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ABSTRACT 
Convergence properties of empirically estimated neural 

networks are examined. In this theory, an appropriate size 
feedforward network is automatically determined from the 
data. The networks we study include two and three layer 
networks with an increasing number of simple sigmoidal 
nodes, multiple layer polynomial networks, and networks 
with certain fixed structures but an increasing complexity in 
each unit. Each of these classes of networks is dense in the 
space of continuous functions on compact subsets of 
d -  dimensional Euclidean space, with respect to the topology 
of uniform convergence. In this talk we show how, with the 
use of an appropriate complexity regularization criterion, the 
statistical risk of network estimators converges to zero as the 
sample size increases. Bounds on the rate of convergence 
are given in terms of an index of the approximation capabil- 
ity of the class of networks. 

I .  INTRODUCTION 
A variety of learning network methods for empirical 

classification and function fitting have a common framework 
as given in [ l ] .  These methods include traditional neural 
network models (e.g., as represented in [2], [3]), polynomial 
learning networks [4], some nonparametric statistical tech- 
niques such as projection pursuit [5,6,7], and new generaliza- 
tions of these techniques as described in [ l ] .  In this presen- 
tation we show that the statistical risk of sequences of net- 
work estimators converges to zero, as the size of the training 
sample increases. Given a class of network structures, a 
complexity regularization criterion is used to estimate the 
appropriate size and, in some cases, to estimate the connec- 
tivity as well as the coefficients of the network. Bounds on 
the statistical rate of convergence are given in terms of an 
index of the approximation capability of the given class of 
networks. 

Although the statistical convergence theory can be 
applied to any collection of functions to be optimized in 
accordance with the criterion, we focus here on functions 
represented as feedforward networks. Networks express 
functions f ( x  l , . . . .xd)  of several variables as a composition 
of basic functions (also called units, network nodes, or 
sometimes artificial neurons). The units of the network are 
parameterized as a nonlinear transformation of a linear com- 
bination of many variables, i.e., g(z,B) = h ( C 8 j z j + 8 0 ) ,  or 
as a linear combination of nonlinear transformations of a few 
variables, i.e., g(z.8) = CejQj(z). Important special cases 
include sigmoidal units, where h is a fixed bounded continu- 
ous nondecreasing function , and polynomial units, where 
the Q j ( z )  are basis functions for the polynomials of a given 
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degree. In addition, networks often include one or more 
units which simply take a linear combination of the specified 
inputs. Here z refers to the vector of variables which are 
input to a given node. The network diagram is a tree which 
specifies the composition, i.e., for each node it identifies 
which preceding units and/or which original input variables 
are input to  the node. The layers of the network are the sets 
of functions which occupy the same depth in the tree, and 
the width is the number of nodes in a layer. 

In Section I1 some basic approximation properties of 
networks are stated. The criterion used for network estima- 
tion is developed in Section 111, followed by the main result 
on the statistical convergence of estimated networks in Sec- 
tion IV. Implications for empirical classification are in Sec- 
tion V. 

I I .  NETWORK APPROXIMATION 
Some basic approximation properties of networks are 

known and summarized in the following. 
Network Approximation Theorem: The following classes of 
networks are dense in the space of continuous functions on com- 
pact subsets of d-dimensional Euclidean space, in the sense that 
for any such function f * there exists a sequence of network func- 
tions f that converges uniformly to f * . 

(1) The  class of two-layer networks with an unrestricted 
number of sigmoidal units on the first layer and a linear 
unit on the second layer. These networks implement 
functions of the form C i P , h ( ~ f = d = u j k x ~ + a , , o )  where 
h is any fixed sigmoidal function. 

(2) The  class of three-layer networks with linear units on 
the first layer, polynomial units in one  variable on the 
second layer, and a linear unit on the third layer. These 
networks implement functions of the form 
Z , P , g j ( C f = l a , k x k )  where the g, are polynomials in 
one  variable. 

(3) The class of four-layer networks with polynomial units 
in one  variable on the first and third layers, linear units 
on the second and fourth layers, and the structure 

pig j  (C f= la,k gjk ( xk )) , which has a fixed number 
of units. 

(4) The class of polynomial networks, unrestricted in the 
number of layers, where the degree and the number of 
inputs to each unit may be constrained to be as small as 
2. Constraints may also be imposed in the width of the 
layers, provided the inputs to a layer are permitted to 
emanate from any preceding layer or  from original input 
variables. These networks implement arbitrary polyno- 
mials in d variables. 



I I I .  P E R F O R M A N C E  C R I T E R I A  
Before giving our  convergence result for statistically 

estimated networks, we address the issues of the choice of 
the loss function and the estimation criterion. 

Let ( X i , Y i ) i " _  be independent observations drawn from 
the unknown joint distribution of random variables X , Y ,  
where the support of X is in Rd.  Let f, denote a network 
function estimated from this data. q iven  a distortion or  loss 
function d ( Y  , f ( X ) ) ,  the network f, is typically chosen by 
attempting to minimize the empirical average loss 
( l / n ) ~ ~ = l d ( Y i J ( X i ) ) ,  or  by attempting to minimize the 
empirical loss with a penalty added for rhe complexity of the 
network functions. 

Remarks: Case (1) is proved in Cybenko [8], where a more 
general form for the functions h is permitted. In the proof 
for case (3) we use a result of Kolmogorov as described in 
Lorentz [9] on the exact representation of functions using 
compositions, together with the Weierstrass Theorem. The 
proof for cases (2) and (4) involves a more direct considera- 
tion of polynomials. 

For  each of the above classes of networks, it is seen that 
there are countably many possible structures or families of 
networks F = c f ( .  I 0) : 0 E R'), each of which depends 
continuously on the parameters 0, and these families can be 
enumerated in a systematic way F l , F 2 ,  ... with increasing 
dimensions k l , k 2 ,  ... . 

The Theorem illustrate a range of options in the tra- 
deoff between the number and the complexity of units. In 
particular, cases (1) and (4) use arbitrarily many units of low 
complexity, while case (3) uses a fixed number of units of 
unrestricted complexity. 

In cases (2) and (3 ) ,  spline basis functions for an arbi- 
trarily fine grid of knots may be used in place of the one- 
dimensional polynomials in the Theorem. Splines have cer- 
tain advantage over polynomials near the boundaries of their 
domains. However, splines have the disadvantage that for 
very smooth functions the rates of approximation saturate at 
a slower convergence rate than with polynomial approxima- 
tions. 

A consequence of the Theorem is that each of the given 
classes of functions is also dense in the space of square- 
integrable functions on compact subsets of Rd in the sense 
that for any such f *  there exists a sequence of network 
functions f, such that lim (f,-f*)' = 0. This follows by 
using the fact that functions in L 2  are arbitrarily well approx- 
imated by bounded continuous functions. A similar conclu- 
sion also holds for other loss functions which are weaker 
than the Le norm. 

Larger classes of networks than considered in the 
Theorem can be obtained by removing restrictions on the 
number of layers or the type of  units. Of course, such larger 
classes of networks are also dense. In some cases, enlarging 
the class of candidate networks may improve the rates of 
approximation. 

The approximation rate in L 2 ,  using polynomials (or  
sufficiently high order splines) which are written as sums of 
products of the one  dimensional basis functions, is known to 
be of order ( I l m ) '  as m +m, uniformly over all functions 
f *  for which the r t h  order partial derivatives have L 2  norm 
bounded by a constant, where m is the degree of the polyno- 
mial approximation in each coordinate (see, e.g., [lo], [ l l ] ) .  
The total number of terms in this polynomial is ( m + l ) d .  
Polynomial networks can be arranged such the same approxi- 
mation rates are obtained using a network of order m d  
parameters. However, in high dimensions the exponential 
growth of the number of parameters with the dimension d 
precludes the use of approximations based on the traditional 
expansions. The attractiveness of the network methods is 
that, in practice, function in high dimensions are often 
closely approximated by compositions of lower dimensional 
smooth functions. The aim then is to  search for an appropri- 
ate composition within a given class of networks. 

Loss Functions 
For a given loss or  distortion function d ( Y  , f ( X ) ) ,  we 

let f *  be the function which minimizes the expected distor- 
tion E d ( Y  , f ( X ) )  over all measurable functions on R d .  For 
the loss functions we investigate, such a optimum function 
f * ( x )  exists and is related explicitly to the conditional distri- 
bution of Y given X = x .  The difference between the 
expected distortion at a choice f and at the optimal f *  is 
denoted 

r(f J* ) = ~d ( Y  ,f (X ))- ~d ( Y  ,f * ( X  )) . 
For network estimators f,, the expected value of r(f,,f*) 
is the statistical risk that we desire to bound. Note that 
r(f,,f*) quantifies the ability of the estimate to generalize, 
on the average, to new data from the distribution of X , Y .  

The most common choice for the loss function 
d ( Y  . f ( X ) )  is the squared error ( Y  - f ( X ) ) ' ,  although other 
choices can also be handled in the theory. In the case of a 
dichotomous random variable Y ,  assumed to take values in 
(- 1,+ 1 )  as is traditional for neural networks, other reason- 
able loss functions include the zero-one loss function 
1 { ~  s e n ( f ( ~ ) ) ) ,  and the logistic loss function 
- Y ~ ( x )  + log(ef(x) + e-f(')). A general class of loss 
functions are those which take the form 
d ( Y , f ( X ) )  = - logp(Y I f ( X ) )  where p ( y I f ( x ) )  models 
the conditional density of Y given X .  In particular, the 
squared error loss corresponds to a Gaussian conditional 
density and the logistic loss corresponds to the Bernoulli 
model written in exponential form p ( y  Ix) = 
eYf(X)/(ef(X) + e-f(')), y = f 1, where f ( x )  models one- 
half the log-odds ratio in favor of class + 1 versus class - 1. 
The logistic loss function is the same, except for a linear res- 
caling, as the conditional log-likelihood function used in 
traditional logistic regression. 

For the squared error loss, r ( f , f * )  reduces to 
E ( ( f ( X ) - f ' ( X ) ) ' )  and f * ( x )  = E [ Y  I X = x ] .  In particular, 
in the dichotomous case,f * ( x )  is the difference between the 
conditional probabilities of class + 1 and class -1. For  the 
zero-one loss,r(f ,f *)  is the difference between the probabil- 
ity of error based on f and the Bayes optimal probability of 
error. For  loss functions based on a family of conditional 
densities, f *  is the choice which makes the conditional den- 
sity p (y I f * ( x  )) closest to the true conditional density in the 
relative entropy sense. If the family of conditional densities 
is correctly specified, i.e., if it includes the true conditional 
density, then r(f ,f *)  is the average relative entropy distance 
between p ( .  I f * ( x ) )  and p ( .  I f ( x ) ) .  
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There is not agreement as to the best loss function for 
networks even in the dichotomous case. The zero-one loss, 
the squared error loss, and the loss function based on the 
Bernoulli model may all seem reasonable. However, there 
are clear computational difficulties in the zero-one case due 
to the lack of differentiability of the empirical loss. For the 
squared error loss with dichotomous Y ,  since f * ( x )  is 
necessarily in the range [-1,1], it is suggested that the out- 
put of the network be clipped so as not to take values out- 
side this range. This is sometimes accomplished by directly 
incorporating a sigmoidal transformation in the final node of 
the network (although such a transformation of the final 
node is not used in the network structures in the four cases 
of the approximation theorem above). However, the pres- 
ence of such a sigmoidal transformation or clipping leads to 
the unfortunate property that the objective function is not 
convex, and often not unimodal, as a function of the param- 
eters of the final unit of the network (indeed this lack of 
unimodality of the objective function persists even for a net- 
works with a single sigmoidal unit and the squared error loss 
function). A natural recommendation for the dichotomous 
case is to use the logistic loss function, for which the range 
of f ( x )  may be unrestricted on the real line, and to apply 
the logistic loss function to the linear combination in the 
final unit of the network, without first transforming this 
linear combination. This choice of loss function makes the 
objective function convex in the parameters of the final unit. 
(Subsequent to  the training step, the logistic transformation 
of the output ef(x)/(ef(x)+e-f(x)) may then be used to 
estimate the conditional probability of class 1 given X ,  or  it 
may taken as a useful transformation to be fed to additional 
layers in the evolution of the network.) The point is that 
since multiple-layer networks have an ever-present multi- 
modality problem, it is best not to compound the difficulty 
by a problematic choice of the loss function. 

Concerning the optimization of criteria based on the 
empirical loss function, the convexity of the loss as a func- 
tion of the parameters in a given unit has clear advantages 
for adaptive synthesis strategies which build up a network 
one unit at a time. This convexity for single units permits 
the successful use of Gauss-Newton or  other derivative- 
based search routines in an adaptive synthesis program. 
Adaptive synthesis may be regarded as an approach to initial- 
izing the structure and parameters of a network for subse- 
quent fine-tuning of all the parameters of the network. 
Examples of practical adaptive synthesis algorithms for net- 
works include ASPN for polynomial networks (see [l]). 
related G M D H  algorithms [4], projection pursuit [5,6,7], 
and some extensions of these methods introduced in [l]. 
Combinations of global random and local derivative-based 
search strategies have also been successful in some practical 
applications, see [4, Chapter 21. In practice, it appears that 
adaptive synthesis and guided random search strategies 
achieve near optimum levels of performance. However, a 
gap exists between the theory and practice of network esti- 
mation, because of the difficulty in guaranteeing global 
optimization of the multimodal performance surfaces intrin- 
sic to multiple-layer nonlinear networks. In the theory we 
develop below, we d o  not bridge this gap. Instead, we 
examine statistical convergence properties assuming that a 
criterion is globally optimized over a sequence of candidate 
families of networks. 

Complexity Regularization 
Since the size and structure of a network are to be 

estimated as well as the parameters, a key concern is to  use a 
criterion which will avoid the problem of statistical overfit to 
the observed data, which would be the inevitable result of 
unconstrained minimization of the empirical loss. A com- 
mon but not fully satisfactory way to sidestep the overfit 
problem is to restrict the optimization to a family of network 
functions of given complexity. The  difficulty with imposing 
such constraints is that it is generally not possible to deter- 
mine a priori the appropriate size network. Another 
approach is to use one of several related criteria (cross vali- 
dation, Mallows Cp, Akaike's AIC, or  the predicted squared 
error [4, Chapter 41) which have been shown to have certain 
asymptotic optimality properties for selection problems with 
nested linear models, see [12],[13]. Experimentally, there 
have been numerous practical successes in selecting network 
structures by the use of the predicted squared error criterion 
(see [4, Chapter 21). However, it is not yet clear whether 
the theory for nested linear models will carry over to the 
general network estimation context, even under smoothness 
assumptions. The approach which we examine here is an 
extension of the minimum description length criterion 
[14,15], for which we are able to obtain convergence theory 
in the network estimation context. A complexity-based 
penalty is added to  the empirical loss, which more severly 
penalizes overly complex networks than does the AIC or 
predicted squared error criteria. Here we motivate the cri- 
terion in the context of bounds on the statistical risk of net- 
work estimators. 

There are two contributions to the risk E(r(f,,f*)) of 
a network estimator: namely, the approximation error 
r ( f , f * )  achieved by network functions f in the given class 
as an approximation to  the desired function f*, and the esti- 
mation error, which is due  to the discrepancy between the 
empirical average and the theoretical average of the loss 
function for the estimated network. By techniques in [16], 
[17], or 1181, this discrepancy between empirical and theoret- 
ical averages can be shown to be uniformly bounded by 
0 (4 C,/n), in probability, for families of networks of com- 
plexity bounded by C,. (Essentially, C ,  is taken there as 
the logarithm of the number of functions required to approx- 
imate functions in the class to within a prescribed accuracy.) 
By generalizations of these techniques and by the techniques 
we recently used in [15], it is shown that the estimation 
error can be bounded in probability by a multiple of 
dc,(f)ln for arbitrary bounded loss functions and bv 
r ( f , f * )  + C , ( f ) / n  for the squared error loss and for the 
likelihood based loss functions, uniformly for all candidate 
networks f , where instead of requiring a uniform complexity 
bound, we permit unbounded complexities C ,  (f ) that may 
depend on the candidate networks. (These "complexities" 
C, (f ) are arbitrary numbers satisfying a summability 
requirement, as given in equation ( 5 )  below, in accordance 
with an information-theoretic interpretation.) Thus we are 
led to  complexity regularization criteria and to  corresponding 
indices of approximation. Depending on whether bounds of 
order 4 C , ( f ) / n  or  C , ( f ) / n  arise in controlling the estima- 
tion error, we add the appropriate complexity penalty t o  the 
empirical loss to define the criterion for network estimation, 
for in this way it seen that the minimizer of the empirical 
criterion has a performance essentially as good as that 
achievable by the theoretical analog of the criterion. 
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Definition: Given a collection r, of network functions, 
numbers C , ( f ) ,  f E r,, satisfying the summability condi- 
tion (3, and a positive constant h, the method of complexiry 
regularization chooses the network estimate to minimize one 
of the following two criteria 

The theoretical analog of these criteria leads to the following 
indices of approximation, which quantify the tradeoff 
between the complexity and accuracy of approximations to 
f *, 

1 
R , , ( ' ) ( f * )  = m i n ( r ( f , f * )  + h--C,(f))'/' (3) 

ferm 
and 

(4) 
1 R i 2 ) ( f * )  = m i n ( r ( f , f * )  + 1-C,(f)). 

f.r. 
The latter quantity is the index of resolvability introduced in 
an information-theoretic context in [15]. 

The requirement that is imposed on the numbers C,(f) 
is the following summability condition: 

for some finite constant co. There is an information-theoretic 
interpretation of a related summability condition, with 
co = 1: this is the Kraft-McMillan inequality which is neces- 
sary and sufficient for the existence of uniquely decodable 
binary codes, with codelengths C, (f) log2e, for f E T n .  

The countable collection r, is typically chosen such that 
the networks in every family in the class of interest are accu- 
rately represented. Although the theorems below apply with 
any choice for r,, a particularly reasonable choice, given a 
sequence of network structures F 1 , F 2 ,  ..., is to take T n  to 
consist of the networks in each F, for which the parameter 
values are in the regular grid of points spaced at width 1 / d n  
in each coordinate. Corresponding to this choice we can 
arrange to satisfy the summability condition by taking C,(f ) 
to be 

( 6 )  

where k is the number of parameters in the network struc- 
ture F j  that contains f ,  and c(f) is independent of n .  For 
network functions which depend smoothly on the parame- 
ters, these choices for r, and C,(f) achieve roughly the 
best tradeoff between complexity and accuracy of approxima- 
tions in each given family, as can be shown using the tech- 
niques in [14], or [15,Sec.6]. A more refined analysis as in 
[15], suggests advantages of certain variable-width spacings 
of the parameter values for functions in r,; nevertheless, 
the best asymptotic density of points per unit volume 
remains of order nk", which leads to 
C , ( f )  = ( k / 2 )  log n + 0 ( 1 ) ,  and all such choices will lead 
to the same rates of convergence for the indices of approxi- 
mation. Here we will be content to use equal spacings. 

k C,(f) = 7 l o g n  + 

There is freedom in the choice of c ( f )  subject to  the 
summability requirement. One method for assigning c ( f  ) is 
to use prior probabilities P ( j )  > 0, Z I P  ( j )  = 1, assigned to 
the network structures F,, j =  1,2, ..., and prior distributions 
W j ,  with continuous density functions w j ( e ) ,  assigned to the 
parameter spaces for each network structure. Then we may 
set c ( f )  = - l o g P ( j )  - log w , ( A ) / ~ ~ ,  for f = f ( . ~  e) 
E F j  and 8 E A E n. Here n is a partition of Rk into cubes 
of constant width 6 > 0, each of which contains (4;s)' of 
the points in r, for every n. In practice, it is convenient to 
use the density function w,(€l) in place of Wj(A)16k for 
small 6 ( the summability requirement will continue to hold if 
for some 6 > 0, there exists an integrable function W,(@ 
dominating wj(8')  for 1 8 ' 8  I < 6). This leads to  the choice 

k 
2 

C,(f) = - log n - log w j ( e )  - l o g P ( j ) .  (7) 

A computationally convenient choice is to take w j ( e )  to  be a 
multivariate Gaussian density which makes. the coordinates 
of 8 independent with mean zero and fixed variance 00'. 
Indeed, when attempting to minimize the empirical loss with 
C,(f) added as a penalty, the Gaussian choice for the prior 
density prevents singularity for each iteration in Gauss- 
Newton search algorithms. Nevertheless, the most impor- 
tant term in the complexity based criteria is the ( k l 2 )  log n 
because of its primary role in controlling the growth of the 
size of the network. 

IV. CONVERGENCE RESULTS 
Now we present the main results on statistical conver- 

gence properties of network estimators, The network struc- 
ture and parameters are estimated using a complexity regu- 
larization criterion. Thus let 

and 

The first estimator is used for loss functions such as the 
zero-one loss for which the target rate of convergence of the 
risk would be close to l l d n .  The second estimator is used 
for squared error and log-likelihood based loss functions for 
which close to l l n  would be the target rate. 

Let R , ( ' ) ( f * )  and R , " ) ( f * )  be the indices of approxi- 
mation as defined in equations (3) and (4) above. It is gen- 
erally the case that these indices converge to zero, whenever 
the class of network functions is dense at f'. Indeed, sup- 
pose for each network family F,, when restricted to  networks 
f in the family, that r ( f , f * )  depends continuously on the 
parameters and that for each E > 0, the sequence of subsets 
of parameter values for candidate networks in r, that satisfy 
C,(f) 5 n~ is dense in the usual Euclidean sense (e.g., as 
is the case for G,(f) defined as in ( 6 ) ) .  Then 
lim R , , ( ' ) ( f * )  = 0 and lim R,")(f*) = 0, whenever 
limj- inffsF, r ( f , f * )  = 0. In this way, network approxi- 
mation theorems such as in Section 11, above, may be used 
to show that R ,  tends to zero, but leave open the question 
of characterizing the rate of approximation. For evaluation 



of rates in related contexts of density estimation see [15]. 
We remark that for C , ( f )  as in (6) and for smooth net- 
works, it is typically the case that 
R,( ' ) ( f  *)  I O ( 4  k ,  (log n ) l n )  where k,  = k,(f *)  is the 
dimension of the network that achieves the minimum in the 
definition of R,( ')(f  *). Similarly R,(')(f *)  I 
O(k ,  (log n ) l n )  where now k,  is the dimension of the 
optimum network in the definition of R,")(f *). 

Our main result, which we now give, shows that the sta- 
tistical rate of convergence of network estimators is bounded 
by the rate of approximation. 

The result requires in some cases that d ( Y  f (X))  be 
almost surely bounded. This is forced by a constraint on the 
support of Y and by clipping the functions f ( X ) ,  or by 
explicit choice of a bounded loss function. For loss func-, 
tions based on the log-likelihood, with a correctly specified 
family of conditional densities, no boundedness of the loss is 
required. 
Network Convergence Theorem: Assume that the indices of 
approximation R,,( ')( f  * )  and R i 2 ) ( f  *)  tend to zero as n + - .  
If the range of d ( Y  , f (X )) for  every f in r, is in a fixed inter- 
val of length b, and if h >, bld  2 in the definition of the complex- 
ity regularized estimator f , , ( ' ) ,  then the statistical risk of the net- 
work estimator converges to zero at rate bounded by R,,( ' )( f  *), 

For the first two conclusions of the theorem, the proof 
uses a bound on the probability of the event that 
r ( f , , f  *)  > r in terms of a sum of probabilities of related 
events for each f E r,, to which inequalities of Hoeffding 
and Bennett can be applied. The bounds on the probabilities 
are then integrated for t > 0 to obtain the indicated bounds 
on the risk. The  third conclusion is based on results we 
recently gave in [15]. The  proof there also uses a union of 
events bound and inequalities of Chernoff. 

V .  CLASSIFICATION 
Now we discuss the implications of the theory for net- 

work based classifiers. Here we restrict attenltion to dichoto- 
mous Y E [-1,l). The sign of the estimate f n ( x )  is used as 
the decision rule. Let P i f )  = P ( E f )  denote the probability 
of the error event Er = ( Y #  sgn(f(X))) ,  for which the 
minimum value is the Bayes optimal probability of error Pi' 
achieved by discriminant functions such as the log odds ratio 
which are positive if and only if P ( Y = 1  I X = x )  > 
P ( Y  =- 1 I X = x ) .  We desire to show that with the network 
classifiers, the probability of error converges to the Bayes 
optimum probability of error. Since the difference 

,df") - P i f ' )  is positive, it converges to  zero in probability 
at a given rate, if the expected value is shown to converge at 

i.e., 

E ( r ( f , , ( ' ) , f  *))  I O ( R , ( ' ) ( f  *)). 
that rate. Thus we examine P, = E ( p J f " ) ) .  

( lo)  
Network Classification Theorem: Under the conditions of the 

For the squared error loss function, if the support of Y and Network Convergence Theorem, if f,'" is estimated using rhe 

zero-one loss and h > 1 / 4 7 ,  then &(f") converges to the Bayes 
optimal probability of error at rate bounded by R,,('I(f *). If 
7,'') is estimated using the squared error loss with the network 

of each function f (X)  is in a known interval of-length b ,  then 
with h 2 4b2 in the definition of the estimator f ; " ,  the mean 
squared error converges to zero at rate bounded by R i 2 ) ( f  *) ,  
. -  
I.C., 

functions clipped to take values in the interval [-1.11 and we 
take h 2 16, or if it is estimated using the logistic loss function 

and we take h > 1, then converges to the Bayes optimal 
probability of error at rate bounded by 4 R ,(')( f *)  . 

( E ( f  (X)  - f *(X))2)1'2 in the squared error case, it is not 

and p ( y  I f * ( x ) )  in the logistic case, and it is equal to  
r ( f  ,f r )  in the case of the zero-one loss. The conclusion on 
classification rates then follows by application of the Network 
Convergence Theorem. 

E ( ( f , , ( ' ) ( X )  - f '(X))') 2 0 ( R i 2 ) ( f  *)).  (11) 

( y I f ( x  )) 
where the true conditional density is p ( Y  I f ',(X )), then for  all 

squared H ellinger distance between the conditional densities con- 

i.e., 

I f  the loss function is d (  y , f ( x  )) = - log 

' in definition of lhe estimator f,'", the expected The proof shows that E J f )  - p i f ' )  is not greater than 

verges at rate bounded by the index of resobability R,(')(f *), greater than the expected L 1 distance between p ( y  I f ( x ) )  

E ( d i ( f i 2 ) ( X ) , f  ' ( x ) ) )  5 0 ( R i 2 ) ( f  *)). (12) 

The squared Hellinger distance is d i ( f  ( x ) , f  * ( x ) )  

h(dy ) is the dominating measure, typically Lebesque's meas- 
ure in the continuous case and counting measure in the 
discrete case). Since the L'  distance, which takes the form 
1 I p ( y  I f  ( x ) )  - p ( y  I f  * ( x ) )  I h(a'y), is known to not be 
greater than twice the Hellinger distance, a consequence of 
(12) is that the expected square of the L distance also con- 
verges at rate bounded by R i 2 ) ( f  *).  

For the Gaussian error case, the Hellinger distance can 
be evaluated and lower bounded as in [15,p.33]. It is seen 
that for any c > 0, the risk E(min((f,(X)-f * ( X ) ) ' , c ) )  
converges to zero at rate bounded by R,")(f *). 

= ( ( P ( Y  I f  ( x ) ) ) ' "  - ( P O  I f  * ( X ) ) " 2 ) 2 h ( d r )  (where REFERENCES 
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