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STATISTICAL CURVATURE AND STOCHASTIC COMPLEXITY

JUN-ICHI TAKEUCHI, ANDREW R. BARRON, AND TSUTOMU KAWABATA

1. Introduction

We discuss the relationship between the statistical embedding curvature [1, 2]
and the logarithmic regret [11] (regret for short) of the Bayesian prediction strat-
egy (or coding strategy) for curved exponential families and Markov models. The
regret of a strategy is defined as the difference of the logarithmic loss (code length)
incurred by the strategy and that of the best strategy for each data sequence among
a considered class of prediction strategies. (The considered class is referred to as
a reference class.) Since a prediction strategy is equivalent to a probability distri-
bution, the class of prediction strategy is equivalent to a statistical model. Note
that the logarithmic loss (equivalent to code length) by the minimax strategy is
equal to Rissanen’s stochastic complexity (SC). SC is generalization of Minimum
Description Length [8, 3] and plays an important role in statistical inference such
as model selection, universal prediction, universal coding, etc.

For this matter, it can be shown that the Bayesian strategy with Jeffreys prior
(Jeffreys strategy for short) asymptotically achieves SC upto the constant term,
when the reference class is an exponential family[12, 13, 16]. This is due to the fact
that the logarithmic loss of Bayes mixture strategy is affected by the exponential
curvature of the considered class. Hence, the Jeffreys strategy does not achieve
the SC in general, if the reference class is not an exponential family. For a curved
exponential family case, in order to obtain the minimax regret, we give a method
to modify the Jeffreys mixture by assuming a prior distribution on the exponential
family in which the curved family is embedded.

We also consider the expected version of regret (known as redundancy in informa-
tion theory field). When the true probability distribution belongs to the reference
class, the Jeffreys strategy asymptotically achieves the minimax redundancy, irrel-
evant to the curvature of the reference class as shown by Clarke and Barron [6].
However, if the true probability distribution does not belong to the reference class,
the situation differs and the redundancy of Jeffreys strategy is affected by both
exponential and mixture curvatures of the reference class.

Finally, we study the exponential curvature of a class of Markov sources defined
by a context tree (tree model). Tree models are classified to FSMX models and non
FSMX models. It is known that FSMX models are exponential families in asymp-
totic sense. We are interested in the problem if non FSMX models are exponential
families or not. We show that a certain kind of non FSMX tree model is curved in
terms of exponential curvature.

Almost all parts of this material is based on [13, 14, 4, 15].

2. Stochastic Complexity

We review the notion of stochastic complexity [10] and regret [11] for universal
coding and universal prediction.
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2.1. Stochastic Complexity and Regret. Regret is a performance measure used
for the problem of data compression, gambling and prediction, and is defined as the
difference of the loss incurred and the loss of an ideal coding or prediction strategy
for each sequence. A coding scheme for the sequence of length n is equivalent to
a probabilistic mass function q(xn) on Xn. ‘An ideal strategy’ is selected from a
certain class of probabilistic mass functions C, which we call a reference class.

The worst case regret of a strategy q with respect to a reference class C =
{p(·|u) : u ∈ U} and a set of the sequences Wn ⊆ Xn is defined as

rn(q, Wn, C) def= sup
xn∈Wn

(
log

1
q(xn)

− log
1

p(xn|û)

)
,

where û is the maximum likelihood estimate (MLE) given xn.
We consider minimax problems for sets of sequences such that Wn = Xn(K) def=

{xn : û ∈ K}, where K is a certain nice subset (satisfies K̄ = K̄◦) of U . For this
problem, it is known that the normalized maximum likelihood

m̂n(xn) def=
p(xn|û)∫

Wn
p(xn|û)dxn

achieves the minimax regret strictly [11]. Rissanen defined stochastic complexity
of a sequence xn with respect to the reference class C as the code length obtained
by m̂n [10]. That is, the stochastic complexity equals the minimax code length.
Evaluation of stochastic complexity under certain regularity conditions is given as

log
1

m̂n(xn)
= log

1
p(xn|û)

+
d

2
log

n

2π
+ log

∫

K

√
detJ(u)du + o(1),

where J(u) denotes the Fisher information matrix of u [10, 19, 12, 4, 13, 3].

3. Minimax Strategy by Bayes Mixtures

We are interested in the regret of mixture strategies. The Jeffreys mixture is the
mixture by the prior proportional to

√
det(J(u)). We denote the Jeffreys mixture

over the set K by mn. The value CJ(K) is the normalization constant for the
Jeffreys prior over the set K.

For the exponential families including the multinomial Bernoulli and FSM (Fi-
nite State Machine), it is known that a sequence of Jeffreys mixtures achieves the
minimax regret asymptotically [20, 12, 13, 16]. For the multinomial exponential
family case except for multinomial Bernoulli and FSM, these facts are proven under
the condition that K is a compact subset included in the interior of U .

We briefly review outline of the proof for that case. Let {Gn} be a sequence of
subsets of U such that G◦n ⊃ K. Suppose that Gn reduces to K as n → ∞. Let
mJ,n denote the Jeffreys mixture for Gn. If the rate of that reduction is sufficiently
slow, then we have

log
p(xn|û)

mJ,n(xn)
∼ d

2
log

n

2π
+ log CJ(K) + o(1),(1)

where the remainder o(1) tends to zero uniformly over all sequences with MLE
in K. This implies that the sequence {mJ,n} is asymptotically minimax. This is
verified using the following asymptotic formula resulted by the Laplace integration,
which holds uniformly:

mJ,n(xn)
p(xn|û)

∼
√

det(J(û))

CJ(K)
√

det(Ĵ(xn, û))

(2π)d/2

nd/2
,
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where Ĵ(xn, u) is the empirical Fisher information. When C is an exponential
family, Ĵ(xn, û) = J(û) holds. Hence, the above expression asymptotically equals
the minimax value of regret mentioned in the former section.1

When the model C is not exponential type, the situation differs. The Jeffreys
mixture is not guaranteed to be minimax, because the empirical Fisher information
is not close to the Fisher information at the MLE in general. Note that the com-
ponent of Ĵ(xn, u) − J(u) orthogonal to the model C is its embedding exponential
curvature.

When the reference class C is a curved exponential family, it is easy to see this.
Assume that C is embedded in a d̄-dimensional exponential family (d̄ > d)

S = {p̄(x|θ) = exp(θixi − ψ(θ)) : θ ∈ Θ},
i.e.

p(·|u) = p̄(·|φ(u)),
where φ is a (4 times differentiable) function U → Θ. Then, we have

Ĵab(xn, û) = − ∂2φi

∂ua∂ub

∣∣∣
u=û

(x̄i − ηi(û)) + Jab(û),(2)

where we let x̄ denote (1/n)
∑n

t=1 xt and η(u) the expectation parameter of S at
θ = φ(u).

First, assume that C is not curved in S (in the natural parameter space), then
θ = φ(u) forms a plane in Θ, i.e. the vectors ∂2φ/∂ua∂ub (a, b = 1, ..., d) are certain
linear combinations of the vectors ∂φ/∂ua (a = 1, ..., d). On the other hand,

∂φi

∂ua

∣∣∣∣
u=û

(x̄i − ηi(û)) = 0

holds. Hence, we have
∂2φi

∂ua∂ub

∣∣∣
u=û

(x̄i − ηi(û)) = 0.

This implies that Ĵ(xn, û) = J(û).
Second, assume that C is a (really curved) curved exponential family. At least

one of the vectors ∂2φ/∂ua∂ub (a, b = 1, ..., d) for a certain u∗ ∈ U has a component
orthogonal to the tangent space of C. We let V (u∗) denote the linear space spanned
by all such components. This holds for a certain neighborhood B∗ of u∗, since φ
is 4 times differentiable. Hence, there exists a sequence xn such that û ∈ B∗ and
the mixture geodesic connecting η = x̄ and η = η(û), is not orthogonal to V (û) at
η = η(û) (assuming n is sufficiently large). Hence, there exists a sequence xn such
that det J(û)/ det Ĵ(xn, û) 6= 1 holds, except for the case that variation of J(u) to
the direction of V (u) preserves the value of det J(u) for every u ∈ B∗. In other
words, except for such cases, the Jeffreys mixtures do not achieve the minimax
regret asymptotically.

Even for the curved exponential family case, we can modify the Jeffreys mixture
to achieve the minimax regret asymptotically. In fact, the series of the following
mixtures is asymptotically minimax with respect to regret.

m̄n(xn) = (1− n−a)
∫

p(xn|u)wJ (u)du + n−a

∫
p̄(xn|θ)w(θ)dθ,

where w(θ) is a certain probability density on Θ.
This can be derived as follows. If |x̄ − η(u)| is small, then the difference be-

tween J(û) and Ĵ(xn, û) is small. This implies that the first term of m̄n is nearly

1If K is the entire space for the statistical model, we cannot define the superset of K and need
a different technique, which was established for the cases of multinomial Bernoulli, FSM, and a
certain type of one-dimensional exponential families. See [20, 13, 16].
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equal to the minimax value. Otherwise (concretely, |x̄ − η(û)| > n−1/4), we have
D(p̄(·|θ̂)|p(·|û)) > An−1/2, where D(·|·) denotes Kullback-Leibler divergence, θ̂ the
maximum likelihood estimate of θ in S, and A a certain positive number. This is
equivalent to

1
n

log
p̄(xn|θ̂)
p(xn|û)

> An−1/2.

Hence, we have p̄(xn|θ̂) > exp(An1/2)p(xn|û). Noting this fact, we can show

n−a

∫
p̄(xn|θ)w(θ)dθ > n−a−d exp(An1/2)p(xn|û).

The right hand side is larger than p(xn|û) for sufficiently large n. Hence the regret
of m̄n(xn) is smaller than the minimax value (actually we have negative regret).

4. Redundancy and Relative Redundancy

Redundancy is expectation version of regret. For a strategy q and a reference
class C, the maximum redundancy is defined as

Rn(q, C) def= max
r∈C

Er log
r(xn)
q(xn)

,

where Er denotes expectation with respect to r. The expectation in the right
hand side is the Kullback-Leibler divergence from r to q. The minimax redundancy
is R̄n(C) def= minq Rn(q, C). For this, it is known that the Jeffreys mixture is
asymptotically minimax and R̄n(C) = (d/2) log(n/2πe) + log CJ(Θ) + o(1) holds
[6, 19]. Note that it holds for general smooth families under certain regularity
conditions. In other words, the redundancy of the Jeffreys mixture is asymptotically
independent of the curvature of the family C.

As for the definition of the maximum redundancy, note that we can rewrite it as

Rn(q, C) def= max
r∈C

Er log
r(xn)
q(xn)

= max
r∈C

max
p∈C

Er log
p(xn)
q(xn)

.

Here, C in the second maximum is the reference class in the same sense for the
definition of regret, while C in the first maximum defines the range of the true
information source. These classes do not have to coincide. In particular, interesting
is the robust case where the true information source r does not belong to the
reference class, i.e. the case that the first C is larger than the second C. Now, we
introduce the symbol S to denote the class of true information sources.

Then, we can extend the notion of redundancy to the relative redundancy, i.e.
we define

RRn(q, r, C) def= Er log
1

q(xn)
− inf

p∈C
Er log

1
p(xn)

,

which we refer to as the relative redundancy of q with respect to an information
source r and a reference class C. We further define the worst case relative redun-
dancy of a strategy q with respect to a class of information sources S and a reference
class C as

RRn(q, S, C) def= sup
r∈S

(
Er log

1
q(xn)

− inf
p∈C

Er log
1

p(xn)

)
.

When S equals C, the relative redundancy is reduced to the ordinary redundancy.
This definition is relevant to Haussler’s robust PAC (Probably Approximately Cor-
rect) learning model [7].

The minimax relative redundancy for the pair (S, C) is defined as

R̄Rn(S, C) def= inf
q

sup
r∈S

(
Er log

1
q(xn)

− inf
p∈C

Er log
1

p(xn)

)
.
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We are interested in the case where S is really larger than C, for example S is a
non parametric class.

4.1. Asymptotic Expansion of Relative Redundancy. We evaluate the rela-
tive redundancy of Jeffreys mixture of the reference class C.

We define ũr for r as

ũr
def= arg min

u∈U
Er log

1
p(x|u)

.

We can rewrite the relative redundancy as

RRn(q, r, C) = Er log
p(xn|û)
q(xn)

+ Er log
p(xn|ũr)
p(xn|û)

.(3)

Let us consider the case for r ∈ C. Then for the Jeffreys mixture mJ , the first
term is evaluated as

Er log
p(xn|û)
mJ(xn)

∼ Er log
(2π)d/2

√
det(J(û))

CJnd/2

√
det(Ĵ(xn, û))

.

When r ∈ C, log
√

det(Ĵ(xn, û)) converges to log
√

det(J(û)) (almost surely).
Hence, the first term does not depend on r.

The second term of (3) is evaluated as

Er log
p(xn|ũr)
p(xn|û)

∼ −Er
trJ(ũr)−1Î(xn, ũr)

2
= − trJ(ũr)−1I(ũr)

2
,(4)

where we let

Îij(xn, u) def=
1
n

∂ log p(xn|u)
∂ui

∂ log p(xn|u)
∂uj

,

I(u) def= Ep(·|u)Îij(xn, u).

When r ∈ C, EuÎ(xn, u) = J(u) holds under certain regularity conditions. Hence,
(4) equals −d/2. Then the Jeffreys mixture is an asymptotic equalizing rule, which
is asymptotically minimax as shown by Clarke and Barron [6].

When r 6∈ C, the situation differs. First, we must care the fact that

Er log
det(J(û))

det(Ĵ(xn, û))

is not zero in general, caused by the exponential curvature of C. Especially when
r is close to p(·|ũr), using Taylor expansion, we have

Er log
det(J(û))

det(Ĵ(xn, û))
∼ −trJ(ũr)−1(ErĴ(xn, ũr)− J(ũr)︸ ︷︷ ︸

e-curvature

),

where the second factor is exponential curvature along with the direction of the
mixture geodesic connecting r and p(·|ũr) at p(·|ũr). As for (4), we have

trJ(ũr)−1Er Î(xn, ũr)

= trJ(ũr)−1(Er Î(xn, ũr)− J(ũr) + J(ũr))

= d + trJ(ũr)−1(Er(Î(xn, ũr)− Ĵ(xn, ũr))︸ ︷︷ ︸
m-curvature

+ Er(Ĵ(xn, ũr)− J(ũr))︸ ︷︷ ︸
e-curvature

).

Hence, RRn(mJ , r, C) is generally affected by both exponential and mixture curva-
tures, but when r is close to p(·|ũr), the influence of exponential curvature almost
vanishes.
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Similarly, we can analyze relative redundancy of the normalized maximum like-
lihood m̂ (for C). For that case, since the first term of (3) does not depend on
r, the fluctuation of RRn(m̂, r, C) from the minimax redundancy consists of both
exponential and mixture curvatures of C at p(·|ur).

4.2. Minimax Strategy for Relative Redundancy. Similarly as the case of
regret, we can propose a possible minimax strategy for relative redundancy. First
define a d2-dimensional vector valued random variable V (x, θ) as Vdj+i(xn, u) def=
Îij(xn, u) − Jij(u). Also define a d2-dimensional vector valued random variable

Udj+i(xn, u) def= Ĵij(xn, u) − Jij(u). Using these random variables, we define an
extended class C̄ of the reference class C:

C̄
def= {pe(·|u, ξ, ω) =

p(·|u)eξ·U(·,u)+ω·V (·,u)

λ(u, ξ, ω)
: u ∈ U, |ξ, ω| ≤ c1},

where λ(u, ξ, ω) is the normalization constant. Note that C̄ is (d+2d2)-dimensional
and the original class C is smoothly embedded in the enlarged class C̄. Then, we
can conjecture that the following mixture is asymptotically minimax for relative
redundancy under appropriate conditions, where we assume εn = o(1).

m̄n(xn) def= (1− εn)mJ(xn) + εn

∫
pe(xn|u, ξ, ω)w(u, ξ, ω)dudξdω.

If X is a finite set, we can use the whole space formed by all probability mass
functions on X as the enlarged class C̄.

5. Curvature of Tree Model

In the field of source coding, Markov model is important. For example, CON-
TEXT algorithm [9] and the Context Tree Weighting method [18] employ a kind
of Markov models, which is referred to as tree models. Here, we discuss about the
exponential curvature of tree models. This is an important topic from view point
of stochastic complexity.

A tree model is a parametric model of Markov sources, defined using tree struc-
ture of contexts (we refer to a last subsequence of a data sequence as its context). It
is well known that a family which consists of all Markov chains of fixed order forms
an exponential family. A tree model is a subspace of such an exponential family,
hence in general, it forms a curved exponential family. On the other hand, it is
known that a parametric class of Markov sources defined by a finite state machine
(automaton), which is referred to as an FSMX model, is an exponential family. As
for a tree model, there are two cases: 1) It is equivalent to an finite state machine.
2) It is not. For the case 1), the tree model is an exponential family, while for the
case 2), it is unknown if it is an exponential family or not. We would like to study
this matter.

Let us give a formal definition of the tree model. Suppose X = {0, 1, 2, · · · ,m}
(m ≥ 1). Let X ′ denote X \{0}. Let T be a finite subset of X ∗ def= {λ}∪X ∪X 2∪· · · .
When, for all s ∈ T , any postfix of s belongs to T (e.g., the postfixes of x1x2 are
x1x2, x2 and λ (the null sequence)), T is called a context tree. Define

∂T
def= {xs : x ∈ X , s ∈ T} ∪ {λ} \ T.

Each element of ∂T is referred to as a leaf of T or a context. We refer to L(T ) def=
maxs∈∂T |s| as depth of T , where |s| denotes a length of s.

For xi = x1x2, ..., xi, let s(xi) denote a postfix of xi which belongs to ∂T . If
i ≥ L(T ), s(xi) is uniquely determined. Here, s(xi) is referred to as the context of
xi defined by T . By putting a probability distribution of x ∈ X to every element of
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∂T , we can define a Markov source. It is referred to as a tree source [17]. For a tree
T , assume that the context of sx for every s ∈ ∂T and every x ∈ X is determined
by s and x (even if |sx| < L(T )). Then the tree source defined by T is referred to
as an FSMX source. This is equivalent to the condition that there exists a state
transition function τ which maps a pair (s, x) to the context of sx defined by T .
Hereafter, we assume X = {0, 1} (binary case). We give examples of the context
tree in Figures 1 and 2. There exists a state transition function for Te1, while there
does not for Te2.

11

1

010

110

00

10

01

0

λ

1eT∂
1eT

Figure 1. A Context
Tree for an FSMX
source

1

010

110

00

10

0

λ

2eT∂

2eT

Figure 2. A Context
Tree for a tree source

Now, we formally define a tree source. We let xj
i

def= xixi+1 . . . xj for i ≤ j and
L denote L(T ), hereafter. We define the probability mass function given an initial
sequence x0

−L+1 as follows

p(xn|x0
−L+1, h, T ) =

n−1∏

i=0

h
xi+1

s(xi
−L+1)

,

where hx
s denotes the probability that x is produced at the context s, i.e. hx

s ≥ 0
and

∑
x∈X hx

s = 1 are assumed. Let h be the (|X | − 1) · |∂T |-dimensional vector
whose components are ha

s (s ∈ ∂T , a ∈ X ′) and H(T ) denote the range of h. The
stochastic process p(xn|x0

−L+1, h, T ) (with a fixed h) is referred to as a tree source.
An tree model M(T ) is a parametric class of tree sources as defined by

M(T ) def= {p(·|·, h, T ) : h ∈ H(T )}.
Note that M(Te2) is a subspace of M(Te1), which is obtained by putting restriction
h1

11 = h1
01 on M(Te1).

We can easily show that an FSMX model is an exponential family (in asymptotic
sense), by proving the difference between the empirical Fisher information and the
Fisher information converges to 0 as n goes to infinity. As for a non FSMX tree
model, the same inference does not work. We conjecture that all non FSMX models
are really curved in terms of exponential curvature. In other words, we conjecture
that the following two statements are equivalent: a) A tree model has a state
transition function, b) A tree model forms an exponential family (in asymptotic
sense). We have not yet proven the conjecture, but the following was shown [15].

Lemma 1. Assume that a context tree T has a state transition function and that the
context tree T ′ which is obtained by removing a parent node s of nodes 1s, 0s ∈ ∂T
does not have a state transition function. Then, M(T ′) is not an exponential family,
even in asymptotic sense.
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This Lemma claims that a certain kind of tree model is really curved in terms
of exponential curvature. Here, Te1 and Te2 (in Figures 1 and 2) are examples of
T and T ′ in Lemma 1, i.e. M(Te2) has non-zero exponential curvature.
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