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1. Introduction
Developing computationally-efficient codes that approach the 
Shannon-theoretic limits for communication and compression has 
long been one of the major goals of information and coding theory. 
There have been significant advances towards this goal in the last 
couple of decades, with the emergence of turbo and sparse-graph 
codes in the ‘90s [1, 2], and more recently polar codes and spa-
tially-coupled LDPC codes [3–5]. These codes are all primarily for 
discrete-alphabet sources and channels.

There are many channels and sources of practical interest where 
the alphabet is inherently continuous, e.g., additive white Gauss-
ian noise (AWGN) channels, and Gaussian sources. A promising 
class of codes for Gaussian models is the recently proposed Sparse 
Superposition Codes or Sparse Regression Codes (SPARCs). This arti-
cle provides a broad overview of SPARCs, covering theory, algo-
rithms, and some practical implementation aspects. At the end, we 
discuss some open problems and future directions for research.

This survey is based on the tutorial on sparse regression codes pre-
sented at ISIT ‘161. The discussion will be relatively informal. We 
paraphrase some of the technical results with the aim of provid-
ing intuition, and point the reader to references for an in-depth 
discussion.

To motivate the construction of SPARCs, let us begin with the 
standard AWGN channel with signal-to-noise ratio denoted by 
snr. The goal is to construct codes with computationally efficient 
encoding and decoding that provably achieve the channel capacity 

( ) log1 2 1 snrC = +^ h bits/transmission. In particular, we are in-
terested in codes whose encoding and decoding complexity grows 
no faster than a low-order polynomial in the block length n.

Though it is well known that rates approaching C  can be achieved 
with Gaussian codebooks, this has been largely avoided in prac-
tice due to the high decoding complexity of unstructured Gauss-
ian codes. Instead, the popular approach has been to separate the 
design of the coding scheme into two steps: coding and modula-
tion. State-of-the-art coding schemes for the AWGN channel such 
as coded modulation [6–8] use this two-step design, and combine 
binary error-correcting codes such as LDPC and turbo codes with 
standard modulation schemes such as Quadrature Amplitude 
Modulation (QAM). Though such schemes have good empirical 
performance, they have not been proven to be capacity-achieving 
for the AWGN channel.

With sparse regression codes, we step back from the coding/
modulation divide and instead use a structured codebook to con-
struct low-complexity, capacity-achieving schemes tailored to the 
AWGN channel. In a SPARC, codewords are sparse linear combi-
nations of columns of a design matrix (see Fig. 1). The codewords 
are indexed by the locations of non-zeros in each section.

1The slides from the tutorial are available at https://goo.gl/8H8wrk

We explain in Sec. 2 how the parameters of the design matrix de-
termine the rate of the code, average power etc. In Sec. 3, we will 
see how the structure of the design matrix enables fast iterative 
decoding algorithms whose probability of decoding error decays 
rapidly with block length for rates R < C . Further, these codes also 
achieve the Shannon limit for lossy compression (Sec. 4), and can be 
easily combined to implement superposition and binning (Sec. 5).  
Thus sparse regression codes offer a way to construct low-com-
plexity, rate-optimal codes for a variety of canonical models in 
network information theory.

We should mention that lattice codes are another class of struc-
tured codes for Gaussian channel and source models [9]. Several 
elegant coding schemes based on lattices have been proposed in 
the literature, e.g. [10–12], but we will not discuss these further in 
this article.

2. The Sparse Regression Codebook

As shown in Fig. 1, a SPARC is defined in terms of a ‘dictionary’ 
or design matrix A of dimension n # ML, whose entries are i.i.d. 

,0N n
1^ h . Here n is the block length, and M, L are integers whose 

values are specified below in terms of n and the rate R. We think 
of the matrix A as being composed of L sections with M columns 
each. Each codeword is a linear combination of L columns, with one 
column coming from each section. Formally, a codeword can be ex-
pressed as Ab, where b is an ML # 1 vector (b1,..., bML) with the fol-
lowing property: there is exactly one non-zero bj for j M1 # # , one 
non-zero bj for M + 1 # j # 2M, and so forth. The non-zero value of b 
in section L, ! 6 @ is set to nP, , where the positive constants Pℓ satis-
fy P PL

1 =,,=
/ . (We use the notation [L] to denote the set {1,..., L}.)

P is the average power per input symbol in the case of channel cod-
ing; in lossy compression it will be the variance of each codeword 
symbol.

Figure 1: A Gaussian sparse regression codebook of 
block length n: A is a design matrix with independent 
Gaussian entries, and ß is a sparse vector with one non-
zero in each of L sections, where log( nL n )+ . 
Codewords are of the form Aß, i.e., linear combinations 
of the columns corresponding to the non-zeros in ß. The 
message is indexed by the locations of the non-zeros, 
and the values , ,P P1 Lf  are fixed a priori.

A:

β: 0,√nP2, 0, √nPL,0, ,00,

Section 1
M columns

Section 2
M columns

Section L
M columns

T

n rows

0,√nP1,0, 0,
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Since each of the L sections contains M columns, the total number 
of codewords is ML. To obtain a rate R code, we need

 .logM L M nR2 orL nR= =  (1)

(Throughout, we use log for logarithm with base 2, and ln for base e.)  
There are several choices for the pair (M ,L) which satisfy (1). For 
example, L = 1 and M = 2nR recovers the Shannon-style random 
codebook in which the number of columns in A is 2nR. For our con-
structions, we will choose M equal to La, for some constant a > 0.  
In this case, (1) becomes

 a .logL L nR=   
(2)

Thus logL n nH= ^ h , and the size of the design matrix A (given 
by n # ML = n # La+1) grows polynomially in n. In our numerical 
simulations, typical values for L are 512 or 1024.

We note that the SPARC is a non-linear code with pairwise de-
pendent codewords. Two codewords Ab and Abl are dependent 
whenever the underlying message vectors b,blshare one or more 
common non-zero entries.

Power Allocation: The coefficients P L
1, ,=" , , plays an important role 

in determining the performance of the code, both for channel cod-
ing and for lossy compression. We will consider allocations where 

LP 1l H= ^ h.  Two examples are:

Flat power allocation across sections: ,P
L
P L, !=, 6 @.

Exponentially decaying power allocation: Fix parameter  
l > 0. Then ,P L2 /L ,? !,

,l- 6 @.
In Section 3, we discuss computationally efficient decoders which 
asymptotically achieve capacity with the exponentially decay-
ing allocation (with l = 2C). To improve decoding performance 
at practical block lengths, we explore different power allocation 
strategies in Section 3.3, and demonstrate that judicious power 
allocation can lead to dramatic improvements in decoding per-
formance at finite block lengths. We also describe how decoding 
complexity can be reduced by replacing the Gaussian design ma-
trix with a Hadamard-based design.

3. AWGN Channel Coding with SPARCs

The channel is described by the model

 , , , .y x w i n1i i i f= + =   (3)

The noise variables wi are i.i.d. ,0N 2+ v^ h. There is an average 
power constraint P on the input: the codeword : , ,x x xn1 f= ^ h 
should satisfy x Pn ii

1 2
1 #
=
/ . The signal-to-noise ratio P 2v  is 

denoted by snr.

Encoding: The encoder splits its stream of input bits into segments 
of log M bits each. A length ML message vector b0 is indexed by L 
such segments – the decimal equivalent of segment ℓ determines 
the position of the non-zero coefficient in section ℓ of b0. The input 
codeword is then computed as x A 0b= . Note that computing x 
simply involves adding L columns of A, weighted by the appro-
priate coefficients.

Optimal Decoding: Assuming that the codewords are equally like-
ly, the optimal decoder produces

 ,argmin y Aopt
2

b b= -
b

t t
t

where : , ,y y yn1 f= ^ h, and the minimum is over all the message 
vectors in the codebook.

Probability of Error: The performance of a SPARC decoder is 
measured by the section error rate, which is the fraction of sec-
tions decoded wrongly. The section error rate is denoted by 

: 1Esec L
L1

01 !b b= , ,,=
t" ,/ . For a given decoder, we will aim to 

bound the probability of the event Esec2 e" , for 02e . Assum-
ing that the mapping determining the non-zero location for each 
segment of log M input bits is generated uniformly at random, 
a section error will, on average, lead to half the bits correspond-
ing to the section being decoded wrongly. Therefore, when a large 
number of segments are transmitted, the bit error rate of a SPARC 
decoder will be close to half its section error rate.

If we want the decoding error probability of the message b0 to be 
small, we can use a concatenated code with the SPARC as the in-
ner code and an outer Reed-Solomon (RS) code. (An RS code of 
rate (1 − 2e) can correct upto a fraction e of section errors in the 
SPARC; see [13] for details.)

We will not consider the outer RS code in the remainder of this 
article, and focus mostly on the section error rate (or bit error rate) 
of the SPARC.

Performance with Optimal Decoding: For rates R < C , the least-
squares decoder was shown in [13] to have error probabili-
ty decaying exponentially in the block length.

Theorem 1. [13] Consider a SPARC with rate R < C , block length n, and 
equal power allocation, i.e, ,P LP L, !=, ^ h 6 @. For any e > 0, the sec-
tion error rate of the least-squares decoder satisfies

( ) .KeP E { ,( ) }
sec

minn C R 2

2 #e l e- -

where l, K are universal positive constants.

This result was extended to SPARCs with i.i.d. binary (!1) de-
sign matrices in [14, 15]. The exponent l in Theorem 1 is smaller 
than the Shannon-Gallager random coding exponent, but the re-
sult shows that SPARCs are essentially as good as Shannon-style 
random codes for the AWGN channel with maximum-likelihood 
decoding.

3.1. Feasible SPARC Decoders

In contrast to the least-squares decoder, the feasible decoders we 
discuss all use a decaying power allocation across sections. Think-
ing of the L sections of a SPARC as analogous to L users sharing 
a Gaussian multiple- access channel (MAC), leads to an exponen-
tially decaying power allocation of the form ,P L2 /C L2 ,? !,

,- 6 @.  
Indeed, consider the equal-rate point on the capacity region of a 
L-user Gaussian MAC where each user gets rate C/L. It is well-
known [16, 17] that this rate point can be achieved with the above 
power allocation via successive cancellation decoding, where user 
1 is first decoded, then user 2 is decoded after subtracting the 
codeword of user 1, and so on.
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However, successive cancellation performs poorly for SPARC de-
coding. This is because L, the number of sections (“users”) in the 
codebook, grows as / logn n , while M, the number of codewords 
per user, only grows polynomially in n. An error in decoding one 
section affects the decoding of future sections, leading to a large 
number of section errors after L steps.

The first feasible SPARC decoder, proposed in [18], controls the ac-
cumulation of section errors using adaptive successive decoding. The 
idea is to not pre-specify the order in which sections are decoded, 
but to look across all the undecoded sections in each step, and adap-
tively decode columns which have a large inner product with the re-
sidual. The main ingredients of the algorithm are as follows. In the 
first step, the decoder computes the inner product of each column 
of the design matrix with the normalized channel output sequence 

/y y , and picks those columns for which this test statistic exceeds a 
pre-specified threshold; this gives the first estimate 1bt . In the second 
step, the test statistic is generated based on the residual r y A1 1b= - t

: the decoder picks the columns (from the as yet undecoded sections) 
whose inner product with /r r1 1  crosses the threshold; this gives 

2bt . The algorithm continues in this fashion, decoding columns using 
the residual-based statistics in each step. The algorithm is run for a 
pre-specified number of steps, arranged to be of the order of log M; it 
terminates earlier if at least one column has been selected from each 
section, or the test-statistics in any step are all below the threshold.

The performance of this decoder was analyzed in [18]. With 
power allocation P 2 /C L2?, ,- , it was shown that the probability 
of message decoding error decays as ( ( ) )exp kL C RM

2- , where 
C C 1 log

c
M M= -^ h for a constant c > 0, and R is the total rate 

(SPARC combined with an outer Reed-Solomon code).

Therefore the adaptive successive threshold decoder is capacity-
achieving, and the gap to capacity is of order log M1 . However, 
in practice, the section error rates at practically feasible block 
lengths are observed to be rather high for rates near capacity. The 
following two decoders improve the decoding performance by 
avoiding hard decisions about which columns to decode in each 
step.

3.2. Iterative Soft-decision Decoding

The key idea in the next two decoders is to iteratively update the 
posterior probabilities of each entry of b being the true non-zero 
in its section. The goal in both decoders is to iteratively generate 
test statistics that (in step t) have the form Zstatt t t. b x+ , where 
Zt is standard normal and independent of b. In words, statt is es-
sentially the message vector observed in independent additive 
Gaussian noise with known variance t

2x . Assuming this is true, 
the Bayes-optimal estimate for b in the next step is

 ( tat ) [ | stat ] (stat ),s ZEt t t
t

t t t
1b b b x h= + = =+

where the conditional expectation t $h ^ h can be computed using 
the known prior on b (locations of non-zeros uniformly distrib-
uted within each section). For indices j in section ℓ of beta, we have

 :
/

/
, , .

exp
exp

secs nP
nP s

nP s
j Ltion,

sec

t j
k tk

j t

2

2

, ,! !h
x

x
= ,

,

,

! ,

^ ^
^h h

h 6 @/  (4)

Note that /s nP,t jh ,^ h  is the posterior probability (given statt) that 
term j is the non-zero coefficient in section ℓ of b.

In addition to statt having the desired distributional representati-
on, we also want t

2x , the variance of the noise in the test statistic, 
to be computable iteratively from t 1

2x -  as follows. Starting with 
P0

2 2x v= + , we define

 
|

,

n
Z

n
Z

1

1

E E

E

t t t

t t t

2 2
1 1

2

2
1 1

2

x v b b b x

v b h b x

= + - +

= + - +

- -

- -^ h
6

@
@

 (5)

where the expectation on the right is over b and the indepen-
dent standard normal vector Zt. In other words, we want the 
noise in the test statistic to have two independent Gaussian 
components: one component with variance v2 arising from the 
channel noise, and the other component arising from the er-
ror in the current estimate bt. The recursion to generate t

2x  from 
t 1
2x -  can be written as

 P x1t t
2 2

1x v x= + - -^ ^ hh (6)

where :x xt t 1x= -^ h is an expectation of a function of ML standard 
normal random variables. The exact formula for x t 1x -^ h can be 
found in [19, Sec. 3]. Compact asymptotic formulas for xt, t

2x  are 
given in Lemma 1 below.

Therefore, under the assumed distribution for statt, we 
have ( )P x1En

t
t

1 2< <b b- = - ; it can also be shown that 
PxE En n

T t t
t

1 1 2b b b= =6 @  [19, Prop. 3.1]. Thus the scalar xt can 
be interpreted as the expected (power-weighted) success rate, and 

( )P x1 t-  as the expected interference contribution to the noise 
variance 

t
2x  due to the undecoded sections. With this interpreta-

tion, for succesful decoding we want xt to be very close to 1 when 
the algorithm terminates. Indeed, it can be verified that for all 
rates less than C and P 2 /C L2?, ,- , the iteration (6) has a fixed point 
with t

2x  close to v2, i.e., xt is close to one. A more precise version of 
this statement in the large system limit is given in Lemma 1 below.

Finally, the key question is: how do we iteratively generate sta-
tistics statt that in each step are well-approximated as Zt tb x+ ,  
with 

t
2x  having the representation described above? The two de-

coders described below achieve this via seemingly very different 
approaches.

Adaptive Successive Soft-Decision Decoder [20–22]

The statistics for this decoder are defined using the fits 
: , : , , :Y A AFit Fit Fitt

t
0 1

1 fb b= = = . With G0 := Y, recursively de-
fine Gt to be the part of Fitt that is orthogonal to , , ,G G Gt0 1 1f - . 
The ingredients of statt are the vectors , ,Z Zt0 f , defined as

 , .n
G

A G k 0Zk
k

T
k $=

The test statistic is then defined as stat Zt t k

t

k k
t

0x bm= +
=
/ . The 

weights km  have to be carefully chosen in order for statt to be close 
enough in distribution to the desired form Zt tb x+  . The estimate 
bt+1 is generated as statt th ^ h, where t $h ^ h is given by (4).

Two different ways to choose the weights km , k t0 # # , are pro-
posed in [21, 22]. Each of these choices is based on a technical 
lemma [20, Lemma 1] characterizing the distribution of Zk , k6 . 
The first choice of weights is deterministic, and given by

 : , , , ,, , , 1 1 1 1 1
t t

t t
0 1

0 1
2

0
2 2

1
2ff x

x x x x x
m mm - - - -

-

^ ch m  (7)
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where , , t0 fx x  are given by (5 ) .  The analysis in [21] shows 
that this choice of weights makes statt close to the desired 
representation Zt tb x+ , leading to the following concentra-
tion result.

Theorem 2. [21, Lemma 7] Consider a SPARC with rate R < C, param-
eters (n, L, M) chosen according to (1), and power allocation P 2 /C L2?, ,-

. For t $ 1, let

 : .nP x nP x1 1At
T t

t
t

t
2

,2 2f eb b b= - - h$ $. .  

Then, we have

 ,exp
log

a k
M
nP Ak

t
k k k

k

t

1 2 1
2

1
, K e-= +

=
c ^ h m" , /  

where k , a 1, . . . , a t are universal constants depending on R,C.

The probability bound on the event At  in Theorem 2 can be shown 
to imply a probability bound for the section-error rate exceeding 
cf, where c > 0 is a constant. Thus the probability of decoding fail-
ure decays exponentially in / logn n T2 1*+^ h , where T* is the number 
of steps for which the algorithm is run. This is in contrast to the 
optimal decoder in Theorem 1 whose probability of decoding fail-
ure decays exponentially in n.

As an alternative to the deterministic weights in (7), weights {m k} 
depending on the channel output y were also proposed in [21]. 
This choice is based on the Cholesky decomposition of a matrix 
generated from the estimates {b1, . . . ,  bt}. A performance guaran-
tee similar to Theorem 2 can be obtained for this set of weights as 
well; see [21, 22] for details.

Approximate Message Passing Decoder [19, 23]

Approximate message passing (AMP) refers to a class of algo-
rithms [24–30] that are Gaussian or quadratic approximations of 
loopy belief propagation algorithms (e.g., min-sum, sum-product) 
on dense factor graphs. In its basic form [24, 27], AMP gives a fast 
iterative algorithm to solve the LASSO, i.e., to compute

 ,arg min y ALASSO 2
2

1b b bm= - +
b

t t t
t

 

for any m  > 0. Recall that the decoding problem we wish to solve is

arg min y ASPARC 2
2

b b= -
b

t t
t

 over bt  that are valid SPARC code-
words.

One cannot directly use the LASSO-AMP of [24, 27] for SPARC 
decoding as it does not use the prior knowledge about b, i.e., the 
knowledge that b has exactly one non-zero value in each section, 
with the values of the non-zeros also being known.

An AMP decoder for SPARCs can be derived by writing down 
min-sum like updates for the SPARC decoding problem, and then 
approximating them using the recipe in [26]. This leads to a de-
coder with the following update rules [19]. Define r0 = y, and for  
t $ 1 compute:

,r y A r P
n

t t

t

t t

1
2

1 2

b
x

b
= - + -

-

- c m
 ,A rstatt

T t tb= +

 .statt
t t

1b h=+ ^ h

The coefficients t
2x  are recursively defined by (6), starting with 

P0
2 2x v= + . Following the terminology in [24, 26], we refer to this 

recursion as state evolution (SE). Recall that the SE equations are 
derived under the assumption that statt is distributed as Zt tb x+ .  
The presence of the “Onsager” term r Pt

t n
1

1
2 2t

x -
b-

- ` j in the de-
finition of the modified residual rt is crucial to ensure that the dis-
tributional assumption is valid, at least asymptotically. Intuition 
about role of the Onsager term in the standard AMP algorithm can 
be found in [26, Section I-C].

We can derive a compact asymptotic formula for the SE recursion 
by taking the limit as L, M, n " 3  while satisfying (1). (This limit 
is denoted below by ‘lim’.)

Lemma 1. [19] For t $ 1, the asymptotic value of t
2x , denoted by t

2x , is 
given by

 ,P x1t t
2 2

1x v x= + - -r r^ ^ hh  

where the function x $r ^ h is defined as follows. With :c LP=, , , we have

 : .lim lim lim lnx x
P
P c R1 2 2

L

1

22x x x= = ,

,

,

=

r ^ ^ ^h h h" ,/  

Recalling that xt+1 is the expected power-weighted fraction of cor-
rectly decoded sections after step (t +1), for any power allocation 
{Pl}, Lemma 1 may be interpreted as follows: in the large system 
limit, for a section ℓ to be correctly decoded in step (t + 1), the 
limit of LPl must exceed a threshold equal to ln R2 2 t

2xr^ h . All sec-
tions which satisfy this condition will be decodable in step (t + 1) 
(i.e., will have most of the posterior probability mass on the cor-
rect term). Conversely, any section whose power falls below the 
threshold will not be decodable in this step.

Lemma 1 can be used to quickly check whether a given power al-
location is good by checking whether x txr ^ h monotonically increas-
es with t from 0 to 1. When applied to the exponentially decaying 
power allocation P 2 /C L2?, ,- , Lemma 1 gives

( snr) ,
( snr) ( snr)

for ,x
snr

t1
1 1

0>t t
2 2 1

1
t

t

1

1

x v= + =
+ - +p

p
-

-
-

-

r r  (8)

where : 0t 1p =-  and

 , .min log
C R

C
2
1 1t t 1p p= + -cc cm m m' 1  

The constants t t 0p $" ,  have a nice interpretation in the large system 
limit: for R < C, at the end of step t +1, the first pt fraction of sec-
tions in bt+1 will be correctly decodable with high probability. An 
additional log R

C
C2
1 ^ h fraction of sections become correctly decod-

able in each step until step /logT C C R2* = ^ h^ h, when all the sec-
tions are correctly decodable with high probability.

The following theorem shows that the AMP decoder achieves ca-
pacity by showing that the above interpretation based on the SE 
equations is true in the large system limit.

Theorem 3. For any rate R < C, consider a sequence of rate R SPARCs 
{S n}  indexed by block length n and power allocation P 2 /C L2?, ,- . Then 
the section error rate of the AMP decoder (run for T* steps, with the 
constants t

2xr  given by (8 ) )  converges to zero almost surely, i.e., for  
 any e > 0,

, .lim S n n 1P Esecn n 0
0

61 $f =
"3
^ ^ h h
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In recent work, we have used the the finite-sample AMP analysis 
techniques of [31] to refine the asymptotic result of Theorem 3 and 
obtain a large-deviations bound similar to Theorem 2 for the prob-
ability of the section error rate exceeding e.

Computational Complexity

With a Gaussian design matrix, the running time and memory 
requirement of both the adaptive successive soft-decision de-
coder and the AMP decoder are of the same order: O ( n M L ) . 
However, in practice the AMP decoder is faster as no ortho-
normalization or Cholesky decomposition is required to com-
pute its test statistic in each step. Further, as described in [19], 
choosing the design matrix by uniformly sampling n  rows of the 
M L # M L  Hadamard matrix reduces the AMP running time 
to O ( M L  log M). The Hadamard-based design matrix does not 
need to be stored, hence there is also a large saving in required 
memory. Finally, the partitioned structure of the SPARC could 
be exploited to design parallelized or pipelined implementa-
tions of the above decoders.

3.3. Empirical performance at practical  
blocklengths

Though all three decoders theoretically have section error-rate 
decaying to zero with increasing block length for any fixed R < 
C, the soft-decision decoders have much better empirical perfor-
mance [19, 22]. In the following, we illustrate the performance 
of the AMP decoder for block lengths of the order of a few thou-
sands. All the simulation results are obtained using Hadamard-
based designs.

Fig. 2a illustrates the performance for a SPARC with M = 512, L = 
1024, snr = 15 at various values of rate R. The block length n is de-
termined by R according to (1). For example, we have n = 7680 for 
R = 0.6C, and n = 5120 for R = 0.9C. The top curve shows the aver-
age section error rate of the AMP (over 1000 runs) with the power 

P 2 /C L2?, ,- allocation . The bottom two curves are obtained with 
two alternative power allocation (PA) schemes, discussed below. 
Though P 2 /C L2?, ,-  is the optimal PA for rates very close to C, it is 
clear that as we back off from capacity, a carefully chosen PA can 
reduce the error rate by several orders of magnitude.

PA Scheme 1: The PA is determined by two parameters a, f. For a > 
0 and f e [0, 1], let

 
,

, ,
P

fL
fL L

2
2

1
1

/a C L

a Cf

2

2
$
$

,

,

# #
# #

l

l
=

+
,

,-

-)  

where l is a normalizing constant chosen so that P P=,,
/ . The 

parameter a  controls the decay of the exponential. Increasing a 
increases the power allocated to the initial sections which makes 
them more likely to decode correctly, which in turn helps by de-
creasing the effective noise variance in subsequent AMP iterations. 
However, if a  is too large, the final sections may have too little 
power to decode correctly – this is why the standard PA with a = 
1 performs poorly for rates that are not close to capacity. Thus we 
want the parameter a to be large enough to ensure that the AMP 
gets started on the right track, but not much larger.

The parameter f controls the flattening of the PA. The exponentially de-
caying PA may leave too little power for the final sections. To address 
this issue, the idea is to have an exponential PA only for a fraction f of 
the sections, and allocate the remaining power equally among the rest 
of the sections. The middle curve in Fig. 2a shows the performance of 
the AMP with numerically optimized (a, f ) values for each rate. As ex-
pected, the optimal values of a, f decrease as we back off from capacity.

PA Scheme 2: Optimizing the parameters (a, f ) is computationally 
intensive and has to be done separately for each rate and snr value 
of interest. To address this, we have recently developed a simple PA 
algorithm based on Lemma 1. If the AMP decoder is run for T* steps, 
the goal (in the large system limit) is to have the first 1/T* fraction 
of sections be decodable in the first step; the second 1/T* fraction be 
decodable in the second step, and so on. Starting with P0

2 2x v= +r ,  
Lemma 1 lets us calculate the minimum power required for a 

Figure 2: Performance with AMP decoding: a) Section error rate vs. R with snr = 15, C = 2 bits, SPARC parameters M = 
512, L = 1024; b) Bit error rate of SPARC vs. E Nb 0 at R = 1.5, compared with coded modulation at information rate = 
1.5 bit/dimension.
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 section to be decodable in the first step. We allocate approximately 
this power to each of the first L/T* sections. Then compute 1

2xr , and 
from Lemma 1, the minimum power required for a section to now 
be decodable; allocate approximately this amount of power to the 
next L/T* sections. Repeat this process sequentially for each set of 
L/T* sections, with the following caveat: at any stage if the minimum 
power prescribed by Lemma 1 is less than what could be obtained 
by allocating the available power equally among the remaining sec-
tions, then choose the latter and complete the power allocation.

The bottom curve at the bottom in Fig. 2a shows the decoding 
performance of the AMP with this PA scheme. Clearly, the perfor-
mance is at least as good as the first scheme, without having to op-
timize over the parameters (a, f ). We used the second PA scheme to 
compare the performance of the SPARC with that of coded modula-
tion schemes which combine QAM constellations with a powerful  
binary LDPC code. Fig 2b illustrates the bit-error performance 
of a SPARC vs. coded modulation at rate 1.5 bit/dim. at various 
values of /E Nb 0 . (For the SPARC, E Nb 0  can be calculated as 

/ / .E N R2snrb 0 = ^ h h The coded modulation scheme consists of a 
64-QAM constellation with a rate 1/2 LDPC code. The LDPC code 
is specified in the WiMAX standard 802.16e and was implemented 
using the Coded Modulation Library [32]. We see that the SPARC 
with AMP decoding achieves a BER of 10−4 at snr around 2.5 dB 
from the Shannon limit.

Another way to improve the empirical performance of SPARCs is 
via spatially coupled design matrices, as demonstrated in [23, 33, 34]. 
Here the idea is to have a band-diagonal structure for the design ma-
trix, with overlapping Hadamard blocks near the diagonal and zeros 
elsewhere. The idea is to have some extra channel outputs to reliably 
determine the first few sections of b; this kick-starts a decoding pro-
gression due to the overlapping structure of the design matrix.

4. Lossy Compression with SPARCs

In this section we show that SPARCs are useful for lossy compres-
sion of continuous alphabet sources with squared-error distortion 
criterion. For any ergodic source with variance v2, the goal is to 
develop computationally efficient codes that achieve a target dis-
tortion D with a rate R as close as possible to the Gaussian rate-dis-
tortion bound *R D e R2 2o= -^ h  nats. (For this section alone, it will 
be convenient to use natural logarithms and measure rate in nats.)

The sparse regression codebook is exactly as described in Section 2,  
with codewords of the form Ab where b has one non-zero entry 
in each section. The only difference is that the values of the non 
zeros, nP," ,, do not have to satisfy a power constraint; they can 
be chosen in any way to help the compression encoder.

Optimal Encoding: Given a source sequence s := (s1,...,sn), the op-
timal (least-squares) encoder determines : argmin s Aopt

2
b b= -t t , 

where the minimization is over all bt  with the SPARC structure. The 
positions of the non-zeros in optbt  are conveyed using R nats/sample 
to the decoder, which produces the reconstruction s A optb=t t .

The following result characterizes the probability of excess distor-
tion with optimal encoding.

Theorem 4. [35, 36] Let : , ,s s sn1 f= ^ h be drawn from an ergodic 
source with mean zero and variance v2. Let D e (0, v2), lnR D2

1 2

2 v ,  
and ,De R2 2 2! vc ^ h.  Let P P L 6,=, ^ h  and let the SPARC parameters 

determined by (1) satisfy M = La for a a*2 , where the constant a*  de-
pends only on R and c 2/D. Then for all sufficiently large n,

,exp
n

s A D
n
s

n1P Popt
c2

2
2 12 2#b lc- + - +tc c ^m m h  (9)

where l, c are strictly positive constants.

A few remarks about the two terms on the right-hand side of (9). 
The first term is the probability of the source sequence being atypi-
cal, i.e., the probability that its second moment is significantly greater 
than v2. The second term is the probability that the SPARC does not 
contain a codeword within distortion D of a typical source sequence. 
Note that the second term decays super-exponentially in n. Thus, 
if the probability of observing an atypical source sequence decays 
exponentially in n (e.g., as for an i.i.d. Gaussian source), it is the first 
term that dominates the excess distortion probability. The phenom-
enon of source atypicality being the dominant error event can also 
be observed in the analysis of the optimal excess-distortion exponent 
for memoryless discrete and Gaussian sources [37, 38].

An immediate corollary of Theorem 4 is that SPARCs with 
least-squares encoding achieve the optimal excess-distortion ex-
ponent for memoryless Gaussian sources derived in [38]. This 
result should be contrasted with the AWGN channel coding re-
sult (Theorem 1), where SPARCs with optimal decoding have 
probability of error decreasing exponentially in n, but the error 
exponent is smaller than the Shannon-Gallager random coding 
exponent [13].

The proof of Theorem 4 uses some techniques recently developed 
to characterize thresholds for random graph coloring and random 
constraint satisfaction problems [39, 40]. Denote the number of 
codewords that are within distortion D of the source sequence by Z. 
We need to upper bound the probability of the event Z = 0. Due to 
the dependence structure of the codewords, the techniques we use 
boils the analysis down to showing that ZE 2  is of the same order as  

ZE 2^ h . Curiously, for distortions .D 0 2 2L o , the required condition 
is true only for rates greater than a threshold which is strictly larger 
than R*(D) [35]. To prove that Theorem 4 holds for all distortions, we 
use a refined second-moment analysis in [36] that excludes design 
matrix realizations that give rise to an atypically large number of so-
lutions. This approach is inspired by a similar idea used to obtain im-
proved thresholds for the problem of coloring random hypergraphs 
[39], and could potentially be useful in other probabilistic settings 
where one needs to count the number of (dependent) solutions.

Feasible Encoding: A simple SPARC compression encoder based 
on successive cancellation was proposed in [41]. The encoder 
starts with b0 = 0, and sequentially encodes the position of the 
non-zero in each section of b. The non-zero location in section 
,  corresponds to the column in the , th section of A that maxi-
mizes the inner product with the residual S A 1b- ,- . The update 
bl is then generated by setting the non-zero value in section ,  to

ln M2 1 L
R2 2 1o - ,-^ ^h h . After the non-zero location in the final sec-

tion is chosen, the codeword is computed as A Lb .

Theorem 5. [4I] For an ergodic source S with mean 0 and variance o2, 
the encoding algorithm produces a codeword Abt  that satisfies the fol-
lowing for sufficiently large M, L:

 n S A e e1P ln
ln ln

MR n c M2 2 22 1b o D- + l D- - -t` cj m
 

where l, c are universal positive constants.
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We can view the encoder as successively refining the source over 
over ( )lognL n+  stages, with each stage being a rate-distortion 
code of rate R/L. The first stage is an optimal code of rate R/L for 
an i.i.d. ,0N 2o^ h source. This implies that the residual r s A1

1b= -  
satisfies /r n e 1/R L

L
R

1
2 2 2 2 2. .o o -- ^ h. The residual r1 acts as the 

‘source’ sequence for the second stage, which is an optimal rate-dis-
tortion code for source variance e /R L2 2o - . At the end of the second 
stage, we have the residual r2, which gets refined by the third stage, 
and so on. Each stage of refinement reduces the variance of the in-
coming residual by a factor of approximately 1 R

L
2-^ h. Therefore, 

we expect that the final distortion /r n e1 LL
R L R2 2 2 2 2. #o o- -^ h .

However, since the rate R/L is infinitesimal, the deviations from the 
expected distortion in each stage can be significant. The essence of 
the proof of Theorem 5 is in analyzing these deviations, and showing 
that the final distortion /r nL

2  is close to the typical value e R2 2o - . 
We note that such a “hard-decision” successive cancellation approach 
does not work well for AWGN channel decoding, i.e., the section er-
ror rate would decay much slower than exponentially with block 
length n. One explanation for this is that in channel coding, there is 
a unique codeword that the decoder has to determine, whereas in 
lossy compression, the number of good codewords is exponential in 
n when the rate is larger than the rate-distortion function.

With a Gaussian design matrix, the running time and memory re-
quired for the successive cancellation encoder are O(nML). As in chan-
nel coding, implementing the compressor with a Hadamard-based 
design matrix can lead to significant speedup and memory savings.

5. Multi-terminal Source and Channel Coding 
with SPARCs

Coding schemes that achieve the optimal rate-regions for several 
multi-terminal source and channel coding models often use the 
following ingredients: i) rate-optimal point-to-point source and 
channel codes, and ii) combining or splitting these point-to-point 
codes via superposition or binning [17].

Superposition with SPARCs: Superposition is easy to implement 
with SPARCs since the structure of the code itself is motivated 
by the idea of superposition! Indeed, to construct a superposition 
codebook with rates R1 and R2, use two design matrices A1, A2 
with rates R1, R2, each with block length n. Then the concatenated 
SPARC defined by the matrix : ,A A A1 2= 6 @ defines a superposi-
tion codebook with sum-rate R1 + R2. The message vector b is [b1, 
b2]T, with b1 and b2 being the messages corresponding to the rate 
R1 and rate R2 SPARCs, respectively.

Binning with SPARCs [42]: We now describe how to bin a rate R1 

SPARC (with 2nR1  codewords) into 2nR bins, where R < R1. Fix the 
parameters M, L, n of the design matrix A such that L log M = nR1.

A:

β:
T0, c1, cL, 0, , 00,

Section L

M columns M columns M columns

Section 1

, c2, 0,

M �

As shown above, divide each section of A into sub-sections 
consisting of Mlcolumns each. Then each bin is indexed by picking 
one sub-section from each section. For example, the collection of 
shaded sub-sections in the figure together forms one bin. The key 
observation is that each bin is a sub-matrix of A that defines a rate 
(R1 − R) SPARC with parameters , ,n L Ml^ h. Since we have /M Ml^ h 
sub-section choices in each of the L sections, the total number of 
bins is /M M Ll^ h .  Choosing M'  such that L log M'  = n(R1 − R) ,  we 
have 2 nR bins as required.

We have divided a higher rate SPARC of rate R1 into 2nR bins, each 
of which is a rate (R1 − R) SPARC. Note that the sub-matrices de-
fining the bins have overlapping sub-sections, just like the SPARC 
codewords have overlapping columns. It was shown in [42], this 
superposition and binning constructions described above let us 
construct rate-optimal SPARCs for a variety of Gaussian multi-
terminal models including broadcast channels, multiple-access 
channels, as well as source/channel coding with decoder/encoder 
side-information.

6. Open Questions

We conclude with a list of open questions in each of the topics 
discussed in this survey.

AWGN Channel Coding
Theoretical guarantees for Hadamard designs: Current 
analysis techniques for both the AMP decoder and the 
adaptive successive decoder depend on the Gaussianity of 
A.  Empirically, Hadamard-based SPARCs have very similar 
error performance to Gaussian ones (and much lower com-
plexity), but there are no existing theoretical bounds.

Getting closer to C  at moderate block lengths: One idea in 
this direction is to combine power allocation techniques 
with spatially-coupled design matrices to boost empirical 
performance at rates close to C .

Polynomial gap from C: A major open problem is to design 
a feasible SPARC decoder whose gap from capacity (for a 
fixed error probability) provably shrinks as O n

1
a^ h for some 

, ?a 0 2
1! ^ h  With optimal decoding, the analysis in [13] 

shows that the gap from capacity for SPARCs is close to 
order The current analysis for the feasible decoders pro-
posed so far suggests that the gap from capacity is of order 
1/(log n)c, where the constant c L 1 varies according to the 
decoder.

Generalizing the sparse regression construction: An inter-
esting direction is to extend SPARCs to models such as 
fading channels and MIMO channels. A more general 
question is to construct efficient codes for other memory-
less channels: There has been some recent work in this 
direction [43].

Lossy Compression

Smaller gap from D*(R): Can we design feasible encoders with 
better compression performance, i.e., whose gap from D* (R) is 
smaller than ?log log logO n n^ h  In particular, can we design 
soft-decision based encoders, e.g., an AMP encoder?
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Bernoulli dictionaries: Can one extend the results for 
optimal encoding and successive cancellation encoding 
(which are proved for Gaussian dictionaries) to dictionar-
ies with i.i.d. !1 entries? For AWGN channels, SPARC 
ML decoding with i.i.d. !1 design matrices has been 
analyzed in [14].

Finite-alphabet lossy compression: Can one use SPARC-like 
constructions to compress to finite alphabet sources, e.g., 
binary sources with Hamming distortion?

Multi-terminal models

Approaching the Shannon limits with feasible encoding 
and decoding: The construction in Sec. 5 implements bin-
ning by nesting a lower-rate source/channel code inside a 
higher-rate channel/source code. Since the optimal power 
allocation for feasible encoding/decoding will depend on 
the rate, we may not be able to ensure that the SPARC power 
allocation is simultaneously optimal for both the high-rate 
and low-rate codes.

 An open question is: how to do we design good PA 
schemes for problems that require binning so that both the 
high-rate and low-rate codes are close to their Shannon 
limits, thereby ensuring that the overall rate is also near-
optimal? We note that PA is not an issue when we use 
optimal encoding and decoding, as flat power-allocation is 
sufficient at all rates.

 Implementing SPARCs at near-optimal rates for basic mod-
els with binning (such as Gaussian Wyner-Ziv and ‘writing 
on dirty paper’) will pave the way to construct low-com-
plexity, rate-optimal codes for a variety of Gaussian multi-
terminal models such as multiple descriptions, distributed 
lossy compression, and relay channels.
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