
7

December 2016 IEEE Information Theory Society Newsletter

Sparse Regression Codes
Ramji Venkataramanan, University of Cambridge, ramji.v@eng.cam.ac.uk

Sekhar Tatikonda, Yale University, sekhar.tatikonda@yale.edu
Andrew Barron, Yale University, andrew.barron@yale.edu

1. Introduction
Developing computationally-efficient codes that approach the
Shannon-theoretic limits for communication and compression has
long been one of the major goals of information and coding theory.
There have been significant advances towards this goal in the last
couple of decades, with the emergence of turbo and sparse-graph
codes in the ‘90s [1, 2], and more recently polar codes and spa-
tially-coupled LDPC codes [3–5]. These codes are all primarily for
discrete-alphabet sources and channels.

There are many channels and sources of practical interest where
the alphabet is inherently continuous, e.g., additive white Gauss-
ian noise (AWGN) channels, and Gaussian sources. A promising
class of codes for Gaussian models is the recently proposed Sparse
Superposition Codes or Sparse Regression Codes (SPARCs). This arti-
cle provides a broad overview of SPARCs, covering theory, algo-
rithms, and some practical implementation aspects. At the end, we
discuss some open problems and future directions for research.

This survey is based on the tutorial on sparse regression codes pre-
sented at ISIT ‘161. The discussion will be relatively informal. We
paraphrase some of the technical results with the aim of provid-
ing intuition, and point the reader to references for an in-depth
discussion.

To motivate the construction of SPARCs, let us begin with the
standard AWGN channel with signal-to-noise ratio denoted by
snr. The goal is to construct codes with computationally efficient
encoding and decoding that provably achieve the channel capacity

() log1 2 1 snrC = +^ h bits/transmission. In particular, we are in-
terested in codes whose encoding and decoding complexity grows
no faster than a low-order polynomial in the block length n.

Though it is well known that rates approaching C can be achieved
with Gaussian codebooks, this has been largely avoided in prac-
tice due to the high decoding complexity of unstructured Gauss-
ian codes. Instead, the popular approach has been to separate the
design of the coding scheme into two steps: coding and modula-
tion. State-of-the-art coding schemes for the AWGN channel such
as coded modulation [6–8] use this two-step design, and combine
binary error-correcting codes such as LDPC and turbo codes with
standard modulation schemes such as Quadrature Amplitude
Modulation (QAM). Though such schemes have good empirical
performance, they have not been proven to be capacity-achieving
for the AWGN channel.

With sparse regression codes, we step back from the coding/
modulation divide and instead use a structured codebook to con-
struct low-complexity, capacity-achieving schemes tailored to the
AWGN channel. In a SPARC, codewords are sparse linear combi-
nations of columns of a design matrix (see Fig. 1). The codewords
are indexed by the locations of non-zeros in each section.

1The slides from the tutorial are available at https://goo.gl/8H8wrk

We explain in Sec. 2 how the parameters of the design matrix de-
termine the rate of the code, average power etc. In Sec. 3, we will
see how the structure of the design matrix enables fast iterative
decoding algorithms whose probability of decoding error decays
rapidly with block length for rates R < C . Further, these codes also
achieve the Shannon limit for lossy compression (Sec. 4), and can be
easily combined to implement superposition and binning (Sec. 5).
Thus sparse regression codes offer a way to construct low-com-
plexity, rate-optimal codes for a variety of canonical models in
network information theory.

We should mention that lattice codes are another class of struc-
tured codes for Gaussian channel and source models [9]. Several
elegant coding schemes based on lattices have been proposed in
the literature, e.g. [10–12], but we will not discuss these further in
this article.

2. The Sparse Regression Codebook

As shown in Fig. 1, a SPARC is defined in terms of a ‘dictionary’
or design matrix A of dimension n # ML, whose entries are i.i.d.

,0N n
1^ h . Here n is the block length, and M, L are integers whose

values are specified below in terms of n and the rate R. We think
of the matrix A as being composed of L sections with M columns
each. Each codeword is a linear combination of L columns, with one
column coming from each section. Formally, a codeword can be ex-
pressed as Ab, where b is an ML # 1 vector (b1,..., bML) with the fol-
lowing property: there is exactly one non-zero bj for j M1 # # , one
non-zero bj for M + 1 # j # 2M, and so forth. The non-zero value of b
in section L, ! 6 @ is set to nP, , where the positive constants Pℓ satis-
fy P PL

1 =,,=
/ . (We use the notation [L] to denote the set {1,..., L}.)

P is the average power per input symbol in the case of channel cod-
ing; in lossy compression it will be the variance of each codeword
symbol.

Figure 1: A Gaussian sparse regression codebook of
block length n: A is a design matrix with independent
Gaussian entries, and ß is a sparse vector with one non-
zero in each of L sections, where log(nL n)+ .
Codewords are of the form Aß, i.e., linear combinations
of the columns corresponding to the non-zeros in ß. The
message is indexed by the locations of the non-zeros,
and the values , ,P P1 Lf are fixed a priori.

A:

β: 0,√nP2, 0, √nPL,0, ,00,

Section 1
M columns

Section 2
M columns

Section L
M columns

T

n rows

0,√nP1,0, 0,

8

IEEE Information Theory Society Newsletter December 2016

Since each of the L sections contains M columns, the total number
of codewords is ML. To obtain a rate R code, we need

 .logM L M nR2 orL nR= = (1)

(Throughout, we use log for logarithm with base 2, and ln for base e.)
There are several choices for the pair (M ,L) which satisfy (1). For
example, L = 1 and M = 2nR recovers the Shannon-style random
codebook in which the number of columns in A is 2nR. For our con-
structions, we will choose M equal to La, for some constant a > 0.
In this case, (1) becomes

 a .logL L nR=
(2)

Thus logL n nH= ^ h , and the size of the design matrix A (given
by n # ML = n # La+1) grows polynomially in n. In our numerical
simulations, typical values for L are 512 or 1024.

We note that the SPARC is a non-linear code with pairwise de-
pendent codewords. Two codewords Ab and Abl are dependent
whenever the underlying message vectors b,blshare one or more
common non-zero entries.

Power Allocation: The coefficients P L
1, ,=" , , plays an important role

in determining the performance of the code, both for channel cod-
ing and for lossy compression. We will consider allocations where

LP 1l H= ^ h. Two examples are:

Flat power allocation across sections: ,P
L
P L, !=, 6 @.

Exponentially decaying power allocation: Fix parameter
l > 0. Then ,P L2 /L ,? !,

,l- 6 @.
In Section 3, we discuss computationally efficient decoders which
asymptotically achieve capacity with the exponentially decay-
ing allocation (with l = 2C). To improve decoding performance
at practical block lengths, we explore different power allocation
strategies in Section 3.3, and demonstrate that judicious power
allocation can lead to dramatic improvements in decoding per-
formance at finite block lengths. We also describe how decoding
complexity can be reduced by replacing the Gaussian design ma-
trix with a Hadamard-based design.

3. AWGN Channel Coding with SPARCs

The channel is described by the model

 , , , .y x w i n1i i i f= + = (3)

The noise variables wi are i.i.d. ,0N 2+ v^ h. There is an average
power constraint P on the input: the codeword : , ,x x xn1 f= ^ h
should satisfy x Pn ii

1 2
1 #
=
/ . The signal-to-noise ratio P 2v is

denoted by snr.

Encoding: The encoder splits its stream of input bits into segments
of log M bits each. A length ML message vector b0 is indexed by L
such segments – the decimal equivalent of segment ℓ determines
the position of the non-zero coefficient in section ℓ of b0. The input
codeword is then computed as x A 0b= . Note that computing x
simply involves adding L columns of A, weighted by the appro-
priate coefficients.

Optimal Decoding: Assuming that the codewords are equally like-
ly, the optimal decoder produces

 ,argmin y Aopt
2

b b= -
b

t t
t

where : , ,y y yn1 f= ^ h, and the minimum is over all the message
vectors in the codebook.

Probability of Error: The performance of a SPARC decoder is
measured by the section error rate, which is the fraction of sec-
tions decoded wrongly. The section error rate is denoted by

: 1Esec L
L1

01 !b b= , ,,=
t" ,/ . For a given decoder, we will aim to

bound the probability of the event Esec2 e" , for 02e . Assum-
ing that the mapping determining the non-zero location for each
segment of log M input bits is generated uniformly at random,
a section error will, on average, lead to half the bits correspond-
ing to the section being decoded wrongly. Therefore, when a large
number of segments are transmitted, the bit error rate of a SPARC
decoder will be close to half its section error rate.

If we want the decoding error probability of the message b0 to be
small, we can use a concatenated code with the SPARC as the in-
ner code and an outer Reed-Solomon (RS) code. (An RS code of
rate (1 − 2e) can correct upto a fraction e of section errors in the
SPARC; see [13] for details.)

We will not consider the outer RS code in the remainder of this
article, and focus mostly on the section error rate (or bit error rate)
of the SPARC.

Performance with Optimal Decoding: For rates R < C , the least-
squares decoder was shown in [13] to have error probabili-
ty decaying exponentially in the block length.

Theorem 1. [13] Consider a SPARC with rate R < C , block length n, and
equal power allocation, i.e, ,P LP L, !=, ^ h 6 @. For any e > 0, the sec-
tion error rate of the least-squares decoder satisfies

() .KeP E { ,() }
sec

minn C R 2

2 #e l e- -

where l, K are universal positive constants.

This result was extended to SPARCs with i.i.d. binary (!1) de-
sign matrices in [14, 15]. The exponent l in Theorem 1 is smaller
than the Shannon-Gallager random coding exponent, but the re-
sult shows that SPARCs are essentially as good as Shannon-style
random codes for the AWGN channel with maximum-likelihood
decoding.

3.1. Feasible SPARC Decoders

In contrast to the least-squares decoder, the feasible decoders we
discuss all use a decaying power allocation across sections. Think-
ing of the L sections of a SPARC as analogous to L users sharing
a Gaussian multiple- access channel (MAC), leads to an exponen-
tially decaying power allocation of the form ,P L2 /C L2 ,? !,

,- 6 @.
Indeed, consider the equal-rate point on the capacity region of a
L-user Gaussian MAC where each user gets rate C/L. It is well-
known [16, 17] that this rate point can be achieved with the above
power allocation via successive cancellation decoding, where user
1 is first decoded, then user 2 is decoded after subtracting the
codeword of user 1, and so on.

9

December 2016 IEEE Information Theory Society Newsletter

However, successive cancellation performs poorly for SPARC de-
coding. This is because L, the number of sections (“users”) in the
codebook, grows as / logn n , while M, the number of codewords
per user, only grows polynomially in n. An error in decoding one
section affects the decoding of future sections, leading to a large
number of section errors after L steps.

The first feasible SPARC decoder, proposed in [18], controls the ac-
cumulation of section errors using adaptive successive decoding. The
idea is to not pre-specify the order in which sections are decoded,
but to look across all the undecoded sections in each step, and adap-
tively decode columns which have a large inner product with the re-
sidual. The main ingredients of the algorithm are as follows. In the
first step, the decoder computes the inner product of each column
of the design matrix with the normalized channel output sequence

/y y , and picks those columns for which this test statistic exceeds a
pre-specified threshold; this gives the first estimate 1bt . In the second
step, the test statistic is generated based on the residual r y A1 1b= - t

: the decoder picks the columns (from the as yet undecoded sections)
whose inner product with /r r1 1 crosses the threshold; this gives

2bt . The algorithm continues in this fashion, decoding columns using
the residual-based statistics in each step. The algorithm is run for a
pre-specified number of steps, arranged to be of the order of log M; it
terminates earlier if at least one column has been selected from each
section, or the test-statistics in any step are all below the threshold.

The performance of this decoder was analyzed in [18]. With
power allocation P 2 /C L2?, ,- , it was shown that the probability
of message decoding error decays as (())exp kL C RM

2- , where
C C 1 log

c
M M= -^ h for a constant c > 0, and R is the total rate

(SPARC combined with an outer Reed-Solomon code).

Therefore the adaptive successive threshold decoder is capacity-
achieving, and the gap to capacity is of order log M1 . However,
in practice, the section error rates at practically feasible block
lengths are observed to be rather high for rates near capacity. The
following two decoders improve the decoding performance by
avoiding hard decisions about which columns to decode in each
step.

3.2. Iterative Soft-decision Decoding

The key idea in the next two decoders is to iteratively update the
posterior probabilities of each entry of b being the true non-zero
in its section. The goal in both decoders is to iteratively generate
test statistics that (in step t) have the form Zstatt t t. b x+ , where
Zt is standard normal and independent of b. In words, statt is es-
sentially the message vector observed in independent additive
Gaussian noise with known variance t

2x . Assuming this is true,
the Bayes-optimal estimate for b in the next step is

 (tat) [| stat] (stat),s ZEt t t
t

t t t
1b b b x h= + = =+

where the conditional expectation t $h ^ h can be computed using
the known prior on b (locations of non-zeros uniformly distrib-
uted within each section). For indices j in section ℓ of beta, we have

 :
/

/
, , .

exp
exp

secs nP
nP s

nP s
j Ltion,

sec

t j
k tk

j t

2

2

, ,! !h
x

x
= ,

,

,

! ,

^ ^
^h h

h 6 @/ (4)

Note that /s nP,t jh ,^ h is the posterior probability (given statt) that
term j is the non-zero coefficient in section ℓ of b.

In addition to statt having the desired distributional representati-
on, we also want t

2x , the variance of the noise in the test statistic,
to be computable iteratively from t 1

2x - as follows. Starting with
P0

2 2x v= + , we define

|

,

n
Z

n
Z

1

1

E E

E

t t t

t t t

2 2
1 1

2

2
1 1

2

x v b b b x

v b h b x

= + - +

= + - +

- -

- -^ h
6

@
@

 (5)

where the expectation on the right is over b and the indepen-
dent standard normal vector Zt. In other words, we want the
noise in the test statistic to have two independent Gaussian
components: one component with variance v2 arising from the
channel noise, and the other component arising from the er-
ror in the current estimate bt. The recursion to generate t

2x from
t 1
2x - can be written as

 P x1t t
2 2

1x v x= + - -^ ^ hh (6)

where :x xt t 1x= -^ h is an expectation of a function of ML standard
normal random variables. The exact formula for x t 1x -^ h can be
found in [19, Sec. 3]. Compact asymptotic formulas for xt, t

2x are
given in Lemma 1 below.

Therefore, under the assumed distribution for statt, we
have ()P x1En

t
t

1 2< <b b- = - ; it can also be shown that
PxE En n

T t t
t

1 1 2b b b= =6 @ [19, Prop. 3.1]. Thus the scalar xt can
be interpreted as the expected (power-weighted) success rate, and

()P x1 t- as the expected interference contribution to the noise
variance

t
2x due to the undecoded sections. With this interpreta-

tion, for succesful decoding we want xt to be very close to 1 when
the algorithm terminates. Indeed, it can be verified that for all
rates less than C and P 2 /C L2?, ,- , the iteration (6) has a fixed point
with t

2x close to v2, i.e., xt is close to one. A more precise version of
this statement in the large system limit is given in Lemma 1 below.

Finally, the key question is: how do we iteratively generate sta-
tistics statt that in each step are well-approximated as Zt tb x+ ,
with

t
2x having the representation described above? The two de-

coders described below achieve this via seemingly very different
approaches.

Adaptive Successive Soft-Decision Decoder [20–22]

The statistics for this decoder are defined using the fits
: , : , , :Y A AFit Fit Fitt

t
0 1

1 fb b= = = . With G0 := Y, recursively de-
fine Gt to be the part of Fitt that is orthogonal to , , ,G G Gt0 1 1f - .
The ingredients of statt are the vectors , ,Z Zt0 f , defined as

 , .n
G

A G k 0Zk
k

T
k $=

The test statistic is then defined as stat Zt t k

t

k k
t

0x bm= +
=
/ . The

weights km have to be carefully chosen in order for statt to be close
enough in distribution to the desired form Zt tb x+ . The estimate
bt+1 is generated as statt th ^ h, where t $h ^ h is given by (4).

Two different ways to choose the weights km , k t0 # # , are pro-
posed in [21, 22]. Each of these choices is based on a technical
lemma [20, Lemma 1] characterizing the distribution of Zk , k6 .
The first choice of weights is deterministic, and given by

 : , , , ,, , , 1 1 1 1 1
t t

t t
0 1

0 1
2

0
2 2

1
2ff x

x x x x x
m mm - - - -

-

^ ch m (7)

10

IEEE Information Theory Society Newsletter December 2016

where , , t0 fx x are given by (5) . The analysis in [21] shows
that this choice of weights makes statt close to the desired
representation Zt tb x+ , leading to the following concentra-
tion result.

Theorem 2. [21, Lemma 7] Consider a SPARC with rate R < C, param-
eters (n, L, M) chosen according to (1), and power allocation P 2 /C L2?, ,-

. For t $ 1, let

 : .nP x nP x1 1At
T t

t
t

t
2

,2 2f eb b b= - - h$ $. .

Then, we have

 ,exp
log

a k
M
nP Ak

t
k k k

k

t

1 2 1
2

1
, K e-= +

=
c ^ h m" , /

where k , a 1, . . . , a t are universal constants depending on R,C.

The probability bound on the event At in Theorem 2 can be shown
to imply a probability bound for the section-error rate exceeding
cf, where c > 0 is a constant. Thus the probability of decoding fail-
ure decays exponentially in / logn n T2 1*+^ h , where T* is the number
of steps for which the algorithm is run. This is in contrast to the
optimal decoder in Theorem 1 whose probability of decoding fail-
ure decays exponentially in n.

As an alternative to the deterministic weights in (7), weights {m k}
depending on the channel output y were also proposed in [21].
This choice is based on the Cholesky decomposition of a matrix
generated from the estimates {b1, . . . , bt}. A performance guaran-
tee similar to Theorem 2 can be obtained for this set of weights as
well; see [21, 22] for details.

Approximate Message Passing Decoder [19, 23]

Approximate message passing (AMP) refers to a class of algo-
rithms [24–30] that are Gaussian or quadratic approximations of
loopy belief propagation algorithms (e.g., min-sum, sum-product)
on dense factor graphs. In its basic form [24, 27], AMP gives a fast
iterative algorithm to solve the LASSO, i.e., to compute

 ,arg min y ALASSO 2
2

1b b bm= - +
b

t t t
t

for any m > 0. Recall that the decoding problem we wish to solve is

arg min y ASPARC 2
2

b b= -
b

t t
t

 over bt that are valid SPARC code-
words.

One cannot directly use the LASSO-AMP of [24, 27] for SPARC
decoding as it does not use the prior knowledge about b, i.e., the
knowledge that b has exactly one non-zero value in each section,
with the values of the non-zeros also being known.

An AMP decoder for SPARCs can be derived by writing down
min-sum like updates for the SPARC decoding problem, and then
approximating them using the recipe in [26]. This leads to a de-
coder with the following update rules [19]. Define r0 = y, and for
t $ 1 compute:

,r y A r P
n

t t

t

t t

1
2

1 2

b
x

b
= - + -

-

- c m
 ,A rstatt

T t tb= +

 .statt
t t

1b h=+ ^ h

The coefficients t
2x are recursively defined by (6), starting with

P0
2 2x v= + . Following the terminology in [24, 26], we refer to this

recursion as state evolution (SE). Recall that the SE equations are
derived under the assumption that statt is distributed as Zt tb x+ .
The presence of the “Onsager” term r Pt

t n
1

1
2 2t

x -
b-

- ` j in the de-
finition of the modified residual rt is crucial to ensure that the dis-
tributional assumption is valid, at least asymptotically. Intuition
about role of the Onsager term in the standard AMP algorithm can
be found in [26, Section I-C].

We can derive a compact asymptotic formula for the SE recursion
by taking the limit as L, M, n " 3 while satisfying (1). (This limit
is denoted below by ‘lim’.)

Lemma 1. [19] For t $ 1, the asymptotic value of t
2x , denoted by t

2x , is
given by

 ,P x1t t
2 2

1x v x= + - -r r^ ^ hh

where the function x $r ^ h is defined as follows. With :c LP=, , , we have

 : .lim lim lim lnx x
P
P c R1 2 2

L

1

22x x x= = ,

,

,

=

r ^ ^ ^h h h" ,/

Recalling that xt+1 is the expected power-weighted fraction of cor-
rectly decoded sections after step (t +1), for any power allocation
{Pl}, Lemma 1 may be interpreted as follows: in the large system
limit, for a section ℓ to be correctly decoded in step (t + 1), the
limit of LPl must exceed a threshold equal to ln R2 2 t

2xr^ h . All sec-
tions which satisfy this condition will be decodable in step (t + 1)
(i.e., will have most of the posterior probability mass on the cor-
rect term). Conversely, any section whose power falls below the
threshold will not be decodable in this step.

Lemma 1 can be used to quickly check whether a given power al-
location is good by checking whether x txr ^ h monotonically increas-
es with t from 0 to 1. When applied to the exponentially decaying
power allocation P 2 /C L2?, ,- , Lemma 1 gives

(snr) ,
(snr) (snr)

for ,x
snr

t1
1 1

0>t t
2 2 1

1
t

t

1

1

x v= + =
+ - +p

p
-

-
-

-

r r (8)

where : 0t 1p =- and

 , .min log
C R

C
2
1 1t t 1p p= + -cc cm m m' 1

The constants t t 0p $" , have a nice interpretation in the large system
limit: for R < C, at the end of step t +1, the first pt fraction of sec-
tions in bt+1 will be correctly decodable with high probability. An
additional log R

C
C2
1 ^ h fraction of sections become correctly decod-

able in each step until step /logT C C R2* = ^ h^ h, when all the sec-
tions are correctly decodable with high probability.

The following theorem shows that the AMP decoder achieves ca-
pacity by showing that the above interpretation based on the SE
equations is true in the large system limit.

Theorem 3. For any rate R < C, consider a sequence of rate R SPARCs
{S n} indexed by block length n and power allocation P 2 /C L2?, ,- . Then
the section error rate of the AMP decoder (run for T* steps, with the
constants t

2xr given by (8)) converges to zero almost surely, i.e., for
 any e > 0,

, .lim S n n 1P Esecn n 0
0

61 $f =
"3
^ ^ h h

11

December 2016 IEEE Information Theory Society Newsletter

In recent work, we have used the the finite-sample AMP analysis
techniques of [31] to refine the asymptotic result of Theorem 3 and
obtain a large-deviations bound similar to Theorem 2 for the prob-
ability of the section error rate exceeding e.

Computational Complexity

With a Gaussian design matrix, the running time and memory
requirement of both the adaptive successive soft-decision de-
coder and the AMP decoder are of the same order: O (n M L) .
However, in practice the AMP decoder is faster as no ortho-
normalization or Cholesky decomposition is required to com-
pute its test statistic in each step. Further, as described in [19],
choosing the design matrix by uniformly sampling n rows of the
M L # M L Hadamard matrix reduces the AMP running time
to O (M L log M). The Hadamard-based design matrix does not
need to be stored, hence there is also a large saving in required
memory. Finally, the partitioned structure of the SPARC could
be exploited to design parallelized or pipelined implementa-
tions of the above decoders.

3.3. Empirical performance at practical
blocklengths

Though all three decoders theoretically have section error-rate
decaying to zero with increasing block length for any fixed R <
C, the soft-decision decoders have much better empirical perfor-
mance [19, 22]. In the following, we illustrate the performance
of the AMP decoder for block lengths of the order of a few thou-
sands. All the simulation results are obtained using Hadamard-
based designs.

Fig. 2a illustrates the performance for a SPARC with M = 512, L =
1024, snr = 15 at various values of rate R. The block length n is de-
termined by R according to (1). For example, we have n = 7680 for
R = 0.6C, and n = 5120 for R = 0.9C. The top curve shows the aver-
age section error rate of the AMP (over 1000 runs) with the power

P 2 /C L2?, ,- allocation . The bottom two curves are obtained with
two alternative power allocation (PA) schemes, discussed below.
Though P 2 /C L2?, ,- is the optimal PA for rates very close to C, it is
clear that as we back off from capacity, a carefully chosen PA can
reduce the error rate by several orders of magnitude.

PA Scheme 1: The PA is determined by two parameters a, f. For a >
0 and f e [0, 1], let

,

, ,
P

fL
fL L

2
2

1
1

/a C L

a Cf

2

2
$
$

,

,

#
#

l

l
=

+
,

,-

-)

where l is a normalizing constant chosen so that P P=,,
/ . The

parameter a controls the decay of the exponential. Increasing a
increases the power allocated to the initial sections which makes
them more likely to decode correctly, which in turn helps by de-
creasing the effective noise variance in subsequent AMP iterations.
However, if a is too large, the final sections may have too little
power to decode correctly – this is why the standard PA with a =
1 performs poorly for rates that are not close to capacity. Thus we
want the parameter a to be large enough to ensure that the AMP
gets started on the right track, but not much larger.

The parameter f controls the flattening of the PA. The exponentially de-
caying PA may leave too little power for the final sections. To address
this issue, the idea is to have an exponential PA only for a fraction f of
the sections, and allocate the remaining power equally among the rest
of the sections. The middle curve in Fig. 2a shows the performance of
the AMP with numerically optimized (a, f) values for each rate. As ex-
pected, the optimal values of a, f decrease as we back off from capacity.

PA Scheme 2: Optimizing the parameters (a, f) is computationally
intensive and has to be done separately for each rate and snr value
of interest. To address this, we have recently developed a simple PA
algorithm based on Lemma 1. If the AMP decoder is run for T* steps,
the goal (in the large system limit) is to have the first 1/T* fraction
of sections be decodable in the first step; the second 1/T* fraction be
decodable in the second step, and so on. Starting with P0

2 2x v= +r ,
Lemma 1 lets us calculate the minimum power required for a

Figure 2: Performance with AMP decoding: a) Section error rate vs. R with snr = 15, C = 2 bits, SPARC parameters M =
512, L = 1024; b) Bit error rate of SPARC vs. E Nb 0 at R = 1.5, compared with coded modulation at information rate =
1.5 bit/dimension.

100

10–1

10–2

10–3

10–4

10–5

10–6

10–7

100

10–1

10–2

10–3

10–4

10–5

10–6

10–7

0.65

a=0.75,
f=0.59

a=0.76,
f=0.66

a=0.91,
f=0.70

a=0.95, f=0.76

a=1.02, f=0.85

A
ve

ra
ge

 S
ec

tio
n

E
rr

or
 R

at
e

B
E

R

0.70 0.75 0.80
R/C

0.85

(a) (b)

0.90 0.95 3 4 5 6
Eb/N0 (dB)

7 8

Original PA
Scheme 1 PA
Scheme 2 PA

Shannon Limit
QAM-64 with Rate 1/2 LDPC n=2304
SPARC L=1024 M=1024 n=6826

12

IEEE Information Theory Society Newsletter December 2016

 section to be decodable in the first step. We allocate approximately
this power to each of the first L/T* sections. Then compute 1

2xr , and
from Lemma 1, the minimum power required for a section to now
be decodable; allocate approximately this amount of power to the
next L/T* sections. Repeat this process sequentially for each set of
L/T* sections, with the following caveat: at any stage if the minimum
power prescribed by Lemma 1 is less than what could be obtained
by allocating the available power equally among the remaining sec-
tions, then choose the latter and complete the power allocation.

The bottom curve at the bottom in Fig. 2a shows the decoding
performance of the AMP with this PA scheme. Clearly, the perfor-
mance is at least as good as the first scheme, without having to op-
timize over the parameters (a, f). We used the second PA scheme to
compare the performance of the SPARC with that of coded modula-
tion schemes which combine QAM constellations with a powerful
binary LDPC code. Fig 2b illustrates the bit-error performance
of a SPARC vs. coded modulation at rate 1.5 bit/dim. at various
values of /E Nb 0 . (For the SPARC, E Nb 0 can be calculated as

/ / .E N R2snrb 0 = ^ h h The coded modulation scheme consists of a
64-QAM constellation with a rate 1/2 LDPC code. The LDPC code
is specified in the WiMAX standard 802.16e and was implemented
using the Coded Modulation Library [32]. We see that the SPARC
with AMP decoding achieves a BER of 10−4 at snr around 2.5 dB
from the Shannon limit.

Another way to improve the empirical performance of SPARCs is
via spatially coupled design matrices, as demonstrated in [23, 33, 34].
Here the idea is to have a band-diagonal structure for the design ma-
trix, with overlapping Hadamard blocks near the diagonal and zeros
elsewhere. The idea is to have some extra channel outputs to reliably
determine the first few sections of b; this kick-starts a decoding pro-
gression due to the overlapping structure of the design matrix.

4. Lossy Compression with SPARCs

In this section we show that SPARCs are useful for lossy compres-
sion of continuous alphabet sources with squared-error distortion
criterion. For any ergodic source with variance v2, the goal is to
develop computationally efficient codes that achieve a target dis-
tortion D with a rate R as close as possible to the Gaussian rate-dis-
tortion bound *R D e R2 2o= -^ h nats. (For this section alone, it will
be convenient to use natural logarithms and measure rate in nats.)

The sparse regression codebook is exactly as described in Section 2,
with codewords of the form Ab where b has one non-zero entry
in each section. The only difference is that the values of the non
zeros, nP," ,, do not have to satisfy a power constraint; they can
be chosen in any way to help the compression encoder.

Optimal Encoding: Given a source sequence s := (s1,...,sn), the op-
timal (least-squares) encoder determines : argmin s Aopt

2
b b= -t t ,

where the minimization is over all bt with the SPARC structure. The
positions of the non-zeros in optbt are conveyed using R nats/sample
to the decoder, which produces the reconstruction s A optb=t t .

The following result characterizes the probability of excess distor-
tion with optimal encoding.

Theorem 4. [35, 36] Let : , ,s s sn1 f= ^ h be drawn from an ergodic
source with mean zero and variance v2. Let D e (0, v2), lnR D2

1 2

2 v ,
and ,De R2 2 2! vc ^ h. Let P P L 6,=, ^ h and let the SPARC parameters

determined by (1) satisfy M = La for a a*2 , where the constant a* de-
pends only on R and c 2/D. Then for all sufficiently large n,

,exp
n

s A D
n
s

n1P Popt
c2

2
2 12 2#b lc- + - +tc c ^m m h (9)

where l, c are strictly positive constants.

A few remarks about the two terms on the right-hand side of (9).
The first term is the probability of the source sequence being atypi-
cal, i.e., the probability that its second moment is significantly greater
than v2. The second term is the probability that the SPARC does not
contain a codeword within distortion D of a typical source sequence.
Note that the second term decays super-exponentially in n. Thus,
if the probability of observing an atypical source sequence decays
exponentially in n (e.g., as for an i.i.d. Gaussian source), it is the first
term that dominates the excess distortion probability. The phenom-
enon of source atypicality being the dominant error event can also
be observed in the analysis of the optimal excess-distortion exponent
for memoryless discrete and Gaussian sources [37, 38].

An immediate corollary of Theorem 4 is that SPARCs with
least-squares encoding achieve the optimal excess-distortion ex-
ponent for memoryless Gaussian sources derived in [38]. This
result should be contrasted with the AWGN channel coding re-
sult (Theorem 1), where SPARCs with optimal decoding have
probability of error decreasing exponentially in n, but the error
exponent is smaller than the Shannon-Gallager random coding
exponent [13].

The proof of Theorem 4 uses some techniques recently developed
to characterize thresholds for random graph coloring and random
constraint satisfaction problems [39, 40]. Denote the number of
codewords that are within distortion D of the source sequence by Z.
We need to upper bound the probability of the event Z = 0. Due to
the dependence structure of the codewords, the techniques we use
boils the analysis down to showing that ZE 2 is of the same order as

ZE 2^ h . Curiously, for distortions .D 0 2 2L o , the required condition
is true only for rates greater than a threshold which is strictly larger
than R*(D) [35]. To prove that Theorem 4 holds for all distortions, we
use a refined second-moment analysis in [36] that excludes design
matrix realizations that give rise to an atypically large number of so-
lutions. This approach is inspired by a similar idea used to obtain im-
proved thresholds for the problem of coloring random hypergraphs
[39], and could potentially be useful in other probabilistic settings
where one needs to count the number of (dependent) solutions.

Feasible Encoding: A simple SPARC compression encoder based
on successive cancellation was proposed in [41]. The encoder
starts with b0 = 0, and sequentially encodes the position of the
non-zero in each section of b. The non-zero location in section
, corresponds to the column in the , th section of A that maxi-
mizes the inner product with the residual S A 1b- ,- . The update
bl is then generated by setting the non-zero value in section , to

ln M2 1 L
R2 2 1o - ,-^ ^h h . After the non-zero location in the final sec-

tion is chosen, the codeword is computed as A Lb .

Theorem 5. [4I] For an ergodic source S with mean 0 and variance o2,
the encoding algorithm produces a codeword Abt that satisfies the fol-
lowing for sufficiently large M, L:

 n S A e e1P ln
ln ln

MR n c M2 2 22 1b o D- + l D- - -t` cj m

where l, c are universal positive constants.

13

December 2016 IEEE Information Theory Society Newsletter

We can view the encoder as successively refining the source over
over ()lognL n+ stages, with each stage being a rate-distortion
code of rate R/L. The first stage is an optimal code of rate R/L for
an i.i.d. ,0N 2o^ h source. This implies that the residual r s A1

1b= -
satisfies /r n e 1/R L

L
R

1
2 2 2 2 2. .o o -- ^ h. The residual r1 acts as the

‘source’ sequence for the second stage, which is an optimal rate-dis-
tortion code for source variance e /R L2 2o - . At the end of the second
stage, we have the residual r2, which gets refined by the third stage,
and so on. Each stage of refinement reduces the variance of the in-
coming residual by a factor of approximately 1 R

L
2-^ h. Therefore,

we expect that the final distortion /r n e1 LL
R L R2 2 2 2 2. #o o- -^ h .

However, since the rate R/L is infinitesimal, the deviations from the
expected distortion in each stage can be significant. The essence of
the proof of Theorem 5 is in analyzing these deviations, and showing
that the final distortion /r nL

2 is close to the typical value e R2 2o - .
We note that such a “hard-decision” successive cancellation approach
does not work well for AWGN channel decoding, i.e., the section er-
ror rate would decay much slower than exponentially with block
length n. One explanation for this is that in channel coding, there is
a unique codeword that the decoder has to determine, whereas in
lossy compression, the number of good codewords is exponential in
n when the rate is larger than the rate-distortion function.

With a Gaussian design matrix, the running time and memory re-
quired for the successive cancellation encoder are O(nML). As in chan-
nel coding, implementing the compressor with a Hadamard-based
design matrix can lead to significant speedup and memory savings.

5. Multi-terminal Source and Channel Coding
with SPARCs

Coding schemes that achieve the optimal rate-regions for several
multi-terminal source and channel coding models often use the
following ingredients: i) rate-optimal point-to-point source and
channel codes, and ii) combining or splitting these point-to-point
codes via superposition or binning [17].

Superposition with SPARCs: Superposition is easy to implement
with SPARCs since the structure of the code itself is motivated
by the idea of superposition! Indeed, to construct a superposition
codebook with rates R1 and R2, use two design matrices A1, A2
with rates R1, R2, each with block length n. Then the concatenated
SPARC defined by the matrix : ,A A A1 2= 6 @ defines a superposi-
tion codebook with sum-rate R1 + R2. The message vector b is [b1,
b2]T, with b1 and b2 being the messages corresponding to the rate
R1 and rate R2 SPARCs, respectively.

Binning with SPARCs [42]: We now describe how to bin a rate R1

SPARC (with 2nR1 codewords) into 2nR bins, where R < R1. Fix the
parameters M, L, n of the design matrix A such that L log M = nR1.

A:

β:
T0, c1, cL, 0, , 00,

Section L

M columns M columns M columns

Section 1

, c2, 0,

M �

As shown above, divide each section of A into sub-sections
consisting of Mlcolumns each. Then each bin is indexed by picking
one sub-section from each section. For example, the collection of
shaded sub-sections in the figure together forms one bin. The key
observation is that each bin is a sub-matrix of A that defines a rate
(R1 − R) SPARC with parameters , ,n L Ml^ h. Since we have /M Ml^ h
sub-section choices in each of the L sections, the total number of
bins is /M M Ll^ h . Choosing M' such that L log M' = n(R1 − R) , we
have 2 nR bins as required.

We have divided a higher rate SPARC of rate R1 into 2nR bins, each
of which is a rate (R1 − R) SPARC. Note that the sub-matrices de-
fining the bins have overlapping sub-sections, just like the SPARC
codewords have overlapping columns. It was shown in [42], this
superposition and binning constructions described above let us
construct rate-optimal SPARCs for a variety of Gaussian multi-
terminal models including broadcast channels, multiple-access
channels, as well as source/channel coding with decoder/encoder
side-information.

6. Open Questions

We conclude with a list of open questions in each of the topics
discussed in this survey.

AWGN Channel Coding
Theoretical guarantees for Hadamard designs: Current
analysis techniques for both the AMP decoder and the
adaptive successive decoder depend on the Gaussianity of
A. Empirically, Hadamard-based SPARCs have very similar
error performance to Gaussian ones (and much lower com-
plexity), but there are no existing theoretical bounds.

Getting closer to C at moderate block lengths: One idea in
this direction is to combine power allocation techniques
with spatially-coupled design matrices to boost empirical
performance at rates close to C .

Polynomial gap from C: A major open problem is to design
a feasible SPARC decoder whose gap from capacity (for a
fixed error probability) provably shrinks as O n

1
a^ h for some

, ?a 0 2
1! ^ h With optimal decoding, the analysis in [13]

shows that the gap from capacity for SPARCs is close to
order The current analysis for the feasible decoders pro-
posed so far suggests that the gap from capacity is of order
1/(log n)c, where the constant c L 1 varies according to the
decoder.

Generalizing the sparse regression construction: An inter-
esting direction is to extend SPARCs to models such as
fading channels and MIMO channels. A more general
question is to construct efficient codes for other memory-
less channels: There has been some recent work in this
direction [43].

Lossy Compression

Smaller gap from D*(R): Can we design feasible encoders with
better compression performance, i.e., whose gap from D* (R) is
smaller than ?log log logO n n^ h In particular, can we design
soft-decision based encoders, e.g., an AMP encoder?

14

IEEE Information Theory Society Newsletter December 2016

Bernoulli dictionaries: Can one extend the results for
optimal encoding and successive cancellation encoding
(which are proved for Gaussian dictionaries) to dictionar-
ies with i.i.d. !1 entries? For AWGN channels, SPARC
ML decoding with i.i.d. !1 design matrices has been
analyzed in [14].

Finite-alphabet lossy compression: Can one use SPARC-like
constructions to compress to finite alphabet sources, e.g.,
binary sources with Hamming distortion?

Multi-terminal models

Approaching the Shannon limits with feasible encoding
and decoding: The construction in Sec. 5 implements bin-
ning by nesting a lower-rate source/channel code inside a
higher-rate channel/source code. Since the optimal power
allocation for feasible encoding/decoding will depend on
the rate, we may not be able to ensure that the SPARC power
allocation is simultaneously optimal for both the high-rate
and low-rate codes.

 An open question is: how to do we design good PA
schemes for problems that require binning so that both the
high-rate and low-rate codes are close to their Shannon
limits, thereby ensuring that the overall rate is also near-
optimal? We note that PA is not an issue when we use
optimal encoding and decoding, as flat power-allocation is
sufficient at all rates.

 Implementing SPARCs at near-optimal rates for basic mod-
els with binning (such as Gaussian Wyner-Ziv and ‘writing
on dirty paper’) will pave the way to construct low-com-
plexity, rate-optimal codes for a variety of Gaussian multi-
terminal models such as multiple descriptions, distributed
lossy compression, and relay channels.

Acknowledgements

This survey is based on work done in collaboration with Sang-
hee Cho, Adam Greig, Antony Joseph, Cynthia Rush, and Tuhin
Sarkar. The work was supported in part by the National Science
Foundation under Grant CCF-1217023, and by a Marie Curie
 Career Integration Grant (GA No. 631489) from the European
Commission.

References

[1] C. Berrou and A. Glavieux, “Near optimum error correcting
coding and decoding: turbo-codes,” IEEE Transactions on Commu-
nications, vol. 44, pp. 1261–1271, Oct 1996.

[2] T. Richardson and R. Urbanke, Modern Coding Theory. Cam-
bridge University Press, 2008.

[3] E. Arikan, “Channel polarization: A method for constructing
capacity-achieving codes for symmetric binary-input memoryless
channels,” IEEE Trans. Inf. Theory, vol. 55, pp. 3051–3073, July 2009.

[4] S. Korada and R. Urbanke, “Polar codes are optimal for lossy
source coding,” IEEE Trans. Inf. Theory, vol. 56, pp. 1751–1768,
April 2010.

[5] S. Kudekar, T. Richardson, and R. L. Urbanke, “Spatially cou-
pled ensembles universally achieve capacity under belief propaga-
tion,” IEEE Trans. Inf. Theory, vol. 59, pp. 7761–7813, December 2013.

[6] G. D. Forney and G. Ungerboeck, “Modulation and coding for
linear gaussian channels,” IEEE Transactions on Information Theory,
vol. 44, no. 6, pp. 2384–2415, 1998.

[7] A. Guillén i Fàbregas, A. Martinez, and G. Caire, Bit-interleaved
coded modulation. Now Publishers Inc, 2008.

[8] G. Böcherer, F. Steiner, and P. Schulte, “Bandwidth efficient and
rate-matched low-density parity-check coded modulation,” IEEE
Transactions on Communications, vol. 63, no. 12, pp. 4651–4665, 2015.

[9] R. Zamir, Lattice Coding for Signals and Networks: A Structured
Coding Approach to Quantization, Modulation, and Multiuser Informa-
tion Theory. Cambridge University Press, 2014.

[10] U. Erez and R. Zamir, “Achieving 1/2 log(1 + snr) on the
AWGN channel with lattice encoding and decoding,” IEEE Trans.
Inf. Theory, vol. 50, no. 10, pp. 2293–2314, 2004.

[11] N. Sommer, M. Feder, and O. Shalvi, “Low-density lattice
codes,” IEEE Trans. Inf. Theory, vol. 54, no. 4, pp. 1561–1585, 2008.

[12] Y. Yan, L. Liu, C. Ling, and X. Wu, “Construction of capac-
ity-achieving lattice codes: Polar lattices,” arXiv preprint arX-
iv:1411.0187, 2014.

[13] A. Barron and A. Joseph, “Least squares superposition codes
of moderate dictionary size are reliable at rates up to capacity,”
IEEE Trans. on Inf. Theory, vol. 58, pp. 2541–2557, Feb. 2012.

[14] Y. Takeishi, M. Kawakita, and J. Takeuchi, “Least squares
superposition codes with Bernoulli dictionary are still reliable at
rates up to capacity,” IEEE Trans. Inf. Theory, vol. 60, pp. 2737–2750,
May 2014.

[15] Y. Takeishi and J. Takeuchi, “An improved upper bound on
block error probability of least squares superposition codes with
unbiased bernoulli dictionary,” in Proc. IEEE Int. Symp. Inf. Theory,
pp. 1168–1172, 2016.

[16] T. M. Cover and J. A. Thomas, Elements of Information Theory.
John Wiley and Sons, 2012.

[17] A. El Gamal and Y.-H. Kim, Network Information Theory. Cam-
bridge University Press, 2011.

[18] A. Joseph and A. R. Barron, “Fast sparse superposition codes
have near exponential error probability for R < C,”IEEE Trans. Inf.
Theory, vol. 60, pp. 919–942, Feb. 2014.

[19] C. Rush, A. Greig, and R. Venkataramanan, “Capacity-achieving
sparse superposition codes via approximate message passing decod-
ing,” arXiv:1501.05892, 2015. (Shorter version appeared in ISIT ’15).

[20] A. R. Barron and S. Cho, “High-rate sparse superposition
codes with iteratively optimal estimates,” in Proc. IEEE Int. Symp.
Inf. Theory, 2012.

15

December 2016 IEEE Information Theory Society Newsletter

[21] S. Cho and A. Barron, “Approximate iterative bayes optimal
estimates for high-rate sparse superposition codes,” in Sixth Work-
shop on Information-Theoretic Methods in Science and Engineering,
2013.

[22] S. Cho, High-dimensional regression with random design, includ-
ing sparse superposition codes. PhD thesis, Yale University, 2014.

[23] J. Barbier and F. Krzakala, “Approximate message-passing
decoder and capacity-achieving sparse superposition codes,”
arXiv:1503.08040, 2015.

[24] D. L. Donoho, A. Maleki, and A. Montanari, “Message-pass-
ing algorithms for compressed sensing,” Proceedings of the National
Academy of Sciences, vol. 106, no. 45, pp. 18914–18919, 2009.

[25] A. Montanari, “Graphical models concepts in compressed
sensing,” in Compressed Sensing (Y. C. Eldar and G. Kutyniok, eds.),
pp. 394–438, Cambridge University Press, 2012.

[26] M. Bayati and A. Montanari, “The dynamics of message pass-
ing on dense graphs, with applications to compressed sensing,”
IEEE Trans. Inf. Theory, pp. 764–785, 2011.

[27] M. Bayati and A. Montanari, “The LASSO risk for Gaussian
matrices,” IEEE Trans. Inf. Theory, vol. 58, no. 4, pp. 1997–2017,
2012.

[28] F. Krzakala, M. Mézard, F. Sausset, Y. Sun, and L. Zdeborová,
“Probabilistic reconstruction in compressed sensing: algorithms,
phase diagrams, and threshold achieving matrices,” Journal of Sta-
tistical Mechanics: Theory and Experiment, no. 8, 2012.

[29] S. Rangan, “Generalized approximate message passing for es-
timation with random linear mixing,” in Proc. IEEE Int. Symp. Inf.
Theory, pp. 2168–2172, 2011.

[30] D. L. Donoho, A. Javanmard, and A. Montanari, “Informa-
tion-theoretically optimal compressed sensing via spatial cou-
pling and approximate message passing,” IEEE Trans. Inf. Theory,
pp. 7434–7464, Nov. 2013.

[31] C. Rush and R. Venkataramanan, “Finite sample analysis of
approximate message passing,” in Proc. IEEE Int. Symp. Inf. Theory,
2016. Full version: https://arxiv.org/abs/1606.01800.

[32] “Coded modualtion library.” Online: http://www.iteratives-
olutions.com/Matlab.htm.

[33] J. Barbier, C. Schülke, and F. Krzakala, “Approximate mes-
sage-passing with spatially coupled structured operators, with
applications to compressed sensing and sparse superposition
codes,” Journal of Statistical Mechanics: Theory and Experiment,
no. 5, 2015.

[34] J. Barbier, M. Dia, and N. Macris, “Proof of threshold satu-
ration for spatially coupled sparse superposition codes,” in Proc.
IEEE Int. Symp. Inf. Theory, 2016.

[35] R. Venkataramanan, A. Joseph, and S. Tatikonda, “Lossy
compression via sparse linear regression: Performance under
minimum-distance encoding,” IEEE Trans. Inf. Thy, vol. 60, pp.
3254–3264, June 2014.

[36] R. Venkataramanan and S. Tatikonda, “The rate-distortion
function and error exponent of sparse regression codes with op-
timal encoding,” arXiv:1401.5272, 2014. (Shorter version appeared
in ISIT ’14).

[37] K. Marton, “Error exponent for source coding with a fi-
delity criterion,” IEEE Trans. Inf. Theory, vol. 20, pp. 197–199,
Mar 1974.

[38] S. Ihara and M. Kubo, “Error exponent for coding of memory-
less Gaussian sources with a fidelity criterion,” IEICE Trans. Fun-
damentals, vol. E83-A, pp. 1891–1897, Oct. 2000.

[39] A. Coja-Oghlan and L. Zdeborová, “The condensation transi-
tion in random hypergraph 2-coloring,” in Proc. 23rd Annual ACM-
SIAM Symp. on Discrete Algorithms (SODA), pp. 241–250, 2012.

[40] A. Coja-Oghlan and D. Vilenchik, “Chasing the k-colorability
threshold,” in Proc. IEEE 54th Annual Symposium on Foundations of
Computer Science (FOCS), pp. 380–389, 2013.

[41] R. Venkataramanan, T. Sarkar, and S. Tatikonda, “Lossy com-
pression via sparse linear regression: Computationally efficient
encoding and decoding,” IEEE Trans. Inf. Theory, vol. 60, pp. 3265–
3278, June 2014.

[42] R. Venkataramanan and S. Tatikonda, “Sparse regression
codes for multi-terminal source and channel coding,” in 50th Al-
lerton Conf. on Commun., Control, and Computing, 2012.

[43] J. Barbier, M. Dia, and N. Macris, “Threshold saturation of
spatially coupled sparse superposition codes for all memoryless
channels,” in Proc. Inf. Theory Workshop, 2016.

