mandelbrot set has another
justification. It can partly answer and give insight to the question:
can one decide if a differential equation is chaotic?"

[2], p.5; italics added.

I have had to tackle formal undecidabilities in economic dynamics. One
of the formal proposition I have derived in economic dynamics relates to the
non-effectivity of policy in a complex dynamic economy. In trying to resolve
some dissatisfaction with this result, I have been influenced by some of Rissa-
nen’s methodological precepts. An outline of a result, the framework and some
conjectures are given in this section.

One of the keys to Rissanen’s inference methodology lies in eschewing the
search for ‘true’ models that give rise to observable phenomena which have
to be explained. Taking a cue from such a methodology I want to pose the
following problem: given the observables of a dynamical system, is it possible
to infer interesting properties that characterise its basins of attraction? In
view of Rice’s theorem in classical recursion theory — or, alternatively, due to
the ubiquity of the unsolvability of the Halting Problem for Turing Machines
— it is often impossible to infer whether observable data is sufficient to decide
membership in a set, unless the set is characterised trivially.

Let me first provide the formal background in a general way.

I shall have to assume familiarity with the formal definition of a dynamical
system (cf. for example, the obvious and accessible classic, [10] or the more
modern, [4]), the necessary associated concepts from dynamical systems theory
and all the necessary notions from classical computability theory (for which the
reader can, with profit and enjoyment, go to a classic like [26] or, at the frontiers,
to [5]). Just for ease of reference the bare bones of relevant definitions for
dynamical systems are given below in the usual telegraphic form!?. An intuitive
understanding of the definition of a ‘basin of attraction’ is probably sufficient for
a complete comprehension of the result that is of interest here - provided there is
reasonable familiarity with the definition and properties of Turing Machines (or

1510 the definition of a dynamical system given below I am not striving to present the most
general version. The basic aim is to lead to an intuitive understanding of the definition of a
basin of attraction so that the main theorem is made reasonably transparent. Moreover, the
definiton given below is for scalar ODEs, easily generalizable to the vector case.
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partial recursive functions or equivalent formalisms encapsulated by Church’s
Thesis).

Definition 7 The Initial Value Problem (IVP) for an Ordinary Differential
Equation (ODE) and Flows. Consider a differential equation:

i = f(z) (7)

where x is an unknown function of t € I (say, t : time and I an open interval
of THE REAL LINE) and f is a given function of x. Then, a function x is a
solution of (7) on the OPEN INTERVAL I if:

@(t) = f(z(t), vt el (8)
The initial value problem (ivp) for (7) is, then, stated as:
&= f(x), z(to) = wo 9)

and a solution x(t) for (9) is referred to as a solution through zy at ty. Denote
x(t) and xo, Tespectively, as:

p(t o) = 2(t), and p(0,20) = 20 (10)
where o(t,x0) is called the flow of & = f(z).

Definition 8 Dynamical System

If f is a O function (i.c., the set of all differentiable functions with contin-
uous first derivatives), then the flow o(t,xo),Vt, induces a map of U C R into
itself, called a C' dynamical system on R:

@ — p(t, o) (11)
if it satisfies the following (one-parameter group) properties:

1 3‘9(07 fL‘[)) = 2o

2. ot + s,30) = p(t,p(s,x0)),Vt & s, whenever both the Lh and r.h side
maps are defined;

3. Y, o(t, o) is a CF map with a C inverse given by: o(—t,x0);

Remark 9 A geometric way to think of the connection between a flow and the
induced dynamical system is to say that the flow of an ODE gives rise to a
dynamical system on R.

Remark 10 It is important to remember that the map of U T R into itself
may not be defined on all of R. In this context, it might be useful to recall the
distinction between partial recursive functions and total functions in classical
recursion theory.
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Definition 11 Invariant set
A set (usually compact) S T U is invariant under the flow ¢(.,.) whenever
Vi eR, o(.,.)C S

Definition 12 Attracting set
A closed invariant set A T U is referred to as the attracting set of the
flow o(t,z) if 3 some neighbourhood V of A, s.tVx € V &Vt >0, p(t,z) €V
and:
plt,z) > A ast — oo (12)

Remark 13 [t is important to remember that in dynamical systems theory con-
texts the attracting sets are considered the observable states of the dynamical
system and its flow.

Definition 14 The basin of attraction of the attracting set A of a flow, denoted,
say, by ©4, is defined to be the following set:

4 = U<op (V) (13)
where: ¢,(.) denotes the flow (., .),Vt.

Remark 15 Intuitively, the basin of attraction of a flow is the set of initial
conditions that eventually leads to its attracting set - i.e., to its limit set (limit
points, limit cycles, strange attractors, etc). Anyone familiar with the definition
of a Turing Machine and the famous Halting problem for such machines — or,
alternatively, Rice’s theorem — would immediately recognise the connection with
the definition of basin of attraction and suspect that my main result is obvious.

Definition 16 Dynamical Systems capable of Computation Universal-
ity:

A dynamical system capable of computation universality is one whose defin-
ing initial conditions can be used to program and simulate the actions of any
arbitrary Turing Machine, in particular that of a Uniwversal Turing Machine.

Proposition 17 Dynamical systems characterizable in terms of limit points,
limit cycles or ‘chaotic’ attractors, called ‘elementary attractors’, are not capable
of universal computation.

Proposition 18 Only dynamical systems whose basins of attraction are poised
on the boundaries of elementary attractors are capable of universal computation.

Theorem 19 There is no effective procedure to decide whether a given observ-
able trajectory is in the basin of attraction of a dynamical system capable of
computation universality

Proof. The first step in the proof is to show that the basin of attraction of «
dynamical system capable of universal computation is recursively enumerable but
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not recursive. The second step, then, is to apply Rice’s theorem to the problem
of membership decidability in such a set.

First of all, note that the basin of attraction of a dynamical system capable
of universal computation is recursively enumerable. This is so since trajectories
belonging to such a dynamical system can be effectively listed simply by trying
out, systematically, sets of appropriate initial conditions.

On the other hand, such a basin of attraction is not recursive. For, suppose
a basin of attraction of a dynamical system capable of universal computation
is recursive. Then, given arbitrary initial conditions, the Turing Machine corre-
sponding to the dynamical system capable of universal computation would be
able to answer whether (or not) it will halt at the particular configuration char-
acterising the relevant observed trajectory. This contradicts the unsolvability
of the Halting problem for Turing Machines.

Therefore, by Rice’s theorem, there is no effective procedure to decided whether
any given arbitrary observed trajectory is in the basin of attraction of such re-
cursively enumerable but not recursive basin of attraction. m

Remark 20 There is a ‘monumental’ mathematical ‘fudge’ in my proof of the
recursive enumerability of the basin of attraction: how can one try out, ‘system-
atically’, the set of uncountable initial conditions lying in the appropriate subset
of R? Of course, this cannot be done and the theorem is given just to give an
idea of the problem that I want to consider.

Keeping the framework and the questions in mind, one way to proceed would
be to constructivise the basic IVP problem for ODEs and then the theorem can
be applied consistently. It will require too much space and time to do so within
the scope of this paper. Instead, I shall adopt a slightly devious method.

Consider the following Generalized Shift (GS) map ([19],[20]):

0:p— 0" paG(p) (14)

Where:

© : (bi-infinite) symbol sequence;

F : mapping from a finite subset of p to the integers;

G mapping from a finite subset of p into p;

o: a shift operator;

The given ‘finite subset of ©’, on which F' and G operate is called the domain
of dependence (DOD).

Let the given symbol sequence be, for example:

p={ p1pp=1.-} (15)

Then:
© D G (p) = replace DOD by G (p) .
oF(®) = shift the sequence left or right by the amount F (p)
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Remark 21 In practice, a GS is implemented by denoting a distinct position
on the initially given symbol sequence as, say, po and placing a ‘reading head’
over it. It must also be noted that p; € p,Vi = 1,2, ....could, for example, denote
whole words from an alphabet, etc., although in practice it will be 0,1 and o
(‘dot’). The “dot’” will be signify that the ‘reading head’ will be placed on the
symbol to the right of it.

The following results about Generalized Shift maps are relevant for my dis-
cussion:

Proposition 22 Any GS is a nonlinear (in fact, piecewise linear) dynamical
system capable of universal computation; hence they are universal dynamical
systems and are equivalent to some constructible Universal Turing Machine.

Thus the GS is capable of universal computation and it is minimal in a
precisely definable sense (see [19] and [20] for full details). It is also possible
to construct, for each such generalized shift dynamical system'®, an equivalent
UTM that can simulate its dynamics, for sets of initial conditions. Now consider
the observable set of the dynamical system, y € A; given the UTM, say U,
corresponding to g, the question is: for what set of initial conditions, say z,
is y the halting state of U. Naturally, by the theorem of the unsolvability
of the Halting problem, this is an undecidable question. This is the theorem
used in demonstrating the uncomputability of Ky (y|«). However, by the above
Zvonkin-Levin theorem, we know that the existence of ‘arbitrarily good upper
estimates’ for Ky (y|a), even although Ky (y|z) is uncomputable.

Now, taking a cue from Rissanen’s methodological point about the irrele-
vance of ‘true’ models, but only of models that can explain the data minimally,
let me consider the above (minimal) universal dynamical system as canonical for
any question about membership in attracting sets, A. What is the complexity
of Ky (p|z)? By definition it should be:

) - minU(p@):y L(p)
KsWle) = {4 ot o) =y

The meaning, of course, is: the minimum over all programs, p, implemented
on U, with the given initial condition, x, which will stop at the halting config-
uration, y. The above theorem formalizes the notion that there is no general
algorithmic procedure to decide any such membership.

Remark 23 Why is it important to show the existence of the minimal program?
Because, is the observed y corresponds to the minimal program of the dynamical
system, i.e., of U, then it is capable of computation universality; if there is
no minimal program, the dynamical system is not interesting! A monotone
decreasing set of programs that can be shown to converge to the minimal program
is analogous to a series of increasingly complex finite automata converging to a

16They can also encapsulate smooth dynamical systems in a precise sense. I have described
the procedure, summarising a part of Chris Moore’s approach, in [28], Chapter 4.
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TM. What we have to show is that there are programs converging to the minimal
program from above and below, to the border between two basins of attractions.

Thus, behind every undecidable proposition — at least in principle — there is
an inference principle which may or may not suggest an ‘approximation’ strategy
to ‘decide the undecidable’. After all, Godel himself thought that the undecid-
able may become decidable by going ‘upwards’, so to speak, in strengthening
the axiom systems; surely, there must be a practical way of going in the opposite
direction to locate the borders of the decidable as approximation to the unde-
cidable, too. Naturally, I expect these highly speculative conjectures to apply,
pari passu, to the computable-uncomputable divide, too.

5 Concluding Thoughts

"Inductive processes have formed, of course, at all times a vital,
habitual part of the mind’s machinery. Whenever we learn by expe-
rience, we are using them. But in the logic of the schools they have
taken their proper place slowly."

John Maynard Keynes, [16], p.241.

It is to Jorma Rissanen’s lasting credit that he has, almost single-handedly
developed a scientific method to make this ‘habitual part of the mind’s ma-
chinery’ entirely and rigorously algorithmic. Thus, he belongs to the modern
scientific movement towards an algorithmic approach to statistics, randomness
and information. As an economist, [ have strived to develop an analogous field of
algorithmic economics, where stochastic complexity and the MDL principle are
as central as algorithmic randomness, computability theory and computational
complexity theory. Learning and induction — indeed, learning as induction — is
a central topic at the frontiers of economics. The frontier researchers remain
blissfully ignorant of the algorithmic approach to learning and inductive infer-
ence, randomness and information. This is strange in a subject which prides
itself on placing the role of scarce information and its husbanding in its citadel.

Economics is singularly free of an algorithmic vision. The mathematics of
economic theory is dominated by Bourbakian thinking. The methodology of
statistical inference in economics is equally stone-aged.

The success of Jorma Rissanen’s single-handed, even single-minded, efforts
to inject a new algorithmic vision into statistical methodology, particularly in
inference, estimation and prediction theories, is heartening for those of us who
find ourselves at the fringes of mathematical economics in view of our algorith-
mic vision.

I believe Jorma Rissanen’s work contributes a missing link to the great
Finnish tradition of work in inductive logic, one which was most cogently stated
by Hilary Putnam in that period of an interregnum between the growing sytem-
atization of the philosophy of inductive logic and the emergence of the recursion
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theoretic inductive movement!? ([22], p.297):

"[W]e may think of a system of inductive logic as a design for a
‘learning machine’: that is to say, a design for a computing machine
that can extrapolate certain kinds of empirical regularities from the
data with which it is supplied."

Jorma Rissanen, together with Ray Solomonoff, have pioneered and ‘patented’
not only the design for a ‘learning machine’; they have actually built it.

17In particular, it must be remembered that Solomonoff’s work straddles the two traditions
and his two path-breaking contributions appeared almost before the proverbial ink was dry

on Putnam’s seminal contribution.
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Compression-based methods for nonparametric on-line prediction,
regression, classification and density estimation of time series *

Boris Ryabko

Siberian State University of Telecommunications and Informatics,
Institute of Computational Technologies of Siberian Branch of Russian Academy of Sciences,
Novosibirsk, Russia. e-mail: boris@ryabko.net

Abstract

Jorma Rissanen has discovered some deep connections between universal coding (or uni-
versal data compression) and mathematical statistics. In particular, the MDL principle has
been one of the most powerful methods of modern mathematical statistics. In this paper
we apply Rissanen’s approach and ideas to some statistical problems concerned with time
series. We address the problem of nonparametric estimation of characteristics of stationary
and ergodic time series. We consider finite-alphabet as well as real-valued time series and
the following four problems: i) estimation of the (limiting) probability P(ug...us) for every s
and each sequence ug . .. u, of letters over the process alphabet (or estimation of the density
p(zo, ..., zs) for real-valued time series), ii) so-called on-line prediction, where the conditional
probability P(z¢y1|z122...2¢) (or the conditional density p(z¢y1|z122...2¢)) should be esti-
mated (when 122 ... 2, is known), iii) regression and iv) classification (or so-called problems
with side information). We show that so-called archivers (or data compressors) can be used
as a tool for solving these problems. In particular, it is proven that any universal code (or
universal data compressor) can be used as a basis for constructing asymptotically optimal
methods for the above problems. (By definition, a universal code can ”compress” any se-
quence generated by a stationary and ergodic source asymptotically to the Shannon entropy
of the source.)

AMS subject classification: 60G10, 60J10, 62G07, 62G08, 62M20, 94A29.
keywords: time series, nonparametric estimation, prediction, universal coding, data com-
pression, on-line prediction, Shannon entropy, stationary and ergodic process, regression.

1 Introduction

We consider a stationary and ergodic source which generates sequences x1xs . .. of elements (let-
ters) from some set (alphabet) A, which is either finite or real-valued. It is supposed that the
probability distribution (or distribution of limiting probabilities) P(z1 = a;,, 22 = @iy, ..., Ty =
a;,) (or the density p(x1,x2,...,x¢)) is unknown, but we are given either one sample z;...z; or
several (r) independent samples z! = a:%...a?tll, ..,x” = x{...zy generated by the source. (Gen-
erally speaking, they cannot be combined into one sample for a stationary and ergodic source
as it can be done for an i.i.d. one.) Of course, if someone knows the probability distribution
(or the density) he has all information about the source and can solve all problems in the best

*Research was supported by Russian Foundation for Basic Research (grant no. 06-07-89025.)
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way. Hence, precise estimations of the probability distribution and the density can be used for
prediction, regression estimation, etc. In this paper we use the following scheme: we consider
the problems of estimation of the probability distribution or density. Then we show how the so-
lution can be applied to other problems, paying the main attention to the problem of prediction,
because of its practical applications and importance for probability theory, information theory,
statistics and other theoretical sciences, see [1, 16, 17, 20, 28, 29, 31, 34, 35, 36, 38, 41, 46]. We
show that universal codes (or data compressors) can be applied directly to the problems of esti-
mation, prediction, regression and classification. It is not surprising because for any stationary
and ergodic source P generating letters from a finite alphabet and any universal code U the
following equality is valid with probability 1:

tlim t7H(=log Pz ...2¢) — |U(x1...2¢)]) = 0,
—0C

where @7 ...xz; is generated by P. (Here and below log = logy, |v| is the length of v, if v is a
word, and the number of elements of v if v is a set.) So, in fact, the length of the universal code
(|U(21...2)]) can be used as an estimate of the logarithm of the unknown probability and,
obviously, 271712l can be considered as the estimation of P(z;...2;). In fact, a universal
code can be viewed as a non-parametrical estimation of (limiting) probabilities for stationary
and ergodic sources. This was recognized shortly after the discovery of universal codes (for
the set of stationary and ergodic processes with finite alphabets [40]) and universal codes were
applied for solving prediction problem [35, 41].

We would like to emphasize that, on the one hand, all results are obtained in the framework
of classical probability theory and mathematical statistics and, on the other hand, everyday
methods of data compression (or archivers) can be used as a tool for density estimation, predic-
tion and other problems, because they are practical realizations of universal codes. It is worth
noting that modern data compressors are based on deep theoretical results of source coding
theory (see, e.g., [11, 17, 21, 24, 33, 34, 35, 37, 48]) and have demonstrated high efficiency in
practice as compressors of texts (zip, arj, rar, etc.), DNA sequences [24] and many other types
of real data. In fact, archivers can find many kinds of latent regularities, that is why they look
like a promising tool for prediction and other problems. Moreover, recently universal codes and
archivers were effectively applied to some problems which are very far from data compression:
first, their applications created a new and rapidly growing line of investigations in clustering
and classification (see [4, 5] and references therein) and, second, universal codes were used as a
basis for non-parametric tests for the main statistical hypotheses concerned with stationary and
ergodic time series [44, 45]. The outline of the paper is as follows. Section 2 contains description
of the Laplace predictor and its generalizations, a review of known results and description of one
universal code. Sections 3 and 4 are devoted to processes with finite and real-valued alphabets,
correspondingly.

2 Predictors and universal data compressors

2.1 The Laplace measure and on-line prediction for i.i.d. processes

We consider a source with unknown statistics which generates sequences xjz5 - - - of letters from
some set (or alphabet) A. It will be convenient at first to describe briefly the prediction problem.
Let the source generate a message 1 ...xy—12¢, z; € A for all 7, and the next letter z;41 needs to
be predicted. This can be traced back to Laplace who considered the problem how to estimate
the probability that the sun will rise tomorrow, given that it has risen every day since Creation
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(see [12]). In our notation the alphabet A contains two letters: 0 (”the sun rises”) and 1 ("the
sun does not rise” ), ¢ is the number of days since Creation, zj ...z;—12; = 00...0.
Laplace suggested the following predictor:

Lo(alzy -~ x4) = (Vaya, (@) + 1)/ (¢ + |A]), (1)

where vg,...¢, (a) denotes the count of letter a occurring in the word z; ... z,—jz;. For example,
if A= {0,1}, x1...x5 = 01010, then the Laplace prediction is as follows: Lo(zs = 0/01010) =
(8+1)/(6+42) =4/7, Lo(xzs = 1|01010) = (24 1)/(5+2) = 3/7. In other words, 3/7 and 4/7 are
estimates of the unknown probabilities P(zy41 = 0|21 ...z, = 01010) and Pz = 1jzy ... 2 =
01010). (It is worth noting that the estimated probability to encounter zero after observing a
binary string that contains only zeros is not one.)

We can see that Laplace considered prediction as a set of estimations of unknown (condi-
tional) probabilities. This approach to the problem of prediction was developed in [41] and
now is often called on-line prediction or universal prediction [1, 20, 28, 31]. As we mentioned
above, it seems natural to consider conditional probabilities to be the best prediction, because
they contain all information about the future behavior of the stochastic process. Moreover, this
approach is deeply connected with game-theoretical interpretation of prediction (see [18, 43])
and, in fact, all obtained results can be easily transferred from one model to the other.

Any predictor v defines a measure by the following equation

t

Y(z1...my) = H Y(zi|xy ... im1). (2)

i=1
For example, Ly(0101) = %%%% = %. And, vice versa, any measure 7y (or estimate of the
measure) defines a predictor: 7y(z;|@y... 2i—1) = y(@1... ®i—12)/ Y(x1... ®i—1). The same is true

for a density (and its estimate): a predictor is defined by conditional density and, vice versa,
the density is equal to the product of conditional densities:

t

L1... L5125
p(x1 .. im1mi) plar...x) = [[ p@iler .. zimn).

plxiler .. xim1) =
( Z| 1 ) p(a:1~~-xi_1) ? baler

The next natural question is how to estimate the precision of a prediction and a probabil-
ity estimation. Mainly we will estimate the error of prediction by the Kullback-Leibler (KL)
divergence between a distribution P and its estimate as follows:

Plalzy - - x¢)
y(alzy - ay)’

prp(ar--z) = Y Plaler - a0) log 3)

acA

where v is the estimate of an unknown conditional probability. It is well-known that for any
distributions P and ~y the KL divergence is nonnegative and equals 0 if and only if P(a) = v(a)
for all a, see, e.g., [15]. The following inequality (Pinsker’s inequality)

" Pla)log @)

P( loge
b=y Q(a)

2

>

1P —Ql? (4)
connects the KL divergence with the so-called variation distance

1P =@ll= > |P(a) - Q(a)],

a€A
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where P and @ are distributions over A, see [7]. For fixed ¢, p, p() is a random variable, because

x1,Z2,- -+, are random variables. We define the average error at time ¢t by
PP =E (prp()) = D Plar-a) prp(z- ). (5)
1w €AY

It is shown in [42] that the error of Laplace predictor Lg goes to 0 for any i.i.d. source P. More
precisely, it is proven that
p'(PllLo) < (|A] - 1)loge/(t +1) (6)

for any source P, [42], see also [46]. So, we can see from this inequality that the average error of
the Laplace predictor Ly (estimated either by the KL divergence or the variation distance) goes
to zero for any unknown i.i.d. source, when the sample size ¢ grows. Moreover, it can be easily
shown that the error (3) (and the corresponding variation distance) goes to zero with probability
1, when ¢ goes to infinity. Obviously, such a property is very desirable for any predictor and for
larger classes of sources, like Markov, stationary and ergodic, etc. However, it is proven in [41]
(see also [1]) that such predictors do not exist for the class of all stationary and ergodic sources
(generating letters from a given finite alphabet). More precisely, for any predictor -y there exists
a source P and ¢ > 0 such that with probability 1 p, p(x1---2:) > ¢ infinitely often when
t — 00. So, the error of any predictor may not go to 0, if the predictor is applied to an arbitrary
stationary and ergodic source, that is why it is difficult to use (3) and (5) to compare different
predictors.

On the other hand, it is shown in [41], that there exists a predictor R, such that the following
Cesaro average t~! Y°/_; pg.p(z1---2¢) goes to 0 (with probability 1) for any stationary and
ergodic source P, where t goes to infinity. That is why we will focus our attention on such
averages and by analogy with (5) we define

Py, P(T1...2¢) = ¢! (log(P(zy...x¢)/y(x1...2¢)) (7)
and
p(y, P) =t} Z P(xq...x) log(P(xy1...x) [y (z1...2¢)), (8)
1.0 EAL

where, as before, v(x1...v;) = [Tiey y(zi|z1...2i-1).
From these definitions and (6) we obtain the following estimation of the error of the Laplace
predictor Lo for any i.i.d. source:

pi(Lo, P) < (([A] — 1) logt +c)/t, 9)

where c is a certain constant. So, we can see that the average error of the Laplace predictor goes
to zero for any i.i.d. source (which generates letters from a known finite alphabet). As a matter
of fact, the Laplace probability Lo(z1 ... ) is a consistent estimate of the unknown probability
P(xy...x).

A natural problem is to find a predictor whose error is minimal (for i.i.d. sources). This
problem was considered and solved by Krichevsky in [25], see also [26]. He suggested the following
predictor:

Kolalzy -+ @) = (Vo -0, (a) +1/2)/(t + |A[/2), (10)

where, as before, vy, ..., (a) is the count of letter a occurring in the word z . .. z;. We can see that
the Krichevsky predictor is quite close to Laplace’s one (1). For example, if A = {0, 1}, z1...z5 =
01010, then Ko(wg = 0/01010) = (3+1/2)/(5+1) = 7/12, Ko(xe = 1/01010) = (2+41/2)/(5-+1) =
5/12 and K(01010) = $1434 = 5.
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The Krichevsky measure Ky can be presented as follows:

f[ T1. i1 $1)+1/2 HaeA(HVT1 jt(a)( 1/2)).

Soa=1+Al2 hG+Al/2) ()
It is known that r 179
(r+1/2)((r+1)+1/2)...(s—1/2)=%, (12)
where I'() is the gamma function (see, e.g., [22] for definition). So, (11) can be presented as
follows:
_ aea@ (. (@) +1/2) /T(1/2))
folner) = S A A 1
For this predictor
(Ko, P) < ((|A] = 1) logt +¢)/(2t), (14)

where ¢ is a constant, and, moreover, in a certain sense this average error is minimal: for any
predictor v there exists such a source p* that

pe(7,p") = ((|Al = 1) logt + ¢)/(2t),

see [25, 26].

2.2  Consistent estimations and on-line predictors for Markov and ergodic
processes

Now we briefly describe consistent estimations of unknown probabilities and efficient on-line
predictors for general stochastic processes (or sources of information). Denote by A* and A*
the set of all words of length ¢ over A and the set of all finite words over A correspondingly
(A* = U2y A%). By Muo(A) we denote the set of all stationary and ergodic sources which
generate letters from A and let My(A) C My (A) be the set of all i.i.d. processes. Let M,,(4) C
Moo (A) be the set of Markov sources of order (or with memory, or connectivity) not larger than
m, m > 0. Let M*(A) = U2y M;(A) be the set of all finite-memory sources.

The Laplace and Krichevsky predictors can be extended to general Markov processes. The
trick is to view a Markov source P € My, (A) as resulting from |A|™ i.i.d. sources. We illustrate
this idea by an example from [46]. So assume that A = {O, I}, m = 2 and assume that the
source P € M>(A) has generated the sequence

OOIOIIOOIIIOIO.
We represent this sequence by the following four subsequences:
SRR EE TN TS

sk kO ok [ k% [ xxx O,
SEEE N ETIOETETY ER
ok ok ok ok % O x ok x JO * .

These four subsequences contain letters which follow OO, OI, IO and II, respectively. By
definition, P € M,,(A) if P(alx1---2¢) = Pla|®i—my1 - @), forall 0 < m < ¢, all a € A and
all x1---2¢ € A'. Therefore, each of the four generated subsequences may be considered as
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generated by a Bernoulli source. Further, it is possible to reconstruct the original sequence if we
know the four (= |A|™) subsequences and the two (= m) first letters of the original sequence.

Any predictor v for ii.d. sources can be applied to Markov sources. Indeed, in order
to predict, it is enough to store in the memory |A|™ sequences, one corresponding to each
word in A™. Thus, in the example, the letter z3 which follows QO is predicted based on the
Bernoulli method + corresponding to the z129- subsequence (= QO), then x4 is predicted based
on the Bernoulli method corresponding to xzoxs, i.e. to the OI- subsequence, and so forth.
When this scheme is applied along with either Ly or Ky we denote the obtained predictors
as Ly, and K, correspondingly, and define the probabilities for the first m letters as follows:
Ly(z1) = Lp(x2) = ... = Lyp(zp) = 1/|A|, K (x1) = K (22) = ... = K (zm) = 1/|A|. For
example, having taken into account (13), we can present the Krichevsky predictors for M,,(A)
as follows:

1 .
W{, 1ft§m,

Ko (@.we) = [l (Dl (va)+1/2) / T(1/2) (15)

e oean — e marayraymy  Ht>m

where 7,(v) = Y ,caVe(va), © = x1...7¢; see [25] and references therein. It is worth noting
that representation (12) can be more convenient for carrying out calculations. Let us consider
an example. For the word OOIOITOOIIIOIO considered in the previous example, we obtain
K5(OOIOIIOOIIIOIO) = 272 3 1118 244 141

Let us define the measure R, which is a consistent estimator of probabilities for the class
of all stationary and ergodic processes with a finite alphabet. First we define a probability
distribution {w = wq,ws, ...} on integers {1,2,...} by

wi=1-1/log3, ..., w; = 1/log(i +1) — 1/log(i + 2), .... (16)

(In what follows we will use this distribution, but results described below are obviously true for
any distribution with nonzero probabilities.) The measure R is defined as follows:

R(zy..wy) = i wit1 Ki(@y..24). (17)
i=0

It is worth noting that this construction can be applied to the Laplace measure (if we use L;
instead of K;) and any other family of measures.
The main properties of the measure R are connected with the Shannon entropy, which is
defined as follows 1
H(P)= lim —— " P(v)log P(v). (18)

m—0oC
m vEA™

Theorem 1 ([41]). For any stationary and ergodic source P the following equalities are valid:
i) lim Slog(1/R(z1---a2)) — H(P)
t—oo ¢
with probability 1,
i) lim % > P(u)log(1/R(w)) = H(P).

t—o00
ueAt
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2.3 Nonparametric estimations and data compression

One of the goals of the paper is to show how practically used data compressors can be employed
as a tool for nonparametric estimation, prediction and other problems. That is why a short
description of universal data compressors (or universal codes) will be given here.

A data compression method (or code) ¢ is defined as a set of mappings ¢, such that ¢, :
A" — {0,1}*, n = 1,2,... and for each pair of different words z,y € A™ pn(x) # pn(y). It is
also required that each sequence ¢, (u1)@n(uz)...on(u,),r > 1, of encoded words from the set
A™ n > 1, could be uniquely decoded into ujus...u,. Such codes are called uniquely decodable.
For example, let A = {a, b}, the code ¢1(a) = 0,1(b) = 00, obviously, is not uniquely decodable.
It is well known that if a code ¢ is uniquely decodable then the lengths of the codewords satisfy
the following inequality (Kraft’s inequality): Y,can 2719 < 1| see, e.g., [15]. It will be
convenient to reformulate this property as follows:

Claim 1. Let ¢ be a uniquely decodable code over an alphabet A. Then for any integer n there
exists a measure t, on A™ such that

—log iy (u) < |e(u)l (19)
for any u from A™.

(Obviously, Claim 1 is true for the measure pu,(u) = 2719W1/%, ¢ 4 27191 Tn what follows
we call uniquely decodable codes just ”codes”.

It is worth noting that, in fact, any measure p defines a code for which the length of the
codeword associated with a word w is (close to) — log p(u).

Now we consider universal codes. By definition, a code U is universal if for any stationary
and ergodic source P the following equalities are valid:

tlim |U(zy...2¢)|/t = H(P) (20)
—00
with probability 1, and

Jim B(U 1))/t = H(P), (21)

where H(P) is the Shannon entropy of P, E(f) is a mean value of f. In fact, (21) and (20) are
valid for known universal codes, but there exist codes for which only one equality is valid.

3 Finite-alphabet processes

3.1 The estimation of (limiting) probabilities
The following theorem shows how universal codes can be applied for probability estimations.
Theorem 2. Let U be a universal code and

por(u) = 270N/, g 27 0O, (22)

Then, for any stationary and ergodic source P the following equalities are valid:

|
i) Jim —(=log Pzy---¢) = (= logpu(z1---20))) = 0

with probability 1,
i) lim = S P(w)log(P(u)/u(w) = 0,

t—oo
ueAt
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Proof. The proof is based on Shannon-MacMillan-Breiman Theorem which states that for any
stationary and ergodic source P

lim —log P(z1...2¢)/t = H(P)
t—00

with probability 1, see [3, 15]. From this equality and (20) we obtain the statement i). The
second statement follows from the definition of Shannon entropy (18) and (21). O

So, we can see that, in a certain sense, the measure puy is a consistent (nonparametric)
estimate of the (unknown) measure P.

Nowadays there are many efficient universal codes (and universal predictors connected with
them), see [11, 21, 26, 34, 35, 40, 48], which can be applied to estimation. For example, the
above described measure R is based on the code from [40, 41] and can be applied for probability
estimation. More precisely, Theorem 2 (and the following theorems) are true for R, if we replace
po by R

It is important to note that the measure R has some additional properties, which can be
useful for applications. The following theorem describes these properties (whereas all other
theorems are valid for all universal codes and corresponding measures, including the measure
R).

Theorem 3. For any Markov process P with memory k

i) the error of the probability estimator, which is based on the measure R, is upper-bounded

as follows: .
Al = 1)|A|"logt 1
LY Pluytoa(P(uy/ A < DAt o]

uEAt

i) in a certain sense the error of R is asymptotically minimal: for any measure p there exists
a k—memory Markov process p, such that

DAk o
Y pulog(py(w) /) > PAZIATIBE o,

ueAt

iii) Let © be a set of stationary and ergodic processes such that there exists a measure ug for
which the estimation error of the probability goes to 0 uniformly:

lim sup (2 3" P(w) log(P(w)/pe(w))) = 0.

t—o00 Pco weAt

Then the error of estimator, which is based on the measure R, goes to 0 uniformly too:

lim sup ( 215 Z P(u)log(P(u)/R(u))) = 0.

o0 peo u€At

The proof can be found in [40, 41].
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3.2 Prediction

As we mentioned above, any universal code U can be applied for prediction. Namely, the measure
uy (22) can be used for prediction as the following conditional probability:

;LU(xt+1|x1...xt) = ;LU(.1’1...xtxt_,_l)/ﬂ(j(l’l...(l}t). (23)

Theorem 4. Let U be a universal code and P be any stationary and ergodic process. Then

| P(x1) P(z|z) P(xy|wy..2-1)
1) lim ~ {E(lo + E(log ———%) + ... + E(log —————— )} = 0,
)t—>oot { ( g/«LU(-rl)) ( g/«LU(xZLI]_) ( g/«LU(l’t‘xln--rt—l))}
1 =L
i%) tlirgo E(t Z(P(l’i+1|x1...xi) — ;LU(xl-H\xl...;ri))Q) =0,
=0
and
1 =1
iii) hm E(= Z\P Tiv1|T1.2) — pu(@ip1]er...a;)]) = 0.
=0

Proof. 1) immediately follows from the second statement of the previous theorem and properties
of log. The statement ii) can be proven as follows:

t—1

. 1
tli,I&E(z Z(P(i'fi+1|$1 o) = pu (@it |z - ~-$i))2) =
i=0
tlg&; Z > Plar..x)(] IPlalar ) — polale . .oz)])? <
1=0 g...2;,EA? a€A

const Z Z Pl ZPG|1’1 2)log Pla|xy ... x;) _

uylalzy ... x;)

1=0 zy...x;€ A? acA
. const
Jim (— Y Plai...x)log(Pxr...x)/p(@r ... 20))).
1.0 €AY

Here the first inequality is obvious, the second follows from the Pinsker’s inequality (4), the others
from properties of expectation and log. iii) can be derived from ii) and the Jensen inequality
for the function z2. O

Comment 1. The measure R described above has one additional property if it is used for
prediction. Namely, for any Markov process P (P € M*(A)) the following is true:

lim log P(xyi1|zy...2y)

=0
t—o0 R(ajtﬂ\ajl...xt)

with probability 1, where R(zyt1|®1...x) = R(x1...x4&41)/ R(@1...x1); see [42].
Comment 2. In fact, the statements ii) and iii) are equivalent, because one of them follows
from the other. For details see Lemma 2 in [47].
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3.3 Problems with side information

Now we consider so-called problems with side information, which are described as follows: there
is a stationary and ergodic source, whose alphabet A is presented as a product A = X x Y. We
are given a sequence (1,91),..., (Ti—1,y—1) and so-called side information ;. The goal is to
predict, or estimate, x;. This problem arises in statistical decision theory, pattern recognition,
and machine learning, see [29]. Obviously, if someone knows the conditional probabilities P (x|
(@1,91)s -+, (Xe—1,Y—1),y) for all 2; € X, he has all information about z;, available before
x¢ is known. That is why we will look for the best (or, at least, good) estimators for this
conditional probabilities. Our solution will be based on results obtained in the parts 3.1 and
3.2. More precisely, for any universal code U and the corresponding measure py (22) we define
the following estimate for the problem with side information:

o MU((mlvyl)z'"7(mt—17yt—1)7(xt7yt))
MU(xt‘(xhyl)’ o (xt_hyt_l)’yt) - theX /’LU((mhyl)a RN} (xt—layt—1)7 (mtayt)) '

Theorem 5. Let U be a universal code and P any stationary and ergodic process. Then
P P
(@1]y1) ) + E(log (z2|(z1,91), y2) +
s (1 |y) pu (2| (21, 91), y2)
P(xt‘(xh yl)a ) (xt—la yt—1)7 yt)

¢) lim E {E(log
t—oo

+FE(lo =0,
( MU(mt‘(mlvyl)z'“: (mt—lvyt—l)vyt) }
. 14
i) tli{goE(; ;(P(wwﬂ(wl,yl),---7(33i,yi),yi+1))—
(@i (@1, 91), s (T, 90), %i41))?) = 0,
and
=
7’7’7’) tligloE(g Z|P(m7«+1‘(m17y1)77(m27y2)7y’0+1))_
i=0
po(@ic (@1, y1)s o (@, vi)s wig1)]) - = 0.

Proof. The following inequality follows from the nonnegativity of the KL divergency (see (4)),
whereas equality is obvious.

P(zi|y) P(as|(z1,31), v2)
— )+ E(log ————"—""2) 4 ... < F(log ——=
MU(331|?J1)) ( pu(z2|(@1,91), y2) ( MU(yl))
P P P

(@1]y1) )+ B(lo (y2l(z1, 1) + E(lo (@2l (21, 91) ¥2)
o (@1 fyr) po (y2l(w1, y1) po (@2|(21,91), y2)
P P

(xhyl) )+E(10 ((mQ,QQ)‘(xhyl))
o (z1,91) o (w2, y2)[(21,31))
Now we can apply the first statement of Theorem 4 to the last sum as follows:

P(mlayl) P(($27y2)|($1,y1))
pu (1, y1)) + Blog po (@2, y2)l(x1,91))

Pl yl(@,v1) - - (-1, 9-1))
po (e y)l (w1, 01) - - (@1, 9e-1))
From this equality and last inequality we obtain the proof of i). The proof of the second
statement can be obtained from the similar representation for ii) and the second statement of

Theorem 4. iii) can be derived from ii) and the Jensen inequality for the function x2. O

E(log P(yl)

+E(lo

= E(log

1
lim ;E(log

t—o00

E(log )=0.
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3.4 The case of several independent samples

Now we extend our consideration to the case where the sample is presented as several in-
dependent samples z! = @i... 2}, #* = 21...2},..., 2" = 7 ...a] generated by a source.
More precisely, we will suppose that all sequences were independently created by one stationary
and ergodic source. (As it was mentioned above, it is impossible just to combine all samples
into one, if the source is not i.i.d.) We denote this sample by z! ¢ 2% o ... ¢ 2" and define
VglogZo. opr (V) = Sy vyi(v). For example, if o1 = 0010,2% = 011, then 11,,2(00) = 1. The
definition of K, and R can be extended to this case:

Kp(ztozo. . oa") = (24)

(ﬁ A=)y ] [aea (C(ateae..cor (V@) +1/2) /1“(1/2))7

i=1 vEA™ (F(Voolomgo...ooo’" (1}) + ‘A‘/Q) /F(|A‘/2))
whereas the definition of R is the same (see (17) ). (Here, as before, U,10,24  opr (V) =
YacA ValoaZo. .opr (V0). Note, that Upiepze opr() = 2img ti if m = 0.)

The following example is intended to show the difference between the case of many samples
and one. Let there be two independent samples y = y1...y4 = 0101 and = = 21 ...2z3 = 101,
generated by a stationary and ergodic source with the alphabet {0, 1}. One wants to estimate the
(limiting) probabilities P(z122), 21,22 € {0,1} (here z122... can be considered as an indepen-
dent sequence, generated by the source) and predict x4x5 (i.e. estimate conditional probability
P(zgxs|xy...x3 = 101,91 ...y4 = 0101). For solving both problems we will use the measure R
(see (17)). First we consider the case where P(z1z2) is to be estimated without knowledge of
sequences x and y. From (11) and (15) we obtain:

1/2 3/2

12 1/2
Ko(00) = Ko(11) = == 25 = 3/8, Ko(01) = Ko(10) - _110 _111 _

K;(00) = K;(01) = K;(10) = K;(11) = 1/4; , i > 1.

1/8,

Having taken into account the definitions of w; (16) and the measure R (17), we can calculate
R(z129) as follows:

R(00) = w1 Ko(00) + wo K1(00) +...=(1—1/10g3)3/8 + (1/log3 — 1/log4) 1/4+
(1/log4—1/logb5)1/4+ ... =(1—1/log3) 3/8 + (1/log3) 1/4 =~ 0.296.

Analogously, R(01) = R(10) ~ 0.204, R(11) ~ 0.296.

Let us now estimate the probability P(z122) taking into account that there are two inde-
pendent samples y = y1...y4 = 0101 and = z1...x3 = 101. First of all we note that such
estimates are based on the formula for conditional probabilities:

R(zlzoy) = R(zoyoz)/R(xzoy).
First we estimate the frequencies :
V01010101 (0) = 3, vo1010101 (1) = 4, ¥01010101(00) = V01010101 (11) = 0, V01010101 (01) = 3,

vo1o10101 (10) = 2, 701010101 (010) = 1, v01010101(101) = 2, v01010101 (0101) = 1,

whereas frequencies of all other three-letters and four-letters words are 0. Then we calculate :

13571 35 135 13
Kp(01010101) = 22— = = ~0.00244, K1( 01010 101) = (271)2 222 1 =2
o(01010101) = & e 102 14 K (0101 0101) = (277 57 157
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~0.0203, K,(01010101) ~ 0.01172, K;(01010101) =277 >3,
R(01010101) = wy Ko(0101 ¢ 101) + wa K1 (0101 0 101) + ... ~
0.369 0.00244 + 0.131 0.0293 + 0.06932 0.01172 + 277 / log 5 ~ 0.0089.

In order to avoid repetitions, we estimate only one probability P(z12ze = 01). Carrying out
similar calculations, we obtain

R(0101 ¢ 101 ¢ 01) ~ 0.00292,

R(21ZQ = 01|y1 Y4 = 0101,.%1 Lo X3 = 101) =
R(0101 6101 ¢01)/R(0101 ¢ 101) ~ 0.32812.

If we compare this value and the estimation R(01) & 0.204, which is not based on the knowledge
of samples z and y, we can see that the measure R uses additional information quite naturally
(indeed, 01 is quite frequent in y = g1 ...y4 = 0101 and z = x1 ... 23 = 101).

Such generalization can be applied for many universal codes, but, generally speaking, there
exist codes U for which U(z! ¢ ?) is not defined and, hence, the measure pp(z1 © o) is not
defined. That is why we will describe properties of R, but do not describe properties of universal
codes in general. For the measure R all asymptotic properties are the same for the cases of one
sample and several samples. More precisely, the following statement is true:

Claim 2. Let z',22, ..., 2" be independent sequences generated by a stationary and ergodic source
and t be a total length of those sequences (t = S0, |2%]). Then, if t — oo, (and r is fized) the
statements of Theorems 1-5 are valid, when applied to x' o 2% o ... o 2" instead of x1... 2. (In
Theorems 2, 4, 5 py should be changed to R.)

The proofs are analogous to the proofs of Theorems 1-5.

4 Real-valued time series

Here we will consider problems of the density estimation and prediction for a stationary process
with densities. We have seen that Shannon-MacMillan-Breiman theorem played a key role in
the case of finite-alphabet processes. In this part we will use its generalization to the processes
with densities. This result was proved by Barron [2] and was an extension of the L1 convergence
obtained in [19, 30, 32]. First we describe considered processes with some properties needed for
a fulfilment of the generalized Shannon-MacMillan-Breiman theorem.

Let (Q, F, P) be a probability space and let Xj, Xo,... be a stochastic process with each
X, taking values in a standard Borel space. As in [2], suppose that the joint distribution P,
for (X1, X2,...,Xy) has a probability density function p(zizs...xy,) with respect to a sigma-
finite measure M,,. Assume that the sequence of dominating measures M,, is Markovian of order
m > 0 with a stationary transition measure. Familiar cases for M, are Lebesgue measure
and counting measure. Let p(xp41|@1...2,) denote the conditional density given by the ratio
P(@1 ... Tpg1)/p(x1 ... 2y) for n > 1. It is known that for stationary and ergodic processes there
exists a so- called relative entropy rate h defined by

h= nh_{lgo —E(log p(xpi1lzy ... xpn)), (25)

where F denotes expectation with respect to P. The following generalization of the Shannon-
MacMillan-Breiman theorem is obtained by Barron in [2]:
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Claim 3. If {X,} is a stationary ergodic process with density p(xy...xzy) = dP,/dM, and
hn, < 1 for some n > m, the sequence of relative entropy densities

—(1/n)logp(zy ... xy)

converges almost surely to the relative entropy rate, i.e.,
1
lim =~ logp(zy...2) = h. (26)
t—oo t

with probability 1 (according to P).

Now we return to the estimation problems. Let {II,},n > 1, be an increasing sequence of
finite partitions of Q that asymptotically generates the Borel sigma-field on F, and let z/¥! denote
the element of Il that contains the point z. (Informally, if 2 is an interval, z!*] is obtained by
quantizing x to k bits of precision). For integers s and n we define the following approximation
of the density

Py, an) = PPl sl (27)
‘We also consider
hs = lim E(log p*(Znt1lr1,. .., 2n)). (28)

Applying Claim 3 to the density p*(z1,...,2¢), we obtain that a.s.
.1 s
lim —logp®(z1,...,x¢) = hs. (29)
t—oo

Let U be a universal code, which is defined for any finite alphabet. In order to describe the
density estimate we will use the distribution w; see (16). Now we define the corresponding
density ry as follows:

ry(zy...2¢) = EwiuU(a?[f] .. xy])\/]\lt(x[f] .. xy]) , (30)
i=0

where the measure uy is defined by (22). (It is supposed here that the code U(:L’[f] . ;rEZ]) is
defined for the alphabet, which contains |II;| letters.)
It turns out that, in a certain sense, the density ri7(x; ... z;) estimates the unknown density

p(r1,. .., x1).
Theorem 6. Let X, be a stationary ergodic process with densities p(xy . ..x;) = dP,/dM,; such

that
S&Igohs =h < o, (31)

where h and hs are relative entropy rates, see (25), (28). Then

lim L log 21T (32)
t—oo t TU(.Z’l...(L't)

with probability 1 and

lim 1 E(log ey )

t—oo ¢ TU(x‘l...ZL‘t)) =0 (33)
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Proof. First we note that for any integer s the following obvious equality is true: ry(zy .. ) =
wSpU(:v[f] ...m?])/]\/[t(m[f] Ll ]) (1 + ) for some 6§ > 0. From this equality, (22) and (32)
immediately obtain that a.s.

1 .. 1 .
lim = lo 7}0(901 1) < lim = log 5 p{(jﬁ ) . (34)
t—oo rU(x1 .. .mt) t—oo { 9=|U(zy"..2; )\/Mt(x[ls] L mk])

The right part can be presented as follows:

plxy...x¢)
PR VAP SN

.1
Jim 7log

p(z .. xt)
Py @)
Having taken into account that U is the universal code, (27) and Theorem 1, we can see that
the first term equals to zero. From (26) and (29) we can see that a.s. the second term is equal
to hs — h. This equality is valid for any integer s and, according to (31), the second term equals
to zero too, and we obtain (33). The first statement is proven.
From (34) and (35) we can can see that

. CIe
P (ml . ..:Et) ]gt(m[s] - Ty ) + lim = ! —log
91U ..al) et

"t
= tlirgo 7 log (35)

E log 7}0(% - Tt) < E log Pil

$(a, ... ay) My(al 2l

ru (e ... x) o-IU (@} el
plzy...xp)
+E log ———. 36
gps(mlv"'vmt) ( )

The first term is the average redundancy of the universal code for a finite- alphabet source,
hence, according to Theorem 1, it tends to 0. The second term tends to hs — h for any s and
from (31) we can see that it is equal to zero. The second statement is proven. |

We have seen that the requirement (31) plays an important role in the proof. A natural
question is whether there exist processes for which (31) is valid. The answer is positive. For
example, let Q be an interval [—1,1], M, be Lebesgue measure and a considered process is
Markovian with conditional density

(2 )7{1/2+o¢ sign(y), ifax<0
p 1 1/2 -« sign(y), ifz>0,

where a € (0,1) is a parameter and

-1, ify <0,

sign(y) = {1 ify>0.

It is easy to see that (31) is true for any « € (0,1/2).

The following theorem describes properties of conditional probabilities ry(z|z1...2m) =
ry(xy..xpmz) /Ty (21...2,) which, in turn, is connected with the prediction problem. We will
see that the conditional density ry(z|x1...2y,) is a reasonable estimation of p(z|z1...zp ).

Theorem 7. Let f be an integrable function whose absolute value is bounded by a certain
constant M. Then the following equalities are valid:

t—oo

3 lim S B Z /f (@ [21. ) AN /f Yo (@lzr ) dM)2) — 0, (37)
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) lim E E|/f (|1 ) AN, /f Vs (2|1 )M ) —

t—»oo

Proof. The last inequality of the following chain follows from the Pinsker’s one, whereas all
others are obvious.

([ $@p(aleran)dMn — [ f@)ru(aloran)diin)? =
/f p(z|zy...xm) — ry(x)e.. xm))d_M)
< M?(/(p(x\xl...xm) — ry(@]@rmm)) M)
< M?(/ (@1 ) — 1o (@] |[dM)? <

const /p(;z’|x1...:cm)1og(p(:c\:c1...xm)/rU(x|x1...xm)dAIm.

From these inequalities we obtain:

t—1

ZE/f p(2]@1.. 20 ) A My /f Ve (@212 ) dM)?) < (38)
=0

-1

Z const E( /p z|z1...xm) log(p(x|z1...om) [rv (x| ... T ) )d Moy,

m=0

The last term can be presented as follows:

t—1
E(/p(:c\xlxm) log(p(z|z1...xm) /rv(x|21. . 20 ) )d M) =

m=0

i /p(a:l...xm)/p(a?\a:l...xm)log(p(x|x1...a:m)/rU(a?\ajl...xm))dﬂfl dMy,) =
m=0

/p x¢)log(p(zy...x) Jry (2. ) )d M.
From this equality, (38) and (33) we obtain (37). ii) can be derived from (38) and the Jensen
inequality for x2. O
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Abstract

From November 1998 until September 1999, Jorma Rissanen and I met on a
regular basis. Here I recall some of our stimulating conversations and some of the
work that we did together. This work, based almost exclusively on a single page of
[12], was left unfinished and has never been published, but it has indirectly had a
profound impact on my career.

1 Meet Jorma Rissanen

I first met Jorma in November 1998. I had just obtained my Ph.D. in Amsterdam
and started a postdoc at Stanford University. These were exciting times: it was at
the height of the dot-com boom, and Stanford was right in the middle of it. Since
my thesis was all about the MDL Principle, I had suggested that Jorma and I could
meet in person during my stay in California. Jorma replied that he would like to.
I was delighted, honored but also a bit worried, since I had been forewarned that
Jorma was not your “usual” kind of scientist...

San Francisco, Category Theory and Statistics I found that, while
Jorma was not one for polite small talk, he did like having lots of beer with a
small circle of academic friends (for most scientists it seems to be the other way
around). He didn’t talk much, but what he said was invariably to the point, direct
and frank. During our first meeting, when I told him that I lived in San Francisco
since it seemed to me so much nicer than Palo Alto, his immediate reply was “I
don’t like San Francisco”. Later that day, we talked about science in general, and
I was quite surprised to learn that, in his first years at IBM, Jorma had been a
serious student of category theory — he even published on it while he was professor
in Sweden [15]. He went on to say that he found category theory to be much easier
than statistics, the field to which he had made such major contributions. When I
asked him why, he said “because much of statistics is nonsense. It is exceedingly
hard to teach yourself nonsense!”. Vintage Jorma: blunt and sharp at the same
time. Some fear him for this, others, like me, find Jorma’s conversation delightfully
refreshing.
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Jorma is, in fact, notorious for his strong opinions about sub-fields of
mathematics — when a Ph.D. student once told him that he had spent
a lot of time studying complex function theory, Jorma exclaimed (not
entirely seriously, I believe) “you’ve wasted your youth!”

Jorma could be as harsh about his own work as he could be about others work — I
vividly recall him saying “how could I have been so stupid” when I suggested that
the central proof in [13] was much more difficult than was needed. When I told him
that I did not quite understand another proof of his, in [11], he told me that he
himself only understands it some of the time, “when I have one of my better days”.
I am referring to the proof of what is perhaps his most well-known theorem: the
central result of [11], which is an extension of the information inequality, but, from
a statistical point of view, can also be interpreted as — as Jorma put it, now less
modestly but entirely correctly — “a grand Cramér-Rao theorem.”

Soccer and Impounded Cars Our first meeting went quite well, and I was
honored that Jorma asked me to visit him again. In the end, I visited him every 3-4
weeks during my year at Stanford - at the time, Jorma was still at IBM Almaden,
in San Jose, just 40 minutes further down the highway. I usually arrived at 10
in the morning and stayed for the whole day. Between 12 and 2 however, Jorma
would often leave to play soccer with a group of friends, something he did three
times a week. At the time he was 67, but still very good at it: in his youth Jorma
had seriously considered becoming a professional soccer player. In the end, he had
decided to pursue his Ph.D. instead — as Jorma told me during one of my visits,
he still doesn’t know whether he has made the right choice. When Jorma went out
for soccer, I used to have lunch at IBM’s luxurious cafeteria, paid for by Jorma’s
card. On one occasion, my car had broken down, and Jorma told me that Nemo,
one of his soccer friends, could probably arrange a good new car for me for as little
as $ 150: Nemo was a car dealer who took over impounded cars from the police
if they hadn’t been picked up for more than a year. I was fascinated: a brilliant
scientist who always speaks his mind, played soccer at world-class level and counts
impounded car dealers among his friends.

During my visits, Jorma and I also did some work together. Rather than actually
working on a joint publication, we were both pursuing related but distinct ideas,
always discussing our latest progress during our meetings. So what did we work on?

2 Prediction is Coding

I learned about the MDL Principle from the monograph “Stochastic Complexity in
Statistical Inquiry” [12], the “little green book,” in which Jorma so eloquently puts
forward the main ideas underlying the MDL Principle. In Chapter 2, Jorma notes
that different research communities have a different understanding of the concept of
a “model”. In statistics, a model is usually a family of probability distributions, for
example, the Gaussian or normal family. In other fields such as pattern recognition
and machine learning, a model is usually a family of deterministic hypotheses or
predictors. For example, we may try to find a relationship between a variable X,
taking values in some set X', and a variable Y, taking values in ), by considering a
“model” F, which is really a family of deterministic functions f: X — Y. f is then
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fit to the data (z1,vy1),..., (@n,Yn), using, for example, the least squares criterion;
concrete examples are given below. Jorma claims that, from an MDL perspective,
there is no real distinction between the probabilistic and the deterministic type
of model: they may both be viewed as defining codes or equivalently, description
methods for the data. Statistical inference should then proceed by selecting the
model (set of description methods) that leads to the shortest codelength of the
data.

A Simple Device Already Used by Gauss How, then, should we associate
models with codes? For probabilistic models this is obvious: the Kraft inequality
tells us that for every probability distribution P, there exists a uniquely decodable
code such that, for all outcomes z, the codelength of x is (essentially) equal to
—logp(x), p being the mass function of P. The information inequality indicates
that this particular code is the only reasonable code that one may want to associate
with P [3, Chapter 3]. But what about deterministic predictors f7

According to Jorma, we should map them to codes as follows. We first map
each f to a conditional distribution py, defined in such a way that —logpy(y | ) is
an affine (linear with constant offset) function of the loss L(y, f(x)) that f makes
when predicting y given #. We should then use the code with lengths —logpy.
His remarks are worth quoting in full [[12], page 18; mathematical notation slightly
adjusted, material between square brackets and emphasis added by myself]:

... The two views however can be reconciled by the simple device used
already by Gauss for the distributions bearing his name. In fact, for any
desired distance measure L(y;, 9;), [and any predictor f under consider-
ation] define a density function

pr(y; | @) = Ke Lvnf @), (1)

where K is so chosen that py becomes a proper density function over the
range of y;. Taking the product of these, py(y” | ™) = [T pr(wi | @),
over the observed data set, gives the desired conditional density function
for sequences |...]

[For example] let the data consist of a binary sequence y™ = 41, ..., yn.
With some predictor g; as a function of the past observations, let L(y;, ;) =
0 if the prediction is correct, i.e., if y; = ¥, else let L(y;,9;) = 1. The
desired criterion for the goodness of the predictors is the number of mis-
predictions in the observed sequence. Picking in (1) the base of the
exponential as 2, we get P(1 | §;) = K or K/2, depending on what the
predicted symbol is. In either case, P(0 | ;) = 1 — P(1 | ¢;), which
makes K = 2/3. With this the number of mistaken predictions made
differs only by a constant from the quantity — > ,logp(y; | %), which
is seen to be an expression in terms of probabilistic model [and corre-
sponds to the codelength of the data according to a particular uniquely
decodable code|

...As another example, with L(y;, %) = (y; — %)%, (1) defines a normal
density function with mean ¢; and variance 1/2. The induced normal
density function for the data py(y™ | z™), as defined by its negative
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logarithm, is

n

~ n
—logps(y" | ") =D (yi — 4:)* + 5 I,

i=1

Again we see that the sum of the squared errors differs from the negative
logarithm of a density function only by a constant.

This single page constitutes all Jorma writes about the unification of different types
of models. When I first read it (in 1995) I was highly intrigued: one is promised here
a new, fully general notion of “model”, encapsulating all previous ones, in which a
model really becomes a language that allows one to express particular properties of
the data [3]. This claim is bold, exciting, but only treated in the most sketchy of
fashions. The examples that Jorma gave raise all kinds of questions. As will become
clear, trying to answer these, and validating Jorma’s claim, has, to a large extent,
shaped my own career.

An immediate question that comes to mind is: why use logarithm to the base 2 in
the 0/1-loss example? And, relatedly, why use variance 1/2 in the Gaussian (squared
error) example? These seem to be arbitrary choices. They may be justifiable if we
do have some additional probabilistic knowledge about the situation we are trying
to model, e.g. that the errors are Gaussian with known variance 1/2. But we
often want to use predictors with squared error in cases where we hardly have
any probabilistic knowledge; in particular, we usually do not even want to assume
normality. Does the approach still work in such cases?

Optimality To phrase this question more precisely, for a fixed class of predictors
F, a fixed loss function of interest L : ) x Y — R and a fixed § > 0, for each f € F,
define an associated conditional probability distribution Py s identified by its mass
function ps(Y]X), as follows:

pf,ﬁ(y | z) = %e—ﬂ(y;f(w)) @)

where Z(8) = > ey e PLWf(2)) is a normalization factor. (2) is extended to several
outcomes by taking product distributions. For the 0/1-loss, Z(8) = 1 + e for
other loss functions Z(8) may depend on f and x; if  is not countable, py, g becomes
a density with respect to some fixed underlying measure and the summation in the
definition of Z(3) becomes integration. For example, for the squared loss, with the
variable substitution ¢? = 1/(28), (2) becomes a conditional normal density and
Z(B) =1/V2r0? = /B/2r. We see that for every choice of 3 > 0, the codelength
obtained by coding with py is an increasing affine function of the loss induced by f:
for all 2™ € &A™, all y"* € Y", we have

—logprs(y”" | 2") = B L(ys, f(:)) +nln Z(8B). (3)
i=1

Thus, for each given sequence of data, and any two predictors f1 and fa, f1 better
fits the data in terms of L if and only if py, g better fits the data than py, g in terms

of likelihood. For fixed (3, the likelihood will be maximized for Pia where f is the f
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that minimizes, among all f € F, the empirical risk 37, L(y;, f(x;)). In my thesis
I called this the optimality property of the mapping (2): the optimal (best-fitting
in terms of L) f gets mapped to the optimal (best-fitting in terms of likelihood) p
This is one of the main reasons why the property (3) is desirable for our mapping
from deterministic f to probabilistic p.

Reliability The question that was asked above can now be rephrased as: is there
a natural choice for 87 After two years, in 1997, I discovered that such a natural
choice exists: we should simply learn § from the data, using some likelihood-based
method such as maximum likelihood, MDL or Bayesian inference. The resulting 3
has a particularly useful property which may be called reliability. To explain this
further, assume, for example, that we use two-part code MDL [3]. If one has only
vague or no prior knowledge about what 3 should be, the straightforward thing is
to first encode some f € F, then encode some 3 > 0, and then encode the data
with the encoded py 3, using the combination (f, ) which minimizes the total two-
part code-length. In this way, we can usually gain some additional compression of
the data, which indicates that § captures some interesting property of the data.
This is indeed the case, as is now shown. Note first that under any reasonable
method for coding 3, for large n, the encoded 3 will be close to the ML estimator
Bf achieving maxgpyss(y™ | «"), where f is the previously encoded predictor f.
This ML estimator has a very special property, and this property is what makes
learning £ the natural thing to do. Namely, letting E 3[-] denote expectation under
py,3, we find that, no matter what data (z",3") is observed, for any fixed f, we
have

fﬁ[LYX ZL%: f(:)) (4)

To see this, simply differentiate the minus log-likelihood (3) with respect to 5. The
minimum is achieved if we set the derivative to 0, and this gives, for arbitrary 3/,

n =S Ly e BLwy’)
> Ly f(@:) +n 2y My (y)) =0, (5)
i=1

from which (4) follows. Note that the py 3 are really conditional distributions for ¥
given X", so they only induce a conditional expectation of L(Y, X), i.e. a function
which maps each value for X to a corresponding expectation. However, this function
is a constant: the expectation does not depend on X, and we may treat it like a
single number, as in (4). In my thesis, I called (4) the reliability property of the
mapping (2), since, for each f € F, the best-fitting Bf gives a “reliable” (unbiased
in a very strong sense) indication of the performance of f on future data.

Entropification The reliability property indicates that it may be useful not only
to learn f, but also to learn § from the data, and this suggests mapping F to the set
of distributions P = {Ps s | f € F, 8 > 0}, where Py g is given by (2). In my thesis
and in [6], I called this mapping the entropification of F, a name which has hardly
caught on (but see [7]). As long as we restrict 3 to be nonnegative, the likelihood
will be jointly maximized for a distribution p 735 such that f is optimal in terms

of empirical risk, and B i is a reliable estimate of the performance of f . There is a
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slight problem in that for some loss functions, ﬁ may become negative, and then
(3) indicates that the maximum likelihood will be achieved for some py g such that
f has the largest rather than the smallest empirical risk within the set F. The
problem can be avoided by restricting the model P to # > 0. In fact, it is not clear
whether this is a “problem” at all, because negative fi’ has a clear interpretation.
In the classification case, if Bf < 0, this means that one obtains smaller loss by
predicting a 0 whenever f predicts a 1 and vice versa. Thus, f makes a mistaken
prediction on more than half of the sample points, which means that it performs
worse than random guessing.

One may doubt the practical relevance of the optimality and reliability properties
(3) and (4), since, if F is large, the ML estimator p 7,5, My of course be prone to

terrible overfitting and one might prefer other estimators instead. However, (3) and
(4) immediately imply “expected” versions of the two properties, and these make
the notions relevant for any likelihood-based inference method, including Bayes and
MDIL. Namely, fix any joint distribution P* on X x ). Let f be the unique best
predictor relative to P*, i.e.

[ i=arg i}gﬁ Exy~p<|L(Y, f(X))],

and let P be the conditional distribution of the form (2) that minimizes conditional
KL-divergence to P*, i.e.

P:=arg glei%D(P*HP)7

where D(P*||P) := Ex.~p+ [D(P{;lXHP)] is the conditional KL divergence [5]. For
simplicity we assume here that f and P exist and are unique; otherwise, we make
no assumptions about P*; in particular, we do not assume that P* € P. Then, as
shown in my thesis, we have

pP= Ps 5 (optimality),

for some B >0, and, if B > 0, then
Ep[L(Y, F(X))] = Ep-[L(Y, f(X))] (reliability) (6)

For discussion about the case 3 = 0, see [6].

Now, as the sample size increases, if a likelihood-based estimation method for P
converges at all, it will converge to the P minimizing KL divergence to P* [3]. Thus,
the expectation-versions of the reliability and optimality-properties indicate that, if
predictors are mapped to distributions using the “entropification” method (2), then,
whenever estimation methods such as two-part or predictive MDL converge at all,
they will (a) converge to the P that leads to the best predictions in terms of the user-
supplied loss function of interest; and (b) give a consistent (asymptotically unbiased)
estimate of how good the predictions of P really are. This seems exactly what is
wanted from a mapping from deterministic predictors to description methods. I
also found that earlier, [9] had explored a one-part code for the 0/1-loss based
on essentially the same idea (averaging out g rather than encoding it). Finally,
a seemingly disturbing aspect of Rissanen’s approach (fixed 3), when applied to
the 0/1-loss, was its apparent difference from an earlier approach by Quinlan and
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Rivest [10], who also tried to apply MDL in a deterministic classification context. I
found that, if we allowed 3 to be determined by the data, then a simple application
of Stirling’s approximation showed that the Quinlan and Rivest approach in fact
became equivalent to Rissanen’s method after all. All this lead me to believe that
“entropification” (i.e. extending the Gauss-Rissanen idea by allowing (3 to be learned
from the data) was the right way to go.

Simple vs. Nonsimple Loss Functions Yet all was not well: as discussed
in my Ph.D. thesis, entropification is surrounded by a myriad of slings and arrows.
Here I concentrate on the most important one: the whole idea only works if the loss
function is such that Z(8) does not depend on f and x. In my thesis, I called such
loss functions “simple”. Both the 0/1- and the square loss functions are “simple”,
but most other loss functions of practical interest are not “simple”. On our very first
meeting, while praising the entropification idea in general, Jorma expressed doubts
that it could be extended to such more general loss functions. For example, in a
classification context, we may deal with an asymmetric loss function, which applies
when predicting a 0 while the outcome should have been a 1 is much worse than
vice versa. For example, Las(0,0) = Las(1,1) = 0, Lag(0,1) = 1, Las(1,0) = 108,
Loss functions such as this one are very important in practical applications such as
deciding whether or not a certain drug should be administered to a patient. Lag
is not simple, since Zy e PLWY) depends on 3. In that case, the mapping (2)
leads to values of Z(3) depending on f and z, and the optimality property (3) is
destroyed. We could try to save it by defining Z'(8) = sup,/cy 2 yey e PLWY) and
using (2) with Z(3) replaced by Z’(3). The distributions in P would then become
defective (summing to less than one). Note that we will interpret our distributions
as codes, and from such a coding perspective, there is nothing wrong with defective
distributions in principle: via Kraft’s inequality, they still correspond to codes.
However, the approach is still flawed, since when using defective distributions in
this way, the optimality property is restored but the reliability property is lost! How
can one generalize the idea so that both the optimality and the reliability property
continue to hold? Jorma was doubtful that this could be done, and that his own
bold claim “prediction is coding” could still be maintained for such nonsimple loss
functions (interestingly, Phil Dawid, during my thesis defense two months earlier,
had raised exactly the same doubts).

Feeling challenged by Rissanen and Dawid, I spent many an afternoon in the
Stanford or San Francisco sun, trying to figure out a way to make “entropification”
work for a larger class of loss functions. I felt that somehow it was possible. Each
time I drove over to Jorma, I discussed my newest ideas on the topic, and gradually,
I convinced him that my approach was feasible. Usually he would just listen, make
some encouraging but general remarks, and then one day later send me an email,
invariably starting with ”Peter:”, followed either by a counterexample to my latest
approach or some other profound issue.

The Importance of Being Brief Just as in conversation, Jorma’s
emails are invariably brief and to the point. Here is an example dated
February 1999: “Peter: The thing that’s missing in your lemma is only
to show the convergence 0 — 6*, which permits you to replace the almost
sure convergence of the sum simply by the entropy. Incidentally, if you
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have time next week we should meet. Jorma.”

My responses were always long. Similarly, Jorma’s MDL books are short,
mine is very long. Jorma sticks to his own principle. I would love to do
the same, but find that I lack the time: as Blaise Pascal has said “I have
only made this letter longer because I have not had the time to make it
shorter.”

In the end, with Jorma’s help, I found a partial and surprisingly simple solution to
the nonsimple loss problem, which I'll now describe. For sake of generality, we drop
the restriction that the set of possible predictions coincides with the set of outcomes
Y. Thus, let A be the set of possible predictions (A stands for “acts” or “actions”,
as decision theorists would prefer to call them), and let ) be the set of possible
outcomes to be predicted. Then a predictor f is a function f: X — A, and a loss
function is a function L : Y x A — R. With each loss function we can associate its
range
L:={leR:l= L(y,a) for some y €Y and a € A}.

For simplicity, we restrict ourselves to cases where £ is finite. For example, with
L = L., the asymmetric loss defined before, we have £ = {0, 1,105},

Coding the Loss rather than the Data The central idea to make en-
tropification work again is to code the losses rather than the y-values. Thus, we
associate each f and § with a code for describing, for each 4, the size of the loss
l; := L(y;, f(x;)), obtained when predicting y; based on f(z;). Thus, rather than
coding y; given z; using a code not depending on f (as in the original entropification-
approach), we now code I; using a code which does depend on f.

To this end, for each § > 0, we define a mass function pg on £, simply by setting

ps(l) = %9_51 (1)

where Z((3) is given by
z2B)=y e (®)
lel
pg is extended to sequences by independence, pg(l1, ..., l) = [T, pa(li).

For given data z",y™, given f € F and > 0, we now code the corresponding
losses I1,12,...,l, using the code with lengths —logps. Thus, for each 2™, 4", we
get codelength

n
—logpa(I") = B L(yi, f(w:)) +nln Z(3). 9)
i=1
(note again that pg does not depend on f, but I" does). (9) corresponds to (3) and
shows that our mapping satisfies optimality. How about reliability? Let’s fix some
f and compute the derivative of (9) with respect to 3, i.e. (d/dB)(—logpg(l"™)).
A straightforward calculation analogous to (5) shows that if the derivative is 0 for
some 3 > 0, then the likelihood achieves a maximum (the minus log likelihood is
minimized) for this 8, and for this 3, we have

EglL] = %ZL(% f(@3).
i=1
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But this is just the reliability property (4) again. Further analysis reveals that
an analogue of the expectation-versions of reliability and optimality also holds.
Thus, by directly coding losses rather than outcomes we have recovered the essential
properties of entropification for simple loss functions!

This approach does the trick, but it also raises a lot of questions: (a) what
if the maximum likelihood is achieved at some 3 < 07 (b) can we still think of
inference based on coding of the losses rather than the data as a form of the MDL
principle? Philosophically, can there be some rationale for coding losses rather than
data? Or should we somehow further adjust the approach such that, from what
is encoded, the data 1, ...,y can always be recovered? More generally, the idea
to code losses rather than data, which implies that the objects one actually wants
to encode depend on the code one chooses to encode them, seems highly unusual!
(c) How does the approach extend to continuous loss functions and loss functions
with infinite domains? (d) does there exist a general formulation which subsumes
both the “simple” approach (2) and the nonsimple approach described above? (e)
How does the approach compare to the “aggregating algorithm” designed by Vovk
and others [16, 8, 17, 1]7 The aggregating algorithm can also be re-interpreted as
mapping predictors/loss functions to probability distributions using (2), but rather
than being learned from the data, § is chosen as a function of the loss function,
and sometimes the sample size, in order to achieve good worst-case performance.
Intriguingly, it turns out that Vovk’s approach can only work for nonsimple loss
functions — when Vovk deals with the squared error loss function, he restricts the
range to [—1, 1], and then Z(3) becomes dependent on f(z).

3 An Unfinished Tale

I found the solution sketched above in the final weeks of my stay in Stanford. A few
months later I discovered how one can avoid the problems with § < 0, and I also
discovered a more general approach subsuming the original entropification method,
the method described above, and a third method which works for some continuous
asymmetric loss functions. Still, the important question (b) remained open, and I
thought that I should only publish this work after having given more thought to it.
Yet, until 2003, there were always more urgent things to work on, and I could not
find the time for these thoughts. Then, in 2003, John Langford and I discovered
that even with the simple 0/1-loss, applying MDL or Bayesian inference to an
“entropified” model class P can be inconsistent: there exist sets of 0/1-predictors
F such that two-part MDL or Bayesian inference based on the associated P never
converges [4, 5]. Note that the optimality and reliability properties indicate, as
written below (6), that if MDL estimation converges at all, it converges to the
“right” P. The problem that Langford and I discovered is that in some cases, MDL
estimation does not converge at alll Even though the best classifier f € F has
a small description length, as the sample size increases, MDL keeps selecting ever
more complex classifiers, all of which are of much worse quality than the simple f.
This seemed to be such a setback for the whole entropification idea, that I further
postponed sorting out the details. Thus, my paper “Prediction is Coding, ” about
entropification for general loss functions, has been left unfinished and has never
been published. I do hope to finish it someday soon! (but I’ve been saying that for
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years). Of course, we could have made it into a joint project with Jorma, but his
interests shifted as well — soon he was all into the Kolmogorov minimum statistic.
He did publish, in 2003, a paper on normalized maximum likelihood for ‘simple’
nonlogarithmic loss functions, which was inspired by our many conversations at
Almaden [14].

The Impact of Entropification It should be clear, that, although, in the end,
we have not jointly published about it, Jorma’s thoughts about “the device already
used by Gauss”, while fitting on a single page, have had a tremendous influence on
my career. It was the basis for a large part of my Ph.D. thesis, of my first COLT
paper [6], of the Bayes/MDL-inconsistency papers [4, 2, 5] — the latter having caused
quite a stir among some Bayesian statisticians. In 2004, I was awarded a prestigious
VIDI-grant by NWO, the Dutch science foundation. This award has made it possible
to start what is rapidly becoming my own research group. The grant proposal was,
in fact, all about entropification. I should really like to thank Jorma for that single
page in his book!
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A Great Mind

Paul Vitanyi
CWTI and University of Amsterdam

April 7, 2008

1 First Contact

I may have met Jorma Rissanen in the flesh for the first time in Japan on Mount Fuji, in the
Fuji Center for Training and Education, a marvelous facility for small conferences on the slope
of Fuji-San, where an IEEE Workshop was organized in 1993. Jorma turned out to be a dapper,
ramrod straight, wiry and muscular, little man with sand-colored hair that stood straight up
on his head. Talking with others, he stood straighter than ever and defiantly looked up, and
either got bored or said “gosh, that may well be true; I may have to look into that.” His size
is a source of worry to him, not in the last place because it prevented his dream come true. As
he told me many times over the years, in his youth he was an intrepid soccer player. But he
became a scientist instead. Spending most of his career at IBM Almaden Research Center, he
has been the main stay of the IBM soccer team, practicing almost daily, until his retirement at
the age of seventy.

Lucky for Jorma, he has been supported and guided by his lovely wife Riitta. “Riitta is
infinitely wise. Sometimes I go against her counsel, but she is always right and I live to be
sorry.” Jorma gave evidence: “Let me tell you a story. There was a meeting in Khwarizm, south
of the Aral Sea in central Asia, where Al-Khwarizmi came from. Riitta told me that I was stupid
to go there, and why should I want to go there anyway? Nonetheless I went. The first evening
I had something to eat that didn’t agree with me. The remainder of the meeting I spent in the
bathroom, and couldn’t talk with anyone. Riitta was right again.” Jorma told about Linkoping
University “they offered me a professorship at the University. Riitta said ‘don’t go, what do you
want there?’ I went nonetheless, no doubt driven by ambition. But I felt miserable there. After
a year I quit. Riitta was right.” If I quote Jorma, it is from memory. Nothing I can write will
do justice to his inimitable style, lucid, brief, to the point, and disconcertingly honest, both in
writing and in the spoken word. Thinking about Jorma I have many fond memories; to group
them may be easiest by tying them to various beverages. My present circumstances where the
consumption of alcohol is a hazard, excuses this greediness, much like Evelyn Waugh states in
the Preface to ‘Brideshead Revisited:’

"It was a bleak period of present privation and threatening disaster [...] and in
consequence the book is infused with a kind of gluttony, for food and wine, for the
splendors of the recent past, and for rhetorical and ornamental language which now,
with a full stomach, I find distasteful.”
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2 Sake

At the meeting in the Fuji Center for Training and Education, the limited hotel facilities in the
Center itself were not sufficient to house all participants. So many were staying at the excellent
Sun Green Fuji Hotel in nearby Hakone, Japan and Tokio’s rural countryside for hiking and
going to the ‘onsen’, the open air thermal baths. Among those so favored were Jorma and me.
This meant that one had to get from the Center to the Hotel and back. After a memorable
evening in the Center where with the rolling thunder of a Taiko drum group, led by a supreme
female Taiko drummer which is unusual, we were transported back to the Sun Green Fuji by a
small bus. Jorma, however, was invited by a group of distinguished Japanese scientist in their
limousine. Being in conversation, Jorma invited me too. I, however, suggested it was more cozy
to take the minibus. “I cannot do that,” Jorma said, “because it does them honor to drive me
home in the limousine.”

Back in the Sun Green Fuji we looked for a bar to discuss things, but there was no bar. So
back in the hotel room with Joe Suzuki and some other Japanese whose names have escaped
me, we called room service and asked for sake. It turned out that sake was only served together
with a meal. “How much sake with 150 dollars of sushi?” Turned out to be a lot of sake and
exciting conversation till deep in the night.

In Melbourne, Australia, at a meeting organized by the indefeatigable David Dowe, and
possibly David Wallace and Kevin Korb, called by the improbable name of ISIS’96, we met
again. Jorma held his own against characters like Marvin Minsky and Ray Solomonoff. At one
of the first nights I went to dinner with Jorma and a small Finnish contingent led by Henry
Tirri. We ended up in a Japanese restaurant. Conversation was amiable and heated, but being
jet-lagged I cannot remember details. Anyway, the sushi was sprinkled with sake; and more
sake as the evening progressed. Next day I had cause to regret this. Around midnight the place
wanted to close; we were the last guests. On the way out the entire Japanese staff and waitresses
formed a queue to the exit, and bowed us reverently farewell. “So much sake” murmered the
waitresses softly.

In the DIMACS Workshop on Complexity and Inference in 2003 we had occasion to visit a
Japanese restaurant again; sushi and sake galore. Ray Solomonoff and his wife Grace, who are
very cunning in these matters, had figured out that if one became a member of the Honors Club
of the Hilton Hotel were we all stayed, one had the right to a beverage of his choice in the bar
of the hotel. The bar was usually deserted when we came in, and the bartender got very happy
by the unusual choices we made, Daquiri, Tropical Sunrise, and so on. He consulted his cocktail
manual, and provided ever better concoctions, to Jorma’s delight.

3 Beer

In Kopenhagen at a tutorial meeting organized by Peter Johansen at the Datalogisk Institut of
Kopenhagen’s Universitet (if I spell it right) Jorma was accompanied by Riitta. As was often
the case, Jorma looked for a friendly trusted face. We three spend most evenings together,
and, as Jorma told me “Riitta likes you. That is all I need.” T liked Riitta too. She often
has a marvelously malicious sense of humor which is rare to come by. We drank several beers
together, in or close by Tivoli. In Jorma’s tutorial, in an ancient lecture hall, he held forth over
the philosophy and the sublime qualities of the minimum description length principle (invented
by him) for doing statistical inference. One of the members of the audience objected “but the
statisticians say ...” This was grist on Jorma’s mill. He shouted triumphantly, with brightened
eyes, one of his favorite homelies, thus silencing the opposition. Irecall that the outing and dinner
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of this meeting were to a remarkably pretty old-fashioned wooden house-restaurant probably
near a lake. There, in the old-fashioned very light dining room we had an excellent dinner with
Riitta, Jorma, and me at a table for three.

In Barcelona in 1995 I invited Jorma to give a keynote lecture. He graciously accepted and
brought Riitta. We drank beer and wine and at the conference dinner, in some dark setting if
I recall correctly, Riitta said to me with a dangerous gleam in her eye “I don’t like your friend,

In November 2002 Ursula Gather organized a small workshop in Statistics at the University
of Dortmund. “Apparently the statistical community is finally starting to appreciate these
ideas,” Jorma wrote. The meeting took place in a small hotel with meeting rooms so that the
participants could mingle and meet in the bar and at dinner. Jorma had his heyday. Most of the
participants were German scientists of leftish persuasion. Gleefully he said “Riitta and I voted
for George W. Bush.” After an appreciable silence “And before that for Ronald Reagan.” After a
rather deeper silence he explained “The terrorists of nine-eleven have to be treated harshly. The
French and Germans were really cowards not to support the attack on Afghanistan. Especially
the French are bad. Bush renamed ‘french’ fries to ‘freedom’ fries, and ‘french’ toast to ‘freedom’
toast, to show the French what was what. Riitta and I only talk about ‘freedom’ fries and
‘freedom’ toast. There was an embarrassed silence among the German scientists, which endured
while they were struggling with the conflicting emotions of admiration for the great scientist
Jorma Rissanen and the surprising political insights he had just offered.

4 Wine

Dagstuhl Castle, the German facility of the state Saarland to foster Computer Science by fa-
cilitating the organization of small live-in week-long seminars, has, apart from excellent served
meals also excellent drinks. Situated in the forests near the Saarland village of Wadern, the
castle invites nature walks and great conversations. There is also a fitness room and exception-
ally large sauna facilities. Experience has it that although some groups don’t use the latter at
all, some groups use it intensively every day. The beer is of three types, with the Bitburger
“bitte ein bit” one of the favorites. But here I want to talk about the wines. By far the best,
and capable of competition with the finest restaurants, is the ‘Chante Alouette’ Saint Emillion
Grand Cru. I was introduced to it by Steve Smale, and have drunk no other wine at Dagstuhl
since. In the spring of 2003, at the Centennial Kolmogorov Seminar, in honor of the 100th birth-
day of that great Russian mathematician, I met Jorma again. Also present was a contingent
of Russian mathematicians and computer scientists, primarily from Moscow, and constituting
a group that is known as the ‘Kolmogorov school’, even though the namegiver has long passed
away. One other information theorist of Russian extraction was Boris Ryabko, a good friend of
Jorma from Novosibirsk. In the evenings there was sauna, enthusiastically taken by the Fins
like Jorma, Henry Tirri and Petri Myllymaki, myself, and the odd Russian like my co-author
Kolya Vereshchagin and Boris. Jorma watched approvingly the antics of Kolya, who, after a
sauna session, plunged with a great splash in the man’s height tall wooden tub of ice-cold water.
Taking a sip of his beer and reclining on the relaxing after-sauna beds, Jorma asked me “what
was this all about, the talk this fellow, making the big splash, gave this afternoon?” “Well,” 1
said “actually it was about that paper of him and mine which you told me you refereed.” “Gosh,
I would never have guessed.” “But”, Jorma said ”it gets increasingly hard to understand other
peoples work, especially if they are young and eager.” He added “This was also remarked by
Stanislav Ulam in his autobiography ‘Adventures of a Mathematician’ where he said ‘I feel like
an old boxer; I can still dish it out but I can’t take it anymore.” ”
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Suddenly, the lights went out and came flickeringly on again. Slightly later a fireman in a lot
of clothes, contrasting with our nudity, came in telling that a sudden freak-tornado had blown
away the roofs of the annex and the library, and for security reasons they were shutting down
the sauna. It appeared, that Kolmogorov on the centenary of his birthday had called forth the
winds. A few participants—not us—had to leave to a nearby hotel since their bedrooms were
now open-air. Later in the dining room, enjoying a glass of Chante Alouette, Jorma turned to
Kolya and asked “What was your name again? I understand you are Russian and belong to that
group over there” pointing at the Kolmogorov school sitting at another table. He explained,
with a straightforwardness most of us, alas, tend to loose over the years “I have noticed that
this group, maybe from Moscow, doesn’t want to interact with the other Russian, my friend
Boris. Why is this so? Do they feel themselves too good, being from Moscow? But I can tell
you that none of them are anything compared to Boris or his work. They are not worth to tie
his shoe-laces. Can you explain to me why this group behaves so?” Kolya’s explanation didn’t
satisfy Jorma, but he had made his point and returned to the glass of Chante Alouette.

5 Wodka

The Finnish group in Helsinki regularly invited me to give a week-long seminar or short course
for credit for the students of Helsinki University and Helsinki Institute of Technology. Indeed,
the university conferred to me the inscribed Medal of Helsinki University for services delivered. I
usually made it a condition to have the timing coincide with Jorma’s short lecture courses at the
same university, so that I would have congenial company. Indeed, they took care that both of us
resided in the magnificent Scandic hotel in the center of Helsinki. It turned out that the Scandic
was owned by the Hilton group, and since both Jorma and me were members of the Honors
Club, we both merited a number of drinks per diem. However, this being Finland, no cocktails
but bottles of beer. In fact, so many bottles that we couldn’t drink them. Unofficially, our hosts
were the COSCO group, led by Henry Tirri, now Nokia Research Fellow at Nokia. This group
resides in an uncommonly beautiful location, a new office building made almost completely of
glass in a restored section of harbor buildings. In fact, Henry’s office had completely glass walls,
being 3 or 4 meters high, and one could use them as blackboard using a marker pen. There I
explained some work on Kolmogorov’s structure function to Jorma and Henry, writing on the
glass outside wall. This was a possible new approach to the foundation of MDL used by Jorma
in his new book published by Springer in 2007.

Generally, after hours, we were taken to a nearby upscale pub in this see-sun-clouds restored
harbor quarter. Henry tossed a credit card to the barman at the end to pay for our desires. An
important part of the visit was dinner at a Russian restaurant. In Helsinki this is the epitome
of luxury, and the pinnacle of the Russian restaurants is the Shashlik restaurant. There, we
had many a memorable evening. The Shashlik has at least twenty types of wodka of which
I remember the lemon wodka, the pepper wodka, and the cranberry wodka. The menu had
several non-correct items of which I vividly remember the bear-meat. One started with a platter
of tithits on which the bear sausage stood out. The conversation, of which I remember little
because of the wodka, was mainly about university politics in Finland, and how to deal with
them. Also how to organize payment of the incredibly expensive meal.
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6 Margaritha

After visiting and working with Ming Li in Santa Barbara I decided to drive up to San Francisco
and visit Jorma on the way. But first I was going to Big Sur and stay there in the pretty Riverside
Campground an Cabins in one of their red-painted cabins among the redwood trees, bordering
the softly murmuring Big Sur river. This is in the middle of the purest stretch of California
coastline, along the picturesque meandering Route 1. There are only a few isolated restaurants
and motels in the wild nature; every city or village is hundreds of miles away. This makes for
small numbers of people; if you go to Pfeiffer’s Beach, featuring in many a movie, you will not
find much company except the birds and the sea dwellers. There is Arthur Miller’s house, now
a small museum among the rocks and the redwoods. One restaurant is the famous Nepenthe,
perched on the side of a rock above the Pacific Ocean. Customers waiting for dinner to be ready
sit outside near a giant open-air fire, or perch along the railing overlooking the falling rock and
the Pacific. Opossums sneak by and try to make off with the odd food-scrap. Perching along
the railing, sipping a Gold Margaritha, and reminiscencing with other customers, makes life feel
as good as it gets. So I called Jorma and told him I was delayed. Next day I called again, being
delayed once more. Jorma tried to entice me to leave Big Sur and come to San Jose referring
to Riitta and making everything in his home in San Jose sound extra good. To no avail; and
in the end my time was up, I was still in Big Sur, and had to make haste to catch my plane in
San Francisco. So I called Jorma and told I had to take a rain check. Rain is water. Little did
I know.

7 Water

In Spring 2006 I was working with Ming Li at the University of Waterloo, Waterloo, Ontario,
Canada. One evening I didn’t feel well. Thinking it was a mild food-poisoning I went to bed
early, only to wake up in the middle of the night being paralyzed. I was, with difficulty, able
to reach the phone and call Ming telling him I needed an ambulance. I was admitted in the
small and nice local ‘Grand River Hospital’ in between the Amish people. “Sir, you are having
a stroke” the doctor on call in the admission ward told me. Later many people send me cards,
flowers, and best wishes, to go with the thickened water I was allowed to drink. No get-well
gift was bigger that the giant fruit-and-food basked I got from the faraway COSCO group and
Jorma. No email was more complimentary and fortifying than Jorma’s.
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My encounters with MDL
Terry Speed

University of California, Berkeley
Department of Statistics

August 26, 2007

Abstract

In this short contribution, I present a personal view of MDL.

I first met Jorma Rissanen in the mid-1980s in Canberra, Australia. At that time he gave a
talk about his MDL, and I was instantly captivated by it. I talked to him immediately afterwards
to learn more about it, and have talked to him about it many times since then. Though I was
aware of Kolmogorov complexity, it was through Jorma I learned of its broader significance,
and of the closely related work of Chaitin and Solomonoff. I will be forever grateful to him for
introducing me to the beautiful ideas and results that he and these other individuals explored,
connecting mathematics, logic, philosophy, information, probability and statistical inference. It
has greatly enriched my appreciation of what I do, and of the broader mathematical world around
me. [ would find it hard not to be fascinated by ideas which connect Gédel’s incompleteness
theorem, data compression, gambling, and statistical inference. Jorma’s world does this, and
much more. It has been a pleasure to learn from him, a privilege to know him, and an honor
to be invited to contribute to this volume. I'm just sorry that I couldn’t offer some original
research in his field.

I’ll now try to explain how his research relates to my own day-to-day work, and why I don’t
use MDL all that much. As is well known, the MDL principle is something we use to select
models from classes of models. I'm sure we’d all agree that while many of the things we describe
as statistical are doing just that, there are plenty of statistical activities not of this kind. That
is certainly the case for me, as I'll explain shortly. But even when I could use MDL in my daily
work, I have not done so more than once, because it did not seem right to do so in my context.
As T write this, I am aware that almost everything I say can also be applied to the Bayes/non-
Bayes distinction. A committed Bayesian is going to use Bayesian methods in contexts where I
don’t, and feel that he has good reasons for doing so. This suggests that to a larger extent than
we might be happy to admit, the particular tools and techniques we use in any given statistical
analysis are only partly chosen by rational processes. We’d probably like to think we seek out
the most appropriate thing to do in a particular situation, reach a conclusion by objective means,
and then follow the course we've decided is best. Perhaps we do, and the differences between
the way different statisticians approach the same problem are all explainable by their different
levels of knowledge and experience, but I suspect it’s not that simple.

For most of the time since I met Jorma, I've been engaged in the statistics of genetics
and molecular biology. The raw data can be genotypes at hundreds of markers on scores of
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mice, tens of thousands of summarized fluorescence intensities from each of tens to hundreds of
microarrays, millions of ion intensities from the interface of a gas chromatograph with a mass
spectrometer, or billions of nucleotides comprising the DNA sequence of a genome. Over this
period, the amount of data coming my way has grown dramatically, and new types of data keep
arriving. My co-workers and I spend much of our time doing what I think of as “taming” the
data, that is, getting it into a form in which we can visualize, explore, summarize, and no longer
feel intimidated by it. This is necessary to allow us to start appreciating the features of the
data that are relevant to the questions people want to address with it. A lot of time has to be
spent doing our best to understand the technology which gave rise to the data, and the scientific
context in which the data are thought to be informative. When someone gives us a new set of
data and asks is it good enough to address the questions of interest to them, it will often take
weeks or months of work to provide them an answer to that simple first question, and longer
still to help answer their substantive questions, when that is possible. The point here is the
following: it’s hard to define a model class if you don’t understand what the data mean, or if
you don’t know how to tell signal from noise in that data. But I hope this “pre-model” analysis
is seen to be statistics.

Now let’s suppose that we’ve “tamed” the data, that we have a half-reasonable grasp of its
context, and are ready to begin addressing the questions of interest; aren’t we going to define
some models now, and won’t model selection follow soon afterwards? Well, yes and no. For me,
a common first question is this: which entities (genotypes, gene expression levels, ion intensities,
DNA sequences) are different between two specified classes of samples? In order of complexity
(no joke intended), we might calculate a mean difference (typically on a log scale), a t-like
statistic, an empirical Bayes t-like statistic, a p-value, or a false discovery rate, one each for
perhaps tens of thousands of our entities. We do this marginally, though at times permutation
testing or bootstrapping or other modeling might take us beyond marginal summaries. Although
Bayesians will routinely describe joint distributions for everything under discussion, I have so far
not attempted that in the contexts I'm discussing. To date I have felt that the joint distributions
for the entities I am analyzing are beyond me. This means I am reluctant to think of a description
of it all, preferring to pick away at the margins, in a simple and what I hope is a robust way. So
here are two features which make it hard for me to envisage using MDL in my context: most of
the time there is no joint distribution for my data, and I seek robustness when I do approximate
parametric inference on marginals. Fitting robust methods into a nice model-based framework
seems to me to be hard, as [ am usually unable to employ mixture models. My preference is for
M-estimators, typically ones which do not correspond to MLEs for any distribution.

Of course none of what I have said would stop an enthusiastic MDL-er from using MDL,
any more than it stops committed Bayesians from using Bayes theorem, but there would clearly
be some serious work needed were I to try. Well, you might argue, if the benefits are likely
to be great enough, do that work. I'd reply that it’s already a lot of work to get where we’ve
got, and my collaborators are waiting for answers. I would need to be devoid of useful ideas
without MDL, and/or be very sure that the benefits would be worth the wait. On one occasion
a few years ago, this was the case. I did have a clear model selection problem, and stochastic
complexity based on the NML density function gave a very satisfactory solution. I was glad
I knew about it, as the alternatives seemed much more complicated. This attitude puts the
MDL alongside a host of other techniques that statisticians draw upon when it seems right, and
does not give it any central or special status. For me, this is the case, and here’s the main
reason why. I like to keep the methods I develop for the kinds of data I'm describing simple and
reasonably transparent. If at all possible, I try to base my methods on ideas which should or
could be accessible to numerate biologists. I do so as I recognize that most such data will not
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be analyzed by statisticians, but by the people who collect the data, with the aid of commercial
packages. There will be no-one to help them, and in my view it’s dangerous to present them
with black boxes, and invite them to “trust us”. Most will have some intuition about basic
statistical notions, and be able to navigate themselves based on their understanding of these
notions. Rightly or wrongly, I want what the methods I recommend to be comprehensible to
most if not all of these non-statistician potential users, and this discourages me from departing
from simple, familiar approaches. In due course notions of coding, the MDL principle, and
a host of techniques derived from it may well become common knowledge, and be viewed as
simple by the thousands of non-statisticians who analyse their data along the lines laid out by
professionals such as us. But we are not there yet.

Summarizing, I have a great affection for the circle of ideas in which MDL is embedded, and
I'm glad I have learned what I have about it. I will draw upon that knowledge from time to
time. But most of my statistical effort is at the “pre-model” stage, and most of the data I meet
is not helpfully modeled in its totality. Hence, I don’t use MDL every day in my professional
life.

Terry Speed
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Jorma’s unintentional contributions to the source coding research
in Eindhoven.

Tjalling Tjalkens and Frans Willems
Eindhoven University of Technology
P.O.Box 513
5600 MB Eindhoven
The Netherlands

April 8, 2008

1 Introduction

Around 1980, the Information Theory group in Eindhoven was mainly interested in multi-user informa-
tion theory. The head of the group, Piet Schalkwijk, had previously published papers on the application
of enumerative techniques for source coding but the only compression activity at that time was image
coding related. In 1982 Frans Willems joined the group as an assistant professor and Tjalling Tjalkens
started his Masters thesis work. Tjalling was given a preprint of Jorma’s 1983 paper, [1], on the algo-
rithm “context”. Frans was given the task to assist the students in their homework assignments for the
Information Theory course. This course still contained a significant part of enumerative source coding
and Frans worked on an assignment related to the Tunstall algorithm, see [2]. During his work on the
Master thesis, Tjalling became interested in the Lempel-Ziv algorithm, [3, 4], and its interpretation as a
variable-to-fixed length code. Together Frans and Tjalling started looking into combinatorial approaches
to variable-to-fixed length codes.

An observation of R. Petry, see [5], started the research that led to an enumerative implementation
of the Tunstall algorithm and finally resulted in multiplication-free arithmetic codes. The results will
be summarized in Section 2. We learned about universal coding, partly from Schalkwijk’s enumerative
scheme, [6], and partly from Jorma’s and Glen Langdon paper of 1981, [7]. We wondered if it was
possible to come up with an enumerative variable-to-fixed length code that is also universal (at least over
the class of memoryless sources). We were not the first researchers to find such a scheme. Lawrence,
[8], had adapted Schalkwijks fixed-to-variable length scheme. Precisely how Jorma contributed to our
result will become clear in Section 3 where we explain the scheme and its analysis. Jorma introduced us
to the model class FSMX, [9], and that enabled Yuri Shtarkov and ourselves to develop the Context-Tree
Weighting method, [10]. In the last section we shall present some old and new results related to this
algorithm.

2 Enumerative coding

2.1 The Tunstall code

A variable-to-fixed length source code, or V-F code, maps source sequences of variable length onto fixed
length code words. The set M of source sequences, or messages, that are represented by code words
is required to be proper and complete. A message set, and the corresponding variable-to-fixed length
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source code, is optimal if there exist no other message set of the same size that has a lower rate, or
equivalently, that has a larger expected message length. An algorithm by Tunstall produces a sequence
of optimal V-F codes of increasing size for a given source.

Tunstall algorithm:

Init. The initial message set M contains all single letters from the source alphabet. Let
i=0.

Extend. Let u € M; be a message of maximal probability in the current message set.
Remove u from the set and insert all sequences created by extending u by a single
letter from the source alphabet 2{. Thus we created the next set M.

Repeat. Increment i and repeat from step “Extend” until the message set has the required
size.

2.2 An enumerative scheme

With a Fibonacci type of recursion one is able to define variable-to-fixed length codes, see [5, 11, 12].
Given a binary memoryless source and two well chosen integers a and b the recursion was

cny=cm—a)+cn —>b). (D

With this recursion we can apply Cover’s enumeration [13] to compute the lexicographical index of
a sequence in a set. Consider any binary and memoryless source that produces zeros and ones with
probability 1 — p and p respectively. We can approximate the optimal (Tunstall) code by selecting a and
b such that 17* ~ p, where 1 is the (largest real) solution of

)y =x+x"=1. )

2.3 Simplifying the scheme

The storage complexity of this scheme is determined by the table of ¢ (i) values fori = 1,2, ...,n. The
magnitude of ¢(n) is approximately 1”. We wish to simplify this enumerative scheme. Instead of the
precise values c¢(i) from the recursion (1) we can work with values ¢(n) forn = 1, 2, ... that satisfy

¢é(n) = ¢(m—a)+c(n—b). 3)

Forn < 0 we set ¢(n) = 1. We will be able to select values ¢(n) that can be described in fewer bits
than ¢(n). We also wish to limit the number of elements ¢(n) that we must store in memory. Because
c(i) ~ A" we can find a constant k (approximately equal to A™) such that we can extend the numbers &(1)
for n > m as follows. Let i and a be the unique integers such that n = i + am where i € {1,2,...,m}
and o > 1, then

(i +am) = k*c(i). ()]
One can check, see [12], that with a proper choice of k expression (3) also holds for n > m. Using these
numbers we obtain a decodable code, although with a somewhat higher redundancy as compared to the
original code. Now we have a scheme with a small table of exponential numbers extended indefinitely
using a cyclic access and a multiplicative scaling operating.

2.4 Jorma’s contribution: (multiplication-free) arithmetic codes

So, where does Jorma contribute to this research. Obviously the “exponential” table is a multiplication
table and obviously the approximated enumerative scheme performs similar operations as an arithmetic
code. In fact, in [14] Jorma introduced arithmetic codes using an approximated exponential table.
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3 A universal variable-to-fixed length code

3.1 A universal setting

From Tunstall’s algorithm and common sense it is clear that an optimal variable-to-fixed length code
attempts to create almost equally likely messages. In a universal setting, we assume that the source is
binary and memoryless, but the actual source probability p is unknown to both encoder and decoder. So
it is impossible to determine the message probabilities and thus impossible to design a Tunstall code.

3.2 Another variable-to-fixed length scheme

‘We assume that p, the source probability of producing a ‘1’, is a random variable, uniformly distributed

over the interval [0, 1]. So we end up with a composite source, see [15]. We define the ‘composite’

probability of a sequence as

1 no(w) +mi @)~
( . (5

1
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Here n, (u) denotes the number of times the letter # occurs in u. In [16] we described an enumerative
coding scheme based on a message set M that was defined using formula (5). A sequence u is in the
message set M if its “probability” Q*(u) drops on or below a given threshold.

3.3 Jorma’s contribution

Partly motivated by Jorma’s 1984 paper on universal compression [17], and the realization that Schalk-
wijk’s Pascal-triangle’ algorithm was universal, we worked out a universal variable-to-fixed length algo-
rithm. Lawrence, a student of Schalkwijk, had already used combinatorial methods to find a universal
code. However, our scheme was both better, in terms of compression, and seemed to us to be less ad-hoc.
‘We submitted the paper to the IEEE IT Transactions and received an interesting review. The reviewer
stated that the result was interesting but the bounds were not tight enough. The upper bound should be
% log i, where i1 denotes the expected message length, in accordance with the well-known lower bound.
Although it was admitted that there was no lower bound for variable-to-fixed length codes yet. We al-
ways thought that Jorma was the reviewer. So, as “Jorma” wrote that this task of improving the bounds
‘separated the men from the boys’, and we definitely wanted to be considered men, we improved the
upper bound and came up with a Rissanen like lower bound.

4 Context algorithms
4.1 FSMX models

In [9] Jorma introduced the concept of a FSMX source. As said in the introduction we were also well
aware of the algorithm ‘Context’ from [1] that actually already dealt with FSMX sources and used the
idea of “context selection”. Thus, when Yuri Shtarkov visited us in 1992, we were ready to discuss
alternatives to the context selection mechanism such as weighting models. This resulted in the Context-
Tree-Weighting (CTW) method that we presented in [10]. Jorma also introduced us to the idea of the
“minimum description length” (MDL) principle, see [17, 18] and we immediately saw that the weighting
procedure performed an automatic MDL model selection, although it never explicitly selects a model.
In the next sections we will briefly review the CTW algorithm and show how a modified version thereof
will perform a MAP model selection.
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Figure 1: Model (suffix set) and parameters.

4.2 The CTW algorithm

Consider figure 1. For a tree source the probability P, (U, = 1]+, u,—3, u,—1) is determined by starting
in the root A of the tree and moving along the path u,_1, 11,—3, - - - until a leaf of the tree is reached. In
this leaf s we find the desired probability (parameter) ;. The suffix set or tree S, containing the paths to
all leaves, is called the model of the source. The source model (tree) S partitions the source sequence in
(conditionally) i.i.d. sub-sequences, one for each leaf s € S. We can use the KT-estimator, see [19], for
each of these sub-sequences.

Suppose that the actual source model S is unknown, but that its depth is not larger than D. The
context-tree weighting (CTW) method efficiently weights the sequence probabilities of all possible tree
models. Define the cost of model S as

I'p(S) 2 2|S] —1—|{s € S, depth(s) = D}, ©)

and let S, be the ‘actual’ model. The individual redundancy p{(u]) relative to the actual source for
T

sequence #; can be upper bounded by
i

< FD(Sa)+ )

p]) = Lerw(u]) — log, og, — + S, + 2, )

1
Py(ul) |Sal
for T > |S,|. Observe that bound (7) also holds for the redundancy relative to any other source tree
model S with depth < D, i.e. Lerw(u] ) can be seen as a MDL solution to the corresponding modeling
problem.

4.3 MAP selection

Suppose we wish to encode the sequence u] in two stages. First we determine the model S that mini-
mizes the total codeword length. We then encode this model S and then the sequence u] given this model.
In [20] the Context-Tree Maximizing method was discussed. It was also, and independently, proposed by
Nohre in his Ph.D. dissertation [21]. This method recursively computes “maximum probabilities” over
nodes given the KT sequence probabilities and results in the maximum a-posteriori probability (MAP)
tree model. To reduce the complexity of the CTW algorithm we can store in a node instead of the esti-
mated and weighted block probability a probability ratio. This idea was proposed in [22]. It seems odd
that we have an efficient method to compute the weighted sequence probability, using the probability
ratios, but still need to resort to the direct computation of the KT sequence probability in order to find the
MAP model, given the sequence u!. In [23] we presented a maximizing algorithm based on the same
probability ratios.
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4.4 Jorma’s contribution

Clearly Jorma’s papers influenced our research in context trees. Through his papers we became aware
of FSMX models. The algorithm “Context” and the fact that there were no non-asymptotic performance
bounds for this algorithm led us to revisit the idea of weighting. The notion of model redundancy, which
we called parameter redundancy, was obviously based on Jorma’s results. Finally the close relation
between the redundancy bound and the MDL principle turned our attention to the modeling aspects and
led indirectly to the efficient MAP model selection algorithm.
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