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Asymptotically Minimax Regret by Bayes Mixtures
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Abstract—We study the problems of data compression, gam-
bling and prediction of a sequence xn

= x1x2...xn from an alpha-
bet X , in terms of regret and expected regret (redundancy) with
respect to various smooth families of probability distributions.
We evaluate the regret of Bayes mixture distributions compared
to maximum likelihood, under the condition that the maximum
likelihood estimate is in the interior of the parameter space.
For general exponential families (including the non-i.i.d. case)
the asymptotically mimimax value is achieved when variants of
the prior of Jeffreys are used. Interestingly, we also obtain a
modification of Jeffreys prior which has measure outside the
given family of densities, to achieve minimax regret with respect
to non-exponential type families. This modification enlarges the
family using local exponential tilting (a fiber bundle). Our
conditions are confirmed for certain non-exponential families,
including curved families and mixture families (where either
the mixture components or their weights of combination are
parameterized) as well as contamination models. Furthermore
for mixture families we show how to deal with the full simplex
of parameters. These results also provide characterization of
Rissanen’s stochastic complexity.

Index Terms—universal coding, universal prediction, regret,
redundancy, exponential family, Bayes mixture, Jeffreys prior

I. INTRODUCTION

We study the problem of data compression, gambling and

prediction of a string xn = x1, x2, ..., xn from a given alphabet

X , in terms of regret and expected regret (redundancy) with

respect to various families of probability distributions. We

evaluate the regret and expected regret of Bayes mixture

distributions and show that it asymptotically achieves the

minimax value when variants of Jeffreys prior are used. Our

results contain generalization of the results in [50], [51], [14].

Our results provide evaluation of stochastic complexity defined

by Rissanen [37].

This paper’s main concern is the regret of a coding or

prediction strategy. This regret is defined as the difference of

the loss incurred and the loss of an ideal coding or prediction

strategy for each sequence. A coding scheme for strings of

length n is equivalent to a probability mass function q(xn)
on Xn. We can also use q for prediction and gambling, that

is, its conditionals q(xi+1|xi) provide a distribution for the

coding or prediction of the next symbol given the past. The

minimax regret with respect to a target family of probability

mass functions S = {p(·|θ) : θ ∈ Θ} and a given set of

parameters K ⊂ Θ is defined as

min
q

max
xn∈K

max
θ∈Θ

(

log
1

q(xn)
− log

1

p(xn|θ)
)

,
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where K denotes the set {xn : θ̂(xn) ∈ K}, which is the

set of strings for which the maximum likelihood estimate

θ̂ is in K . Typically K is either all of Θ or a subset that

excludes points near the boundary. The maximum is taken for

all strings xn in K. The regret log(1/q(xn))− log(1/p(xn|θ̂))
in the data compression context is also called the (pointwise)

redundancy: the difference between the code length based

on q and the minimum of the codelengths log(1/p(xn|θ))
achieved by distributions in the family. Also, log(1/q(xn))−
log(1/p(xn|θ)) is the sum of the incremental regrets of pre-

diction log(1/q(xi+1|xi)) − log(1/p(xi+1|xi, θ)), with what

is sometimes called the log-loss. This regret is also called

the pointwise regret, to emphasize the distinction from the

expected regret also discussed below.

The heart of our analysis is the consideration of Bayes mix-

tures and the use of the Laplace method to approximate them.

A Bayes mixture takes the form q(xn) =
∫

p(xn|θ)w(θ)dθ,

also called the Bayes factor or the marginal density of xn

obtained by integrating out θ from the joint distribution.

Though certain coding and prediction settings have a dis-

crete alphabet X , we are interested in minimax regret problems

also for continuous spaces X . Then the p(xn|θ) as well as

q(xn) are understood to be probability density functions with

respect to a given reference measure.

For the case that S is the class of all discrete memoryless

sources, it was proved [51] that the minimax regret asymptot-

ically equals (d/2) log(n/2π) + logCJ(K) + o(1), where d
equals the size of alphabet minus 1 and CJ (K) is the integral

of the square root of the determinant of the Fisher information

matrix over K . An important point in the above is that K is

taken there to be Θ itself, i.e. we do not have to have any

restriction for the sequence xn. To obtain this asymptotically

minimax regret, they use sequences of Bayes mixtures with

certain prior distributions that weakly converge to the Jeffreys

prior. The reason why one needs such variants of the Jeffreys

prior is as follows: If we use the Jeffreys prior, the regret is

asymptotically higher than the minimax value, for xn such that

θ̂ is near the boundary of Θ. Priors which have higher density

near the boundaries than the Jeffreys prior give more prior

attention to these boundary regions and thereby pull the regret

down to not more than the asymptotically minimax level.

In this paper, we provide such regret results for more general

parametric families of densities. For exponential families of

arbitrary dimension, the Jeffreys mixture is shown to be

asymptotically minimax, if K is a compact subset included

in the interior of Θ. A boundary modification is shown to

produce a variant of Jeffreys mixture asymptotically minimax

for K = Θ in the one-dimensional exponential family case.

For general smooth families that are not of exponential type,

we find that any Bayes mixture that uses a prior restricted

to the family is not asymptotically minimax, but a slight

http://arxiv.org/abs/2406.17929v1
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modification (enlargement) of the family allows for priors

for which the regret of Bayes mixtures does achieve the

asymptotically minimax value.

The related problem of minimax expected regret (redun-

dancy), which is defined as

min
q

max
θ∈K

Eθ

(

log
1

q(xn)
− log

1

p(xn|θ)
)

was studied by Clarke and Barron [14]. They considered fairly

general classes of i.i.d. processes and showed that the minimax

expected regret asymptotically equals (d/2) log(n/2πe) +
logCJ (K)+o(1), when K is a compact subset of the interior

of Θ. Moreover the expected regret is related to the value of

min
q

max
θ∈K

Eθ

(

log
1

q(xn)
− log

1

p(xn|θ̂)

)

using the target code length with 1/p(xn|θ̂) instead

of 1/p(xn|θ). It has a corresponding minimax value

(d/2) log(n/2π) + logCJ(K) + o(1). Preceding work [51],

[50] evaluated the minimax expected regret for the class of

discrete memoryless sources and showed that sequences of

slightly modified Jeffreys mixtures achieve the minimax value

asymptotically for the whole probability simplex Θ. As we

shall see, the answer for the minimax regret and the minimax

expected regret are similar.

To obtain the minimax regret results, we employ the Laplace

integration method, which was used by [13], [14] to evaluate

the expected regret of the Bayes procedures. Especially in [14],

they succeeded to uniformly evaluate the expected regret by

the Laplace integration for compact subsets K of Θ◦, the

interior of Θ. To handle all of Θ, careful modification of

the Laplace method is required to handle behaviour near the

boundary.

Since the Jeffreys mixture achieves asymptotically the min-

imax expected regret, one might expect that it also achieves

asymptotically the minimax pointwise regret. However, it does

not in general. Namely, we can see that for processes which

are not exponential type, the worst case regret of the Jeffreys

mixture is asymptotically higher than the minimax value, even

if strings are restricted such that the maximum likelihood

estimate (MLE) is in the interior of the parameter space.

The reason follows from examination of the Laplace ap-

proximation to the Bayes mixture density. This leads to an

approximation to the regret of the Jeffreys mixture which

converges to the minimax value, if and only if the difference

between the determinant of the empirical Fisher information

matrix and that of the Fisher information matrix at the MLE

converges to 0. For exponential families, the empirical and

expected Fisher informations are the same, hence the Jeffreys

mixture is asymptotically minimax. The situation is different

for families which are not exponential type, for then there exist

sequence xn for which the determinants of these matrices are

asymptotically different.

Even though the Jeffreys mixture is not asymptotically

minimax, we can obtain an asymptotic minimax regret, by

a modified Jeffreys mixture obtained by adding a small

contribution from a mixture of an enlarged set of densities,

whose dimension is higher than the original set. The added

components deal with the strings for which the empirical

Fisher information differs from the Fisher information. When

the original set is a curved exponential family embedded in an

exponential family, we have the option to use that family as

the enlarged model. Furthermore, this method can be applied

to non-i.i.d. families under certain assumptions.

Our result about minimax regret provides an alternative way

to evaluate, more generally, the stochastic complexity in Rissa-

nen [37], where he used the normalized maximum likelihood.

Our results show that the codelength of the minimax strategy

retains asymptotically the mixture codelength interpretation of

earlier incarnations of his criterion. The work [6] shows that

in some cases the exact minimax strategy has a signed mixture

interpretation without resorting to asymptotics.

The codelength of a code based on a mixture q(xn) =
∫

K p(x
n|θ)w(θ)dθ has Laplace approximation (for θ̂ away

from the boundary of K) given by

log
1

q(xn)
∼ log

1

p(xn|θ̂)
+
d

2
log

n

2π
+ log

|Ĵ(θ̂, xn)|1/2
w(θ̂)

,

where Ĵ(θ̂, xn) is the empirical Fisher information, defined as

(1/n) times the second derivative matrix of the minus log-

likelihood, evaluated at the MLE θ̂. With Jeffreys prior in

which w(θ) is proportional to |J(θ)|1/2, the Laplace approx-

imation for log(1/q(xn)) is

log
1

p(xn|θ̂)
+
d

2
log

n

2π
+ logCJ (K) +

1

2
log

|Ĵ(θ̂)|
|J(θ̂)|

,

where

CJ (K) =

∫

K

|J(θ)|1/2dθ.

Accordingly, the regret of the code based on Jeffreys prior

takes the approximation form

d

2
log

n

2π
+ logCJ (K) +

1

2
log

|Ĵ(θ̂)|
|J(θ̂)|

.

Our modification of q(xn) by enlargement of the family with

an associated modification to the prior shows that

d

2
log

n

2π
+ logCJ(K) (1)

remains the asymptotically minimax regret even though in the

non-exponential family cases there are sequences xn for which

log
(

|Ĵ(θ̂, xn)|/|J(θ̂)|
)

does not converge to 0.

This presents a challenge for the formulation and analysis of

our asymptotic minimax procedures with the maximum of the

regret taken over all xn. In contrast the minimax expected

regret is easier to achieve because the expectation washes

out the effect of Ĵ different from J . In either formulation,

with log(1/p(xn|θ̂)) as the target, the minimax value takes

the asymptotic form (1).

In Section II, we formally introduce the notion of minimax

and maximin regret. Section III gives keys to the bounds. In

Section IV, we give the lower bound on the maximin regret for

general smooth families in the i.i.d. setting (Theorems 1 and

2) and for families of non-i.i.d. densities (Theorems 3 and 4).

These hold for any subset K of Θ with finite Jeffreys integral.
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Likewise, in Section V, we give corresponding upper bound on

the minimax regret for general smooth families with a compact

subset K in the interior of Θ (Theorem 5), which incorporate

the discussed innovations. In Section VI, we provide various

types of families as concrete examples, including certain

curved exponential families and certain mixture families that

are not representable as exponential families.

II. PRELIMINARIES

Let (X ,B, ν) be a measurable space with a reference

measure ν, assumed to be sigma finite (such as counting

measure or Lebesgue measure). Let S = {p(·|θ) : θ ∈ Θ}
denote a parametric family of probability densities over X
with respect to ν. Assume that Θ ⊆ ℜd. We let p(xn|θ) de-

note
∏n
i=1 p(xi|θ). Also, we let ν(dxn) denote

∏n
i=1 ν(dxi).

Here, we are treating models for independently identically

distributed (i.i.d.) random variables. (Section IV treats certain

non i.i.d. cases.) We let Pθ denote the distribution function

with density p(·|θ) and Eθ denote expectation with respect to

Pθ .

Define the Fisher information matrix by

Jij(θ) = Eθ

(

−∂
2 log p(x|θ)
∂θi∂θj

)

.

(We let log denote the natural logarithm.) We assume that J(θ)
exists and is strictly positive definite in the interior of Θ. Let

K denote a subset of Θ. We let CJ(K)
def
=
∫

K
|J(θ)|1/2dθ,

which we call the Jeffreys integral on K . Our interest is in

cases in which CJ (K) is finite. The Jeffreys prior over K is

a prior distribution with density function

wK(θ) =
|J(θ)|1/2
CJ (K)

1K(θ).

Define the Jeffreys mixture for K as

mK(xn) =

∫

K

p(xn|θ)wK(θ)dθ.

We also introduce the empirical Fisher information as a

function of xn:

Ĵij(θ) = Ĵij,n(θ) = Ĵij(θ, x
n) =

−1

n

∂2 log p(xn|θ)
∂θi∂θj

.

Note that Jij(θ) = Eθ[Ĵi,j(θ)]. Moreover, in the present

i.i.d. setting, Ĵij,n(θ) is near Jij(θ) with high probability

for large n, by the law of large numbers, when Jij(θ) is

finite, if we were to have the Xi distributed according to

Pθ . We work with the arbitrary sequence perspective, so the

empirical Ĵij,n(θ) need not be close to Jij(θ). Nevertheless

we will find a role for the expected value formulation of Fisher

information in characterization of the minimax regret among

arbitrary sequences.

Let θ̂(xn) be the maximum likelihood estimate (MLE),

which is

argmax
θ∈Θ

p(xn|θ).

More strictly, we define θ̂ to be an element of the set {θ :
p(xn|θ) = maxθ p(x

n|θ)}. For the case where this set has

more than one element, we presume there is an arbitrarily

specified rule to choose one element.

For example, in the case of Bernoulli sources, we have θ̂ =
∑n
i=1 xi/n, where θ is the parameter denoting the probability

that ‘1’ occurs. The function θ̂ mapping each xn in Xn to the

value θ̂(xn) is the maximum likelihood estimator. In the above

case of Bernoulli sources, θ̂(xn) is defined on the whole Xn.

However, in certain cases, there may exist strings for which

max p(xn|θ) does not exists. In such cases, we restrict the

domain of θ̂ to the set of xn’s such that the MLE does exist.

We introduce the notion of minimax regret and maximin

regret. Let Kn denote a fixed subset of Xn. Let Pn denote

the set which consists of all probability densities over Xn with

respect to the fixed sigma-finite reference measure.

For sample size n and set Kn, define the maximum regret

of a q in Pn (denoted by r̄n(q,Kn)) as

r̄n(q,Kn) = sup
xn∈Kn

sup
θ∈Θ

log
p(xn|θ)
q(xn)

= sup
xn∈Kn

log
p(xn|θ̂)
q(xn)

and the minimax regret as

r̄n(Kn) = inf
q∈Pn

r̄n(q,Kn).

For each q ∈ Pn, the minimum average regret for sample size

n denoted

r
¯
n(q) = inf

q̃∈Pn

∫

q(xn)
(

log
p(xn|θ̂)
q̃(xn)

)

ν(dxn)

is achieved by q̃ = q. We define the maximin regret for the

set Kn as

r
¯
n(Kn) = sup

q∈PKn

r
¯
n(q),

where PKn is the set of all probability densities supported on

Kn.

By the above definitions, r̄n(Kn) ≥ r
¯
n(Kn) holds. (In fact,

r̄n(Kn) = r
¯
n(Kn) holds [39], [51].) In this paper, we usually

consider the minimax regret problem for the following form

of the set Kn: given K ⊆ Θ,

Kn = Xn(K) = {xn : θ̂ ∈ K}.
Next, we remind the reader of the notions of the minimax

and maximin value of expected regret (redundancy). Let a

sample size n and a parameter set K be given. For each

q ∈ Pn, we define the maximum expected regret (denoted

by R̄n(q,K)) as

R̄n(q,K) = sup
θ∈K

Eθ

(

log
p(xn|θ)
q(xn)

)

and the minimax expected regret as

R̄n(K) = inf
q∈Pn

R̄n(q,K),

where Eθ denotes the expectation with respect to p(xn|θ). Let

Ω(K) denote the set which consists of all prior probability

measures over K . For each prior w ∈ Ω(Θ), the minimum

Bayes expected regret for sample size n denoted

R
¯
n(w) = inf

q∈Pn

∫

Eθ

(

log
p(xn|θ)
q(xn)

)

w(dθ)
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is achieved by q(xn) = m(xn) =
∫

p(xn|θ)w(dθ). We define

the maximin expected regret for the parameter set K as

R
¯
n(K) = sup

w∈Ω(K)

R
¯
n(w).

We also have R̄n(K) ≥ R
¯
n(K). (In fact, R̄n(K) = R

¯
n(K)

holds [17], [25].)

Finally, we note some terminology. We let 1A denote the

characteristic function of a set A. We write o(1) for an

expression upper bounded by a positive quantity tending to

zero. In the proofs, we denote certain positive constants by Ci
(i = 1, 2, ...), where i is ‘local’ in each proof.

III. THE KEY TO HANDLING WORST CASE REGRET

The notion that the worst case regret is the same asymp-

totically as an average case regret should come as a surprise.

Indeed, if one inspects the worst case regret of an average case

optimal procedure, e.g. with the Jeffreys mixture, there will be

strings for which the worst case performance of the procedure

is quantitatively different in its asymptotics than the average

case performance.

To succeed in bringing the worst case regret value down to

the average case optimum requires a sequence of somewhat

new specialized procedures. These specializations are modifi-

cations of Jeffreys mixtures that address two difficulties. One

is that Laplace approximation is no longer valid for strings

for which the MLE θ̂ is at or very close to the boundary

of the parameter space. That is a familiar issue, addressed

by modification of the prior to give small additional prior

weights to parameter values near the boundary. Such boundary

modification was needed in the special case of [50], [51].

Here we provide an improved near-boundary fix by using a

multiplicative correction factor for the prior. This improved

correction factor comes from the probability of K assigned by

a normal distributions that arises in the Laplace approximation.

This just-right probability correction factor from Laplace ap-

proximation is near 1 away from the boundary (by an amount

of larger order than 1/
√
n), and typically approaches 1/2 as

the parameter approaches the boundary (at a rate faster than

order 1/
√
n).

The more fundamental difficulty is the discrepancy between

the worst case and average values of the regret of mixture

procedures that can exist even when θ̂ is in the interior,

which, as exhibited above, is due to individual strings having

(1/2) log
(

|Ĵ(θ̂)|/|J(θ̂)|
)

not near zero when not in an expo-

nential family. We present and analyze ideas to overcome that

difficulty which were initiated by the authors as discussed in

[40], [7], [5].

For general smooth families we form a direct enlargement

by a exponential tilting using linear combinations of the entries

of the differences Ĵ(θ)− J(θ). It is formed as

p(xn|θ, β) = p(xn|θ)enβ·(Ĵ(θ)−J(θ))−ψn(θ,β) (2)

Where β · M for matrices β and M denotes the Frobenius

inner product (the sum of products across all d2 entries).

The idea for this enlargement in addressing minimax regret

originate in preliminary form in [40], [7] as informally dis-

cussed in [5], [43]. Here ψn(θ, β) is the log of the required

normalization factor, so that p(xn|θ, β) sums (integrates with

respect to νn) to the value 1 for every θ ∈ K and every β
in a neighborhood around 0. The prior assigns most of its

weight to a Jeffreys prior on θ (with β set to 0) and small

weight on a smooth prior on (θ, β) with β in a neighborhood

of 0. Now demonstration of the success of this modification

is based on demonstration of increased likelihood beyond that

which is available at β = 0 when Ĵ(θ̂)− J(θ̂) is not equal to

0. Indeed, as we show in Section V, the contribution to the

mixture from β with β · (Ĵ(θ̂)−J(θ̂)) positive is sufficient to

increase the value ofm(xn) to again overcome the discrepancy

in (1/2) log(|Ĵ(θ̂)|/|J(θ̂)|) from Laplace approximation.

We have a somewhat different modification that can be used

in the case of curved exponential families embedded in a full

exponential family as developed in examples in Section VI.

For both of the modifications we study, there is, in the analysis,

the consideration of values of β in a neighborhood of a small

multiple of Ĵ(θ̂)−J(θ̂) which are sufficient to accomplish our

objectives. We see the similarity of effect. In both cases there

is opportunity to create a likelihood increase from a suitable

linear combination of these statistics.

These ideas emanate from an underlying principle. Of

importance in smooth statistical families is the parametric

enlargement

p(xn|θ, β) = p(xn|θ)eβ·∇ log p(xn|θ)−ψn(θ,β), (3)

where ∇ log p(xn|θ) is the score function at θ and ψn(θ, β)
is the log normalizing constant near (1/2)βtJ(θ)β for small

β. Traditionally such a family arises in local asymptotic

expansion of likelihood ratios, evaluated at a perturbation θ+β
of a given θ, as used in demonstration of local asymptotic

normality [30], [33], [36]. In Amari’s information geometry it

is a local exponential tangent to the family at θ. Again, in this

setting, a prior can be put jointly on θ and β, where most of

the prior weight is concentrated at β = 0 with Jeffreys prior

on θ.

The use of the first derivative of log p(xn|θ) in the exponent

would seem to produce a different sort of enlargement than

occurs with equation (2) which uses the second derivative.

Nevertheless, improvement in m(xn) still arises by suitable

characterization of the increased likelihood available with the

enlarged family. For each small β the maximum likelihood

value θ̂β achieving maxθ p(x
n|θ, β) in (3) satisfies the ap-

proximate relationship

p(xn|θ̂β , β) = p(xn|θ̂0)e(n/2)β
T (Ĵ(θ̂0)−J(θ̂0))β (4)

to within term of order n|β|3 in the exponent. This is the

desired effect, where θ̂0 = θ̂ here is the MLE in the original

family and θ̂β is the MLE in the tilted family (3). The

likelihood is larger at some non-zero β than at β = 0 provided

βT (Ĵ(θ̂) − J(θ̂))β can be strongly positive, or equivalently

provided Ĵ(θ̂)(J(θ̂))−1 has some eigenvalue greater than

1. Consequently, when (1/2) log(|Ĵ(θ̂)|/|J(θ̂)|) is positive

(which is the only case of concern) optimization in this

tangent family is sufficient to realize similar likelihood gain

to optimization in the family tilted by second derivatives of

log-likelihood.
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This provides an enlargement of parametric families by

exponential tilting using score functions suitable to endow

the family with the property we need, comparable to the

curved exponential family case. Analogous conditions are in

Amari and Nagaoka [3], who use tilting by first and second

derivatives. A distinction thought is that he is considering local

families with a fixed true θ whereas we are considering the

joint family parametrized by θ and β.

For general families in the present paper we use the enlarge-

ment of the form (2) in our analysis, now further motivated

by the connections to locally asymptotically normal familiers

we have discussed here.

IV. LOWER BOUNDS

Our targets are fairly general smooth parametric families

under some conditions and some classes of non-i.i.d. stochastic

processes. First we describe our results about lower bounds.

A. Lower Bounds for General i.i.d. Families

Let S
def
= {p(·|θ) : θ ∈ Θ} be a family of probability

densities with respect to the reference measure ν, with a d-

dimensional parameter θ. Assume that Θ ⊆ ℜd and let Θ◦

denote its interior. We use K to denote subsets of Θ, with

particular interest in sets for which CJ (K) is finite and for

which the boundary measure of K is zero. We handle both the

case of bounded sets K (Lemma 1) and more general cases

of possibly unbounded sets K (Theorem 1).

For each δ > 0, define Mahalanobis neighborhoods of θ ∈
Θ as

Bδ(θ) = {θ′ ∈ Θ : (θ′ − θ)tJθ(θ
′ − θ) ≤ δ2}.

We employ the assumptions described below.

Assumption 1: The density p(x|θ) is twice continuously

differentiable for θ ∈ Θ◦ for every x. Moreover, for every

θ ∈ Θ◦ there is a r = r(θ) such that, for every i, j,

Eθ

[

sup
θ′∈Br(θ)

|Ĵij,1(θ′)|
]

(5)

is finite.

Assumption 2: The Fisher information J(θ) is continuous

and positive definite in Θ◦.

Consequences of continuity and positive definiteness are

that the following two quantities tends to 0 as δ → 0 for

any θ in Θ◦

sup
θ′∈Bδ(θ)

|J(θ′)|1/2
|J(θ)|1/2 − 1 (6)

and

sup
θ′∈Bδ(θ)

max
z 6=0

ztJ(θ)z

ztJ(θ′)z
− 1. (7)

Since J(θ) is symmetric and positive definite it has a real

eigendecomposition with positive eigenvalues. Taking the pos-

itive square roots of the eigenvalues provides representation of

the principle square root matrix J(θ)1/2 and taking their recip-

rocal provides representation of J(θ)−1. With J(θ) continuous

these inverses and square roots remain symmetric and contin-

uous in θ ([28],p.411). Armed with these we can standardize

the empirical Fisher information as J(θ)−1/2Ĵ(θ′)J(θ)−1/2,

which has expectation equal to the identity matrix I at θ′ = θ.

From the continuity from Assumption 2 and the domination

(finiteness of expected supremum) from Assumption 1, it

follows by the monotone convergence theorem that for every

i, j the following quantity also tends to 0 as δ → 0, for each

θ in Θ◦,

Eθ sup
θ′∈Bδ(θ)

±((J(θ)−1/2Ĵ1(θ
′, x)J(θ)−1/2)ij − Iij), (8)

where the ± indicates that the statement is true with each

choice of sign.

Assumption 3: The maximum likelihood estimator θ̂ is a

consistent estimator of θ, for each θ in Θ◦, so that

Pθ{||θ̂(xn)− θ||J(θ) > δ} = o(1),

for each δ > 0.

Remark: We give a demonstration of consistency under suit-

able conditions in Lemma 18 in the Appendix. Assumptions 1,

2, and 3 are related to the conditions pioneered by Cramér (see

p. 501 of [15]) for local asymptotic properties of maximum

likelihood estimators building on earlier assumptions by Wald

[47] for consistency of the maximum likelihood estimator.

Assumption 4: The set K ⊆ Θ has positive and finite

CJ(K) =

∫

K

|J(θ)|1/2dθ

and the measure of K \K◦ is zero.

We remark that the zero measure condition is to make

CJ(K
◦) = CJ (K). It is clearly satisfied if K is open or

if K is a closed set with boundary measure zero.

From the theory of finite measures, convergent functions

are uniformly convergent except in sets of arbitrarily small

measure. Consequently, as elaborated in the appendix, if

Assumptions 1,2,4 hold, then, for any ǫ > 0, there is a δ > 0
and a good set G of parameters, such that for all θ in G the

quantities in (6) and (7) are less than ǫ, the expected suprema

in (8) are less than ǫ/(2d) and the Jeffreys measure of the

complement of G, which is
∫

KrG
|J(θ)|1/2dθ, is less than

ǫ CJ(K).
Moreover, using a law of large numbers, it is shown in the

appendix, as a consequence of the expected suprema being

less than ǫ/(2d), that for θ in G,

Pθ

(

inf
z 6=0

inf
θ′∈Bδ(θ)

ztĴ(θ′, xn)z

ztJ(θ)z
< 1− ǫ

)

= o(1) (9)

as n goes to infinity.

To see the connection with the standardized empirical

information, note that the infimum here among z is the same

as

inf
ζ:||ζ||=1

inf
θ′∈Bδ(θ)

ζtJ(θ)−1/2Ĵ(θ′)J(θ)−1/2ζ

as can be seen by setting ζ to correspond to J(θ)1/2z divided

by its norm.

Two lower bounds related to maximin regret will be given.

The first, using Assumption 1, is a general lower bound
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showing the asymptotically validity of the (d/2) log(n/2π) +
logCJ (K) expression, but it somewhat less constructive. It

uses the fact mentioned above that convergent functions are

nearly uniformly convergent, so there exists a good set G
with the indicated properties, while having a small Jeffreys

measure for its complement. Also, as we said, it uses a law

of large numbers for a sample average of such suprema, but,

assuming only the finite expectation, there is, in general, no

assurance of rates of approach in such a law of large numbers,

and this translates to a lack of explicit rate of approach in the

general lower bound. Moreover, for the purpose of obtaining

the general lower bound on the minimax value it suffices to

appeal to an approximation argument with Jeffreys mixtures

that live on G.

The other lower bound we give is specific to the use of

the Jeffreys prior on K without modification. In that case a

stronger condition, refining Assumption 1, will be used with

finite expected square (to permit application of Chebyshev’s

inequality for control of rate of convergence in the law of large

numbers), as well as a continuity assumption of the expected

suprema, to get uniform convergence (uniform closeness to

zero of the expected suprema) within any compact subset

of K . Armed with this more refined Assumption 1′ (to be

specified later below) we have more explicit control of rates

of approach to the maximin value.

Now let A ⊆ K be a parameter set to which Lemma 1 will

appeal. This set A can be the good set G as discussed above,

whose existence is a consequence of Assumptions 1, 2, and 4.

Or if K is compact and additional assumptions are satisfied

we may have A = K .

Define

η1,δ(A) = sup
θ∈A

sup
θ′∈Bδ(θ)

max
z 6=0

ztJ(θ)z

ztJ(θ′)z
− 1, (10)

η2,δ(A) = sup
θ∈A

sup
θ′∈Bδ(θ)

|J(θ′)|1/2
|J(θ)|1/2 − 1, (11)

and, similarly, let η0,δ(A) be 2d times the following supremum

sup
θ∈A

Eθ sup
θ′∈Bδ(θ)

±(J(θ)−1/2Ĵ1(θ
′, x)J(θ)−1/2)ij − Iij).

(12)

As previously mentioned the 2d factor is so that when this

η0,δ(A) ≤ ǫ the conclusion of (9) holds.

We extract nice sets within Θ×Xn, which we will use in

obtaining lower bounds on the maximin value. Define

B = {(θ, xn) : θ, θ̂(xn) ∈ K, ||θ − θ̂(xn)||J(θ) ≤ δ/4}

N =
{

(θ, xn) : θ ∈ A, inf
θ′∈Bδ(θ)

inf
z 6=0

ztĴ(θ′, xn)z

ztJ(θ)z
≥ 1− ǫ

}

.

(13)

Here, for any subset G of Θ×Xn, we let Gxn and Gθ denote

the section of G given xn and θ, respectively, that is,

Gxn = {θ : (θ, xn) ∈ G},
Gθ = {xn : (θ, xn) ∈ G}.

Now fix a pair (θ, xn) ∈ N . We show that the section Bxn

is included in Bδ(θ). Assume θ′ ∈ Bxn . Then,

||θ′ − θ̂||J(θ′) ≤ δ/4

holds. Likewise, since (θ, xn) ∈ B,

||θ − θ̂||J(θ) ≤ δ/4.

Since θ, θ′ ∈ Bxn , and θ ∈ A we have, by the definition of

η1,δ = η1,δ(A),

||θ′ − θ̂||J(θ) ≤ (1 + η1,δ)
1/2||θ′ − θ̂||J(θ′) ≤ δ/2,

assuming η1,δ ≤ 3. Whence

||θ′ − θ||J(θ) < δ,

which means θ′ ∈ Bδ(θ) and Bxn ⊂ Bδ(θ). By this, if xn ∈
Nθ and (θ, xn) ∈ B, the following holds,

min
θ′∈Bxn

min
z 6=0

ztĴ(θ′, xn)z

ztJ(θ)z
≥ 1− ǫ. (14)

We can prove the following Lemma, which is the heart of

our main results for the lower bounds.

Lemma 1: Let S = {p(·|θ) : θ ∈ Θ} be a d-dimensional

family of probability densities. We suppose that Assump-

tions 1-4 hold for S. Let 0 < ǫ < 1 be given and assume for a

specified A ⊂ K that there is a δ > 0 such that η0,δ(A) ≤ ǫ.
Assume also that η1,δ(A) ≤ 3 and let η2,δ = η2,δ(A). Define

a probability density mδ supported on the set

Aδ = {xn : (N ∩ B)xn 6= ∅} ⊂ K,

by

m̄δ(x
n) =

∫

(N ∩B)xn

p(xn|θ)wA(θ)dθ, (15)

mδ(x
n) =

m̄δ(x
n)

C̄n
, (16)

where

C̄n =

∫

K
m̄δ(x

n)ν(dxn) (17)

Then

Emδ
log

p(xn|θ̂)
mδ(xn)

≥ log
(1 − ǫ)d/2CJ (A)n

d/2

(1 + η2,δ)(2π)d/2
− o(1)

holds as n goes to infinity.

Remark: The support of the density mδ is the set of xn

such that the section (N ∩ B)xn is not empty.

Proof: We have

Emδ
log

p(xn|θ̂)
mδ(xn)

= Emδ
log

p(xn|θ̂)
m̄δ(xn)

+ log C̄n. (18)

Note that the log likelihood ratio in the first term of the

right hand side is positive, while log(p(xn|θ̂)/mδ(x
n)) can

be negative.
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For the first term. we have

Emδ
log

p(xn|θ̂)
m̄δ(xn)

=

∫

K

m̄δ(x
n)

C̄n
log

p(xn|θ̂)
m̄δ(xn)

ν(dxn)

=
1

C̄n

∫

K

∫

(N ∩B)xn

p(xn|θ)wA(θ)dθ log
p(xn|θ̂)
m̄δ(xn)

ν(dxn)

=
1

C̄n

∫

K

wA(θ)
[

∫

(N ∩B)θ

p(xn|θ) log p(x
n|θ̂)

m̄δ(xn)
ν(dxn)

]

dθ.

Here, using the sections, reversed order integration is possible

by the Fubini-Tonelli theorem because of positivity of the

integrand.

Let i(θ) denote the quantity in the brackets [ ]. We will

show a lower bound on i(θ).

Note that xn ∈ (N ∩ B)θ is equivalent to (θ, xn) ∈ N ∩
B and to θ ∈ (N ∩ B)xn . By Taylor expansion of the log

likelihood ratio around θ̂ under the condition that xn ∈ (N ∩
B)θ , we have

m̄δ(x
n)

p(xn|θ̂)

=

∫

(N ∩B)xn

p(xn|θ′)wA(θ′)
p(xn|θ̂)

dθ′

=

∫

(N ∩B)xn

e−n(θ
′−θ̂)tĴ(θ′′,xn)(θ′−θ̂)/2wA(θ

′)dθ′,

where θ′′ is a point between θ̂ and θ′. Since xn ∈ (N ∩B)θ ,

we have θ ∈ (N ∩ B)xn . Now

max
θ′∈Bδ(θ)

wA(θ
′)

wA(θ)
≤ (1 + η2,δ)

and

min
θ′∈Bδ(θ)

min
z 6=0

ztĴ(θ′, xn)z

ztJ(θ)z
≥ 1− ǫ

hold for θ ∈ A, where η2,δ = η2,δ(A). Hence we have for all

xn ∈ (N ∩ B)θ ,

m̄δ(x
n)

p(xn|θ̂)
≤(1 + ηJ,δ)wA(θ)

∫

Nxn

e−n(1−ǫ)(θ
′−θ̂)tJ(θ)(θ′−θ̂)/2dθ′

≤(1 + η2,δ)wA(θ)

∫

e−n(1−ǫ)(θ
′−θ̂)tJ(θ)(θ′−θ̂)/2dθ′

=
(1 + η2,δ)wA(θ)

(1− ǫ)d/2
(2π)d/2

nd/2|J(θ)|1/2

=
(1 + η2,δ)

(1− ǫ)d/2
(2π)d/2

nd/2CJ(A)
.

Hence, for all θ ∈ A, we have

i(θ)≥ log
(1− ǫ)d/2CJ(A)n

d/2

(1 + η2,δ)(2π)d/2

∫

(N ∩B)θ

p(xn|θ)ν(dxn),

which implies
∫

K

wA(θ)i(θ)dθ

≥
(

log
(1 − ǫ)d/2CJ (A)n

d/2

(1 + η2,δ)(2π)d/2

)

∫

K
m̄(xn)ν(dxn)

=
(

log
(1 − ǫ)d/2CJ (A)n

d/2

(1 + η2,δ)(2π)d/2

)

C̄n.

Dividing both sides by C̄n, we have

Emδ
log

p(xn|θ̂)
m̄δ(xn)

≥ log
(1− ǫ)d/2CJ(A)n

d/2

(1 + η2,δ)(2π)d/2
. (19)

Now we will proceed to a lower bound on C̄n. We have

C̄n =

∫

K

∫

(N ∩B)xn

p(xn|θ)wA(θ)dθν(dxn)

=

∫

K

∫

(N ∩B)θ

p(xn|θ)ν(dxn)wA(θ)dθ

=

∫

K

Pθ((N ∩ B)θ)wA(θ)dθ

≥
∫

K

(Pθ(Nθ) + Pθ(Bθ)− 1)wA(θ)dθ (20)

=

∫

K◦

(Pθ(Nθ) + Pθ(Bθ)− 1)wA(θ)dθ, (21)

where the last equality holds because the boundary of K is

assumed to have zero measure. Here, because of (9),

Pθ(Nθ) = 1− o(1)

holds as n goes to infinity, for each θ ∈ A. Now

Bθ = {xn : θ̂ ∈ Bδ/4(θ) ∩K}.
For θ on the boundary, the probability of this event generally

converges to number less than one. But for θ in the interior,

the consistency implies that θ̂ is in K with probability tending

to 1. Hence for each θ ∈ K◦, we have

Pθ(Bθ) = 1− o(1)

as n goes to infinity, because of Assumption 3. Obviously,

C̄n ≤ 1. Together with (20) and the pointwise convergence of

Pθ(Nθ) and Pθ(Bθ) to 1, by Fatou’s Lemma (or the dom-

inated convergence theorem) we have that lim infn C̄n ≥ 1.

Thus

C̄n = 1− o(1) (22)

as n goes to infinity. Hence, with (18) and (19), we have

Emδ
log

p(xn|θ̂)
mδ(xn)

≥ log
(1− ǫ)d/2CJ (A)n

d/2

(1 + η2,δ)(2π)d/2
− o(1),

as n goes to infinity. The proof is completed.

Now we state the theorem about the lower bound on the

maximin regret for general i.i.d. families.

Theorem 1: Let S = {p(·|θ) : θ ∈ Θ} be a d-dimensional

family of probability densities. Suppose that Assumptions 1-3

hold for S. Let K be a subset of Θ (possibly K = Θ) which

satisfies Assumption 4. Then the following holds

lim inf
n→∞

(

r
¯
n(K) − d

2
log

n

2π

)

≥ logCJ (K). (23)
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Remark: This theorem allows for Θ and K to be unbounded

as long as CJ (K) is finite.

Proof of Theorem 1: We are given K ⊂ Θ satisfying

the finite CJ(K) assumption. Let ǫ > 0 be arbitrarily

small. We have the existence of the set A = G for which
∫

K−G wK(θ)dθ ≤ ǫ and within which the properties of

convergence to zero of expressions (6), (7) and (8) hold

uniformly within G. This is an appeal to Egorov’s theo-

rem for finite measures that pointwise convergence implies

uniform convergence except in a set of negligible measure.

Accordingly, we can arrange positive δ sufficiently small that

η1,δ(A) ≤ ǫ ≤ 3, η2,δ(A) ≤ ǫ, and η0,δ ≤ ǫ. As detailed

in the appendix, the last inequality implies the in-probability

behavior (9). By Lemma 1 we have a procedure providing a

lower bound on the maximin regret

rn(K) ≥ log
(1 − ǫ)d/2CJ (A)n

d/2

(1 + η2,δ)(2π)d/2
− o(1)

Accordingly,

lim inf
[

rn(K)− (d/2) log
n

2π

]

is at least

logCJ (K) + (1 + d/2) log(1− ǫ)− log(1 + ǫ).

Now since ǫ is arbitrarily small it implies that

lim inf
[

rn(K)− (d/2) log
n

2π

]

≥ logCJ(K).

This completes the proof of Theorem 1.

Under the following stronger assumptions than those for

Theorem 1, we can obtain a lower bound on the average

regret for mixtures using Jeffreys prior on all of K , when

K is compact.

Assumption 1′: The density p(x|θ) is twice continuously

differentiable in θ for all x, and there is a r̄ = r̄(K) > 0 so

that for each i, j and every θ ∈ K ,

Eθ

[

sup
θ′:|θ′−θ|≤r

|Ĵij,1(θ′)|2
]

(24)

is finite and continuous as a function of θ for r ≤ r̄.

Assumption 2′: J(θ) is continuous and positive definite in

Θ. Furthermore, the gradient ∇ log p(x|θ) has expectation

E[∇ log p(X |θ)] =
∫

∇p(x|θ)dx equal to zero with covari-

ance matrix

I(θ) = Eθ[∇ log p(X |θ)∇t log p(X |θ)]

also finite and continuous in Θ.

Here I(θ) and J(θ) are the two forms of Fisher Information.

Usually I(θ) equals J(θ), though we do not need that here.

Assumption 3′: The maximum likelihood estimator θ̂ is a

consistent estimator of θ, indeed consistent uniformly in K ,

with tail probability tending to zero faster than 1/ logn, that

is,

sup
θ∈K

Pθ{|θ̂(xn)− θ| > δ} = o(1/ logn),

for each δ > 0.

Demonstration of consistency, indeed with tail probability

tending to zero at rate O(1/n) is given in the Appendix under

sensible conditions.

Assumption 1′ differs from Assumption 1 because of the

presence of the square of the empirical Fisher information in

(24). With Assumption 1′ using Chebyshev’s inequality we

can obtain the following property which strengthens (9)

max
θ∈K

Pθ

(

inf
z 6=0

inf
θ′:|θ′−θ|≤δ

ztĴ(θ′, xn)z

ztJ(θ)z
≤ 1− ǫ

)

(25)

= O(1/n).

Lemma 2: Under Assumptions 1′, 2′, 3′,
√
nJ(θ)1/2(θ̂−θ)

converges in distribution to a mean zero normal random vector

and there is a constant c such that the following inequality

holds for any positive b,

max
θ∈K

Pθ
(√
n||J(θ)1/2(θ̂ − θ)|| > b

√

logn
)

≤ c

b2 log n
+ o
( 1

logn

)

.

The constant c equals maxθ∈K trace(J(θ)−1I(θ)) which is

the dimension d, the trace of an identity matrix, when I(θ) =
J(θ).

This Lemma 2 is proved in the Appendix.

Let Kδ = {θ ∈ Θ : B(θ, δ) ⊂ K} be the δ interior of

K , where we are using the ordinary Euclidean ball B(θ, r) =
{θ′ ∈ Rd : ||θ′−θ|| ≤ r} and let K \Kδ be the corresponding

δ shell of K . (Here we could have used the ellipses based

on J(θ) in place of Euclidean balls in defining an analogous

shell.)

Assumption 4′: The set K ⊆ Θ has positive and finite

CJ(K) =

∫

K

|J(θ)|1/2dθ

and, with δn of order
√
logn/

√
n, the contribution of the shell

∫

K\Kδn
|J(θ)|1/2dθ is of order o(1/ logn).

Note that, if the boundary of K has finite surface measure,

then the measure of the δ shell is of order δ, which is of order√
logn/

√
n with the chosen δn, so the shell measure vanishes

at rate much faster than the required o(1/ logn).
The asymptotic lower bound of Theorem 1 was established

by using a code distribution (16) analogous to the Jeffreys

mixture code, but with modification by restriction for each

xn to θ in (B ∩ N )xn . It is of interest to know whether a

Bayes mixture using Jeffreys prior on all of K has the same

asymptotic lower bound. The next result (Theorem 2) shows

this to be true for compact K with slightly more stringent as-

sumptions. Indeed with these assumptions the Jeffreys mixture

provides a lower bound which is as good as the asymptotically

maximin value.

Theorem 2: Let S = {p(·|θ) : θ ∈ Θ} be a d-dimensional

family of probability densities. Suppose that K is a compact

subset of Θ for which Assumptions 1′, 2′, 3′, and 4′ hold.

Define a density mK over K = Xn(K) as

mK(xn) =
m̄K(xn)

Cn

m̄K(xn) = 1K(x
n)

∫

K

p(xn|θ)wK(θ)dθ,
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where Cn is the normalization constant and wK(θ) is the

Jeffreys prior on K . Then the following holds

lim inf
n→∞

(

r
¯
n(mK)− d

2
log

n

2π

)

≥ logCJ(K).

Remark: The code distribution mK(xn) here differs from

code distribution mδ used in Theorem 1 because here we do

not make the restriction to B ∩ N .

Proof: We examine the value r
¯
n(mK). We have

EmK log
p(xn|θ̂)
mK(xn)

=

∫

K
mK(xn) log

p(xn|θ̂)
mK(xn)

ν(dxn)

=

∫

K
mK(xn) log

p(xn|θ̂)
m̄K(xn)

ν(dxn) + logCn

=
1

Cn

∫

K

∫

K

p(xn|θ)wK(θ)dθ log
p(xn|θ̂)
m̄K(xn)

ν(dxn)

+ logCn.

We proceed to lower bound it as follows, where mδ is the

same as in Lemma 1 and 1G∩N = 1G∩N (θ, xn),

≥ 1

Cn

∫

K

∫

K

1G∩N p(xn|θ)wK(θ)dθ log
p(xn|θ̂)
m̄K(xn)

ν(dxn)

+ logCn

=
C̄n
Cn

∫

K
mδ(x

n) log
p(xn|θ̂)
m̄K(xn)

ν(dxn) + logCn

=
C̄n
Cn

∫

K
mδ(x

n) log
p(xn|θ̂)
mK(xn)

ν(dxn) + (1− C̄n
Cn

) logCn

≥ C̄n
Cn

Emδ
log

p(xn|θ̂)
mδ(xn)

+ (1− C̄n
Cn

) logCn

≥C̄nEmδ
log

p(xn|θ̂)
mδ(xn)

+ logCn,

where the first inequality in the above manipulation follows

from p(xn|θ̂)/m̄K(xn) ≥ 1, the second inequality follows

from the positivity of Kullback divergence of mδ from mK ,

and the last inequality follows from Cn ≤ 1, which implies

logCn ≤ 0.

We appeal to Lemma 1 using A = K . By Assumption 1′,
the expected supremum in (8) is continuous in θ and by the

monotone convergence theorem it converges monotonically to

0 as δ → 0, so by Dini’s Theorem (see e.g. ([38]), p.150)

the convergence is uniform on the compact K . Accordingly,

η0,δ(K) tends to zero as δ → 0. Likewise, by compactness,

η1,δ(K) and η2,δ = η2,δ(K) tend to zero as δ → 0. Given

ǫ > 0, pick δ such that η0,δ(K) ≤ ǫ and η1,δ(K) ≤ 3.
By Lemma 1, the expectation in the last line above is lower

bounded as

Emδ
log

p(xn|θ̂)
mδ(xn)

≥ log
(1− ǫ)d/2CJ (K)nd/2

(1 + η2,δ)(2π)d/2
− o(1).

Picking δ > 0 and ǫ > 0 sufficiently small, the above lower

bound is sufficient for our purpose, provided C̄n and Cn
converges to 1 at a rate sufficiently fast. In fact, noting that the

lower bound contains the term (d/2) logn, we need to prove

C̄n = 1 − o(1/ logn) and Cn = 1 − o(1), which imply the

claim of Theorem 2.

First examine C̄n. Here, we already have C̄n = 1− o(1) in

the proof of Lemma 1, but it is not sufficient for our purpose.

However, using Assumptions 1′-3′, we can show C̄n = 1 −
o(1/ logn). Indeed, by (20), we have

C̄n ≥
∫

K◦

(Pθ(Nθ) + Pθ(Bθ)− 1)wK(θ)dθ. (26)

Here, by (25), we have

min
θ∈K

Pθ(Nθ) ≥ 1− o(1/ logn).

Hence
∫

K

Pθ(Nθ)wK(θ)dθ ≥ 1− o(1/ logn). (27)

For evaluation of Pθ(Bθ), we employ Lemma 2. Let δn =√
b logn/

√
n. Then by Lemma 2,

min
θ∈K

Pθ(θ̂ ∈ B(θ, δn/2)) ≥ 1− 4c

b2 logn
− o
( 1

logn

)

.

Provided θ ∈ Kδn , θ̂ ∈ B(θ, δn/2) implies θ̂ ∈ K and θ̂ ∈
Bδ(θ) for sufficiently large n, that is, xn ∈ Bθ . Then, we

have

min
θ∈Kδn

Pθ(Bθ) ≥ 1− 4c

b2 logn
− o
( 1

logn

)

.

Hence we have
∫

K

Pθ(Bθ)wK(θ)dθ

≥
∫

Kδn

Pθ(Bθ)wK(θ)dθ

≥ CJ(Kδn)

CJ (K)

(

1− 4c

b2 logn
− o
( 1

logn

))

.

Here, by Assumption 4′, CJ(Kδn)/CJ (K) = 1− o(1/ logn)
holds. Hence, we have

∫

K

Pθ(Bθ)wK(θ)dθ ≥ 1− 4c

b2 logn
− o
( 1

logn

)

.

Together with (26) and (27), we have

C̄n ≥ 1− 4c

b2 log n
− o
( 1

logn

)

.

Noting that b can be arbitrarily large, we have C̄n ≥ 1 −
o(1/ logn).

Next, we will examine Cn, for which we have

Cn =

∫

K

∫

K

1K(x
n)p(xn|θ)wK(θ)dθ (28)

=

∫

K

Pθ(θ̂ ∈ K)wK(θ)dθ. (29)

By the same way as for C̄n, we can prove this is 1 −
o(1/ logn). The proof is completed.
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B. Lower Bounds for Stochastic Processes

Here, we consider the case in which the model consists of

non i.i.d. stochastic processes.

Let S = {p(·|θ) : θ ∈ Θ} be a parameterized family of

joint densities of a stochastic process, i.e. p(xn|θ) satisfies

p(xn|θ) =
∫

X
p(xn+1|θ)ν(dxn+1)

and ∫

X
p(x1|θ)ν(dx1) = 1.

We introduce the following notation

Jn,θ = Jn(θ)
def
= EθĴ(θ, x

n).

In this subsection, define the Jeffreys prior for each n over K
as

w
(n)
K (θ) =

|Jn,θ|1/2
CJ,n(K)

where CJ,n(K) is the Jeffreys integral

CJ,n(K) =

∫

K

|Jn,θ|1/2dθ

based on the Fisher information indexed by n.

With the use of Jn,θ we modify the definition of Bδ(θ) as

Bδ(θ) = Bn,δ(θ) = {θ′ ∈ Θ : (θ′ − θ)tJn,θ(θ
′ − θ) ≤ δ2}.

We use the following assumptions.

Assumption 1′′: For each i, j, for each θ ∈ K , and for each

ǫ̃ > 0, there is a δ = δ(θ, ǫ̃) > 0, such that

sup
θ′∈Bδ(θ)

(

±(Jn,ij(θ) − Ĵij(θ
′, xn))

)

≤ ǫ̃ (30)

holds, with Pθ probability converging to 1 as n→ ∞.

To define Bδ(θ) properly, the smallest eigenvalue of Jn(θ)
must be lower bounded by a positive constant. Hence we use

the following assumption, which is used in the upper bound

results, too.

Assumption 2′′: The matrix Jn(θ) is positive definite, and

the collection of functions Jn(θ), n ∈ N is equicontinuous for

θ ∈ Θ, with a continuous λ(θ) > 0 serving as a lower bound

on its smallest eigenvalue, uniformly for n ∈ N.

It follows from these two assumption that the assertion of

Assumption 1′′ can be refined. Indeed, it follows that for for

each θ in K and for any ǫ > 0, there is an ǫ̃ = ǫ̃(ǫ, θ) > 0
such that at δ = δ(ǫ̃, θ),

sup
θ′∈Bδ(θ)

(

±
(

Jn(θ)
−1/2

(

Jn(θ)−Ĵ(θ′, xn)
)

Jn(θ)
−1/2

)

ij

)

≤ ǫ

d

with Pθ probability converging to 1 as n → ∞, and conse-

quently,

Pθ

(

inf
z 6=0

inf
θ′∈Bδ(θ)

ztĴ(θ′, xn)z

ztJn(θ)z
< 1− ǫ

)

= o(1) (31)

as n goes to infinity. This corresponds to (9) for the i.i.d. case.

From Assumption 2′′, we also have

min
n∈N

min
θ∈K

min
z:|z|=1

ztJn(θ)z > 0. (32)

for compact subsets K of Θ. This is because λ(θ), being

positive and continuous, is therefore strictly positive on any

compact set.

Sufficient condition for Assumptions 1′′ and 2′′ are given

in the appendix for Markov processes.

Define two nice sets as

B = {(θ, xn) : θ, θ̂(xn) ∈ K, ||θ − θ̂(xn)||Jn,θ
≤ δ/4}

(33)

N =
{

(θ, xn) : inf
θ′∈Bδ(θ)

inf
z 6=0

ztĴ(θ′, xn)z

ztJn(θ)z
≥ 1− ǫ

}

. (34)

Further define

η1,J,δ = sup
θ∈K

sup
θ′∈Bδ(θ)

max
z 6=0

ztJn(θ)z

ztJn(θ′)z
− 1, (35)

η2,J,δ = sup
θ∈K

sup
θ′∈Bδ(θ)

max
z 6=0

ztJn(θ
′)z

ztJn(θ)z
− 1, (36)

and ηJ,δ = max{η1,J,δ, η2,J,δ}. By equicontinuity of Jn(θ)
and compactness of Kδ, this ηJ,δ converges to 0 as δ tends to

zero, uniformly for n ∈ N .

For ǫ > 0, let δ = δǫ > 0, with (1 + ηJ,δ)
1/2 < 2, be

sufficiently small that (31) holds for each θ ∈ K , and δǫ → 0
as ǫ→ 0.

As before, when (30) holds we have

min
θ′∈Bxn

min
z 6=0

ztĴ(θ′, xn)z

ztJn(θ)z
≥ 1− ǫ. (37)

Assumption 3′′: For each θ in Θ◦, the maximum likelihood

estimator θ̂(xn) is consistent. Namely, limn |θ̂(xn) − θ| = 0
in Pθ probability, where Pθ is the distribution determined by

the xn with densities p(xn) for n ≥ 1.

Assumption 4′′: The Jeffreys integral CJ,n(K) is finite.

We can prove the following.

Lemma 3: Let S = {p(·|θ) : θ ∈ Θ} be a d-dimensional

family of stochastic processes. We suppose that Assump-

tions 1′′, 2′′, 3′′, and 4′′ hold for S. Define a density mδ

supported on the set

{xn : (N ∩ B)xn 6= ∅} ⊂ K,

by

m̄δ(x
n) =

∫

(N ∩B)xn

p(xn|θ)w(n)
K (θ)dθ,

mδ(x
n) =

m̄δ(x
n)

C̄n
,

where

C̄n =

∫

K
m̄δ(x

n)ν(dxn). (38)

Then

Emδ
log

p(xn|θ̂)
mδ(xn)

≥ log
(1 − ǫ)d/2CJ,n(K)nd/2

(1 + ηJ,δ)(2π)d/2
− o(1)

holds as n goes to infinity.

Proof: Similar to the proof of Lemma 1.
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The following result, under the stated assumptions in the

non i.i.d. setting, states that logCJ,n(K) provides control on

the minimax regret from below. It corresponds to Theorem 1

in the i.i.d. setting.

Theorem 3: Let S = {p(·|θ) : θ ∈ Θ} be a d-dimensional

family of stochastic processes. Suppose that Assumptions 1′′,
2′′, 3′′, and 4′′ hold for S. Let K be an arbitrary measurable

subset of Θ. Then the following holds

lim inf
n→∞

(

r
¯
n(K) − d

2
log

n

2π
− logCJ,n(K)

)

≥ 0.

Proof: The conclusion is a consequence of Lemma 3 and is

shown in the same fashion as Theorem 1.

V. UPPER BOUNDS

For the upper bound we handle both i.i.d. and stochastic

process cases at once. We need strength Assumption 2′′, which

is a certain equi-continuity of Fisher information. Similarly as

for the lower bound results, we use a compact subset K of Θ◦.

In this section, K denotes a convex set which is the closure

of an open set.

We employ the following stronger assumption than Assump-

tion 2′′.
Assumption 2′′′: The matrix Jn(θ) is positive definite, and

the collection of functions Jn,ij(θ) is Lipschitz continuous in

K , uniformly for all n ∈ N and for all i, j,

|Jn,ij(θ′)− Jn,ij(θ)| ≤M |θ′ − θ|

with a continuous λ(θ) > 0 serving as a lower bound on its

smallest eigenvalue, uniformly for n ∈ N.

The main theorem gives the upper bound which matches

the lower bound we have obtained.

To obtain the upper bound, we will construct an enlarged

model of probability densities from the model S.

Define a matrix-valued random variable V ∈ R
d×d as

Vn(θ) = V (xn|θ) = J
−1/2
n,θ Ĵ(θ, xn)J

−1/2
n,θ − I.

We also use the notation Vij,n(θ) to denote the (i, j)-entry of

Vn(θ). Let B = (−b/2, b/2)d×d for some small b > 0. We

consider the case where the following assumption holds.

Assumption 5: For every compact set K included in Θ◦,

there exists a b > 0 and a C1 = C1,K > 0, such that the

following holds.

∀n ∈ N, ∀θ ∈ K, ∀β ∈ B,
(

∫

p(xn|θ) exp(nVn(θ) · β)νn(dxn)
)1/n

< C1, (39)

where V (xn|θ) ·β denotes the matrix inner product of Frobe-

nius

trace(Vn(θ)β
t) =

∑

ij

Vij,n(θ)βij .

Define a function ψn(θ, β) as

ψn(θ, β) =
1

n
log

∫

p(xn|θ) exp(nVn(θ) · β)νn(dxn).

Note that Assumption 5 is the boundedness of ψn(θ, β).

We define the enlarged family S̄ by

S̄ = {pe(xn|θ, β) : θ ∈ Θ, β ∈ B},
pe(x

n|θ, β) = p(xn|θ) exp
(

n(Vn(θ) · β − ψn(θ, β))
)

.

Let u = (θ, β) and U = {u = (θ, β) : θ ∈ Θ, β ∈ B}. We

have

∂ψn(θ, β)

∂βij
= Eθ,βVij,n(θ)

and

∂2ψn(θ, β)

∂βkl∂βij

=n
(

Eθ,βVkl,n(θ)Vij,n(θ) − Eθ,βVkl,n(θ)Eθ,βVij,n(θ)
)

,

where Eθ,β denotes expectation with respect to pe(x
n|θ, β).

The latter is the covariance of
√
nVij,n(θ) and

√
nVkl,n(θ)

at pe(x
n|θ, β). Correspondingly, let Covn(θ, β) denote the

matrix whose (ij, kl)-entry is

[Covn(θ, β)]ij,kl =
∂2ψn(θ, β)

∂βijβkl
.

We let λ∗n denote the maximum of the largest eigenvalue of

Covn(θ, β) among (θ, β) ∈ Θ× B.

When the model is i.i.d., the enlarged family can be single-

letterized as

S̄ = {pe(x|θ, β) : θ ∈ Θ, β ∈ B},
pe(x|θ, β) = p(x|θ) exp

(

V1(θ) · β − ψ(θ, β)
)

,

where (39) is reduced to
∫

p(x|θ) exp(V1(θ) · β)ν(dx) < C1,

and

ψ(θ, β) = log

∫

p(x|θ) exp(V1(θ) · β)ν(dx).

Note that the enlarged family pe(x
n|θ, β) is still i.i.d., that is,

pe(x
n|θ, β) =∏n

t=1 pe(xt|θ, β). Further we have

pe(x
n|θ, β) = p(xn|θ) exp

(

n(Vn(θ) · β − ψ(θ, β))
)

.

where the following holds.

V (xn|θ) = 1

n

n
∑

t=1

V (xt|θ).

Then, ∂2ψ(θ, β)/∂βkl∂βij is the covariance of Vij(x|θ) and

Vkl(x|θ) at pe(x|θ, β), and we have

[Covn(θ, β)]ij,kl =
∂2ψ(θ, β)

∂βkl∂βij
.

In the i.i.d. case, [Covn(θ, β)]ij,kl = ∂2ψ(θ, β)/∂βkl∂βij
dose not depend on n, λ∗n also does not depend on n. Hence,

we use the symbols Cov(θ, β) and λ∗ for i.i.d. cases.

For a given compact K included in Θ◦, define subsets Gn,δ
and Gcn,δ of K as follows.

Gn,δ =
{

xn : θ̂ ∈ K, ||V (xn|θ̂)||s ≤ δ
}

,

Gcn,δ =
{

xn : θ̂ ∈ K, ||V (xn|θ̂)||s > δ
}

,
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where ||A||s for a symmetric matrix A ∈ ℜd×d denotes the

spectral norm of A defined as

||A||s = max
z:|z|=1

||Az|| = max
z:|z|=1

|ztAz|.

Note the following relation between the spectral norm ||A||s
and the Frobenius norm ||A|| (which is the Euclidean norm of

the associated vector with d2 elements).

||A||√
d

≤ ||A||s ≤ ||A||.

We call elements of Gn,δ and Gcn,δ good strings and not good

strings, respectively.

We also define the two kinds of neighborhood of θ as

Bǫ(θ) = {θ′ : (θ′ − θ)tJn,θ(θ
′ − θ) ≤ ǫ2}, (40)

B̂ǫ(θ) = {θ′ : (θ′ − θ)tĴ(θ̂)(θ′ − θ) ≤ ǫ2}, (41)

where the latter depends on xn.

We further put the following assumptions.

Assumption 6: Let wn(θ) be the prior density function we

use for p(xn|θ). Assume the following equi-semicontinuity,

that is,

wn(θ
′) ≥ (1 − ηr)wn(θ)

holds for all large n, for all small r > 0, for all θ ∈ K , and for

all θ′ in Br(θ), where ηr = η(r) is a positive valued function

defined on (0,∞) with limr→0 ηr = 0.

Assumption 7: There exist a positive number h̄K ≥ 1 and

a small positive number ǫ = ǫK such that the following

inequality holds for all large n, for all xn ∈ K, for all

θ̃ ∈ Bǫ(θ̂) ∩K , and for all z.

ztĴ(θ̃, xn)z ≤ h̄Kz
tĴ(θ̂, xn)z. (42)

This assumption does hold for the mixture family with

compact K ⊂ Θ◦. However, there are other families for which

we cannot show it holds. To treat those cases too, we use the

following weakened assumption. In fact, we prove Theorem 4

under this assumption.

Assumption 7′: There exist a positive number h̄K ≥ 1 and

a small positive number ǫ = ǫK such that the following

inequality holds for all large n, for all xn ∈ K, for all

θ̃ ∈ Bǫ(θ̂) ∩K , and for all z.

ztĴ(θ̃, xn)z ≤ h̄K max{ztĴ(θ̂, xn)z, ztJn,θ̂z}. (43)

Assumption 8: There exist a number κJ = κJ (K) > 0 and

a small number δ0 = δ0(K) > 0 such that the following

inequality holds for all large n, for all xn ∈ Gn,δ0 , for all

small ǫ > 0, for all θ̃ ∈ Bǫ(θ̂) ∩K , and for all z.

ztĴ(θ̃, xn)z ≤ (1 + κJ ǫ)z
tĴ(θ̂, xn)z. (44)

Assumption 9: There exists an ǫ > 0 and a ζ ∈ (0, 1), such

that,

∀n ∈ N, ∀xn ∈ K, inf
θ̃∈B̂ǫ(θ̂)∩K

||V (xn|θ̃)||s ≥ ζ||V (xn|θ̂)||s.

If the collection of empirical Fisher information matrices

Ĵ(θ) = Ĵ(θ, xn) for all xn and all n, is equicontinuous as

functions of θ in K , then Assumptions 9’, 10, 11 hold. For

Assumption 9, if also the minimum of the smallest eigenvalue

of Ĵn(θ̂) for all n and for all xn ∈ K is lower bounded by a

positive constant, then it holds.

The following is used to control the behavior of the ideal

prior for stochastic processes. Note that it holds automatically

for i.i.d. cases.

Assumption 10: For each θ ∈ K , supn∈N
||Jn(θ)||s is

finite.

Under this assumption and Assumption 2′′′, we can show

that supn∈N supθ∈K ||Jn(θ)||s is finite, similarly as (32).

Hereafter we use the symbol Φ to denote the probability

measure of the d-dimensional standard normal distribution.

Lemma 4: Let mwn be the mixture of S with respect to a

prior density wn(θ) over a convex and compact set K included

in Θ◦. Suppose that Assumptions 2′′′, 6, and 8 hold. Then, for

an arbitrary ǫ > 0, and for all xn ∈ Gn,δ with δ ≤ δ0, the

following holds

log
p(xn|θ̂)
mwn(x

n)
≤ d

2
log

n

2π
+ log

|Jn(θ̂)|1/2
wn(θ̂)Φ(UK,ǫ,n(θ̂))

+ log
(1 + κJǫ)

d/2(1 + δ)d/2

1− ηǫ
,

where

UK,ǫ,n(θ) = N√
nǫ(0) ∩ (nJn(θ))

1/2(K − θ),

and

Nr(0) = {z : |z| ≤ r}.

Ignoring the restriction to N√
nǫ(0) the Φ(UK,ǫ,n(θ̂)) may

be interpreted as the probability that a Gaussian variable of

mean θ̂ and covariance (nJn(θ̂))
−1 belongs to the parameter

set K . When θ̂ is sufficiently in the interior this Φ(UK,ǫ,n(θ̂))

is near 1 for large n. Whereas, for θ̂ at the boundary or within

order n−1/2 of the boundary, it provides the modification

for the classical Laplace approximation to account for the

fact that the near boundary case makes the normal integral

approximation be an incomplete normal integral.

Proof of Lemma 4: By a Laplace integration for the mixture

mw restricted in Bǫ(θ̂), we have

mwn(x
n)

p(xn|θ̂)
≥
∫

Bǫ(θ̂)∩K
e−n(θ−θ̂)

tĴ(θ̃)(θ−θ̂)/2wn(θ)dθ

≥ (1 − ηǫ)wn(θ̂)

·
∫

Bǫ(θ̂)∩K
e−n(1+κJǫ)(θ−θ̂)tĴ(θ̂)(θ−θ̂))/2dθ,

by Assumption 6. . Since xn ∈ Gn,δ, by Assumption 8,

mwn(x
n)

p(xn|θ̂)
≥ (1− ηǫ)wn(θ̂)

·
∫

Bǫ(θ̂)∩K
e−n(1+κJǫ)(1+δ)(θ−θ̂)tJn(θ̂)(θ−θ̂))/2dθ.

Noting

(nJn(θ̂))
1/2(Bǫ(θ̂)− θ̂) = N√

nǫ(0),

by change of variables

z =
(

(1 + κJǫ)(1 + δ)nJn(θ̂)
)1/2

(θ − θ̂),
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the integration in the last line is transformed as
∫

Bǫ(θ̂)∩K
e−n(1+κJǫ)(1+δ)(θ−θ̂)tJn(θ̂)(θ−θ̂))/2dθ

=

∫

(1+κJǫ)1/2(1+δ)1/2UK,ǫ,n(θ)
e−|z|2/2dz

(1 + κJǫ)d/2(1 + δ)d/2nd/2|Jn(θ̂)|1/2
,

which is larger than

(2π)d/2Φ(UK,ǫ,n(θ))

(1 + κJǫ)d/2(1 + δ)d/2nd/2|Jn(θ̂)|1/2
,

since UK,ǫ,n(θ) is included in

(1 + κJ ǫ)
1/2(1 + δ)1/2

(

N√
nǫ(0) ∩ (nJn(θ))

1/2(K − θ)
)

because K is a convex set. Hence we have

mwn(x
n)

p(xn|θ̂)
≥ (1− ηǫ)wn(θ̂)(2π)

d/2Φ(UK,ǫ,n(θ))

(1 + κJǫ)d/2(1 + δ)d/2nd/2|Jn(θ̂)|1/2
,

which yields the claim of the lemma. This completes the proof

of Lemma 4.

Lemma 4 suggests the following choice of a prior density:

wK,ǫ,n(θ) =
|Jn(θ)|1/2

CK,ǫ,nΦ(UK,ǫ,n(θ))
,

where CK,ǫ,n is the normalization constant. This idea is that

the prior proportional to |Jn(θ)|1/2/Φ(UK,ǫ,n(θ)) provides

the approximate modification to Jeffreys prior to equalize the

regret in accordance with Laplace approximation, not only in

the interior, but also for θ̂ near the boundary of K .

However, unfortunately this prior wK,ǫ,n does not satisfy

Assumption 6, as seen below. Recall that the assumption

requires that the prior density wn(θ
′) keeps its value over

the range Bǫ(θ). We can make a counter example as follows.

Assume that θ is at the boundary of K and that Φ(N√
nǫ(0))

almost equals 1. Then, Φ(UK,ǫ,n(θ)) is smaller than a half,

which means that wK,ǫ,n(θ) is larger than twice the value

of Jeffreys prior. Note that there exists θ′ in Bǫ(θ) such

that Bǫ(θ
′) ⊂ K , provided ǫ is sufficiently small. For that

θ′, Φ(UK,ǫ,n(θ
′)) almost equals 1. Hence, wK,ǫ,n(θ

′) /
wK,ǫ,n(θ)/2 holds.

To overcome this problem, we employ the slightly modified

prior than wK,ǫ,n, which we call the ideal priors for the good

strings. To this end, we define a modified region of UK,ǫ,n(θ)
as below.

U
(α)
K,ǫ,n(θ) = N√

nǫ(0) ∩ ((n/α2)Jn(θ))
1/2(K − θ)

where α is a positive real value.

Remark: If Jn(θ) does not depend on n, i.e. Jn(θ) = J(θ),
then

U
(α)
K,ǫ,n(θ) = UK,αǫ,n/α2(θ)

holds.

Note that

U
(α)
K,ǫ,n(θ) ⊂ UK,ǫ,n(θ)

holds for α ≥ 1, since K is a convex set, which means

Φ(U
(α)
K,ǫ,n(θ)) ≤ Φ(UK,ǫ,n(θ)). (45)

Definition 1 (The ideal prior for the good strings): Define

the prior density w
(α)
K,ǫ,n over K as

w
(α)
K,ǫ,n(θ) =

|Jn(θ)|1/2

C
(α)
K,ǫ,nΦ(U

(α)
K,ǫ,n(θ))

,

where

C
(α)
K,ǫ,n =

∫

K

|Jn(θ)|1/2

Φ(U
(α)
K,ǫ,n(θ))

dθ,

where we assume nǫ2 → ∞, α/
√
nǫ→ ∞ and ǫα → 0 as n

goes to infinity.

Remark: As for setting of ǫ and α, we may let ǫ =
√

logn/n and α = logn for example.

For this prior we can show that Assumption 6 holds under

Assumption 2′′′ and that CJ,n(K)/C
(α)
K,ǫ,n → 1 as n goes to

infinity. First, we will show the latter.

Note that the following holds.

Proposition 1: For all n > 0 and ǫ > 0,

Φ(N√
nǫ(0)) ≥ 1− exp

(

−nǫ
2

2

(

1− d

nǫ2
log

nǫ2

d

)

+
d

2

)

,

which is larger than

1− exp
(

−nǫ
2

4
+
d

2

)

,

when nǫ2/d ≥ 2.

See Appendix H for the proof.

Using this proposition, we have the following lemma, where

ρ(α)n (ǫ, θ) = Φ(U
(α)
K,ǫ,n(θ))

and

ρ(α)n (ǫ) = inf
θ∈K

ρ(α)n (ǫ, θ).

Lemma 5: Let K be an arbitrary compact set in Θ◦. Sup-

pose Assumption 2′′′ holds and let λ
¯

denote a lower bound on

the smallest eigenvalue of Jn,θ among n ∈ N and θ ∈ K . Let

Kǫ = {θ : Bǫ(θ) ⊂ K},
Then for ǫ such that nǫ2/d ≥ 2 and ǫ2α2 ≤ λ

¯
, we have

CJ,n(K) ≤ C
(α)
K,ǫ,n ≤ CJ,n(K)

1− e−nǫ2/4+d/2
+
CJ,n(K \Kǫα)

ρ
(α)
n (ǫ)

,

where

CJ,n(A) =

∫

A

|Jn,θ|1/2dθ.

The proof is in Appendix I.

We have a lower bound for ρ
(α)
n (ǫ) as follows, where vol(A)

denotes the volume of A ∈ R
d, diam(A) the diameter of

A ∈ R
d, and Vk the volume of the k-dimensional sphere of

radius 1, that is,

Vk =
πk/2

Γ(k/2 + 1)
.

Lemma 6: Assume that K is compact, convex, and the

closure of an open set in ℜd. Then, for all ǫ such that

vol(Nǫ(0)) ≤ vol(J
1/2
n,θK)/2, the following holds.

ρ(α)n (ǫ, θ) ≥
vol(J

1/2
n,θK)

2(diam(J
1/2
n,θK))dVd

Φ(N√
nǫ(0)).
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Since Assumptions 2′′′ and 10, the minimum eigenvalue of

Jn,θ has a positive lower bound and the maximum eigenvalue

has an upper bound, which are uniform for θ ∈ K . Hence,

by Lemma 6, ρ
(α)
n (ǫ) is lower bounded by a positive constant

when
√
nǫ/α is not small.

Noting this fact, we can show the following lemma.

Lemma 7: Suppose that Assumptions 2′′′ and 10 hold. If

ǫ/α→ 0 and nǫ2/α2 → ∞ as n goes to infinity, then

lim
n→∞

(

logC
(α)
K,ǫ,n − logCJ,n(K)

)

= 0.

Proof: Since supθ∈K supn |Jn(θ)|1/2 is finite under As-

sumption 10, CJ,n(K \Kǫα) converges to zero uniformly for

all n, as ǫ tends to zero. Noting that ρ
(α)
n is lower bounded by a

certain positive constant, since Lemma 6. Hence by Lemma 5,

which is shown under Assumption 2′′′, we have the claim of

the lemma. This completes the proof.

To show that Assumption 6 holds for the ideal priors, we

will show the following lemma.

Lemma 8: Let λn denote the maximum of the largest

eigenvalue of Jn(θ) among θ ∈ K . For a certain ǫ > 0, for

all r ≤ ǫ, for all θ′ ∈ Br(θ) ∩K , and for all θ ∈ K ,

Φ(U
(α)
K,ǫ,n(θ

′))

Φ(U
(α)
K,ǫ,n(θ))

≤1 +

√
nλnr

ρn(ǫ, θ)α
+
Cd diam(K)

√
nλnmax{gθ,r, 0}

ρn(ǫ, θ)α

holds, where Cd = 21−d/2Γ(d/2) and

gθ,r = max
θ′∈Br(θ)∩K

||Jn(θ)−1/2Jn(θ
′)1/2||s − 1.

The proof is in Appendix K.

Note that ρ
(α)
n (ǫ, θ) is lower bounded by a positive constant,

since
√
nǫ→ ∞ when n goes to infinity because of Lemma 6.

Since gθ,r is of order r uniformly over K by Assumption 2′′′,
we have

sup
θ′∈K∩Br(θ)

sup
θ∈K

Φ(U
(α)
K,ǫ,n(θ)

Φ(U
(α)
K,ǫ,n(θ

′))
≥ 1−O

(

√
nǫ

α

)

, (46)

when
√
nǫ/α tends to 0. From this, we have

inf
θ∈K

inf
θ′∈Br(θ)

w
(α)
K,ǫ,n(θ

′)

w
(α)
K,ǫ,n(θ)

≥ 1−O
(

√
nǫ

α

)

,

Since we assume
√
nǫ/α tends to 0 as n goes to infinity,

this means that w
(α)
K,ǫ,n satisfies Assumption 6. Hence, we can

immediately show the following lemma from Lemma 4 and

(45). In fact, for the ideal priors, Assumption 6 holds under

Assumption 2′′′ on Fisher information.

Lemma 9: Let m
(α)
K,ǫ,n denote the mixture of S with respect

to the prior density w
(α)
K,ǫ,n. Suppose that Assumptions 2′′′, 7,

8, and 10 hold. Then, for all xn ∈ Gn,δ and for all ǫ > 0, we

have

log
p(xn|θ̂)

m
(α)
K,ǫ,n(x

n)
≤ d

2
log

n

2π
+ logC

(α)
K,ǫ,n

+ log
(1 + κJǫ)

d/2(1 + δ)d/2

1− ηǫ
.

Here, we treat the strings xn ∈ Gcn,δ . We use the mixture

of the extended model S̄. Define a prior density w̄(θ, β) over

S̄ as

w̄(θ, β) = w
(n)
K (θ)b−d

2

.

Note that this is the direct product of the Jeffreys prior w
(n)
K (θ)

and the uniform probability density over B.

Recall that λ∗n denotes the maximum of the largest eigen-

value of Covn(θ, β) among (θ, β) ∈ Θ × B. We have the

following Lemma.

Lemma 10: Let m̄ denote the mixture of S̄ with respect

to the prior w̄. Suppose Assumptions 6, 7′, 9, and 10. Set

ã = min{1/2λ∗n, 1} and δ̃ = ζδ/
√
d. Then for all xn ∈ Gcn,δ,

we have

m̄(xn)

p(xn|θ̂)
≥ (1− ηǫ)π

d/2Φ(UK,ǫ,n)
(

h̄K(1 + ||V (xn|θ̂)||s)n
)d/2

CJ,n(K)

· Vd2(ãδ̃)
d2

2d2
exp
(ζn||V (xn|θ̂)||sãδ̃

16

)

. (47)

Remark: The key factor in this expression is the exponential

in n||V (xn|θ̂)||δ̃, which makes the coding distribution m̄(xn)
large when the empirical Fisher information deviation V (xn|θ̂)
is not small.

Proof: Note that

m̄(xn)

p(xn|θ̂)

=

∫

pe(x
n|θ, β)w̄(θ, β)
p(xn|θ̂)

dθdβ

=b−d
2

∫ ∫

en(Vn(θ)·β−ψn(θ,β))dβ
p(xn|θ)
p(xn|θ̂)

w
(n)
K (θ)dθ.

First, we will evaluate the integral with respect to β assuming

θ ∈ Bǫ(θ̂), which implies ||Vn(θ)||s ≥ ζ||Vn(θ̂)||s > ζδ, by

Assumption 9 and xn ∈ Gcn,δ . Hence, ||Vn(θ)|| ≥ ζδ/
√
d = δ̃

holds. Below, We will find a certain region where the integrand

en(Vn(θ)·β−ψn(θ,β)) is exponentially large in the polynomial of

n.

By Taylor expansion of ψn(θ, β) with respect to β at (θ, 0),
we have

Vn(θ) · β − ψn(θ, β)

=Vn(θ) · β − βtnCovn(θ, β
′)β/2

≥Vn(θ) · β − λ∗n||β||2/2, (48)

where β′ = tβ with a certain t ∈ [0, 1], and

βtnCovn(θ, β
′)β =

∑

ij,kl

βij [nCovn(θ, β
′)]ij,klβkl.

Let f(β) denote the last side of (48). Introduce new parameters

(v, β⊥) ∈ ℜ× B by

β = v
Vn(θ)

||Vn(θ)||
+ β⊥,

where β⊥ · Vn(θ) = 0 is assumed. Then, we have

f(β) = ||Vn(θ)||v −
λ∗n
2
(v2 + ||β⊥||2).
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Now consider the region Nãδ̃/2(β̃) with β̃ = (ṽ, β̃⊥) =

(ãδ̃, 0). Note that ãλ∗n ≤ 1/2 holds since ã = min{1/2λ∗n, 1}.

For all β in Nãδ̃/2(β̃), we have

f(β)

=||Vn(θ)||v −
λ∗n
2

(

(ãδ̃ + v − ãδ̃)2 + ||β⊥||2
)

=||Vn(θ)||v

−λ
∗
n

2

(

ã22δ̃2 + 2ãδ̃(v − ãδ̃) + (v − ãδ̃)2 + ||β⊥||2
)

≥||Vn(θ)||v −
λ∗n
2

(

ã22δ̃2 + 2ãδ̃(v − ãδ̃) +
ã22δ̃2

4

)

=
(

||Vn(θ)|| − λ∗naδ̃
)

v − 3λ∗nã
22δ̃2

8

≥||Vn(θ)||
2

v − 3λ∗nã
22δ̃2

8

≥||Vn(θ)||ãδ̃
4

− 3λ∗nã
22δ̃2

8

=
ãδ̃

4

(

||Vn(θ)|| −
3λ∗nãδ̃

2

)

≥ ãδ̃
4

(

||Vn(θ)|| −
3δ̃

4

)

≥ ãδ̃||Vn(θ)||
16

.

To derive the first inequality above, we have used (v− ãδ̃)2+
||β⊥||2 ≤ (ãδ̃/2)2 for β ∈ N

ã ˜δ/2
(β̃). The second follows from

λ∗nã ≤ 1/2 and δ̃ ≤ ||Vn(θ)||. The others also follow from

them and v ≥ ãδ̃/2. In this evaluation, we used the condition

aλ∗n ≤ 1/2, but we actually defined ã = min{1/2λ∗n, 1}, since

too large ã may cause the problem that Nãδ̃/2(β̃) is beyond

B.

From this, the following lower bound provided θ ∈ Bǫ(θ̂)
is obtained.

∫

en(V (xn|θ)·β−ψn(θ,β))dβ

≥
∫

Nãδ̃/2(β̃)

en(V (xn|θ)·β−ψn(θ,β))dβ

≥ Vd2(ãδ̃)
d2

2d2
exp
(n||Vn(θ)||ãδ̃

16

)

≥ Vd2(ãδ̃)
d2

2d2
exp
(nζ||Vn(θ̂)||sãδ̃

16

)

, (49)

where we have used Assumption 11 and the inequality

||A||s ≤ ||A||.
Next we will evaluate the integral with respect to θ. Since

the bound for the integral with β is uniform for θ ∈ Bǫ(θ̂), it

suffices to evaluate

∫

Bǫ(θ̂)

p(xn|θ)w(n)
K (θ)

p(xn|θ̂)
dθ.

For that purpose, we make use of (42) in Assumption 7′. We

need a case argument depending on which one is the maximum

in the right side of (42). For θ ∈ Bǫ(θ̂), first assume (θ −

θ̂)tJn,θ̂(θ − θ̂) ≤ (θ − θ̂)tĴ(θ̂)(θ − θ̂), then we have

p(xn|θ)
p(xn|θ̂)

≥ exp
(−n(θ − θ̂)tĴ(θ′)(θ − θ̂)

2

)

≥ exp
(−nh̄K(θ − θ̂)tĴ(θ̂)(θ − θ̂)

2

)

,

where θ′ = tθ + (1 − t)θ̂ with a certain t ∈ [0, 1]. The last

inequality follows from Assumption 7′. Since

||(Jn,θ̂)−1/2Ĵ(θ̂)(Jn,θ̂)
−1/2||s ≤ ||V (xn|θ̂)||s + 1

holds, we have

(θ − θ̂)tĴ(θ̂)(θ − θ̂)

(θ − θ̂)tJn,θ̂(θ − θ̂)
≤ ||V̂ ||s + 1,

where V̂ denotes V (xn|θ̂). Hence for any θ ∈ Bǫ(θ̂) with

(θ − θ̂)tJn,θ̂(θ − θ̂) ≤ (θ − θ̂)tĴ(θ̂)(θ − θ̂),

p(xn|θ)
p(xn|θ̂)

≥ e−nh̄K(1+||V̂ ||s)(θ−θ̂)tJn,θ̂(θ−θ̂)/2. (50)

Next assume (θ − θ̂)tJn,θ̂(θ − θ̂) > (θ − θ̂)tĴ(θ̂)(θ − θ̂) for

θ ∈ Bǫ(θ̂). Then, directly from Assumption 7′, we have

p(xn|θ)
p(xn|θ̂)

≥ e−nh̄K(θ−θ̂)tJn,θ̂(θ−θ̂)/2.

Hence, (50) holds for any θ ∈ Bǫ(θ̂).
Then, in a manner similar to the proof of Lemma 4, by

Laplace approximation over Bǫ(θ̂), we have

∫

Bǫ(θ̂)

p(xn|θ)wK,n(θ)
p(xn|θ̂)

dθ

≥ (1− ηǫ)(2π)
d/2Φ(UK,ǫ,n)w

(n)
K (θ̂)

h̄
d/2
K nd/2(1 + ||V̂ ||s)d/2|Jn,θ̂|1/2

=
(1− ηǫ)(2π)

d/2Φ(UK,ǫ,n)

h̄
d/2
K nd/2(1 + ||V̂ ||s)d/2CJ,n(K)

Together with (49), we have (47). This completes the proof of

Lemma 10.

Theorem 4: Let S = {p(·|θ) : θ ∈ Θ} be a d-dimensional

family of stochastic processes. Suppose that Assumptions 7,

8, 9’, 10, and 11 hold. Further, we assume that Jn(θ) is

equicontinuous for all n and that

λ∗ = lim
n→∞

λ∗n

is finite. Fix a sequence ǫn which converges to 0 slower than

1/
√
n. Define a mixture mn over S̄ as

mn(x
n) = (1− n−r)mK,ǫn,n(x

n) + n−rm̄(xn).

Then, the following holds.

lim
n→∞

(

sup
xn∈K

log
p(xn|θ̂)
mn(xn)

− d

2
log

n

2π
− logCJ,n(K)

)

≤ 0. (51)
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Proof: In this proof, we use Lemmas 5 and 8, plugging in

δn = n−1/2+γ in place of δ, which means that δ̃ is replaced

by

δ̃n =
ζδn√
d
.

When xn ∈ Gn,δn , by Lemma 9, we have

log
p(xn|θ̂)
mn(xn)

≤ d

2
log

n

2π
+ logCK,ǫn,n

+ log
(1 + κJǫn)

d/2(1 + δn)
d/2

1− η(ǫn)
− log(1− n−r).

Here, δn, n−r and | logCK,ǫn,n − logCJ,n(K)| converge to

0 as n goes to infinity (the last one follows from Lemma 7),

hence we have

lim
n→∞

sup
xn∈Gn,δn

(

log
p(xn|θ̂)
mn(xn)

− d

2
log

n

2π
− logCJ,n(K)

)

≤ 0.

Next, we move to the case that xn ∈ Gcn,δn . Since

mn(x
n)

p(xn|θ̂)
≥ n−rm̄(xn)

p(xn|θ̂)
,

we evaluate the lower bound of m̄(xn)/p(xn|θ̂) using

Lemma 10. When n is large and ǫ is small, the right side

of (47) times CJ,n(K) is not less than g(||V̂ ||s) with

g(ξ) =
A(ãδ̃n)

d2

(1 + ξ)d/2nd/2
exp
(ζnξãδ̃n

16

)

,

where A is a constant which does not depend on ||V̂ ||s, n,

and δ̃n. The first derivative of log g(ξ) is

− d

2(1 + ξ)
+
ζnãδ̃n
16

≥ −d
2
+
ζnãδ̃n
16

,

which is positive when n is large, since nδ̃n diverges to infinity

as n goes to infinity. Hence, g(||V̂ ||s) is not less than

g(δ̃n) =
A(ãδ̃n)

d2

(1 + δn)d/2nd/2
exp
(ζnδnãδ̃n

16

)

=
A(ãδn)

d2

(1 + δn)d/2nd/2dd
2/2

exp
(ζ2nãδ2n

16
√
d

)

for large n. Therefore, we have

CJ,n(K)mn(x
n)

p(xn|θ̂)
(52)

≥ n−rAãd
2

nd
2(−1/2+γ)

(1 + δn)d/2nd/2dd
2/2

exp
(ζ2ãn2γ

16
√
d

)

,

which diverges to infinity as n goes to infinity. It means that

the regret for not bad sequences is negative and can be ignored.

This completes the proof.

VI. REGRET BOUNDS FOR SPECIAL CASES

In this section, employing the main theorems for general

cases, we will show asymptotic minimax bounds on regret of

some special models: exponential families, curved exponen-

tial families, models with hidden variables including mixture

families (with fixed components), and contaminated Gaussian

location families. Concerning the mixture families, we show

a stronger upper bound than that obtained by Theorem 5, that

is, we show that the same form of the asymptotic upper bound

is valid without restricting the strings to K.

In the first subsection below, we describe the formal defini-

tion of exponential families and review their basic properties.

In the remaining subsections, we discuss regret bounds for

each example.

A. Definition of Exponential Families

Define the exponential family, following [12], [2].

Definition 2 (Exponential Family): Given Borel measur-

able functions T : X → ℜd and U : X → ℜ, define the

natural parameter space

Θ =
{

θ ∈ ℜd :
∫

X
exp
(

θ · T (x) + U(x))ν(dx) <∞
}

a subset of ℜd, assumed to have a non-empty interior Θ◦.

Define ψ(θ) = log
∫

X exp(θ · T (x) + U(x))ν(dx) and a

probability density on X with respect to ν by

p(x|θ) = exp
(

θ · T (x)− ψ(θ) + U(x)
)

.

Let K denote a subset of Θ such that K̄ = K̄◦. We refer to

the set S(K) = {p(x|θ) : θ ∈ K} as an exponential family of

densities on X .

The class of exponential families includes many common

statistical models such as Gaussian, Poisson, Bernoulli sources

and so on. The following familiar case expresses how the

Gaussian family is an exponential family.

Example 1 (Gaussian distributions): Let X = ℜ and ν(dx)
be the Lebesgue measure dx. The density of N(µ, σ2) is

1√
2πσ2

exp
(

− (x− µ)2

2σ2

)

= exp
(µx

σ2
− x2

2σ2
− µ2

2σ2
− log(2πσ2)

2

)

.

Let θ = (µ/σ2,−1/(2σ2)), T (x) = (x, x2), U(x) = 0 and

ψ(θ) = µ2/(2σ2) + (1/2) log(2πσ2). Then, we see that the

Gaussian is an exponential family, where Θ = ℜ× (−∞, 0).
Hereafter, we absorb the factor exp(U(x)) into the reference

measure ν(dx) (that is, we change exp(U(x))ν(dx) to ν(dx)).
It is known that Θ is a convex set. Let T denote the range of

T (x) for x in the support of ν and let conv(T ) be the closure

of its convex hull. We can assume that the model is arranged

to be full rank such that dim(hull(T )) = dimΘ = d holds

without loss of generality [12]. An exponential family which

satisfies this condition is said to be minimal. We assume S(Θ)
is minimal in this paper.

It is known that ψ(θ) is of class C∞ and strictly convex on

Θ◦. We refer to θ as the natural parameter (or θ-coordinates).

We define the expectation parameter (or η-coordinates) as ηi =
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Eθ(Ti). It is known that the function on Θ◦ mapping θ 7→ η
is an injection and of class C∞. Let H = {η(θ) : θ ∈ Θ◦}
be the range of this map. We also assume that S(Θ) is steep:

that is Eθ(|T (x)|) = ∞ holds for any θ ∈ Θ − Θ◦. It is

known that H is the interior of conv(T ) for steep exponential

families. Further, if Θ is open, then S(Θ) is said to be regular.

Note that any regular family is steep automatically (vacuously)

since Θ−Θ◦ is empty.

Note that ∂ψ/∂θi = Eθ(Ti(x)) = ηi and ∂2ψ/∂θj∂θi =
Eθ((Ti(x) − ηi)(Tj(x) − ηj)) hold on Θ◦. Here, this

Eθ((Ti(x)−ηi)(Tj(x)−ηj)) is the Fisher information matrix

with respect to θ denoted J(θ). We let I(η) denote the Fisher

information matrix of η. This I(η) is known to be the inverse

matrix of J(θ). It is known that J(θ) is strictly positive definite

in Θ◦.

Given the string xn, we have p(xn|θ) = ∏n
τ=1 p(xτ |θ) =

∏n
τ=1 exp(θ · T (xτ )− ψ(θ)) = exp(n(θ · T̄ − ψ(θ))), where

T̄ = T̄ (xn) =

∑n
τ=1 T (xτ )

n
.

These yield

∂ log p(xn|θ)
∂θi

= n(T̄i − ηi),

∂2 log p(xn|θ)
∂θi∂θj

= −nJij(θ). (53)

The latter implies that log p(xn|θ) is strictly concave in Θ◦,

hence, the former implies that log p(xn|θ) takes the unique

maximum at η = T̄ under the condition that T̄ ∈ H. Let η̂
= η̂(xn) denote the maximum likelihood estimate of η given

xn. Then, we have η̂(xn) = T̄ (xn) for xn with T̄ (xn) ∈ H◦.

The identity (53) also implies

Ĵ(θ, xn) = J(θ)

for all θ ∈ Θ and for all xn. Therefore, Assumptions 1, 1′, 2,

and 2′ hold for the natural parameter θ of exponential familes.

For the expectation parameters (η̃, η) ∈ H2, corresponding

to p(·|θ) and p(·|θ̃), let D(η̃||η) denote the Kullback diver-

gence from p(·|θ̃) to p(·|θ). Then, we have

D(η̃||η) = Eθ̃

(

log
p(x|θ̃)
p(x|θ)

)

= θ̃ · η̃ − ψ(θ̃)− θ · η̃ + ψ(θ),

We extend the domain H2 to ℜd ×H, following [12]:

D(η̃||η)

=











lim
ǫ→+0

inf{D(η′||η) : η′ ∈ H, |η̃ − η′| < ǫ},
for (η̃, η) ∈ ∂H×H,

∞, for (η̃, η) ∈ H̄c ×H,
where ∂H is the boundary of H and H̄c is the complement

of the closure.

We have the following relation between differentiation with

respect to η and differentiation with respect to θ:

∂

∂ηi
=
∑

j

∂θj
∂ηi

∂

∂θj
=
∑

j

Iij(η)
∂

∂θj
.

This holds for θ ∈ Θ◦ (equivalently for η ∈ H). Thus θ and

ψ(θ) are infinitely differentiable with respect to η as well as

with respect to θ. Hence, D(η̃||η) is of class C∞ on H2.

The following is a large deviation inequality.

Lemma 11: Suppose that η ∈ H. Let Λ be a closed half

space of ℜd (i.e. Λ = {x ∈ ℜd : x · ξ ≥ γ} for any specified

ξ ∈ ℜd and γ ∈ ℜ). Then, the following inequality holds

Pθ(T̄ (x
n) ∈ Λ) ≤ exp(−n inf

η̃∈Λ
D(η̃||η)).

See [16], [12] for the proof.

B. Lower and Upper Bounds for Exponential Families

From Lemma 11, Assumptions 3 and 3’ hold. We continue

to assume finiteness of CJ (K) (Assumption 4’). For the

regular exponential families, all the remaining assumptions for

Lemmas 1 and 2 automatically hold. Hence, Lemmas 1 and

2 and Theorems 1 and 3 can be applied to show the desired

lower bound indeed holds for the maximin regret for regular

exponential families.

Next, we consider the upper bound. For the natural param-

eter θ of exponential families, Ĵ(θ, xn) = J(θ) holds for any

θ ∈ Θ◦ and for any xn. Hence, if we use the natural parameter,

we do not need the fiber bundle of local exponential families

to obtain the asymptotic minimax regret. In fact, we can prove

the following theorem, where we suppose only Assumptions

about K . (K is compact, convex, and included in Θ◦.)

Theorem 5: Let S = {p(·|θ) : θ ∈ Θ} be a d-dimensional

exponential family. Let K be a compact and convex subset of

Θ◦. Let mK,ǫn,n be the same one as in Theorem 5. Then, the

following holds.

lim
n→∞

(

sup
xn∈K

log
p(xn|θ̂)

mK,ǫn,n(x
n)

− d

2
log

n

2π

)

(54)

≤ logCJ (K).

This theorem immediately follows from Lemmas 5 and 7,

which hold in much simpler forms then the original ones,

since any string xn is in the good set Gn,δ by the fact

Ĵ(θ, xn) = J(θ),

C. Lower and Upper Bounds for Curved Exponential Families

As a more general case than exponential families, we

consider curved exponential families. It is defined as a surface

in the natural parameter space of an exponential family. If

the surface is a hyperplane, the surface forms an exponential

family again. Hence, we are interested in cases that the surface

is curved. Below, we give a formal definition of curved

exponential families.

Definition 3 (Curved Exponential Families): Let

S = {p̄(·|u) : u ∈ U} be a d̄-dimensional steep exponential

family, where p̄(x|u) = exp(u · T (x) − ψ(u)) denotes the

density with respect to a measure ν(dx) and u its natural

parameter. Let Θ be an open subset of ℜd (d < d̄) and

φ = (φ1, . . . , φd̄) be a function from Θ to U . Assume that φ
is twice continuously differentiable in Θ and that the Jacobian

of φ is of rank d for every θ in Θ. Further, we assume that

φ is an injection. Let p(·|θ) = p̄(·|φ(θ)). Then, the family

M = {p(·|θ) : θ ∈ K} with densities

p(x|θ) = exp(φ(θ) · T (x)− ψ(φ(θ)))
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is referred to as a d-dimensional curved exponential family of

densities embedded in the exponential family S.

In the above definition, let η denote the function which maps

u to the corresponding expectation parameter of S, that is,

η(u) =
∫

T (x)p̄(x|u)ν(dx).
For the curved exponential family M , the score function is

∂ log p(x|θ)
∂θi

=
∂φ(θ) · T (x)

∂θi
−
∑

k

∂ψ(φ(θ))

∂uk

∂φk(θ)

∂θi

=
∂φ(θ) · T (x)

∂θi
− η · ∂φ(θ)

∂θi

=
∂φ(θ) · (T (x)− η)

∂θi
. (55)

Then, by the chain rule of differentiation, we have

∂2 log p(x|θ)
∂θj∂θi

=
∂2φ(θ) · (T (x)− η)

∂θj∂θi
−
∑

k,l

∂φl(θ)

∂θi

∂ηl
∂uk

∂φk(θ)

∂θj

=
∂2φ(θ) · (T (x)− η)

∂θj∂θi
−
∑

k,l

∂φl(θ)

∂θi
J̄kl(u)

∂φk(θ)

∂θj
, (56)

where J̄kl(u) is the Fisher information matrix of the exponen-

tial family S. Taking the expected value, we have

−Jij(θ) = −
∑

k,l

∂φl(θ)

∂θi
J̄kl(u)

∂φk(θ)

∂θj
.

By this we have confirmed that the Fisher information exists

and is finite. Further, since φ is twice continuously differen-

tiable and its Jacobian is of rank d for every θ ∈ Θ, the Fisher

information is continuous and is positive definite for all θ ∈ Θ.

(That is, Assumption 2 holds.) Further (56) yields

Ĵij(θ, x) = Jij(θ)−
∂2φ(θ)

∂θi∂θj
· (T (x)− η(φ(θ))). (57)

This shows how the empirical Fisher information differs from

the Fisher information in curved exponential families. Since

T (x) and its covariance matrix with respect to p̄(·|u) for all

u ∈ U is finite, Assumptions 1 and 1’ hold. Assumption 2’

also holds because of (55). Further, note that the maximum

likelihood estimator for curved exponential families is consis-

tent uniformly for θ ∈ K , when K is compact and interior

to Θ. This can be easily confirmed by Lemma 9 (the large

deviation theorem). Hence, Lemmas 1 and 2 and Theorems 1

and 3 work for curved exponential families and we have the

validity of the desired lower bound.

Next, we consider the upper bound. By (57), we have

Ĵij(θ, x
n) = Jij(θ)−

∂2φ(θ)

∂θi∂θj
· (T̄ − η(φ(θ))). (58)

Let Hk denote the Hessian of φk(θ) (the Hessian of the kth

component of φ(θ)). Then we can write

Ĵ(θ, xn) = J(θ)−
∑

k

(T̄k − ηk(φ(θ)))H
k(θ). (59)

By this, we have

V (xn|θ) = −
∑

k

(T̄k − ηk(φ(θ)))J
−1/2
θ Hk(θ)J

−1/2
θ . (60)

Since the exponential moments of T (x) exist for u ∈ U◦

by definition of the natural parameter space of exponential

families, Assumption 7 holds for a certain b > 0. Further, note

that, if T (x) is bounded, then T̄ (xn) is uniformly bounded for

all n. Hence, if T (x) is bounded, the collection of functions

V (xn|θ), xn ∈ Xn, n = 1, 2, . . . is equicontinuous uniformly

for θ ∈ K . Then, Assumptions 8 to 11 hold. As for the ideal

prior, Assumption 9 does hold. That is, we can use Theorem 5,

and the general minimax strategy works. On the contrary, if

T (x) is not bounded, it is not clear whether the assumptions

hold or not.

However, to deal with such curved exponential families

with unbounded T (x), we can establish another minimax

strategy. In this alternative strategy, to deal with the string

xn whose empirical Fisher information differs from the Fisher

information, we mix in small measure component living in the

full d̄-dimensional exponential family S instead of the fiber

bundle of local exponential families.

Let K be a compact set included in Θ◦ such that K̄ = K̄◦.

Let Uc be a compact set included in U◦ such that U◦
c ⊃ {φ(θ) :

θ ∈ K̄}. Our asymptotic minimax strategy is established in the

following theorem. Note that we do not assume the boundness

of T (x) here.

Theorem 6: Let S = {p(·|θ) : θ ∈ Θ} be a d-dimensional

curved exponential family of densities defined in Definition 3

and let

mn(x
n) = (1− n−r)mK,ǫ,n(x

n) + n−r
∫

p̄(xn|u)w(u)du,

where w(u) is the uniform prior over Uc. Then, the following

holds.

lim sup
n→∞

( sup
xn∈K

log
p(xn|θ̂)
mn(xn)

− d

2
log

n

2π
) (61)

≤ logCJ(K).

Proof: Define a set of good strings:

Gn = {xn : θ̂ ∈ K and |η̂ − η(φ(θ̂))| ≤ δn}

(recall that η denotes the expectation parameter and that η̂ =
T̄ ), where we let δn = n−1/2+γ (0 < γ < 1/2). Define also

Gcn = {xn : θ̂ ∈ K and |η̂ − η((φ(θ̂))| > δn}

We can prove the usual asymptotic bound for regret when

xn ∈ Gn, while for xn ∈ Gcn, it turns out that the regret of

our strategy becomes negative, that is, the code length becomes

shorter than − log p(xn|θ̂).
For xn ∈ Gn, from (59) and the Cauchy-Schwartz inequal-

ity, we have for each (i, j),

(Ĵij(θ, x
n)− Jij(θ))

2 ≤ |T̄ − η(φ(θ))|2
∑

k

(Hk
ij(θ))

2

≤ δ2n
∑

k

(Hk
ij(θ))

2.
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Since Hk(θ) is continuous and K is compact,
∑

k(H
k
ij(θ))

2

is bounded by a constant C2
H,K . Accordingly, for xn ∈ Gn,

max
ij

max
θ∈K

|Ĵij(θ, xn)− Jij(θ)| ≤ CH,K δn

holds, which implies

max
θ∈K

||Ĵ(θ, xn)− J(θ)|| ≤ dCH,Kδn.

Therefore, uniformly over xn ∈ Gn,

max
θ∈K

||Ĵ(θ, xn)− J(θ)||s ≤ dCH,Kδn

which means, for all unit vector z, we have

max
θ∈K

|zt(Ĵ(θ, xn)− J(θ))z| ≤ dCH,Kδn.

Since J(θ) is continuously differentiable, for ǫ > 0,

max
θ′∈Bǫ(θ)∩K

max
θ∈K

|zt(Ĵn(θ′)z− ztJ(θ))z| ≤ dCH,Kδn+O(ǫ).

Now since δn = n−1/2+γ , the right side is O(ǫ) for n ≥
(1/ǫ)2/(1−2γ). Therefore, for such n, we have the following

two inequalities holding uniformly for xn ∈ Gn and uniformly

for all unit vectors z,

max
θ̃∈Bǫ(θ̂)∩K

|ztĴ(θ̃, xn)z − ztJ(θ̂)z| ≤ O(ǫ)

and
|ztĴ(θ̂, xn)z − ztJ(θ̂)z| ≤ O(ǫ).

Since ztJ(θ̂))z is lower bounded by a positive constant

(even when we take a minimum over all unit vectors z), for

sufficiently small ǫ, the zt(Ĵ(θ̂, xn)z is also lower bounded

by a positive constant, uniformly over unit vectors z and

xn ∈ Gn. Consequently, for all n ≥ (1/ǫ)2/(1−2γ) and all

xn ∈ Gn, we have

max
θ̃∈Bǫ(θ̂)∩K

ztĴ(θ̃, xn)z

ztĴ(θ̂, xn)z
≤ 1 +O(ǫ).

This is the last inequality in Assumption 9 and is sufficient to

obtain the same bound for good strings as in Theorem 5. To

show that, we have the condition that ǫ must converge to 0
slower than 1/

√
n. Now, we face the new condition ǫ ≥ δn =

n−1/2+γ , which does not contradict the previous condition.

Next we consider xn ∈ Gcn. Let Nδ(u) denote the δ
neighborhood of u and let U ′

c a compact set included in U◦
c .

Now we will prove that the following holds for a certain κ > 0.

∀n ∈ N, ∀xn ∈ Gcn, ∃ũ ∈ U ′
c,

inf
u∈Nκδn (ũ)

1

n
log

p̄(xn|u)
p(xn|θ̂)

≥ C2δ
2
n. (62)

Indeed, by Taylor expansion with respect to u at φ(θ̂), we

have

1

n
log

p̄(xn|u)
p(xn|θ̂)

=
1

n
log

p̄(xn|u)
p̄(xn|φ(θ̂))

=(u− φ(θ̂)) · T̄ − ψ(u) + ψ(φ(θ̂))

=(T̄ − η(φ(θ̂))) · (u− φ(θ̂))

− (1/2)(u− φ(θ̂))tJ̄(u′)(u− φ(θ̂)),

where u′ = ξu+ (1 − ξ)φ(θ̂) for some ξ ∈ [0, 1]. Let

ũ = φ(θ̂) + 2κδn
T̄ − φ(θ̂))

|T̄ − φ(θ̂)|
.

Then, for all u ∈ Nκδn(ũ), we have κδn ≤ |u−φ(θ̂)| ≤ 3κδn.

Hence, we have

inf
u∈Nκδn (ũ)

1

n
log

p̄(xn|u)
p(xn|θ̂)

≥ κδ2n − 9κ2λ∗δ2n/2

= κ(δ2n − 9κλ∗δ2n/2),

where λ∗ denotes the maximum value among the maximum

eigenvalues of J̄(u) for u ∈ Uc. Let κ = 1/9λ∗, then the

above implies (62). Hence we have for all n ∈ N and for all

xn ∈ Gcn,

n−r ∫ p̄(xn|u)w(u)du
p(xn|θ̂)

≥
∫

Nκδn (ũ)

n−rp̄(xn|u)w(u)
p(xn|θ̂)

du

≥ C3n
−r
∫

Nκδn (ũ)

exp(C2nδ
2
n)du

≥ C3n
−r(κδn)

d̄ exp(C2nδ
2
n)

≥ C4n
−rn−d̄/4 exp(C2n

2γ).

This means that the regret of mn is negative for all large n
and can be ignored. This completes the proof.

Lastly we give a comment about the case of stochastic

processes. Though Theorem 6 above is for the i.i.d. case only,

it can be extended to the case of Markov sources. It is known

that some parametric model of Markov sources approaches an

exponential family as n goes to infinity, in the sense that the

difference between Fisher and empirical Fisher information

matrices converges to zero as n goes to infinity. We call

the model of stochastic processes with that condition as an

asymptotic exponential family. In particular, the Markov model

defined by a context tree [48] (a tree model) is interesting.

When the context tree satisfies a certain condition, the model

is called a finite state machine X (FSMX) model [49]. It is

shown that the tree model is an asymptotic exponential family

if and only if the model is an FSMX model [45].

As a special case, consider the model of kth order Markov

chains, which is an example of an FSMX model. For this case,

it has been shown that the Jeffreys mixture asymptotically

achieves the minimax regret [44]. Note that any tree model

can be regarded as a sub family (a surface) of the model of

a certain order Markov chains. It means that a tree model

can be regarded as a curved exponential family embedded

in an asymptotic exponential family. It suggests that we can

establish a similar theorem as Theorem 6 concerning tree

models. In fact, such a theorem is in [42].

D. Lower and Upper Bounds for Models with Hidden Vari-

ables

The contents of this section was presented in part in 2014

IEEE International Symposium on Information Theory [41].
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First we introduce the notion of models with hidden vari-

ables below, where (Y,By, νy) is a measurable space.

Definition 4 (Model with Hidden Variables): Let q(y|θ) be

a density of a d-dimensional exponential family over Y with

natural parameter θ. Define a class S of probability density

functions over X by

S =
{

p(x|θ) =
∫

κ(x|y)q(y|θ)νy(dy) : θ ∈ Θ
}

, (63)

where κ(x|y) is a fixed conditional probability density func-

tion of x given y. Then, S is called a model with a hidden

variable y.

For the above definition, we will assume that the Fisher

information is positive definite over Θ◦. (Assumption 2.)

Whether this holds or not depends on the property of κ(x|y).
Later we will see that if x and y are not independent random

variables with respect to the joint density κ(y|x)q(y|θ), then

J(θ) is positive definite. This is reasonable because we can

draw information about θ from x, if x and y are not indepen-

dent.

If q(y|θ) is the multinomial model over the finite set Y =
{0, 1, . . . , d}, then p(x|θ) is in the following form:

p(x|θ) =
d
∑

y=1

θyκ(x|y) +
(

1−
d
∑

y=1

θy

)

κ(x|0). (64)

Here, θ denotes a d-dimensional vector (θ1, . . . , θd) ∈ ℜd
satisfying 0 ≤∑d

i=1 θi ≤ 1 and θi ≥ 0 for all i. This model

is called a mixture family in information geometry [2], [3]. The

mixture family is the dual object of the exponential family in

information geometry [2], [3]. Note that this mixture family is

a simpler object than the more general class of mixture models

such as Gaussian mixtures, binomial mixtures, etc., which are

used in many settings.

Typically, models with a hidden variable are examples of

non exponential families. But note that if it is the mixture

family and if X is a finite subset of an Euclidean space and

each κ(·|y) is a point mass at an x = xy in X , then it is also

an exponential family. That is the case of the multinomial

Bernoulli model.

In this section we first argue the general case of models

with hidden variables, assuming T (y) is bounded, for which

Theorem 5 gives the minimax solution for the set of strings

K = Xn(K) for a compact K interior to Θ.

After that, for the mixture family case, we show a minimax

strategy for the problem without restriction to the set of strings

Xn. The shown strategy is different from the one used in

Theorem 1.

1) Lower Bound for Models with Hidden Variables: Here,

we consider the lower bound. We examine Assumptions for

Theorems 1 and 2. Here, we assume θ in q(y|θ) is the natural

parameter of exponential family q(y|θ):

q(y|θ) = exp(θ · T (y)− ψ(θ)).

Below, let η denote the expectation parameter: η =
∫

T (y)q(y|θ)νy(dy) and let G(θ) denote the Fisher informa-

tion matrix for q(y|θ) with respect to θ.

We will show some nice properties of the score function,

the Fisher information, and the empirical Fisher informa-

tion. Let Covθ[T̄ (Y
n)|xn] denote the covariance matrix of√

nT̄ (yn) with respect to the conditional probability distribu-

tion p(yn|xn, θ) with a fixed xn, where T̄ =
∑n
t=1 T (yt)/n.

Further, define

Covθ[T (Y )|X ] =

∫

Covθ[T̄ (Y )|x]p(x|θ)ν(dx).

Then, we have the following lemma.

Lemma 12: For the model with hidden variable (63), the

following equalities hold.

1

n

∂ log p(xn|θ)
∂θi

= t̃i − ηi, (65)

Ĵ(θ, xn) = G(θ)− Covθ[T̄ (Y
n)|xn], (66)

J(θ) = G(θ)− Covθ[T (Y )|X ] (67)

and
∂Ĵij(θ, x

n)

∂θk
=
∂Gij(θ)

∂θk
−√

nw̃ijk(θ, x
n),

where

t̃i = t̃i(θ, x
n) =

∫

T̄ (yn)p(yn|xn, θ)νy(dyn)

and

w̃ijk = w̃ijk(θ, x
n)

= n3/2

∫

(T̄i − t̃i)(T̄j − t̃j)(T̄k − t̃k)p(y
n|xn, θ)νy(dyn).

Proof: Note that

∂p(xn|θ)
∂θi

=

∫

κ(xn|yn)n(T̄i − ηi)q(y
n|θ)ν(dyn). (68)

Hence, we have

∂ log p(xn|θ)
∂θi

=

∫

κ(xn|yn)n(T̄i − ηi)q(y
n|θ)ν(dyn)

p(xn|θ) (69)

=

∫

n(T̄i − ηi)p(y
n|xn, θ)ν(dyn)

= n(t̃i − ηi),

where p(yn|xn, θ) = κ(xn|yn)q(yn|θ)/p(xn|θ). This yields

(65). To further differentiate, we need (∂/∂θi)p(y
n|xn, θ). By

the product rule of differentiation

∂p(yn|xn, θ)
∂θi

=
κ(xn|yn)n(T̄i − ηi)q(y

n|θ)
p(xn|θ)

− κ(xn|yn)q(yn|θ)
(p(xn|θ))2

∂p(xn|θ)
∂θi

=n(T̄i − ηi)p(y
n|xn, θ)

− κ(xn|yn)q(yn|θ)
p(xn|θ)

∂ log p(xn|θ)
∂θi

=n(T̄i − ηi)p(y
n|xn, θ)

− p(yn|xn, θ)
∫

n(T̄i − ηi)p(y
n|xn, θ)ν(dyn)

=n(T̄i − ηi)p(y
n|xn, θ)− n(t̃i − ηi)p(y

n|xn, θ)
=n(T̄i − t̃i)p(y

n|xn, θ).
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Using this formula, we have

∂2 log p(xn|θ)
∂θj∂θi

=

∫

∂n(T̄i − ηi)

∂θj
p(yn|xn, θ)ν(dyn)

+

∫

n(T̄i − ηi)
∂p(yn|xn, θ)

∂θj
ν(dyn)

=

∫

(−nGij)(θ)p(yn|xn, θ)ν(dyn)

+

∫

n(T̄i − ηi)n(T̄j − t̃j)p(y
n|xn, θ)ν(dyn)

=− nGij(θ)

+

∫

n(T̄i − ηi)n(T̄j − t̃j)p(y
n|xn, θ)ν(dyn)

=− nGij(θ)

+

∫

n(T̄i − t̃i)n(T̄j − t̃j)p(y
n|xn, θ)ν(dyn)

+

∫

n(t̃i − ηi)n(T̄j − t̃j)p(y
n|xn, θ)ν(dyn)

=− nGij(θ)

+

∫

n(T̄i − t̃i)n(T̄j − t̃j)p(y
n|xn, θ)ν(dyn)

=− nGij(θ) + nṽij ,

where ṽij = ṽij(θ, x
n) denotes

∫ √
n(T̄i − t̃i)

√
n(T̄j − t̃j)p(y

n|xn, θ)νy(dyn).

That is, we have

∂2 log p(xn|θ)
∂θj∂θi

= −nGij(θ) + nṽij , (70)

Since ṽij is ij-entry of Covθ[T̄ (Y
n)|xn], this is (66), which

directly yields (67).

To differentiate (70) again, note the following

∂t̃i
∂θj

=
∂

∂θj

∫

T̄ip(y
n|xn, θ)ν(dyn)

=

∫

T̄in(T̄j − t̃j)p(y
n|xn, θ)ν(dyn)

= n

∫

(T̄i − t̃i)(T̄j − t̃j)p(y
n|xn, θ)ν(dyn)

= ṽij .

Then,

∂3 log p(xn|θ)
∂θk∂θj∂θi

=− n
∂Gij(θ)

∂θk

+

∫

∂n(T̄i − t̃i)

∂θk
n(T̄j − t̃j)p(y

n|xn, θ)ν(dyn)

+

∫

n(T̄i − t̃i)
∂n(T̄j − t̃j)

∂θk
p(yn|xn, θ)ν(dyn)

+

∫

n(T̄i − t̃i)n(T̄j − t̃j)
∂p(yn|xn, θ)

∂θk
ν(dyn).

Since ∂T̄/∂θk = 0 holds, and since ∂t̃i/∂θk = ṽik dose not

depend on yn, the second and third terms in the last expression

in the integral yield 0. Hence,

∂3 log p(xn|θ)
∂θk∂θj∂θi

=− n
∂Gij(θ)

∂θk

+

∫

n(T̄i − t̃i)n(T̄j − t̃j)
∂p(yn|xn, θ)

∂θk
ν(dyn).

The second term is
∫

n(T̄i − t̃i)n(T̄j − t̃j)n(T̄k − t̃k)p(y
n|xn, θ)ν(dyn),

which equals n3/2w̃ijk . Then, we have

∂3 log p(xn|θ)
∂θk∂θj∂θi

= −n∂Gij(θ)
∂θk

+ n3/2w̃ijk. (71)

This completes the proof of the lemma.

Recall that G(θ) equals the covariance of T (y) with respect

to q(y|θ) and note that the expectation of Covθ[T (y)|x] with

respect to p(x|θ), which we denote by Covθ[T (y)|X ], is

not more than Covθ[T (y)] = G(θ) in the sense of positive

definiteness. Hence, J(θ) is positive semi-definite. Here, the

equality holds only if x and T (y) are independent of each

other. To be more precisely, if and only if x and ztT (y)
(the linear combination of each entry of T (y)) is independent,

ztG(θ)z = ztCovθ[T (y)|X ]z holds. Therefore, we assume

that x and ztT (y) with any non-zero z is not independent for

θ ∈ Θ◦.

Since we assume that T (y) is bounded,

Eθ[ max
θ′∈Bǫ(θ)

|Ĵij(θ, x)|]

and

Eθ[ max
θ′∈Bǫ(θ)

(Ĵij(θ, x)|)2]

are finite. This means that Assumptions 1 and 1’ hold. By

(65),

sup
n∈N

sup
xn∈Xn

sup
θ∈K

∣

∣

∣

1

n

∂ log p(xn|θ)
∂θi

∣

∣

∣

is finite for any compact set K ⊂ Θ◦. That is, the log

likelihood function is equicontinuous for all θ ∈ K , n, and

xn. Hence, noting positive definiteness of J(θ), we can prove

the maximum likelihood estimator is uniformly consistent for

all θ ∈ K . In conclusion, all the assumptions for Theorems 1

and 2 are satisfied and we have demanded lower bound results.

2) Upper Bounds for Models with Hidden Variables: Note

that any order’s moments of T̄ (Y n) exist at p(yn|xn, θ). (This

is true even if T (x) is not bounded.) Hence, by (66) of

Lemma 12, Assumption 7 holds for any b > 0. Further, we

can show that |Ĵ(xn, θ)| and |∂Ĵ(θ, xn)/∂θk| is uniformly

bounded for all xn such that θ̂ ∈ K , which means all the

assumptions for the upper bound results hold. In fact, by (71),

we have

∂Ĵij(θ, x
n)

∂θk
=
∂Gij(θ)

∂θk
− n2w̃ijk(θ, x

n).



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. X, NO. X, XXXX 201X 22

Since the posterior density p(yn|xn, θ) is i.i.d., n2w̃(θ, xn)
equals the third order moment of T (y), which does not

depend on n. Recalling we assume T (y) is bounded,

|∂Ĵij(θ, xn)/∂θk| is bounded for θ ∈ K .

Hence, we see that our general minimax strategy works for

models with hidden variables assuming that T (y) is bounded

and ztT (y) for any nonzero z is not independent of x for all

θ ∈ Θ.

Note that Ĵ(θ, xn) is positive definite for all xn and for all

θ ∈ Θ, which implies the uniqueness of MLE.
3) Extension to the Whole Strings Set Case for Mixture

Families: Next, we consider the mixture family case defined

as (64). About the lower bound, we should examine the

consistency of maximum likelihood estimator

θ̂(xn) = argmax
θ∈Θ

p(xn|θ),

which is defined relative to the whole parameter space Θ. For

the mixture family, as we see later, log likelihood function

is concave. Using that property, we can prove θ̂ is uniformly

consistent for θ ∈ Θ. Therefore, we can apply Theorem 1 for

K = Θ case. (J.T.: Is this true?)

Now we consider the upper bound for the case that K = Xn.

Define a subset Θτ of Θ as

Θτ = {θ ∈ Θ : θi ≥ τ, i = 0, 1, . . . , d}.
Since Θτ for τ > 0 is a compact subset of Θ◦, it may be

possible to design a minimax strategy for the model {p(x|θ) :
θ ∈ Θτ} utilizing the result for the general case. In fact, we

can do it as we show later.

Then we argue the situation that τ converges to zero as n
goes to infinity. Under that situation we utilize Lemmas 2 and

3. Then we have to control the behavior of κJ (K) and λ∗K (the

maximum of the largest eigenvalue of J(θ) among θ ∈ K),

since K changes as n increases.

To treat the strings with the maximum likelihood estimate

being near the boundary, we employ the technique introduced

in [51], which utilizes the Dirichlet(α) prior w(α)(θ) ∝
∏d
i=0 θ

−(1−α)
i with α < 1/2. Note that this prior with

α = 1/2 has the same form as the Jeffreys prior for the

multinomial model. When α < 1/2 it has higher density than

the Jeffreys prior as θ approaches the boundary of Θ.

Our asymptotic minimax strategy is the mixture

mn(x
n) = (1 − 2n−r)mΘ(x

n) (72)

+ n−r
∫

pe(x
n|θ, β)w̄(θ, β)dθdβ

+ n−r
∫

p(xn|θ)w(α)(θ)dθ,

where mΘ is the Jeffreys mixture over Θ. Here, the first and

second terms are for the strings with the MLE being away

from the boundary, while the third term works when the MLE

approaches the boundary.

We can show the following theorem.

Theorem 7: The strategy mn defined as (72) with r <
(1/2− α)(1− p) asymptotically achieves the minimax regret

for the mixture family, i.e.

sup
xn∈Xn

log
p(xn|θ̂)
mn(xn)

≤ d

2
log

n

2π
+ logCJ(Θ) + o(1).

To prove Theorem 7, we use the following useful inequali-

ties for the model with hidden variables. Here A ≤ B for two

matrices A and B means that B −A is positive semidefinite.

Lemma 13: Given a data string xn, let θ̂ denote the MLE

for a model with hidden variables p(xn|θ) defined by (63).

Then, the following holds for all xn ∈ Xn.

∀θ ∈ Θ,
1

n
log

p(xn|θ̂)
p(xn|θ) ≤ D(q(·|θ̂)||q(·|θ)), (73)

∀θ ∈ Θ, Ĵ(θ, xn) ≤ G(θ). (74)

In particular, when q(y|θ) is the multinomial model, the

following holds

p(xn|θ̂)
p(xn|θ) ≤ exp(nD(q(·|θ̂)||q(·|θ))) =

∏

y∈Y

η̂
nη̂y
y

η
nη̂y
y

, (75)

where ηy = q(y|θ) and η̂y = q(y|θ̂).
The proof is in Appdendix L.

Note that

Ĵij(θ, x) = −∂
2 log p(x|θ)
∂θi∂θj

=
(pi(x) − p0(x))(pj(x)− p0(x))

(p(x|θ))2
holds, where we have

∣

∣

∣

pi(x) − p0(x)

p(x|θ)
∣

∣

∣
≤ pi(x) + p0(x)
∑d

i=0 θipi(x)
≤ 1

θi
+

1

θ0
.

The last expression is not more than 2maxθ∈K maxi θ
−1
i ,

which is finite. Further, ∂V (xn|θ)/∂θi is similarly bounded,

so V (xn|θ) is equicontinuous for all xn : θ̂ ∈ K . This implies

the general mixture strategy works for mixture families with

a compact K interior to Θ.

Next, we give a discussion on the case with the set of strings

{xn : θ̂(xn) ∈ Θ◦}. We are to examin Assumptions 7 and 8

for θ ∈ Θτ . Note that, for z ∈ ℜd,

ztĴ(θ, x)z =

∑

ij zizj(pi(x)− p0(x))(pj(x) − p0(x))

p(x|θ)2

=
(
∑

i zi(pi(x) − p0(x)))
2

p(x|θ)2 ≥ 0,

Hence we have

ztĴ(θ, xn)z ≥ 0

for all z ∈ ℜd and for all θ ∈ Θ. Since

∂Ĵij(θ, x)

∂θk
=

−2(pk(x) − p0(x))

(p(x|θ)) Ĵij(θ, x),

we have

∂ztĴ(θ, x)z

∂θk
=

−2(pk(x) − p0(x))

(p(x|θ)) ztĴ(θ)z, (76)

which yields

∂ztĴ(θ, xn)z

∂θk
(77)

=
1

n

∑

t

−2(pk(xt)− p0(xt))

(p(xt|θ))
ztĴ(θ, xt)z.
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Hence we have for θ ∈ Θτ ,

∂ztĴ(θ, xn)z

∂θk
≤ 1

n

∑

t

2ztĴ(θ, xt)z

τ
=

2ztĴ(θ, xn)z

τ

By this inequality and the fact ztĴ(θ̃, xn)z ≥ 0, we have the

following inequalities.

e−2
√
d|θ̃−θ̂|/τztĴ(θ̂, xn)z ≤ ztĴ(θ̃, xn)z (78)

≤ e2
√
d|θ̃−θ̂|/τztĴ(θ̂, xn)z.

By this, we can see that h̄K for K = Θτ is not more than

e2
√
d, as long as ǫ ≤ τ . Further, if |θ̃ − θ̂| ≤ τ/2

√
d,

ztĴ(θ̃, xn)z ≤ ztĴ(θ̂, xn)z
(

1 +
eτ

2
√
d

)

holds for all z ∈ ℜd \ {0}. Note that

max
θ̃∈Bǫ(θ̂)

|θ̃ − θ̂| = ǫ

λmin
,

where λmin is the minimum value among θ ∈ Θτ of the small-

est eigenvalue of J(θ). Hereafter, we assume ǫ ≤ τλmin/2
√
d.

When ǫ ≤ τλmin/2
√
d is satisfied,

ztĴ(θ̃, xn)z ≤ ztĴ(θ̂, xn)z
(

1 +
eǫ

λmin

)

holds for all θ̃ ∈ Bǫ(θ̂). This implies Assumption 8 holds with

κJ = e/λmin for ǫ ≤ τλmin/2
√
d. Note that the argument here

works even if τ and ǫ depend on n.

Next we examine Assumption 9. Concerning this matter, we

have the following lemma.

Lemma 14: Assume that ||V (xn|θ̂)||s ≥ δ, δ ≥ 8
√
dǫ/τ ,

4
√
dǫ/τ ≤ 1/2, and δ ≤ 1/2. Then, we have for θ̃ ∈ Bǫ(θ̂)

||T (xn|θ̃)||s ≥ ||T (xn|θ̂)||s/4.

Proof: Note that there exists a unit vector z̄ ∈ ℜd such

that |z̄tV (xn|θ̂)z̄| = ||V (xn|θ̂)||s. Here we have two cases;

i) z̄tV (xn|θ̂)z̄ = ||V (xn|θ̂)||s and ii) −z̄tV (xn|θ̂)z̄ =
||V (xn|θ̂)||s.

First consider the case i), for which we have

||V (xn|θ̂)||s = z̄tJ(θ̂)−1/2Ĵ(θ̂)J(θ̂)−1/2z̄ − 1

=
z̄tJ(θ̂)−1/2Ĵ(θ̂)J(θ̂)−1/2z̄

z̄tz̄
− 1

=
z̃tĴ(θ̂)z̃

z̃tJ(θ̂)z̃
− 1,

where z̃ denotes J(θ̂)−1/2z̄. Hence,

z̃tĴ(θ̂)z̃

z̃tJ(θ̂)z̃
= 1 + ||V (xn|θ̂)||s (79)

holds. For the numerator in the left side, from (78) we have

z̃tĴ(θ̃)z̃ ≥ e−2
√
d|θ̃−θ̂|/τ z̃tĴ(θ̂)z̃.

As for the denominator, similarly as (78) we can show by (76)

e−2
√
d|θ̃−θ̂|/τ ≤ z̃tJ(θ̃)z̃

z̃tJ(θ̂)z̃
≤ e2

√
d|θ̃−θ̂|/τ (80)

for θ̃ ∈ Θτ . Then, we have for all θ̃ ∈ Bǫ(θ̂) ∩Θτ ,

z̃tĴ(θ̃)z̃

z̃tJ(θ̃)z̃
≥ (1 + ||V (xn|θ̂)||s)e−4

√
d|θ̃−θ̂|/τ

≥ (1 + ||V (xn|θ̂)||s)e−δ/2

≥ (1 + ||V (xn|θ̂)||s)(1 − δ/2)

= 1 + ||V (xn|θ̂)||s − δ/2− δ||V (xn|θ̂)||s/2
≥ 1 + ||V (xn|θ̂)||s/2− δ||V (xn|θ̂)||s/2
= 1 + (1− δ)||V (xn|θ̂)||s/2
= 1 + ||V (xn|θ̂)||s/4.

Letting ξ = J(θ̃)1/2z̃/|J(θ̃)1/2z̃|, that is, z̃ =
|J(θ̃)1/2z̃|J(θ̃)−1/2ξ, we have

z̃tĴ(θ̃)z̃

z̃tJ(θ̃)z̃
=
ξtJ(θ̃)−1/2Ĵ(θ̃)J(θ̃)−1/2ξ

ξtξ

= ξtJ(θ̃)−1/2Ĵ(θ̃)J(θ̃)−1/2ξ

≤ 1 + ||V (xn|θ̃)||s

Hence, we have ||T (xn|θ̃)||s ≥ ||T (xn|θ̂)||s/4.

For the case ii), we can show the same conclusion. This

completes the proof.

Remark: This means that Assumption 10 holds with ζ =
1/4.

To see Assumption 7 holds is easy because of (78).

Finally, we evaluate a = min{1/2λ∗, 1} in Lemma 10.

Since |Ĵij(θ)| is bounded by 4/τ2 for θ ∈ Θτ and since the

smallest eigenvalue of J(θ) is lower bounded by a certain

positive constant, λ∗ is of order τ−4. Hence, a is lower

bounded by τ4 times a certain constant.

Now, we will give the proof of Theorem 7.

Proof of Theorem 7: We divide the strings to the following

three categories:

An = {xn : θ̂ ∈ Θτ and ||V (xn|θ̂)||s ≤ δ},
Bn = {xn : θ̂ ∈ Θτ and ||V (xn|θ̂)||s > δ},
Cn = {xn : θ̂ 6∈ Θτ}.

Set τ = n−(1−p), δ = n−1/2+γ , and ǫ = n−1/2+ι, assuming

1/2 + ι < p < 1, 0 < γ < 1/2, and 1 − p < γ/2, that

is, 2(1 − p) < γ < 1/2. Note that ǫ/τ = n−1/2+ι+1−p =
n−(p−1/2−ι) → 0 as n goes to infinity under this setting. Let

ǫ̃ = ǫ/τ and assume n is large enough so that ǫ̃ = ǫ/τ ≤
λmin/2

√
d holds. Let C1 = 2

√
d/λmin. Then, ǫ̃ ≤ 1/C1.

When xn belongs to An, the Laplace approximation for the

integral with respect to θ is correct enough. In fact by (78),

ztĴ(θ̃, xn)z ≤ e2
√
d|θ̃−θ̂|/τztĴ(θ̂, xn)z

≤ e2
√
dǫ/λminτztĴ(θ̂, xn)z

= eC1ǫ̃ztĴ(θ̂, xn)z

holds for all θ̃ ∈ Bǫ(θ̂). Hence for xn ∈ An, similarly as the
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proof of Lemma 4, we have

log
p(xn|θ̂)
mΘ(xn)

≤ d

2
log

n

2π
+ log

|J(θ̂)|1/2
wJ (θ̂)Φ(UΘ,ǫ,n(θ̂))

+ log
edC1ǫ̃/2(1 + δ)d/2

1− ηǫ
.

Here, since Bǫ(θ̂) ⊂ Θ holds when n is large, Φ(UΘ,ǫ,n(θ̂))
converges to 1 as n goes to infinity, the above means

log
p(xn|θ̂)

(1− 2n−r)mΘ(xn)
≤ d

2
log

n

2π
+ logCJ(Θ) + o(1).

Next, we consider the case that xn ∈ Bn. By Lemma 14,

Assumption 9 holds with ζ = 1/4. Then, similarly as the

proof of Lemma 10, we can show (47) with m̄(xn) =
∫

pe(x
n|θ, β)w̄(θ, β)dθdβ, ζ = 1/4 and h̄K = h̄Θ < ∞.

Hence, we can show the same inequality as (52) for xn ∈ Bn.

In this case, with a certain C > 0, we have

an2γ ≥ Cτ4n2γ = Cn2γ−4(1−p),

which is polynomially large, since we set 1 − p < γ/2. This

makes the regret of mn go to negative infinity as n goes to

infinity.

Finally, we consider the case that xn ∈ Cn, in which there

exists y such that θ̂y ≤ τ = n−(1−p). Then, we can use the

help from the third term in (72) as follows. Note that the

following holds from (75).

∫

p(xn|θ)w(α)(θ)dθ

p(xn|θ̂)
≥
∫
∏d
i=0 θ

nθ̂i
i w(α)(θ)dθ

∏d
i=0 θ̂

nθ̂i
i

.

Then, by Lemma 4 of [51], the right side is not less than

1

Rnd/2−(1/2−α)(1−p)

for xn ∈ Cn, where R is a constant depending only on d. Let r
be smaller than (1/2−α)(1−p), then for large n the third term

of the right side of (72) is larger than (2π)d/2/(CJ(Θ)nd/2).
This provides an upper bound on regret of mn smaller than

the maximin value for all xn ∈ Cn. This completes the proof.

E. Mixture with Fixed Weights

We consider the following model.

p(x|θ) = 0.5g0(x) + 0.5g1(x|θ),
where q(x|θ) is an exponential family with the natural param-

eter θ: g1(x|θ) = exp(θ ·T (x))−ψ(θ), and g0(x) is a certain

fixed probability density function. This is another example

of non-exponential families. Let η denote the expectation

parameter for g1(x|θ). For this case, we assume T (x) is

bounded again.

We have

∂ log p(x|θ)
∂θi

=
0.5(Ti − ηi)g1(x|θ)

p(x|θ)
= (Ti − ηi)r(x|θ),

where we have defined

r(x|θ) = 0.5g1(x|θ)
p(x|θ) .

Note that 0 ≤ r(x|θ) ≤ 1 and
∫

r(x|θ)p(x|θ)ν(dx) = 0.5

hold. The score function for xn is

∂ log p(xn|θ)
∂θi

=
n
∑

t=1

(Ti(xt)− ηi)r(xt|θ),

We have

∂r(x|θ)
∂θi

=
0.5(Ti − ηi)g1(x|θ)

p(x|θ)

− 0.5g1(x|θ)0.5(Ti(x)− ηi)g1(x|θ)
(p(x|θ))2

=(Ti − ηi)(r(x|θ) − r(x|θ)2)
=(Ti − ηi)r(x|θ)(1 − r(x|θ))
=(Ti − ηi)q(x|θ).

where q(x|θ) = r(x|θ)(1 − r(x|θ)). Hence,

∂2 log p(x|θ)
∂θj∂θi

=−Gij(θ)r(x|θ)

+ (Ti − ηi)(Tj − ηj)q(x|θ),

by which, we have

Ĵ(θ, xn) =Gij(θ)r̄ (81)

− 1

n

n
∑

t=1

(Ti(xt)− ηi)(Tj(xt)− ηj)q(xt|θ), (82)

where r̄ = (1/n)
∑n
t=1 r(xt|θ). We also have

Jij(θ) =
Gij(θ)

2
−
∫

(Ti − ηi)(Tj − ηj)q(x|θ)p(x|θ)ν(dx).

Hence, Ĵ(θ, xn) − J(θ) is bounded for any θ ∈ Θ◦, which

means that Assumption 7 holds for any b > 0. Further, since
∫

(Ti − ηi)(Tj − ηj)p(x|θ)ν(dx) = Gij(θ) and 0 ≤ q(x|θ) ≤
1/4, J(θ) is positive definite for all θ.

Now we have

∂q(x|θ)
∂θi

= (Ti − ηi)q(x|θ)(1 − r(x|θ))

− (Ti − ηi)r(x|θ)q(x|θ)
= (Ti − ηi)q(x|θ)(1 − 2r(x|θ)).

Using the above, we have

∂3 log p(x|θ)
∂θk∂θj∂θi

=− ∂Gij(θ)

∂θk
r(x|θ) −Gij(θ)(Tk − ηk)q(x|θ)

−Gik(θ)(Tj − ηj)q(x|θ)
− (Ti − ηi)Gjk(θ)q(x|θ)
+ (Ti − ηi)(Tj − ηj)(Tk − ηk)q(x|θ)(1 − 2r(x|θ)).

Hence, noting T (x) is assumed to be bounded, Ĵ(θ, xn) is

equicontinuous in θ ∈ Θ for all n and for all xn. Therefore,

we can apply Theorem 5 to show the asymptotic minimax

strategy.
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F. Contaminated Gaussian Location Families

In this subsection, we treat a simple case of contamination

Gaussian location families, which is a basic model for robust

estimation.

Let us define the model formally below. Let

p(x|θ) = (1− ν)g0(x|θ) + νg1(x|θ), (83)

where

g0(x|θ) = N(θ, I),

g1(x|θ) = N(θ, s2I)

are Gaussian densities over Rd, I the unit matrix of order d, ν
a small positive number, and s a number larger than 1. Here,

(1− ν)g0(x|θ) is the main target for estimation and νg1(x|θ)
represents a noise distribution. This p(x|θ) is an example of

non-exponential families, In [34], MDL estimation based on

two-stage codes for this model is discussed.

Note that our setting that ν and the forms of g0 and g1 are

known is the simplest one in robust statistics. See [29] for

more general settings.

Now we evaluate the score function and the empirical Fisher

information. Let ∂i denote ∂/∂θi and r = r(x|θ) = (1 −
ν)g0(x|θ)/p(x|θ). We have

∂i log p(x|θ) =
∂i(1− ν)g0(x|θ) + ∂iνg1(x|θ)

p(x|θ)

= −r(θi − xi)−
(1− r)(θi − xi)

s2

= −(θi − xi)w,

where

w = w(x|θ) = r(x|θ) + 1− r(x|θ)
s2

=
(

1− 1

s2

)

r(x|θ) + 1

s2
.

Hence,

∂j∂i log p(x|θ) = −Ijiw − (θi − xi)∂jw

= −Iijw − (θi − xi)
(

1− 1

s2

)

∂jr.

For the last term, we have

∂jr = −∂jp(x|θ)
p(x|θ)2 (1 − ν)g0(x|θ) +

∂j(1− ν)g0(x|θ)
p(x|θ)

= −r(x|θ)∂j log p(x|θ) − r(x|θ)(θj − xj)

= r(x|θ)((θj − xj)w − (θj − xj))

= r(x|θ)(θj − xj)(w − 1)

= r(x|θ)(θj − xj)(1 − r(x|θ))
( 1

s2
− 1
)

= (θj − xj)q
( 1

s2
− 1
)

, (84)

where q = q(x|θ) = r(x|θ)(1 − r(x|θ)). Hence, we have

∂j∂i log p(x|θ)

= −wIij + (θi − xi)(θj − xj)
(

1− 1

s2

)2

q,

which yields

Ĵij(θ, x) (85)

= wIij −
(

1− 1

s2

)2

(θi − xi)(θj − xj)q.

By this, we will evaluate the Fisher information. First note that

J(θ) dose not depend on θ. Since Er = 1, we have Ew = 1.

Hence, our task is to evaluate the expectation of the second

term. Since

r(x|θ)(1 − r(x|θ))p(x|θ) ≤ min{(1− ν)g0(x|θ), νg1(x|θ)}
holds, we have
∫

(θi − xi)(θj − xj)q p(x|θ)dx ≤ min{1− ν, νs2}Iij .

Hence, the following holds.

I ≥ J(θ) ≥ max{ν, 1− νs2}I.
The third part is positive definite and equals I if and only if

ν = 0. Note that I equals the Fisher information of g0(x|θ) =
N(x|θ, I).

The empirical Fisher information Ĵ1(θ) = Ĵ(θ, x) has an

interesting property. To see it, consider the d = 1 case. Assume

x = 0 without loss of generality. Then, we have

Ĵ1(θ) = r +
1− r

s2
−
(

1− 1

s2

)2

θ2q. (86)

Assume s is very large and ν is very small. Then, if |θ| < 1
and r(0|θ) ; 1, then Ĵ1(θ) nearly equals the empirical Fisher

information of N(0|θ, 1), which is 1. On the other hand, let

us consider the case that r(0|θ) ; 0, which is realized when

θ2 is large. In particular, assume that θ2 is much larger than

log(s/ν), then

θ2r(0|θ) ≤ θ2(1− ν)g0(0|θ)
νg1(0|θ)

≤ sθ2

ν
exp
(

−θ
2

2
+

θ2

2s2

)

; 0.

Hence, Ĵ(θ, 0) ; 1/s2, when θ2 is much larger than log(s/ν).
The above is reasonable observations and not surprising.

More interestingly, when θ takes an intermediate value, Ĵ1(θ)
can be a large negative value. Let us see it below.

Let c be a solution to the equation r(0|θ) = 1/2, which is

1− ν√
2π

exp
(

−c
2

2

)

=
ν√
2πs2

exp
(

− c2

2s2

)

.

This is modified to

s2 =
ν2

(1− ν)2
exp
(

c2 − c2

s2

)

.

Hence, we have

c2 =
(

1− 1

s2

)−1(

log s2 + log
(1 − ν)2

ν2

)

,

which implies c2 ≥ log s2, because we assume ν is small.

Therefore, the following holds.

Ĵ1(±c) ≤
1

2

(

1 +
1

s2

)

− log s2

4

(

1− 1

s2

)2

.

The right side is negative when log s2 ≥ 4. Further, its absolute

value can be arbitrarily large by letting s be large.

Now, we can show that the MLE is not unique for the string

x2 with x1 = c and x2 = −c. When s2 is large, Ĵ(0, x2) is

negative, which means that θ = 0 is not the maximizer of the
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log likelihood, because −Ĵ(0) > 0 is the second derivative

of the log likelihood at θ = 0. Hence, the maximum is taken

at a certain θ̃ 6= 0. Then by symmetry, −θ̃ also achieves the

maximum.

Next, we consider Ĵ(θ, xn). From (85) we can obtain the

following representation.

Ĵ(θ, xn) =
((

1− 1

s2

)

r̄ +
1

s2

)

I −
(

1− 1

s2

)2

Σ̂, (87)

where we have defined

r̄ =
1

n

n
∑

t=1

r(xt|θ),

Σ̃ =
1

n

n
∑

t=1

q(xt|θ)(xt − θ)(xt − θ)t.

Now, we concern whether (87) is equicontinuous or not for

xn ∈ K. By (84), the derivative of the first term with respect to

θi is proportional to θi−xi, which is unbounded. It may seem

to cause a problem, but it is not, since θi−xi is with a factor

q(x|θ) which is of order exp(−C|θ − x|2). As a result, the

derivative of the first term is bounded. This holds for all the

terms which contain the factor θi − xi. Hence, the derivative

of the empirical Fisher information is bounded, which implies

it is equicontinuous for all xn and for all n as functions of θ.

APPENDIX A

ON ASSUMPTIONS FOR LOWER BOUNDS OF THEOREM 1

Suppose that Assumption 1 holds. This means that

Eθ supθ′∈Br(θ) |Ĵij(θ′, x)| is finite for r not more than r(θ),

for all i, j in {1, . . . , d}. Now J(θ)−1/2Ĵ1(θ
′, x)J(θ)−1/2 is

a linear combination of the Ĵij(θ
′, x). Consequently,

Eθ sup
θ′∈Bδ(θ)

±((J(θ)−1/2Ĵ(θ′, x)J(θ)−1/2)ij − Iij) (88)

is finite for δ not more than r(θ). Also by Assumption 1,

Ĵ(θ′, x) is continuous in θ′ for each x. Accordingly, as δ
decreases to 0, the supremum in the above expression con-

vergences monotonically to ±((J(θ)−1/2Ĵ(θ, x)J(θ)−1/2)ij−
Iij) which has zero expectation. Then by the monotone con-

vergence theorem, the expected supremum in (88) converges

to 0 as δ → 0 for each θ in Θ◦.

The plus-minus ± means that the indicated property

holds with each sign choice. It is the flipped sign case

supθ′∈Bδ(θ)
(Iij − ((J(θ)−1/2Ĵ(θ′, x)J(θ)−1/2)ij) that espe-

cially matters for our development. Nevertheless, it is ap-

propriate to see that it can be handled with either sign.

One might be tempted to take an absolute value, but

|(J(θ)−1/2Ĵ(θ, x)J(θ)−1/2)ij − Iij | does not have zero ex-

pectation.

On K , the assumption that CJ(K) is finite means that the

Jeffreys measure is a finite measure on K . Accordingly, by

Egorov’s Theorem [8], [9], the convergent sequences (6), (7),

and (88) are uniformly convergent to 0 as δ → 0, except for

θ in sets of arbitrarily small measure. In particular, for any

ǫ > 0, there is a δ > 0 and a good set G ⊂ K , such that

for all θ in G the quantities in (6) and (7) are less than ǫ, the

expected suprema in (88) are less than ǫ/(2d) and the Jeffreys

measure of the complement of G, which is
∫

KrG
|J(θ)|1/2dθ,

is less than ǫ CJ(K).
Next consider (J(θ)−1/2Ĵ(θ′, xn)J(θ)−1/2)ij for a sample

of size n. By the definition of the empirical Fisher information,

this is
1

n

n
∑

t=1

(

J(θ)−1/2Ĵ(θ′, xt)J(θ)
−1/2

)

ij
.

The law of large numbers informs us that it is near its expec-

tation with high probability. We use the expected supremum

property to get uniformity over Bδ(θ). Indeed, the supremum

of an average is less than the average of the supremum. In

particular, supθ′∈Bδ(θ)±(Iij−(J(θ)−1/2Ĵ(θ′, xn)J(θ)−1/2)ij
is not more than

1

n

n
∑

t=1

sup
θ′∈Bδ(θ)

±
(

Iij − (J(θ)−1/2Ĵ(θ′, xt)J(θ)
−1/2)ij

)

.

When the xt are independent from the distribution Pθ , this

is a sample average having expectation bounded by ǫ/(2d).
Accordingly, by the law of large numbers, for each i, j, and

for each sign choice, it is within ǫ/d of 0 except in an event

of (Pθ) probability tending to 0 as n → ∞. Accordingly,

taking the exception event as the finite union of these tail

events for 1 ≤ i, j ≤ d and for each sign, we have that

maxi,j supθ′∈Bδ(θ) |(Iij − (J(θ)−1/2Ĵ(θ′, xn)J(θ)−1/2)ij | is

not more than ǫ/d except in an event having a (Pθ) probability,

say δn, which tends to zero as n→ ∞.

Now the spectral norm of a d by d matrix is within a factor

d of the maximum absolute value of its entries. Accordingly,

sup
|ζ|=1

sup
θ′∈Bδ(θ)

ζt
(

I − (J(θ)−1/2Ĵ(θ′, xn)J(θ)−1/2)
)

ζ (89)

is less than ǫ, except in the event of probability δn. Any unit

vector ζ may be obtained as J(θ)1/2z/||J(θ)1/2z|| for some

non-zero vector z. Accordingly, switching from ζ to z, this

gives

sup
θ′∈Bδ(θ)

inf
z 6=0

ztĴ(θ′, xn)z

ztJ(θ)z
≥ 1− ǫ

except in the event of vanishing Pθ probability, asymptotically.

APPENDIX B

ON ASSUMPTIONS FOR LOWER BOUNDS OF THEOREM 2

The analysis in the proof of Theorem 2 is similar. The extra

assumptions of continuity of the expected supremum function

and continuity of the Fisher information are used, along with

Dini’s Theorem, to deduce that the convergence to 0 of the

expected supremum as well as the convergences to 0 of the

expressions in (6) and (7), are in fact uniform convergences

within the whole presummed compact K (with no need for

an Egorov style exception set K rG). In particular there is a

δ > 0, sufficiently small, such that the expected value of the

supremum in expression (89) is less than ǫ/2, uniformly over

θ in K .

Another distinction is the use of the assumption of the

continuous and finite expected square, to permit an appeal

to Chebyshev’s inequality. The variance of the supremum

in expression (89) is not more than vθ/n, where vθ is the
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variance of the supremum when n = 1. From Assumption 1′

this variance is finite and continuous so it has a finite bound

vK on the compact domain K . Accordingly, by Chebyshev’s

inequality, the probability that expression (89) exceeds ǫ is not

more than 4vK/(nǫ
2), uniformly over θ in K . This converges

to zero faster than the required 1/ logn. [A simlar sufficiently

fast tail probability conclusion can be arranged if using a 1+α
moment of the empirical Fisher information for any α > 0].

APPENDIX C

ASYMPTOTIC NORMALITY AND UNIFORM TIGHTNESS OF

THE DISTRIBUTION OF THE MLE

First we restate and then prove Lemma 2 from Section IV,

which is for general i.i.d. families.

Lemma 2: Under Assumptions 1′, 2′, 3′,
√
nJ(θ)1/2(θ̂−θ)

converges in distribution to a mean zero normal random vector

and there is a constant c such that the following inequality

holds for any positive b,

max
θ∈K

Pθ
(√
n||J(θ)1/2(θ̂ − θ)|| > b

√

logn
)

≤ c

b2 logn
+ o
( 1

logn

)

.

The constant c equals maxθ∈K trace(J(θ)−1I(θ)) which is

the dimension d, the trace of an identity matrix, when I(θ) =
J(θ).

Proof: Assume that xn is drawn from p(·|θ). Let lxn(θ) be

the log likelihood function log p(xn|θ). Then, the first order

Taylor expansion of the score function ∇lxn(θ) at θ̂ shows

∇lxn(θ) = ∇∇tlxn(θ̃)(θ − θ̂),

where ∇f(θ) and ∇∇tf(θ) denote the gradient and the

Hessian of f , respectively, and θ̃ is a point on the line

between θ and θ̂. From the definition of the empirical Fisher

information, this equation is

∇lxn(θ) = nĴ(θ̃, xn)(θ̂ − θ), (90)

which is equivalent to

J(θ)−1/2 1√
n
∇lxn(θ)

= [J(θ)−1/2Ĵ(θ̃, xn)J(θ)−1/2][
√
nJ(θ)1/2(θ̂ − θ)].

Let’s call the random vector on the left side Zn. It is asymp-

totic normal by the central limit theorem (for sums of i.i.d.

random vectors with finite covariance) and it has covariance

EZnZ
t
n = J(θ)−1/2I(θ)J(θ)−1/2.

By Assumption 3′ the estimator θ̂ is in a δ neighborhood

of θ with probability greater than 1 − o(1/ logn) uniformly

for θ ∈ K . Then by (25), which is a consequence of As-

sumption 1’, J(θ)−1/2Ĵ(θ̃, xn)J(θ)−1/2 is close to I , indeed

not less than (1 − ǫ)I , for all θ ∈ K with probability

at least 1 − o(1/ logn). (The inequality of matrices is in

the sense that the difference is a non-negative definite ma-

trix.) Accordingly, the random vector of interest defined by

ξn = ξn(θ) =
√
nJ(θ)1/2(θ̂ − θ) satisfies ξn = AnZn

where An ≤ (1 − ǫ)−1I . It follows that Eξnξ
t
n ≤ (1 −

ǫ)−2EZnZ
t
n and that E||ξn||2 ≤ (1− ǫ)−2E||Zn||2 which is

(1− ǫ)−2trace(J(θ)−1I(θ)), not more than (1− ǫ)−2c. Thus

by Chebyshev’s inequality

max
θ∈K

Pθ
(√
n||J(θ)1/2(θ̂ − θ)|| > b

√

logn
)

≤ (1− ǫ)−2c

b2 logn
+ o
( 1

logn

)

.

This means that lim supn(log n)maxθ∈K Pθ(||ξn(θ)|| ≥
b
√
logn) ≤ (1− ǫ)−2c/b2. Since this bound holds for all

positive ǫ, it follows that this limsup is less than c/b2, which

is the desired result. This completes the proof of Lemma 2

Remark on Uniform Tightness: Consider the family of

approximately standardized random variables ξn(θ) =√
nJ(θ)1/2(θ̂−θ). Convergence in distribution provides a form

of stochastic tightness, that is, Pθ(||ξn(θ)|| > a) tends to zero

as a → ∞, uniformly in n. Here we used slightly stronger

assumptions to get that the convergence is also uniformly valid

for θ ∈ K and that moderately sized tails with an = b
√
logn

have tail probability bounded by a small multiple of 1/ logn.

APPENDIX D

CONSISTENCY OF THE MLE

The present setting is for a model in which the x1, . . . , xn
given θ are independent and identically distributed.

Here we state conditions that are sufficient for the consis-

tency of the MLE for each θ. The subsequent section addresses

uniform consistency for θ in compacta.

For consistency, we use Assumptions 11-13 described be-

low. The first assumption concerns continuity.

Assumption 11: Continuity. For almost every x ∈ X and

for all θ ∈ Θ, p(x|θ) is upper half continuous at θ:

lim
δ→0

sup
θ′:|θ−θ′|<δ

p(x|θ′) = p(x|θ).

Moreover, the relative entropy D(θ||θ′) is a continuous func-

tion of θ and θ′ in Θ.

Assumption 12: For each θ and θ′ in the interior of Θ, there

is a δ > 0 such that the following holds

Eθ

(

sup
θ′′∈Θ:|θ′′−θ′|<δ

log
p(x|θ′′)
p(x|θ)

)

<∞.

The above two assumptions are sufficient for consistency

when the parameter space Θ is compact. Accordingly, for

bounded parameter spaces, it is natural to include in the

parameter space any boundary points that do correspond to

probability densities.

For non-compact parameter spaces, the following additional

assumption is used to handle those cases in which the densities

lose mass as the parameter approaches boundary points not

in Θ. For B ≥ 1, we let ΘB be an increasing sequence of

compact subsets whose union is Θ.

For one example, consider the family of exponential densi-

ties p(x|θ) = θe−θx for x > 0. It has the natural parameter

space Θ = {θ : θ > 0} and the sets

ΘB = {θ : 1/B ≤ θ ≤ B}
are increasing compact sets whose union is Θ. Moreover, as

θ′ → 0 or as θ′ → ∞ it has lim p(x|θ′) = 0 for each x > 0.
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When the parameter space is Θ = Rd we may take

ΘB = {θ : |θ| ≤ B}.

Assumption 13: Let an increasing sequence of compact

subsets ΘB be given whose union is Θ. For each θ ∈ Θ◦,

there is a B sufficiently large such that

Eθ

(

sup
θ′∈Θ\ΘB

log
p(x|θ′)
p(x|θ)

)

<∞.

Moreover, there is a value a > 0, such that, for any sequence

θB , B ≥ 1, with θB ∈ Θ \ ΘB , in the limit the likelihood

ratio satisfies lim supB p(x|θB)/p(x|θ) ≤ exp{−a}, for each

x ∈ X .

We call this latter property the loss of mass for any

sequences diverging from the set. Often, as in the example

above, the indicated limit property holds trivially, with full loss

of mass lim p(x|θB) = 0, if there be sequences θB heading

out of compacta in Θ.

For compact Θ, taking ΘB = Θ, the set Θ \ ΘB is empty

and Assumption 13 is regarded as holding vacuously, with the

supremum of an empty set taken to be −∞.

Under 11, 12, 13, the maximum likelihood estimate is a

consistent estimator of θ. We prove the following.

Lemma 15: For a family of densities S = {p(·|θ) : θ ∈ Θ},

suppose Assumptions 11, 12, and 13 hold. Then, for each θ in

Θ◦, we have convergence to zero in probability of the relative

entropy between the densities at the maximum likelihood

estimate θ̂(xn) and at θ. That is,

lim
n→∞

D(θ||θ̂) = 0, in Pθ probability.

Moreover, if D(θ||θ′) is continuous in θ′, and if Pθ′ = Pθ
only at θ′ = θ, then also θ̂(xn) converges to θ in probability.

That is, for every ǫ > 0.

Pθ(|θ̂(xn)− θ| > ǫ) = o(1).

Proof: For positive ξ, let U be a subset of Θ defined as

U
def
= {θ′ ∈ Θ : D(θ||θ′) ≥ ξ}. By the continuity of D(θ||θ′)

as a function of θ′, when Θ is compact, so also is U . When

Θ is not compact, in place of U we use U ∩ ΘB for which

will discuss the size of B later below. By Assumption 11, we

have, for each θ′ in U ,

lim
δ→0

sup
θ′′:|θ′′−θ′|<δ

log
p(x|θ′′)
p(x|θ) = log

p(x|θ′)
p(x|θ) .

Therefore, we have

lim
δ→0

Eθ

(

sup
θ′′:|θ′′−θ′|<δ

log
p(x|θ′′)
p(x|θ)

)

= −D(θ||θ′),

by the monotone convergence theorem, since

supθ′′:|θ′′−θ′|<δ log(p(x|θ′′)/p(x|θ)) decreases as δ decreases

for each x ∈ X and since it has finite expectation by

Assumption 12.

For each ξ > 0 and each θ′ ∈ U , let δ(θ′) = δ(θ′, ξ) > 0
be so small that

Eθ

(

sup
θ′′:|θ′′−θ′|<δ(θ′)

log
p(x|θ′′)
p(x|θ)

)

≤ −D(θ||θ′) + ξ/2

holds. Then, since D(θ||θ′) ≥ ξ in U , we have

Eθ

(

sup
θ′′:|θ′′−θ′|<δ(θ′)

log
p(x|θ′′)
p(x|θ)

)

≤ −ξ/2.

Now consider 1
n supθ′′:|θ′′−θ′|<δ(θ′) log

p(xn|θ′′)
p(xn|θ) for samples

of size n. Since we are presently treating models in which the

x1 through xn are independent. It is

sup
θ′′:|θ′′−θ′|<δ(θ′)

1

n

n
∑

i=1

log
p(xi|θ′′)
p(xi|θ)

.

Then since the supremum of the average is less than the

average of the supremum, we can apply the law of large

numbers and deduce that it has a limit in (Pθ) probability not

greater than −ξ/2, for each θ′ in U . We will need to arrange

an analogous property holding uniformly over θ′ in U , and we

will come back to that matter momentarily.

For non-compact domains Θ, consider the sequence

supθ′∈Θ\ΘB
log p(x|θ′)

p(x|θ) . It is decreasing in B and it has limit

less than or equal to −a as B → ∞, by Assumption 11. Then

with 0 ≤ ξ ≤ a, by the monotone convergence theorem, we

can arrange that B is sufficiently large that

Eθ

(

sup
θ′∈Θ\ΘB

log
p(x|θ′)
p(x|θ)

)

< −ξ/2.

Accordingly, again using that a supremum of an average is

less than the average of a supremum, we can deduce that
1
n supθ′∈Θ\ΘB

log p(xn|θ′′)
p(xn|θ) has a limsup in probability not

greater than −ξ/2.

To obtain that D(θ||θ̂) is less than ξ it is enough to confirm

that the likelihood at θ is higher than the supremum of the

likelihoods for all θ′ with D(θ||θ′) ≥ ξ. Indeed, this gives an

instance of a parameter value in the Kullback ball (namely at

the center point θ) that has higher likelihood than at all points

outside the Kullback ball. Accordingly the maximum must be

in that ball. So if suffices for Kullback consistency to show

that with high probability

sup
θ′:D(θ||θ′)≥ξ

log
p(xn|θ′)
p(xn|θ) < 0.

In the compact Θ case, this supremum is over all θ′ in U .

Now the compact U is covered by the (infinite) union of all

the variable radius balls {θ′′ : |θ′′ − θ′| ≤ δ(θ′)} for θ′ in

U . For a compact set every cover has a finite subcover. Thus,

there exist a finite number of points θ1, θ2, ..., θN such that

the family of sets U = {Ui} (i = 1, 2, ..., N ) covers Ū , where

Ui
def
= {θ : |θ − θi| < δ(θi)}.

Similarly, in the non-compact Θ case, we obtain such a

cover of the compact U ∩ΘB and append the set U0 = {θ′ ∈
Θ \ΘB : D(θ||θ′) ≥ ξ} to obtain thereby U0 ∪U1 ∪ . . .∪UN
as a cover of {θ′ ∈ Θ : D(θ||θ′) ≥ ξ}.
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Now, we have

sup
θ′:D(θ||θ)>ξ

(

1

n
log

p(xn|θ′)
p(xn|θ)

)

≤ max
0≤k≤N

(

1

n
sup
θ′∈Uk

log
p(xn|θ′)
p(xn|θ)

)

≤ max
0≤k≤N

(

1

n

n
∑

i=1

sup
θ′∈Uk

log
p(xj |θ′)
p(xj |θ)

)

.

Now as we showed each of these finitely many averages
1
n

∑n
i=1 supθ′∈Uk

log
p(xj |θ′)
p(xj |θ) is less than 0 except in an event

Ek,n of probability Pθ(Ek,n) which tends to zero as n→ ∞.

Accordingly, the finite union of these exception sets En =
∪Nk=0Uk,n has probability Pθ(En) tending to zero as well.

Outside En, we have supθ′:D(θ||θ)>ξ log
p(xn|θ′)
p(xn|θ) < 0.

So for each ξ > 0, the maximum likelihood estimate is in

the Kullback ball of size ξ except in an event of probability

tending to zero as n→ ∞. This means that D(θ||θ̂) converges

to 0 in probability.

Now for any ǫ > 0, with D(θ||θ′) continuous in θ′ and zero

only at θ′ = θ, it follows that in any compact K ⊆ Θ (such

as K = ΘB)

inf
θ′∈K:|θ′−θ|≥ǫ

D(θ||θ′) > 0

Moreover, for non-compact Θ the condition on the limit

of p(x|θ′)/p(x|θ) as θ′ diverges from compacta, prevents

D(θ||θ′) from tending to zero for such sequences. Accord-

ingly, the convergence of D(θ||θ̂) to zero (in probability)

implies |θ̂(xn) − θ| → 0 (in probability). This completes the

proof of the Lemma.

Remarks: The first consistency proof of this type is in Wald

[47]. Our conditions are similar, but slightly weaker in that

we use suprema of log density ratios (demonstrated close

to relative entropies). In contrast Wald use suprema of log

densities together with finite entropy conditions. Secondly,

here we organized the proof to exhibit the primacy of the

conclusion of information consistency (D(θ||θ̂) tending to

zero in probability) with the parameter consistency conclusion

θ̂ → θ of Wald as a consequence.

Extension to parameter spaces that are separable metric

spaces is straightforward, provided the finite balls of radius B
are compact (so that covers have finite subcovers). Extension

to almost sure convergence is also straightforward. Also, the

conclusion extends to the case that the governing distribution

P is not in the family {Pθ : θ ∈ Θ}, but is an information

limit of a sequence of members of the family (that is, there

exists Pθk with D(P ||Pθk) tending to 0 as k grows).

APPENDIX E

CONSISTENCY CONDITIONS AND THE SHTARKOV VALUE

Recall that the minimax regret value is defined by rn(K) =
minq supxn∈Xn supθ∈K log p(xn|θ)/q(xn), where the mini-

mum is over q which are non-negative and integrate to not

more than 1 with respect to ν. Per the theory of Shtarkov

[39], the exact minimax value is rn(K) = log cn,K achieved

by the normalized maximum likelihood distribution q(xn) =
supθ∈K p(x

n|θ)/cn,K where cn,K =
∫

supθ∈K p(x
n|θ)η(dθ)

is the Shtarkov constant. As explained in the introduction, it

is the properties of rn(K) that are of interest to us here. In

particular, the use of Bayes mixture approximations to the

minimax distribution arises from aim of approximate imple-

mentation as well as the aim of determining approximations

of the Shtarkov value suitable for use in Rissanen’s stochastic

complexity formulation of the minimum description length

(MDL) principle.

In this appendix we show a relationship between the con-

sistency conditions and finiteness of the Shtarkov constant.

Let’s focus attention on the case that the parameter space is

taken to be a set K (possibly a subset of the whole parameter

space) for which cn,K is finite.

For independent random variables, if the total sample size

N = nm is a multiple of a block size m, one has the option

to organize the sequence x1, x2, . . . , xN as the sequence of

independent blocks xm1 , x
m
2 , . . . x

m
n , each of size m, where

xmi = (x(i−1)m+1, x(i−1)m+2, . . . , xim).

Accordingly, for m ≥ 1, the Assumptions 12 and 13

generalize as follows.

Assumption 12[m]: For the specified blocksize m and for

each θ and θ′ in the interior of K , there is a δ > 0 such that

the following holds

Eθ

(

sup
θ′′∈Θ:|θ′′−θ′|<δ

log
p(xm|θ′′)
p(xm|θ)

)

<∞.

Assumption 13[m]: Let an increasing sequence of compact

subsets KB be given whose union is K . For the specified m
and for each θ ∈ K◦, there is a B sufficiently large such that

Eθ

(

sup
θ′∈K\KB

log
p(xm|θ′)
p(xm|θ)

)

<∞.

Moreover, there is the loss of mass property for sequences

diverging from K . That is, there is a value a > 0, such that,

for any sequence θB , B ≥ 1, with θB ∈ K \KB, in the limit,

the likelihood ratio satisfies lim supB p(x
m|θB)/p(xm|θ) <

exp{−a}, for each xm ∈ X .

With these assumptions we have the following consistency

conclusion.

Lemma 16: For a family of densities S = {p(·|θ) : θ ∈
Θ}, and a blocksize m, suppose Assumptions 11, 12[m]

and 13[m]. Consider the sequence of maximum likelihood

estimates θ̂(xN ) with sample sizes N = nm a multiple of

m. Then, for each θ in Θ◦, we have convergence to zero in

probability of the relative entropy between the densities at the

maximum likelihood estimate θ̂ and at θ. That is,

lim
n→∞

D(θ||θ̂) = 0, in Pθ probability.

Moreover, if D(θ||θ′) is continuous in θ′, and if Pθ′ = Pθ
only at θ′ = θ, then also θ̂(xn) converges to θ in probability.

That is, for every ǫ > 0.

Pθ(|θ̂(xn)− θ| > ǫ) = o(1).
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Proof: Taking the sequence of sample sizes nm which are

a multiple of m, the proof is essentially the same as in the

m = 1 case.

Lemma 17: If the Shtarkov value c1,K at m = 1 is finite,

then it implies the satisfaction of assumptions 12 and 13,

and hence (together with the continuity assumption 11 and

the loss of mass assumption if K is not compact), a finite

Shtarkov value implies the full consistency of the MLE,

per the conclusions of Lemma 15. Likewise, for m ≥ 1,

finiteness of the Shtarkov value cm,K implies the satisfaction

of assumptions 12[m] and 13[m] and, hence (along with the

continuity assumption 11 and the loss of mass assumption if

K is not compact), it implies the consistency of the MLE for

the sequence of sample sizes that are multiples of m, per the

conclusions of Lemma 16.

Proof: The expected suprema in 12[m] and 13[m] are

Eθ

(

log
supθ′′∈K∩Bθ′,δ

p(xm|θ′′)
p(xm|θ)

)

and

Eθ

(

log
supθ′∈K\KB

p(xm|θ′)
p(xm|θ)

)

which by Jensen’s inequality have the upper bounds

log

∫

sup
θ′′∈K∩Bθ′,δ

p(xm|θ′′)ν(dxm)

and

log

∫

sup
θ′∈K\KB

p(xm|θ′)ν(dxm),

respectively. Thus (local) domination of the joint densities is

sufficient for (local) domination of the log likelihood ratios.

Next, we can further upperbound these by a global domi-

nating quantity (when finite)

log

∫

sup
θ′∈K

p(xm|θ′)ν(dxm)

which is log cm,K , the Shtarkov minimax regret. The indicated

consistency properties then follow when it is finite.

APPENDIX F

UNIFORM CONSISTENCY OF THE MLE

We turn our attention to assumptions for uniform consis-

tency, on compact subsets of Θ, as used in the development

of Theorem 2.

Recall that we assumed continuity of the mean of the log

density ratio D = D(θ||θ′) in assumption 11. Here we will

also assume continuity of its variance

V (θ||θ′) = Eθ[(log p(x|θ)/p(x|θ′)−D)2].

Assumption 11′: V (θ||θ′) is a continuous function of θ′ and

θ in Θ.

Assumption 12′: Within each compact subset of Θ, there

exists a δ̄ > 0 such that for 0 < δ ≤ δ̄ the following

expressions are finite and continuous as a function of θ and θ′

Eθ

[

sup
θ′′∈Θ:|θ′′−θ′|<δ

log
p(x|θ′′)
p(x|θ)

]

and

Eθ

[(

sup
θ′′∈Θ:|θ′′−θ′|<δ

log
p(x|θ′′)
p(x|θ)

)2]

.

The above assumption 12′, along with 11 and 11′, is suffi-

cient to show uniform consistency for θ within any compact

subset when the parameter space on which the likelihood is

maximized is also compact.

There can also be interest to know whether uniform consis-

tency within compact subsets K can hold when the parameter

space Θ is not compact. For that purpose we have the

following assumption.

Assumption 13′: Let K be a compact subset of Θ. There

exists a certain positive number B such that

sup
θ∈K

Eθ

[(

sup
θ′∈Θ\ΘB

log
p(x|θ′)
p(x|θ)

)2]

<∞

and

sup
θ∈K

Eθ sup
θ′∈Θ\ΘB

log
p(x|θ′)
p(x|θ) < 0

hold.

We prove the following uniform consistency of maximum

likelihood estimators.

Lemma 18: Consider a family of densities S = {p(·|θ) :
θ ∈ Θ}. Consider any global maximizer θ̂(xn) of the likeli-

hood over θ in Θ. When Θ is compact, suppose Assumptions

11, 11′ and 12′. Then for each ξ > 0

sup
θ∈Θ

Pθ(D(θ||θ̂) > ξ) = O(1/n).

and likewise, for each ǫ > 0,

sup
θ∈Θ

Pθ(|θ̂(xn)− θ| > ǫ) = O(1/n).

If Θ is not compact, suppose Assumptions 11, 11′, 12′ and

13′. Then, for any compact subset K , we have

sup
θ∈K

Pθ(D(θ||θ̂) > ξ) = O(1/n)

and

sup
θ∈K

Pθ(|θ̂(xn)− θ| > ǫ) = O(1/n).

Proof: In the compact Θ case, let δ̄ > 0 be a choice such

that the square of the expected supremum in Assumption 12′

is finite and and continuous in θ′ and θ. We could proceed

as in the proof of the previous lemma, arranging, for each

ξ > 0, positive δ(θ, θ′) ≤ δ̄ sufficiently small to achieve the

negative expected supremum as explained there. But we can

arrange matters a little better, because we have convergence as

δ goes to 0 of functions, here assumed to be continuous on the

compact set, which are converging to the continuous function

−D(θ||θ′). So by Dini’s theorem it is a uniform convergence.

Consequently, we can deduce that for each ξ > 0, there is a

common choice of positive δ < δ̄ with which the expected

supremum is less than −D(θ||θ′) + ξ/2 (and moreover, the

variance of the expected supremum is arbitrarily close to its

continuous limit V (θ||θ′)). From the common choice δ of the

radii of the balls, when we arrange the finite cover U1, . . . , UN ,
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if desired, we have control on the number of them. Then, as

in the proof of the previous lemma,

sup
θ′:D(θ||θ)>ξ

(

1

n
log

p(xn|θ′)
p(xn|θ)

)

≤ max
1≤k≤N

(

1

n

n
∑

i=1

sup
θ′∈Uk

log
p(xj |θ′)
p(xj |θ)

)

,

where each of these suprema have expectation less than −ξ/2.

Then by Chebyshev’s inequality each of these averages is

less than 0 except in an event of probability not more than

4vδ/(nξ
2), where vδ is the maximum over θ′ and θ of the

variance of the expected suprema (this maximum being finite

since it is a maximum over a compact set of a function

assumed continuous). So we have, crudely, the union bound

on the exception event 4Nvδ/(nξ
2) of order 1/n. This proves

the conclusion in the compact Θ case.

Maximization of the likelihood over non-compact Θ is

handled with an analogous incorporation of the Assumption

13′. This completes the proof.

Remarks: Note that in the non-compact Θ setting, with As-

sumption 13′, the domain for maximization of the likelihood

is allowed to be larger than the set K of θ values for which we

bound Pθ{|θ̂(xn)−θ|| ≥ ǫ}. That Assumption may be dropped

if the likelihood is maximized only within the compact K .

APPENDIX G

ON ASSUMPTIONS IN THE NON-I.I.D. SETTING

Stochastic processes for the joint densities p(xn|θ), n ≥ 1,

provide considerable generality, beyond the i.i.d. model set-

ting, in which the regret could potentially be analyzed. Two

natural settings include Markov models with time homoge-

neous transitions and stationary ergodic processes. The core

ingredients are the conditional densities p(xt+1|xt, . . . x1, θ).
Such conditional densities provide the heart of what is

needed for arithmetic coding and predictive gambling proce-

dures. Indeed, to facilitate implementation, the rational for

Bayes procedures that approximate the mimimax regret is

that these yield predictive densities q(xt+1|xt, . . . , x1) which

can be computed (e.g. via posterior Monte Carlo) as the

posterior means of the p(xt+1|xt, . . . x1, θ) using the posterior

w(θ|xt, . . . , x1) built from the (suitably modified) Jeffreys

prior.

For stationary processes, there is, for each k ≥ 1, a func-

tion p(sk+1|sk, . . . , s1, θ) on X k+1 such that the conditional

probability density for Xt+1, evaluated at Xt+1 = sk, given

Xt = sk, . . . , Xt+1−k = s1 and given θ is the same for all

t ≥ k, equal to this p(sk+1|sk, . . . , s1, θ).
These stationary conditionals exist also for Markov pro-

cesses that do not necessarily start in the invariant distribution.

More generally, for asymptotically mean stationary processes

(in the sense of Gray and Kieffer [22]), associated to the pro-

cess with densities p(xn|θ) there is a stationary process with

densities p̄(xn|θ) with corresponding stationary conditionals.

For simplicity, here we present results for irreducible

Markov processes (of arbitrary order k). And leave to briefer

mention settings in which for large k these approximate more

general asymptotically mean stationary processes which have

a stationary ergodic p̄(xn|θ), n ≥ 1.

We consider the following setting for the Markov model of

order k. The model of joint densities takes the form

p(xn|θ) = pinit(x
k)

n
∏

t=k+1

p(xt|xt−1, . . . xt−k, θ),

where the conditional (transition) density function is time-

homogeneous as mentioned above. It depends on the param-

eter θ. It is assumed that there is an invariant probability

distribution P ∗
Xk|θ, which, in general, would depend on the

parameter. It may have a density p∗(xk|θ). It will assumed that

the Markov model is irreducible, so the invariant distribution

is unique.

As for the initial density pinit(x
k), with additional com-

plication, we could consider the case that the initial is the

invariant density p∗(xk|θ). But for simplicity here, let’s simply

take the case that pinit(x
k) is fixed (not depending on the

parameter) and known.

Now the empirical Fisher information matrix takes the form

Ĵij(θ, x
n) = − 1

n

n
∑

t=k+1

∂2

∂θi∂θj
log p(xt|xt−1, . . . xt−k, θ),

where it will be assumed that log p(sk+1|sk, θ) is twice

continuously differentiable for every sk+1 in X k+1. The

second derivatives in the expression above will also be denoted

∂i∂j log p(xt|xt−1, . . . xt−k, θ).
In investigating the expectation of the empirical Fisher

information, let Jij(θ|sk) denote the conditional expectation

of minus the second derivatives of the log of transition density,

given an arbitrarily specified vector of previous values sk.

Then the Fisher information matrix Jij,n(θ) = Eθ[Ĵij(θ, x
n)]

takes the form

Jij,n(θ) = EP̄n,θ
[Jij(θ|·)] =

∫

Jij(θ|sk)p̄n(sk|θ)ν(sk)

where P̄n,θ = (1/n)
∑n
t=k+1 PXt−1

t−k |θ
is the average across t

of the distributions for Xt−1
t−k = (xt−k, . . . , xt−1) for t ≥ k+1

having joint density

p̄n(s
k|θ) = 1

n

n
∑

t=k+1

pXt−1

t−k
(sk|θ).

Continuity of Jij,n(θ) as a function of θ is inherited from the

continuity of Jij(θ|sk), and of the distributions PXt−1

t−k |θ
. These

distributions PXt−1

t−k |θ
with density functions pXt−1

t−k
(sk|θ) are

induced by the transitions starting from the specified initial

distribution Pinit for the first k.

In general the distribution P̄n,θ converges (weakly) to the

invariant P ∗
θ distribution on X k.

Let’s assume that Jij(θ|sk) is a bounded function of sk

in X k for each θ (which allows that the expectation with

respect to the any initial distribution is finite). With Jij(θ|sk)
is bounded and continuous for sk in X k for each θ, from the

convergence of P̄n,θ to the invariant P ∗
θ , it follows that the
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Fisher information Jij,n(θ) converges to the limit Jij(θ) as

n→ ∞, where the limiting Fisher information matrix

Jij(θ) = EP∗
θ
[Jij(θ|·)]

is the expectation using the invariant distribution.

Moreover, by the ergodic theorem (for asymptotically mean

stationary processes [22]), if ∂i∂j log p(xt|xt−1, . . . xt−k, θ)
has finite expected absolute value, with respect to the sta-

tionary P ∗
θ , it follows that the empirical Fisher information

Ĵij(θ, x
n) converges to Jij(θ) in Pθ probability. The following

assumption allows the extension of that conclusion via local

domination.

Assumption 14: The stochastic process is kth order Markov

with a time homogeneous one-step-ahead transition density

that is twice continuously differentiable for θ in Θ◦ and

has a unique invariant distribution. The conditional Fisher

information Jij(θ|·) is assumed bounded as a function X k

for each θ in Θ, and continuous as a function of θ for each

sk. Moreover, for every θ ∈ Θ◦ there is an r = r(θ) such

that, for every i, j,

E∗
θ

[

sup
θ′∈Br(θ)

|∂i∂j log p(xk+1|xk, . . . x1, θ′)|
]

(91)

is finite, where the expectation is taken with respect to the

stationary distribution. The Fisher information Jn(θ) and its

limit J(θ) are assumed to be continuous as a function of θ in

Θ. Moreover, J(θ) is strictly positive definite.

Accordingly, as in Appendix A, given any ǫ, there ex-

ists δ(θ) sufficiently small that the expected supremum in

Assumption 14 is less than any prescribed positive value,

and likewise for the expected supremum when the matrix of

second derivatives of log p(xk+1|xk, . . . x1, θ′) is hit on the

left and right by J(θ)−1/2. Moreover, using that a supremum

of averages is less than the average of suprema, and appealing

to the ergodic Theorem, we find again that, for each i, j, and

for each sign choice,

sup
θ′∈Bδ(θ)

±(Iij − (J(θ)−1/2Ĵ(θ′, xn)J(θ)−1/2)ij)

is within ǫ/d of 0 except in an event of (Pθ) probability tending

to 0 as n→ ∞.

In compact sets, as we have previously indicated (via

Dini’s Theorem), convergence of continuous functions to a

continuous limit is uniformly convergent. Accordingly, the

convergence of Jn(θ) to J(θ) is a uniform convergence in K .

Accordingly, the collection of Jn(θ) for large n is equicontin-

uous, uniformly in K , and they share a positive lower bound

on their minimum eigenvalue. Moreover
∫

K |Jn(θ)|1/2dθ con-

verges to
∫

K |J(θ)|1/2.

For consistency, one proceeds similarly, using the relative

entropy rate. The relative entropy rate D(θ||θ′) defined by

limn(1/n)D(PXn|θ||PXn|θ′ , in the Markov case, is equal to

D(θ||θ′) = EP∗

Xk|θ
EXk+1|Xk,θ

[

log
p(Xk+1|Xk, θ)

p(Xk+1|Xk, θ′)

]

.

Assumption 15: For the Markov model, the relative entropy

rate D(θ||θ′) is assumed to be continuous as a function of θ′

and θ, and to satisfy the identifiability property that it is zero

only at θ′ = θ. Moreover, local domination of log-likelihood

ratios is assumed for each θ and θ′ in a compact K . Namely

for each θ and θ′ there is an r = r(θ, θ′) such that

E∗
θ

[

sup
θ′′∈K∩Br(θ′)

log
p(Xk+1|Xk, θ′′)

p(Xk+1|Xk, θ)

]

is finite and continuous as a function of θ and θ′ in K .

These Assumptions 14 and 15 for Markov models are

sufficient for the conditions of Theorem 3 for the lower bound

conclusion for the regret for stochastic processes, for compact

parameter sets.

Further details are omitted since they closely parallel the

previous analysis from the i.i.d. setting.

One may wonder about further generalization beyond the

Markov model setting. For consistency, the core matter is the

convergence of (1/n) log density ratios to a relative entropy (an

asymptotic equipartion property (AEP)). One setting beyond

Markov, is when target stationary ergodic processes P ∗ are

approximated by possibly variable order Markov models Pθ .

For this setting one can appeal to the moderately general AEP

of [11], [21], and [1]. Presummably, shifting back to a time 0
reference, the domination condition would be of the form of

an assumption of finiteness of

E∗
θ

[

sup
θ′′∈K∩Br(θ′)

log
p(X0|θ′′, X−1, X−2, . . . , X−k)

p∗(X0|X−1, X−2, . . .)

]

.

where perhaps the Markov order k = k(θ′) would depend

on θ. To deal more generally for families of non-Markov

stationary ergodic processes, there were early attempts in [35],

and counterexamples for pairs of stationary (but not ergodic)

processes in [32]. Nevertheless the question of formulation of

suitably general conditions for an AEP for pairs of stationary

ergodic processes Pθ and P ′
θ is largely open. Until such is

obtained, the matter of consistency of maximum likelihood in

non-Markov models requires that it be addressed on a case-

by-case basis.

APPENDIX H

LOWER BOUND ON GAUSSIAN MEASURE (PROPOSITION 1)

Recall that Φ denotes the measure of the d-dimensional

standard normal distribution and Nr(0) = {z : |z| ≤ r}. The

following holds.

Proposition 1: For all n > 0 and ǫ > 0,

Φ(N√
nǫ(0)) ≥ 1− exp

(

−nǫ
2

2

(

1− d

nǫ2
log

nǫ2

d

)

+
d

2

)

,

which is larger than

1− exp
(

−nǫ
2

4
+
d

2

)

,

when nǫ2/d ≥ 2.

Proof: Note that

Φ(N√
nǫ(0)) = Pr

{

d
∑

i=1

X2
i ≤ nǫ2

}

,
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where each Xi is an independent standard normal random

variable. The density function of normal distribution with

mean 0 and variance σ2 is

1

(2πσ2)1/2
exp
(−x2
2σ2

)

= exp
(−x2
2σ2

− 1

2
log(2πσ2)

)

= exp(ux2 − ψ(u)),

where u = −1/(2σ2) and ψ(u) = (1/2) log(2πσ2) =
(1/2) log(−π/u). Let q(x|u) = exp(ux2 − ψ(u)), which

forms an exponential family, for which the natural parameter

is u = −1/(2σ2). Let v = Eu(x
2) = σ2. Then v is the

expectation parameter coresponding to u. We have

q(xd|u) = exp(d(u||x||2/d− ψ(u))),

where xd = (x1, . . . , xd) and ||x||2 denotes the square of xd’s

Euclidian norm. Note that the maximum likelihood estimate of

v = σ2 given xd is σ̂2 = ||x||2/d. Then by the large deviation

inequality (Lemma 11), we have

Pr
{

d
∑

i=1

X2
i ≥ nǫ2

}

≤ exp(−dD(nǫ2/d||1)),

where D(v||v′) denotes the Kullback-Leibler divergence from

q(x|u) to q(x|u′) (v′ is the expectation parameter correspond-

ing to u′). Here, we have

D(v||v′) = (u− u′)v − ψ(u) + ψ(u′)

= −1

2
+

1

2

v

v′
+

1

2
log

v′

v

=
1

2

(

−1 +
v

v′
− log

v

v′

)

.

Hence we have

dD(nǫ2/d||1) = d

2

(

−1 +
nǫ2

d
− log

nǫ2

d

)

= −d
2
+
nǫ2

2

(

1− d

nǫ2
log

nǫ2

d

)

,

which is not less than

−d
2
+
nǫ2

2

(

1− log 2

2

)

≥ −d
2
+
nǫ2

4
,

when nǫ2/d ≥ 2. This completes the proof.

APPENDIX I

NORMALIZATION CONSTANT OF THE IDEAL PRIORS

Lemma 5: Let K be an arbitrary compact set in Θ◦. Sup-

pose Assumption 2′′′ holds and let λ
¯

denote a lower bound on

the smallest eigenvalue of Jn,θ among n ∈ N and θ ∈ K . Let

Kǫ = {θ : Bǫ(θ) ⊂ K},

Then for ǫ such that nǫ2/d ≥ 2 and ǫ2α2 ≤ λ
¯
, we have

CJ,n(K) ≤ C
(α)
K,ǫ,n ≤ CJ,n(K)

1− e−nǫ2/4+d/2
+
CJ,n(K \Kǫα)

ρ
(α)
n (ǫ)

,

where

CJ,n(A) =

∫

A

|Jn,θ|1/2dθ.

Proof: Assume θ ∈ Kǫα. Then, by ǫ2α2 ≤ λ
¯
, N√

nǫ(0) ⊂
(
√
n/α)(Jn,θ)

1/2(K − θ) is satisfied, which means

Φ(U
(α)
K,ǫ,n(θ)) = Φ(N√

nǫ(0))

holds for θ ∈ Kǫα. Hence by Proposition 1 and the assumption

nǫ2/d ≥ 2, the following holds.

inf
θ∈Kǫα

Φ(U
(α)
K,ǫ,n(θ)) ≥ 1− e−nǫ

2/4+d/2.

Using this inequality, we have

∫

K

|Jn,θ|1/2

Φ(U
(α)
K,ǫ,n(θ))

dθ

≤
∫

Kǫ/α

|Jn,θ|1/2
1− e−nǫ2/4+d/2

dθ +

∫

K\Kǫα

|Jn,θ|1/2

ρ
(α)
n (ǫ)

dθ

≤ CJ,n(K)

1− e−nǫ2/4+d/2
+
CJ,n(K \Kǫα)

ρ
(α)
n (ǫ)

.

This completes the proof of the Lemma.

APPENDIX J

LOWER BOUNDS ON ρ
(α)
n (ǫ)

For a subset A of R
d, let diam(A) and vol(A) denote the

diameter of A and the volume of A, respectively.

Lemma 6: Assume that K is compact, convex, and the

closure of an open set in ℜd. Then, for all ǫ such that

vol(Nǫ(0)) ≤ vol(J
1/2
n,θK)/2, the following holds.

ρ(α)n (ǫ, θ) ≥
vol(J

1/2
n,θK)

2(diam(J
1/2
n,θK))dVd

Φ(N√
nǫ(0)).

Proof: Let L = J
1/2
n,θK . Then, we have

ρ(α)n (ǫ, θ) = Φ(U
(α)
K,ǫ,n(θ))

= Φ(N√
nǫ(0) ∩ (

√
n/α)(L− J

1/2
n,θ θ))

= Φ
(

(
√
n/α)

(

Nǫα(0) ∩ (L− J
1/2
n,θ θ)

)

)

.

Define for η ∈ L and for ǫ > 0,

A(η) = {u ∈ ℜd : |u| = 1, ∃κ > 0, η + κu ∈ L◦},
C(η, ǫ) = {u ∈ ℜd : |u| = 1, η + ǫu ∈ L◦},

and

C̃(η, ǫ) = {v ∈ ℜd : |v| = ǫ, η + v ∈ L◦}.
By definition, we have

A(η) ⊂
⋃

ǫ>0

C(η, ǫ).

By the convexity of L,

A(η) ⊃ C(η, ǫ1) ⊃ C(η, ǫ2)

holds for 0 < ǫ1 ≤ ǫ2. Hence, A(η) =
⋃

ǫ>0 C(η, ǫ) holds.

Note that C̃(η, ǫ) is an open subset of the surface of Nǫ(0),
since it is the intersection of L◦ − η (an open set) and the

surface of Nǫ(0). Hence it is measurable in the surface of

Nǫ(0), which means C(η, ǫ) is also measurable.
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Let r(η, ǫ) denote the ratio of the d−1 dimensional volume

of C(η, ǫ) to that of the surface of N1(0) (dπd/2/Γ(d/2+1)).
Since C(η, ǫ) does not decrease as ǫ decreases, r(η, ǫ) does

not decrease as ǫ decreases.

For η ∈ L, define

cone(η, κ) = {η + ξu : u ∈ C(η, κ), ξ ≥ 0}.

If C(η, κ) is connected, this is an unbounded cone with the

vertex η. If not, it is a union of unbounded cones. Note that

Nǫ(η) ∩ L ⊃ Nκ(η) ∩ cone(η, κ) (92)

holds for all κ ∈ (0, ǫ]. This is shown as follows. Let η + v
be an element of cone(η, κ) with |v| ≤ κ. Then, v/|v| ∈
C(η, κ) holds by the definition of C(η, κ). This means that

η+κv/|v| ∈ L◦. Since κ/|v| ≥ 1, η+v is on the line segment

between η ∈ L and η+κv/|v| ∈ L◦. Hence η+v ∈ L◦ holds.

Since |v| ≤ κ ≤ ǫ, (92) holds.

Because of (92), for any nonnegative integrand, the integral

over (
√
n/α)(Nǫα(0) ∩ (L − η)) is lower bounded by that

over (
√
n/α)(Nǫα(0) ∩ (cone(η, ǫα) − η)). Then due to the

symmetry of Φ, we have for each θ ∈ K ,

ρ(α)n (ǫ, θ) ≥ r(η, ǫα)Φ(N√
nǫ(0)),

where η = J
1/2
n,θ θ.

Finally, we will show that infη∈L r(η, ǫα) is lower bounded

by the positive constant determined by vol(L) and diam(L).
Let ǫ0 so small that vol(Nǫ0(0)) ≤ vol(L)/2 and assume that

ǫα ≤ ǫ0. Let ∆ denote diam(L). Recall that C(η, ǫα) ⊃
C(η, ǫ0) ⊃ C(η, κ) holds for all κ ≥ ǫ0 and for all ǫ such that

ǫα ≤ ǫ0. Since
η′ − η

|η′ − η| ∈ C(η, κ)

holds for all η′ ∈ L◦ with |η′ − η| = κ, the set L◦ \Nǫ0(η)
is included in cone(η, ǫ0). Note that L is included in N∆(η).
Then, we see that L◦ \ Nǫ0(η) is included in cone(η, ǫ0) ∩
N∆(η). Comparing the volumes of both sets, we have

vol(L)− vol(Nǫ0(η)) ≤ Vd∆
dr(η, ǫ0).

Since the left side is not less than vol(L) − vol(L)/2 =
vol(L)/2, we have

r(η, ǫα) ≥ vol(L)

2(diam(L))dVd

holds for all ǫ such that ǫα ∈ (0, ǫ0). The proof is completed.

APPENDIX K

CONTINUITY OF Φ(U
(α)
K,ǫ,n)

Lemma 8: Let λn denote the maximum of the largest

eigenvalue of Jn(θ) among θ ∈ K . For a certain ǫ > 0, for

all r ≤ ǫ, for all θ′ ∈ Br(θ) ∩K , and for all θ ∈ K ,

Φ(U
(α)
K,ǫ,n(θ

′))

Φ(U
(α)
K,ǫ,n(θ))

≤1 +

√
nλnr

ρn(ǫ, θ)α
+
Cd diam(K)

√
nλnmax{gθ,r, 0}

ρn(ǫ, θ)α

holds, where Cd = 21−d/2Γ(d/2) and

gθ,r = max
θ′∈Br(θ)∩K

||Jn(θ)−1/2Jn(θ
′)1/2||s − 1.

Proof: First assume that Jn(θ) does not depend on θ. Let

Jn denote the value. Note that

U
(α)
K,ǫ,n(θ

′) \ U (α)
K,ǫ,n(θ)

= N√
nǫ(0) ∩ (

√
n/α)J1/2

n ((K − θ′) \ (K − θ))

= N√
nǫ(0) ∩ (

√
n/α)((L − η′) \ (L − η)),

holds, where L = J
1/2
n K , η = J

1/2
n θ, and η′ = J

1/2
n θ′. Then,

we have

Φ(U
(α)
K,ǫ,n(θ

′) \U (α)
K,ǫ,n(θ)) ≤ Φ((

√
n/α)((L− η′) \ (L− η))).

Recall that Φ is the d variate standard Gaussian measure. Note

that L− η′ is given by displacing L− η by η − η′. Hence, a

point η̃ in L − η has a representation as a scalar amount in

the direction η′ − η together with d− 1 amounts in directions

orthogonal to η′ − η. The displacement from L− η to L− η′

only affects that scalar translation by the amount |η′ − η|.
Hence, we have

Φ
(

(
√
n/α)

(

(L− η′) \ (L − η)
)

)

≤ Pr{|y| ≤ (
√
n/α)|η′ − η|/2}

≤ (
√
n/α)|η′ − η|,

where y denotes the (univariate) standard Gaussian variable.

Since |θ′ − θ| ≤ r ≤ ǫ and since the eigenvalues of Jn(θ) are

bounded by λn,

Φ
(

(
√
n/α)

(

(L − η′) \ (L− η)
)

)

≤
√
nλnr

α
.

Recalling that Φ(U
(α)
K,ǫ,n(θ)) ≥ ρn(ǫ, θ), we have the claim of

Lemma.

Next, consider the general Jn(θ) case. We have

Jn(θ
′)1/2(K − θ′) \ Jn(θ)1/2(K − θ)

⊂Jn(θ)1/2(K − θ′) \ Jn(θ)1/2(K − θ)

∪ Jn(θ′)1/2(K − θ′) \ Jn(θ)1/2(K − θ′).

The quantity produced by the first component of the union

in the last expression is bounded as in the same way as the

constant Jn case. As for the second component, we have

Jn(θ
′)1/2(K − θ′) \ Jn(θ)1/2(K − θ′)

= Jn(θ)
1/2
(

(

Jn(θ)
−1/2Jn(θ

′)1/2(K − θ′)
)

\ (K − θ′)
)

⊂ Jn(θ)
1/2
(

(

(1 + gθ,r)(K − θ′)
)

\ (K − θ′)
)

= (1 + gθ,r)Jn(θ)
1/2(K − θ′) \ Jn(θ)1/2(K − θ′).

Let L′ = Jn(θ)(K − θ′), then we have

Jn(θ
′)1/2(K − θ′) \ Jn(θ)1/2(K − θ′)

⊂ (1 + gθ,r)L
′ \ L′.

Hereafter, assume gθ,r > 1. Otherwise, the analysis below

is not necessary, because (1 + gθ,r)L
′ \L′ is the empty set in

that case.
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Note that L′, which is compact, includes the origin. Assume

now that the origin is included in L′◦, that is, θ′ ∈ K◦. Since

L′ is convex, the set (1 + gθ,r)L
′ \L′ is a shell outside L′ as

follows.

(1 + gθ,r)L
′ \ L′

={yu : u ∈ ∂L′, 1 < y ≤ 1 + gθ,r} (93)

={yuu/|u| : u ∈ ∂L′, |u| < yu ≤ |u|(1 + gθ,r)},

where ∂L′ = L′−L′◦. Note that {u/|u| : u ∈ ∂L′} is the unit

sphere, when the origin is in the interior of L′. The equality

(93) itself holds even if the origin is not included in the interior

of L′. Hence, we do not need the assumption θ′ ∈ K◦ for the

argument below.

Now, we can evaluate

Φ
(

(
√
n/α)

(

Jn(θ
′)1/2(K − θ′) \ Jn(θ)1/2(K − θ′)

)

)

≤Φ
(

(
√
n/α)

(

(1 + gθ,r)L
′ \ L′)

)

Let ξ be a d-variate standard Gaussian variable. Then, we

transform it to (v, y) = (ξ/|ξ|, |ξ|). Here, v and y are

independent of each other, the marginal density of v is uniform

on the surface of the unit sphere, and that of y is

Cd y
d−1 exp

(

−y
2

2

)

≤ Cd(d− 1)(d−1)/2e−(d−1)/2,

where Cd = 2(1−d)/2/Γ(d/2) is the normalization constant

and the equality of the above holds if and only if y =
√
d− 1.

Since |u| (u ∈ ∂L′) is upper bounded by diam(L′), we have

the following, where y0 =
√
n|u|/α and y1 =

√
n|u|(1 +

gθ,r)/α.

Φ
(

(
√
n/α)

(

(1 + gθ,r)L
′ \ L′)

)

≤ max
u∈∂L′

Pr{y0 < y ≤ y1}

≤ max
u∈∂L′

Cd

∫ y1

y0

yd−1 exp
(

−y
2

2

)

dy

≤ max
u∈∂L′

Cd

∫ y1

y0

(d− 1)(d−1)/2e−(d−1)/2dy

≤ Cd diam(L′)
√
ngθ,r/α

= Cddiam(K)
√

nλngθ,r/α.

This completes the proof.

APPENDIX L

SOME INEQUALITY FOR MODELS WITH HIDDEN

VARIABLES (LEMMA 13)

Recall that we defined the model with hidden variable in

(63) as

p(x|θ) =
∫

κ(x|y)q(y|θ)νy(dy),

where q(y|θ) is the density of an exponential family. We have

the following, where G(θ) is the Fisher information of q(y|θ).
Lemma 13: Given a data string xn, let θ̂ denote the MLE

for a model with hidden variables p(xn|θ) defined by (63).

Then, the following holds for all xn ∈ Xn.

∀θ ∈ Θ,
1

n
log

p(xn|θ̂)
p(xn|θ) ≤ D(q(·|θ̂)||q(·|θ)), (94)

∀θ ∈ Θ, Ĵ(θ, xn) ≤ G(θ). (95)

In particular, when q(y|θ) is the multinomial model, the

following holds

p(xn|θ̂)
p(xn|θ) ≤ exp(nD(q(·|θ̂)||q(·|θ))) =

∏

y∈Y

η̂
nη̂y
y

η
nη̂y
y

, (96)

where ηy = q(y|θ) and η̂y = q(y|θ̂).
Proof: Note that

q(xn|θ) =
n
∏

t=1

∫

κ(xt|yt)p(yt|θ)νy(dyt)

=

∫

∏

t

κ(xt|yt)p(yt|θ)νy(dyn)

=

∫

κ(xn|yn)p(yn|θ)νy(dyn).

We have

q(xn|θ)
q(xn|θ′) =

∫

κ(xn|yn)p(yn|θ)νy(dyn)
∫

κ(xn|yn)p(yn|θ′)νy(dyn)

=

∫

p(yn|θ)
p(yn|θ′)

κ(xn|yn)p(yn|θ′)νy(dyn)
∫

κ(xn|zn)p(zn|θ′)νy(dzn)
.

Define q(yn|xn, θ′) by

q(yn|xn, θ′) = κ(xn|yn)p(yn|θ′)
∫

κ(xn|zn)p(zn|θ′)νy(dzn)
,

which is the posterior distribution of yn given xn provided xn

is drawn from q(xn|θ′).
Using it, we can write

q(xn|θ)
q(xn|θ′) =

∫

q(yn|xn, θ′) p(y
n|θ)

p(yn|θ′)νy(dy
n).

Then by Jensen’s inequality, we have

1

n
log

q(xn|θ)
q(xn|θ′) (97)

≥ 1

n

∫

q(yn|xn, θ′) log p(yn|θ)
p(yn|θ′)νy(dy

n).

Let f(θ, θ′) denote the left side, and g(θ, θ′) the right side.

Then, we have

∀θ, θ′ ∈ Θ, f(θ, θ′)− g(θ, θ′) ≥ 0, (98)

where equality holds when θ = θ′. Hence, Hessian of the

left side is semi positive-definite. That is, the matrix whose ij
entry is

∂2 log f(θ, θ′)

∂θi∂θj
− ∂2 log g(θ, θ′)

∂θi∂θj
(99)

is semi positive definite. Note that

g(θ, θ′) = θη̄t − ψ(θ) − (θ′η̄t − ψ(θ′)), (100)
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where

η̄ =
1

n

∫

q(yn|xn, θ′)
n
∑

t=1

ytνy(dy
n).

From (100), we have

−∂
2 log g(θ, θ′)

∂θi∂θj
=
∂2ψ(θ)

∂θi∂θj
= Gij(θ).

Hence, semi positive-definiteness of (99) implies

∀θ ∈ Θ, Ĵ(θ, xn) ≤ G(θ),

Plugging in θ̂ to θ′ in (98) and noting f(θ, θ̂) ≤ 0, we have

∀θ ∈ Θ, 0 ≥ f(θ, θ̂) ≥ g(θ, θ̂), (101)

where both inequality hold as equality, when θ = θ̂. That is,

g(θ, θ̂) ≤ g(θ̂, θ̂) = 0.

Together with (100) the following holds

g(θ, θ̂) = θη̄t − ψ(θ)− (θ̂η̄t − ψ(θ̂)) (102)

≤ θ̂η̄t − ψ(θ̂)− (θ̂η̄t − ψ(θ̂)) = 0, (103)

which implies η̄ = η̂. Here η̂ denotes the coo responding value

of expectation parameter η to θ̂.

Note that

g(θ, θ̂) = −D(p(·|θ̂)||p(·|θ)),
where D(p(·|θ̂)||p(·|θ)) is the Kullback divergence from

p(y|θ̂) to p(y|θ) defined as

D(p(·|θ̂)||p(·|θ)) =
∫

p(y|θ̂) log p(y|θ̂)
p(y|θ)νy(dy).

Hence from (97), we have

1

n
log

q(xn|θ̂)
q(xn|θ) ≤ D(θ̂||θ). (104)

This completes the proof.
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