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THE CONSISTENCY OF POSTERIOR DISTRIBUTIONS IN 
NONPARAMETRIC PROBLEMS 

BY ANDREW BARRON,1 MARK J. SCHERVISH 2 AND LARRY WASSERMAN 3 

Yale University and Carnegie Mellon University 
We give conditions that guarantee that the posterior probability of 

every Hellinger neighborhood of the true distribution tends to 1 almost 
surely. The conditions are (1) a requirement that the prior not put high 
mass near distributions with very rough densities and (2) a requirement 
that the prior put positive mass in Kullback-Leibler neighborhoods of the 
true distribution. The results are based on the idea of approximating the 
set of distributions with a finite-dimensional set of distributions with 
sufficiently small Hellinger bracketing metric entropy. We apply the re- 
sults to some examples. 

1. Introduction. Recent advances in statistical computing have gener- 
ated renewed interest in nonparametric Bayesian inference. As argued by 
Diaconis and Freedman (1986), these nonparametric methods are of little 
value unless they possess reasonable consistency properties. Indeed, Diaconis 
and Freedman (1986) showed that even if the prior puts positive mass in 
weak neighborhoods of the true density, it does not follow that the posterior 
mass of every weak neighborhood of the true density tends to 1. 

Doob (1949) showed consistency of the posterior under very weak condi- 
tions. However, his proof only gives consistency almost surely with respect to 
the prior. Consistency can fail on a null set and the theorem gives no 
guidance on what this null set looks like. For example, if the prior is a point 
mass at a single density g, then Doob's theorem applies, yet consistency fails 
at all densities except g. Schwartz (1965) showed that if the prior puts 
positive mass in each Kullback-Leibler neighborhood of the true density fo, 
then asymptotically the posterior does accumulate in weak neighborhoods of 
fo. However, weak neighborhoods contain many distributions that, in any 
practical sense, do not resemble fo. Thus it seems useful to seek convergence 
in some stronger sense. The purpose of this paper is to provide a relatively 
simple, self-contained proof of consistency in Hellinger distance (which is 
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equivalent to consistency in total variation) using only a few conditions like 
those in Barron (1988) and Barron (1998). Related results may be found in 
Diaconis and Freedman (1997, 1998) and Ghoshal, Ghosh and Ramamoorthi 
(1999a). 

A brief sketch of the main idea behind our results is as follows. Let 
Xn = (X1, ..., X) be n i.i.d. observations from a distribution P0. The n-fold 
product measure of P0 on the product space (n, _n) will be denoted Pn and 
the infinite product measure will be denoted P'. Let Tr be a prior on a set of 
distributions (described more formally in the next section) and let 7r(AIXn) 
be the posterior probability of A given Xn. Let A. 

= Aj(PO) = {Q: d(Po, Q) 
< e} where d(-, * ) is some metric. We say that consistency holds at P0 if for 
every s > 0, 7r(A,IXn) -> 1 almost surely [Pa]. 

Our strategy is to find a sequence {Yn}= 1 of sets of distributions such that 
the prior probability of 9 is exponentially small. The sequence {}nn=l is 
essentially a sieve as in Grenander (1981) and Geman and Hwang (1982). 
Next, we find a finite set of upper brackets {fiU: i = 1,..., NI such that each 
f E gn satisfies f < fU for some i. The likelihood function is then bounded 
above by the fiu's and we show that the posterior is exponentially small 
outside A8 as long as the number of brackets does not grow too quickly as a 
function of n. Bracketing methods have been used for many types of consis- 
tency results such as Wong and Shen (1995), van de Geer (1993) and Pollard 
(1991). 

An outline of our paper is as follows. In Section 2 we present the notation 
and main results about consistency. In Section 3 we present some specific 
examples. The current paper builds on previous unpublished work by Barron. 

2. General results. Let A be a probability measure on a measurable 
space (X, s), where the a-field M is separable. Let &I be the set of all finite 
measures on (X, M) that are absolutely continuous with respect to A. Abso- 
lute continuity of all probability measures under consideration with respect 
to a common c-finite measure allows us to use the familiar version of Bayes' 
theorem, (6) below, which we need for our results. It is well known that 
absolute continuity with respect to a u-finite measure is equivalent to abso- 
lute continuity with respect to a probability measure. Let d'(-, *) denote the 
Hellinger metric on ?, 

d'(Ql, Q2) = 
([fi(x)1/2 

- 
f2(x)1/2] dA(x)) 

where fi = dQi/dA. Let - be the Borel o-field of subsets of I induced by 
open sets under the metric d'. Lemma 10, in the Appendix, shows that the 
Radon-Nikodym derivative fQ = dQ/dA can be chosen so that fQ(x) is 
jointly measurable as a function of Q and x. Let 9 be the subset of f 
consisting of all probability measures that are absolutely continuous with 
respect to A and let F be the restriction of the c-field _ to e. For the 
remainder of this paper, we will use the symbol fp to stand for the jointly 
measurable Radon-Nikodym derivative of P with respect to A when P E G. 
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Let ' be the set of all nonnegative functions that are integrable with 
respect to A. Let d denote the Hellinger pseudo-metric on 9, 

(1) d(f, f2) = 
({[fi(x)l/2 f2(X)l/2 dA(x)} 

If fi = dQi/dA, then d(fi, f2) = d'(Ql, Q2). An alternative form of (1) is 

(2) d( f, f2) = (1 + - 2ff(x)g(x) dA(x)} ? c < c 

where ci = ffi(x) dA(x). 
Let 2n denote the product space of n copies of X, and let A" denote 

product measure. Let 7C be the product space of countably many copies of X. 
Suppose that {Xf= 1 is a sequence of i.i.d. random variables with distribu- 
tion PO having density fo with respect to A. Let Eo stand for expectation 
under distribution PO. Let J'(; ) be the Kullback-Leibler information 

( P;Q) = flog 
fp( ) fp (x)dA(x), 

for P, Q E . The integrand in the above expression is interpreted to be 0 
whenever fp(x) = 0. Note that A(P; Q) > 0 with equality if and only if P and 
Q are the same probability. Also, -(P; Q) < oo implies that P < Q. Lemma 
11, in the Appendix, shows that -Y(PO; P) is measurable as a function from 
(31, W) to [R. For each 8 > 0, define 

(3) N,{P= P :(P,;P) <}), 

(4) A, = (P Eg: d'(Po, P) < }). 

Let X" = (X1, X2,...) be the sequence of observations of which the first n 
coordinates are denoted X' = (X1,..., X,). Realizations of these random 
sequences are denoted x" =- (xl, x2,...) and xn = (xl,..., xn), respectively. 
The density of the n-fold product measure of PO is denoted by 

n 

(5) Pn(x) = fo(Xi). 
i=1 

For P E=, let 

1 p0(x0) 
(6) DP(xn;P) n f(i) 

be the sample Kullback-Leibler information so that Eo Dn(X'; P) =-(PO; P). 
Lemma 2 shows that the denominator in (5) is finite and positive with 
probability 1. Let 7T be a prior distribution on (9, W). 

The predictive density of X" is given by 

(7) mn( xn) =f fp(Xi)drT(P). 
i=l 
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Bayes' theorem says that the posterior probability given X" = x' of a mea- 
surable subset B of S is given by 

(8) rT(BIn) = [mn(xn)] '1 fp(x) d7r(P), 

if 0 < mn((x) < oo. Define 7r(BIx ) = IB(A) if m(x n) E {O, oo}. (We will see in 
Lemma 1 that this case is essentially ignorable.) Schervish [(1995), Theorem 
1.31] shows that (8) is a regular conditional distribution. 

First, we state the assumptions under which we prove consistency. The 
following definition is based on one from Alexander (1984). 

DEFINITION 1. For 8 > 0 and C c-O, define X(C, B) to be the logarithm of 
the infimum of the set of all k such that there exist nonnegative functions 

f,i,..., fk, satisfying: 

(i) ffi(x) dA(x) < 1 + 8 for all i; 
(ii) for each P E C there exists i such that fp < fiu a.e. [A]. 

We call Z(C, 8), the 5-upper metric entropy of C. 

Also, the collection flU,..., fk, is called a 8-upper bracketing of C. For the 
next assumption, recall that N, is an- -Kullback-Leibler neighborhood of PO 
defined in (3). 

ASSUMPTION 1. For every 8 > O, r(N,) > 0. 

ASSUMPTION 2. For every 8 > 0, there exists a sequence {1n} =1 of subsets 
of c, and positive, real numbers c, c1, c2, 8 such that 

c<([8- V]2- 8)/2, 8<82/4 

and such that: 

(i) 7r(g9) < c1 exp(- nc2) for all but finitely many n; 
(ii) (-g, 8) < nc for all but finitely many n. 

The purpose of Assumption 1 is to avoid problems like those highlighted by 
Diaconis and Freedman (1986). The prior used by Diaconis and Freedman put 
positive probability on weak neighborhoods of the true distribution, but not 
on sets with finite Kullback-Leibler information. Since the likelihood func- 
tion at Po divided by the likelihood at P is exp[ nDn(xn; P)] and Dn(x"; P) -> 

J(P; P) a.s. [PO], it seems plausible to expect the posterior distribution to 
concentrate on the set of probabilities P for which eX(Po; P) is small, but only 
if that set has positive prior probability. Assumption 2 is designed to prevent 
the prior from giving substantial mass to distributions that happen to have 

very rough densities. In Section 3.5, we give a detailed example in which 

Assumption 1 holds but the prior puts too much mass on distributions with 
densities that are allowed to jump up and down too often. What happens is 
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that, for too many data sequences there are densities with substantial prior 
probability that jump up just in the vicinity of each data value and then jump 
down just away from each data value. Assumption 2 is designed to force the 
prior probabilities of such distributions to be small enough so that only 
extremely large samples of highly clustered data will lead to their having 
large posterior probabilities. This same problem arises in nonparametric 
maximum likelihood estimation and it is often addressed in a similar fashion, 
namely by using sieves that satisfy a condition like part (ii) of Assumption 2. 

To check part (ii) of Assumption 2, it is often convenient to set 8 = s2/16 
and c = s2/5. Then one checks that n(1, s82/16)< nr62/5 for all large n. 
The main result of this paper is the following consistency result. 

THEOREM 1. Let A. be as defined in (4). Under Assumptions 1 and 2, for 
every s > 0, 

lim 7T(Af,lx) - 1 a.s. [PO]. 
n - ->o 

The proof of Theorem 1 requires some lemmas, but the following simple 
consequence of Theorem 1 is easy to prove. 

COROLLARY 1. Define 

fn(Q) = Jfp(.) d1(PlXn). 

Under Assumptions 1 and 2, lim8,O d(fo, f) = 0, a.s. [Pj]. 

PROOF. For each 8 > 0, we have 

d(fof ) < fd(fo, fp) drT(Px n) 

(9) 
= d(fo, fp) d7T(PIx) + d(f, fp) dl7(PIxp) a.s. [Pn], 

AA, A 

where the inequality follows from Jensen's inequality and the convexity of 
d(fo, *). The first term on the right-hand side of (9) is at most e by the 
definition of A8, and the second term goes to 0 a.s. [ P] by Theorem 1 and the 
fact that Hellinger distance is bounded. Since 8 is arbitrary, the result 
follows. Li 

Note that fn in Corollary 1 is the Bayes estimate of the density under a 
variety of loss functions. 

The proof of Theorem 1 will appear after the next several lemmas. Before 
plunging into the lemmas and the main proof, here is an outline of the 
strategy. The posterior probability of A' may be written as the ratio 
fAC Rn dTr/lfRn d7r where Rn = ni fp(xi)/fo(xi) = exp( - nD). Lemmas 3 and 
4 establish that the denominator of the ratio is not exponentially small. 
Lemma 5 shows that a sequence of sets with exponentially small prior 
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probability has negligible posterior probability. This allows us to restrict 
attention to the sets in. Lemmas 6 and 7 establish a large deviation inequal- 
ity that will be used to show that the numerator of the ratio is exponentially 
small. Lemmas 1 and 2 establish that certain quantities that appear in 
several fractions during the course of the proof are finite and nonzero a.s. 
[PO]. These facts are then combined in the proof of Theorem 1. 

LEMMA 1. Under Assumption 1, 

(10) PO(Ox: there exists n such that m (xn) E {0,oo}) = 0, 

where mn is defined in (7). 

PROOF. We will prove that, for each n, 
~(11) ~ pon(xn: m (xn) E {0, c)) = 0. 

The set in (10) occurs if and only if at least one of the sets in (11) occurs. For 
A EGn_, Pn?(A) = iA InH fp(xi)dAn(xn) and 

(12) fPn(A) dlT(P) = f fp(xi) dA (x ) drT(P). 

Since fp > 0, we can change the order of integration in (12). The result is 

(13) fPn(A) d7(P) = mn( xn) dAn(xn). 

First, let A = {xn: mn(xn) = 01. Then the right-hand side of (13) equals 0 
and this implies that Pn(A) = 0 a.s. [7r]. Hence, 7(B) = 1 where B = 

{P; Pn(A) = 01. Choose any ? > 0. Assumption 1 says that r(N,) > 0. So 
N8 n B is nonempty. Choose some P E Ne n B. Since P E N& , PO is abso- 
lutely continuous with respect to P, hence Pn (A) = 0. 

Next, let A = {xn: mn(x") = oo). If An(A) > 0, the integral on the right- 
hand side of (13) would be oo, which would imply that Pn(A) (on the left-hand 
side) was unbounded. This contradicts Pn being a probability. So An(A) = 0 
and hence PnO(A) = 0. O 

LEMMA 2. Let pn be defined in (5). Then 

(14) PO(xO: there exists n such thatPn(x8) E {O,Co}) = 0. 

PROOF. As in lemma 1, we will prove that, for each n, 

(15) Pn(xn: p(xn) E {0 )) = 0. 

For all A e , 

(16) pn(A) = p(xn) dAn(x). 

First, let A = {xn: pn(xn) = 01, then (16) clearly implies Pn(A) = 0. Next, let 
A = {xn: pn(xn) = oo}. If An(A) > 0, then the integral on the right-hand side 
of (16) would be oo implying that PO(A) = oo, a contradiction. So An(A) = 0 
and POn(A) = 0. 1 0iurO\~/-v 
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LEMMA 3. There exists a set B c ?? such that P0(B) = 1 and such that 
for every x' -W, there is a set Gx E E W such that iT(Gx) = 1 and for every 
P E Gx, lim,,, Dn(x"; P) =_(Po; P). 

PROOF. Let G = {(xc?, P): lim,no Dn(xn; P) =_(PO; P)}. Since >(PO; P) 
and Dn(x"; P) are jointly measurable from X x S to [R (see Lemma 11 of 
the Appendix), we know that G is in the product co-field W 0 ?W. Let 

Gp = {x; (x, P) E GI and let Gx. = {P;(x0, P) e GI be the sections. Then 

Gp (E= for all P and Gx E& W for all x0. These facts are steps in any 
standard proof of Fubini's theorem, as are the facts that P'(Gp) and 7r(G,x) 
are measurable functions. By the strong law of large numbers, P'(Gp) = 1, 
for every P E Y. By Fubini's theorem we have 

1 = f PP(Gp) d7(P) 

(17) = IG( , P) dP(x?) dT(P) 

= f fII(X, P) d7(P) dPO(x0). 

Let B be the set of all x? such that fIG(Xw, P) dTr(P) = rT(G,x) = 1. It follows 
from (17) that PO(B) = 1. cI 

LEMMA 4. Under Assumption 1, for every 8 > 0, 

P X: ( <?exP(-ne), i.o.) -0, 0 
Pn ) XIn 

where mn is defined in (7) and p, is defined in (5). 

PROOF. Let r > 0 be given and let xX E B, where B is the set with the 
same name guaranteed to exist by Lemma 3. Also, let Gx. be the set with the 
same name guaranteed to exist by Lemma 3. Then, 

exp(ne) ) exp(ne) d7r(P) 
pn(Xn) I pn(x ) 

(18) |> I=1 
i xi) 

exp(ne) d7T(P) 
k/2 n Gx Pn(X 

n 
) 

= | exp{fn[-Dn(Xn; P)]} d7(P). 

According to Lemma 3, 

(19) liminfexp(n[E-D-(xn;P)]) = o for all P N,/2 n Gx. 
n - oo 

Assumption 1 says that Ir(N,/2) > 0 and Lemma 3 says that dr(Gx) = 1, so 

7r(N,/ n Gx) > 0. Fatou's lemma and (19) imply that the integrals on the 
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far right-hand side of (18) go to oo. The rest of (18) implies that 

m"'(xn) 
lim exp(nr) m () -_ 
n- pv ) 

Pn(x 

hence mn(x )/pn(x ) > exp( - n e) all but finitely often. Since this holds for 

every x? E- B and P'(B) = 1, the result is proved. ri 

LEMMA 5. Suppose that Assumption 1 holds. Let cl, C2 > 0. Suppose that 
{Bn}= is a sequence of subsets of a such that rT(Bn) < c1 exp(-c2n) for all 
but finitely many n. Then lim - nr(BI X") = 0 a.s. [PO]. 

PROOF. It suffices to prove that, for each 8 > 0, 

(20) P0(x0: IT(BIXn) > 8 i.O.) = 0. 

First, write 

T (BnIX) m(xn) f Hfp(x ) dT(P) 

Pn (x) : i=1 fp (Xi) 

n (x) J pn(x) d(P) 

For all but finitely many n, using the fact that fli fp(xi) = dPn/d An, 

p exp(n- iff f p(x() >dr(P) dA (x ) 
2 Bni= 

exp n- r)f fp(xi) diA(xP) dwkn(P) 

C2 s ni= 

C2 \ 

- exp 2-n i '(B) 

where the first line follows from the Markov inequality, the second line 
follows from Fubini's theorem and the last line follows from the hypotheses of 
the lemma. Since n 1 exp(-nc2/2) < oo, the first Borel-Cantelli lemma 
implies that 

(21) Po(: Hi1 fX(xi) drT(P) > exp[-n%] i = 0. 
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It follows from Lemma 4 that 

POO Pn((Xnc r c2 \ 
0 x (: (X) > exp [ 4 i.o. = 0. 

Combining this with (21) yields 

P0 x-: 77(B ,Xn) > exp[-n ] i.o.) = 0, 

which implies (20). El 

The following lemma is a modification of Lemma 1 of Wong and Shen 
(1995). 

LEMMA 6. Let g be a nonnegative, integrable function, /3 > 0, d(fo, g) 
= /7, fg(x)dA(x) < 1 + 8 and 8 < y. Then 

= fo(xi) 2 P x(x: Hi j 
(X) 

expI-n3]) ? exp- nn 2) 

PROOF. 

n 

i ( xi,( X) n3 P[ 2p2 g(X,) ) 

fo= ( /oi 2 2 

< exp( nf3)(i- a 

=exp 2- exp n log[1 2 ]) 

<exptn[- -2]) 

where the first line follows from the Markov inequality, the second follows 
from (2) and the fourth follows from the facts that 8 < y < 2 + 8, according 
to (2), and log(l - x) < -x for 0 < x < 1. D 

LEMMA 7. Let P E and g Ec be such that fp <g a.e. [A] and 
fg(x) dA(x) < 1 + 8. Then d(fp, g) < v5. 

PROOF. It follows from (2) that 

d(f,g)2 = f(fx) - g(x) ) dA(x) < 2 + - 2/p(x)g(x) dA(x). 

Write 

/fp(x)g(x) =fp(x) + fp(x)( g(x) - 
fp()) >fp(X). 
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It follows that fVfp( x)g( x) dA(x) > ffp(x)dA(x) = 1. So d(fp, g)2 < S and 

d(fp, g) < . D 

PROOF OF THEOREM 1. Let e > 0 be given, and let {J}1=, c, c1, c2 and 8 
be as guaranteed by Assumption 2. Recall that A8 is a Hellinger neighbor- 
hood of the true density as defined in (4). Write 

(22) T'(AAIx") = ir(AC nrnlx") + Tr(AC nclx"). 

Since 7r(C) < c1 exp(-nc2) for all but finitely many n, it follows from 
Lemma 5 that the second expression on the right-hand side of (22) goes to 0, 
a.s. [PO]. So, it suffices to prove that the first expression on the right-hand 
side of (22) goes to 0, a.s. [PO]. Let Cn = Ac n Gn. Now, write 

/c, n^i. fp(x,) d-,T(P) 
37T (Cnn)= fc n= 1 fp(xi) dir(P) 

(23) p_ 

- ( fj f(x)d7r(P). mn xn) n i=1 A Xj) 

Let r - r(n, 8) = exp((gn, 8)) and let {flu,..., f7} be the brackets guaran- 
teed by Assumption 2. For convenience, suppress the dependence of r(n, 8) 
on n and 8. For j = 1,..., r, define 

Ej= (PE : fp< fj a.e.[A]}. 

Let E1 = E1 and for j > 1 let Ej = {P e EJ; P 0 E,, s <j}. Hence, the sets 
{E1,..., Er} are disjoint and cover Cn, and if P E Ej then fp < fju a.e. [ A]. We 
now write 

H n . d,7r(P) =T E 
fP 

( d P) 
ci=jl fo(xi) j=l Enc8i= fo(xi) 

~~~(24) _~ Er n f U(x 

~(24) ^<Ef H 
j 

)d7T(P) 
= Eincni=l fo(xi) 

-= H nf() T(Ej n CJ) a.e. [A"]. 
j= i=1 fo(xi) 

Since 8 < s2/4, by Assumption 2 there exists f3 and c such that 

(25) 0 <B< (_ - '/)2 _ 6- 2c. 

Define 

H. ' ?exp(--I'. n 
i=1 fo(xi) 

p 

If P E Ej, Lemma 7 implies that d(fp, fjU) < xF5 and if P e Cn, then 

d(fo,fp) > s. Suppose there exists some P in Cn n Ej. By the triangle 
inequality, d(fo, fju) > d(fo, fp) - d(fju, fp) 2 e - F5. Thus, for those j such 
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that d(fo, fju) < E - F, we can conclude that Ej n C, = 0. For every n and 

every j such that d(fo, fjU) >2 - F5, apply Lemma 6 with g = fju, y = 

d(fo, fj)2 > [8- 6]2, and j8 as defined in (25) to see that Pon(F,j) < 

exp(- nv), where v > c. So, because of (24) and the fact that Ej K(Ej n an) < 

1, we have 

P5x[ . H d'T(P)?exp 
- 

} ? ( cni=1 fto(xi) 2 

< p 
=En (xi) 

T(Ej n Cn) > exp - 

< r exp( -nv) < r exp( - nv) 
= eXp(F(.9R, () - nv) 

< exp(-n[v -c]), 

for all but finitely many n. The last inequality follows from part (ii) of 

Assumption 2. The first Borel-Cantelli lemma implies that 

P X: 
f( Xj) 

dT(P)>exp{- n,i.o. =0. 
i=l fo(xi) d 2 n i 

Lemma 4 says that 

Po ' n>Y > exp n4 ,i.o. =0. 
Mn(X ) 4 I 

Combining these last two equations with (23) gives that 

Po x: T(CnIx ) > exp -4 
- , i.o.= 0. 

Hence limn, -T(Cn I n) = 0, a.s. [PO]. w 

Verifying part (ii) of Assumption 2 can be awkward. The next lemma gives 
a specific condition that can be checked to verify this assumption. 

LEMMA 8. Let {Xn=i be a sequence of finite measurable partitions of 2 
and let Nn be the cardinality of ?n7. For each n, let an > 0 and suppose that 
A(A) = 1/Nn for every A E Sn. Define 

9n = {P 93: for every A E and for every x, y e A, 

T fp(x) - ?p(Y) I < an} 

Then (n(, 2 an) < N,[1 + log(l + 1/[2 Nn an )] . 

546 



CONSISTENCY OF POSTERIOR DISTRIBUTIONS 

PROOF. For each n and each vector 1 of nonnegative integers 1 = 

(1, ..., Nn) such that 

Nn N, 

(26) an Eli < Nn < an (l + 2), 
i=l i=l 

define 
N. 

fiU(x) = a. E IAV(X)/(li + 2). 
i=l 

It is easy to see that for every P E cn, there exists flU such that fp < fiu a.e. 
[A]. Note that 

Nn 1 
fflU(x) dA(x) = an E (li + 2)N < 1 + 2a. 

i=l n 

So the collection of flU functions for all 1 that satisfy (26) forms a 2an-up- 
per bracketing of 9n. The cardinality of this upper bracketing is the number 
of hypercubes with sides of length 2 an needed to cover the Nn - 1-dimensional 
simplex in RFNn. An upper bound on this number is (2a )-Nn times the volume 
of Cn = {x E [RNn: Vi xi 2> 0, ENn x, < 1 + 2Nnan}. It is easy to see that Cn is 
just 1 + 2Nnan times the set where the Dirichlet density with all parameters 
equal to 1 is positive. Hence the volume of Cn is equal to (1 + 2Nnan)Nn/Nn!. 
It follows that 

X(9n2(,2a n) < Nn log(1 + 2 Nn a - log(Nn!) - Nn log(2a,) 

< Nn log(Nn) + Nn log1 + 2N - N log(N + N 

= Nn[1 + log(1 + 2 N ) 

since log(x!) > x log(x) - x for all x. El 

A simple corollary helps to verify part (ii) of Assumption 2. 

COROLLARY 2. For each e > 0, let Nn < ne2/10, an = ?2/32 and 6 = 

82/16. If lim 
0 Nn = 00, then the sequence {}n = from Lemma 8 satisfies 

F(in,6) < ne2/5. 

for all but finitely many n. 

To verify part (i) of Assumption 2, one must show that wr(9) is exponentially 
small. 

3. Some prior distributions. In this section, we present some prior 
distributions that satisfy Assumptions 1 and 2. In Section 3.5, we also give an 
example to show how failure of Assumption 2 can lead to an inconsistent 
posterior. 
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All of the examples in this section deal with real-valued random variables. 
If iT is a prior over 9, then the prior marginal distribution of each Xi is 

P*(A) = JP(A) dT(P) for A E X. 

We find it convenient to construct examples in which P, is the uniform 
distribution on [0, 1]. It is easy to create priors for distributions on the real 
line. Let P* be a distribution with cumulative distribution function (cdf) F,. 
Of course, we can transform each observation Xi to the unit interval by 
Yi = F (Xi). Use one of our priors for the unknown distribution P of the Yi 
random variables and then map the prior back to a prior on the set of 
distributions on IR. More precisely, let Y be the set of all probabilities on 1R 
that are absolutely continuous with respect to Lebesgue measure A and let 

[0, 1] be the subset consisting of distributions on [0, 1]. Define h *: [o 1] -> 

by saying that h * (P) is the probability with cdf Fp(F ) where Fp is the cdf 
of the distribution P. It is easy to see that the function h * is continuous in 
the Hellinger topology (hence measurable) since d'(P, Q) = d'(h * (P), h * (Q)). 
Therefore, any prior rr on SO, 1] induces a prior r * on 3 by means of the 
function h *. The induced prior rr * has the property that the marginal prior 
distribution of each observation is P,. 

3.1. Histograms. One prior distribution for continuous distributions that 
satisfies the conditions of Theorem 1 is a prior concentrated on a collection of 
distributions with step-function densities. For each n, we construct a collec- 
tion in' of distributions whose densities are constant on each of the finitely 
many intervals in a partition Sn. We use Corollary 2 to ensure that part (ii) of 
Assumption 2 holds. We assign the set 9n prior probability pn, which is 
chosen so that part (i) of Assumption 2 holds. 

Suppose that S consists of all probability measures on [0, 1] that are 
absolutely continuous with respect to Lebesgue measure A. Assume that 

A(Po; A) < oo. For each integer n, let pn > 0 be such that En=i pn = 1. For 
each n, let Nn be an integer and let gn be the partition 

([ 1 
jJ 

1 2 \ [ . -1 ]) 

\L N I \. nn n n 

Let n be the collection of all distributions that have constant density on 
every interval in Sn. Our prior distribution will place probability p, on the set 
Wn and distribute the probability as follows. Let an > O0 and denote a random 
element of . as P. If P E n, we can write P = (fi,..., fN ) where 
EnL^ fiA(Ai) = 1 and Ai is the interval [(i - 1)/Na, i/Nn). This makes fi = 

fp(x) for all x E Ai. Conditional on P E -, we assign P/Nn the Dirichlet 
distribution Dir(an,..., an). 

We now prove that, by careful choice of Nn and Pn as functions of n this 
prior distribution will satisfy the conditions of Theorem 1. We will let 
Nn = 2mn with {mn}n=j a nondecreasing sequence of positive integers that 
goes to oo. The following result is proved in the Appendix. 
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LEMMA 9. Let ( , i, A) be a probability space, and let _ be a collection of 
measurable real-valued functions defined on X. For each b > 0, define 

b =f (-E{ : esssuplfl ? b}, 

Lb = {f:esssupl fl I b}, 

where the essential supremum is relative to A. Suppose that there exists r > 1 
such that rb is dense [ in the sense of L'(A)] in Lb for all large b. Let PO << A 
be another probability on (X, ?) such that A(PO; A) < oo. Then for every e > 0, 
there is a bounded function g c= such that -(PO; Pg) < s, where Pg is the 
distribution with density 

exp(g(x)) 
pg(X) f exp(g(y)) dA(y) 

Let W be the set of all step functions that are constant on all of the intervals 
in at least one of the Sn partitions, and let A be Lebesgue measure. Since step 
functions are dense in the collection of bounded measurable functions and M 
is dense in the collection of step functions, it follows that for each 8, there 
exists n and P8 C /n such that -9(PO; P,) < e/2. Since the Dirichlet distribu- 
tion over ?n assigns positive probability to every open neighborhood of P8 
and -APO; P) is continuous as a function of P for distributions with densities 
in A, it follows that Assumption 1 holds. 

Next, construct the sets {n}n=1 as in Corollary 2. Since each an > 0 and 
the probabilities in n have constant density on every A E 9n, it follows that 

n Cin Also, 'n C Wn+l for all n, so 7TS() < E=n+l Pl. Setting pn = (1 - 

a)an for some 0 < a < 1 will satisfy part (i) of Assumption 2. Finally, let 
Nn = n/log(n) (that is, mn = Llog2(n) - log2(log(n))]) in Corollary 2 so that 
part (ii) of Assumption 2 holds. 

3.2. Polya Tree Priors. The class of Polya tree distributions was described 
by Mauldin, Sudderth and Williams (1992) and Lavine (1992). Polya trees are 
special cases of tailfree processes [see Freedman (1963) and Fabius (1964)]. 
Consider the sequence of partitions {YkY}k= 1 of [0, 1] such that 9 = 

{[0, 1/2], (1/2, 1]} and each 5k contains the left and right halves of all 
intervals in k- 1 for k > 1. (For convenience, let So = {[O, 1]}.) For an 
interval I E 5?k for k = 0, 1, ... create a random variable VI taking values in 
[0, 1] and having mean 1/2. Make all of the VI independent of each other. For 
each I ECk for k > 1, define p1(I) Ek -1 to be the interval J in _k -1 such 
that I c J and set 

V Vp1({), if I is the left subinterval of p1(I), 

1 - VP1(I), if I is the right subinterval of p'(I). 
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For I E5?9k with k > 2, define p2(I) = pl(pl(I)), and similarly define pi(l) 
for i = 1,..., k. [For convenience, let p?(I) = I for all I.] Let 5 = U= 0 k, 

and for each I cE , define K(I) to be that k such that I c9Ek, and set 
P(I) = nH[(S) Wpi-l(,). The set function P extends uniquely to the smallest 
o-field containing Y, which is the Borel o-field, and becomes a random 

probability measure on the unit interval. Kraft (1964) shows that, if the 
distribution of VI becomes concentrated around 1/2 sufficiently rapidly as I 
shrinks (moves through later partitions 59k) then P will have a density with 

respect to Lebesgue measure with probability 1. (For example, if each VI E 5,k 

has the Beta(ak, ak) distribution, then the conditions of Kraft (1964) will be 
met if E 1k= a < oo.) Lavine (1994), Theorem 2), and Ghosal, Ghosh and 
Ramamoorthi (1999b), Theorem 3.1, prove results like the following. 

PROPOSITION 1. Suppose that for every k and every I k, VI has the 
Beta(ak, ak) distribution and that -(PO; P,) < oo. If Eo=, ak 1/2 < oo, then 
7r(N?) > 0 for every 8 > 0. 

In words, Assumption 1 can be satisfied by a P6lya tree distribution so long 
as the prior predictive distribution is not infinitely far away from the true 
distribution. 

We show next that Assumption 2 can also be satisfied. We will construct a 

sequence of sets {} n=1 as in Corollary 2. Let P have the Polya tree prior 
distribution on [0,1] that has a density, fp, with probability 1. For each 

y E [0, 1] and k = 0,1,..., let Ik(y) be that interval in 5k that contains y. 
Then p(y) = limk, 2kHnk W,I(Y). [See Kraft (1964)1. Let fk(y) = 

2nli Wji(Y), the approximation to fp based on the first k partitions. 
Suppose that W - Beta(ak, ak) for all I e 5k. Let {gkhk=l be a sequence of 
numbers such that E=1 2kgk < oo, and let ek = Pr(12W1 - 1 > g9) for I E?2k. 
Let Ek = E= k +l2ei2 and G, = = k+ 1i'-lgi. Then 

(27) 7r(3y: | fp(y) -fk(y)l > Gk) <Ek 

because WIk(y) < 2 for all k and y. If G < 8 2/16, then the event whose 

probability is bounded in (27) contains 5f. Hence, (27) provides a bound on 

7r1C(). The partition 5k plays the role of gn in Lemma 8, and the cardinality 
of Yk is Nn = 2k. To satisfy the conditions of Corollary 2, we need k < 

log2(e2n/10). So, let 

kn( ) = 10?2 

and set S4 = Yk (,) to guarantee that part (ii) of Assumption 2 holds. Choose 
the ak large enough so that Ek= 1 a,1/2 < oo (so Proposition 1 says that 
Assumption 1 holds) and large enough so that log E1 < b, - b2 2 for some 
constants bl, b2 with b2 > 0. This makes part (i) of Assumption 2 hold. 
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As an example of how to set the numbers ak, consider the following. Let 
W - Beta(a, a) and let Z = 12W - 1!. Then, for g E (0, 1), 

Pr(Z>g) = 2 Pr(W> 
+g 

F(2a) 1 wa-l(, _ )a d 
=2---f "-^! - wV~1 dw 

r(a)2 (1 +g)/2 

F(a) 2 2 

? (1 _g2) 

< A;exp(-g2a), 

where the third line follows from the monotonicity of the Beta density on 
[1/2, 1], the fourth line follows from the facts that 

F(2a) = 22a-l(a)F(a+ ) 

and F(a + 2) < F(a)'a and the fifth line follows from the fact that (1 - x)Y 
< exp(-xy) for 0 < x < 1 and y > 0. So, we can let gk = 2-k for a > 0 and 
let ak = l/g'. It now follows that 

ek < - 
exp(-2k), 

so 

Ek? 2- ) exp(-2i) 
i=k+l S 

(2/)(-i) E ( ) exp(-2i + 2+). 

Since the last sum is finite it follows that log(Ek) < b, - b22k. In summary, a 
Polya tree prior with every WI for I E- k having a Beta(ak, ak) distribution 
with ak = 8k will satisfy the assumptions of Theorem 1 with the sequence 
{nYJn= from Corollary 2 so long as 9(Po; P,) < oo. 

3.3. Infinite-dimensional exponential families 

Let ^T = {(jr}YL1 be a sequence of independent random variables with 

frj - N(0, Tj2). Let {j()}j= 1 be a sequence of orthogonal polynomials on [0, 1]. 
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Define 

fv(x) = exp E, y?$(x) - c(4f)) 

where c(-) makes fq a density. Let P4 stand for the distribution with density 
f,. This model for infinite dimensional parameter spaces has been studied by 
Leonard (1978) and Lenk (1988, 1991). 

Let aj = sup0o<?< 1ilqI and bj = sup,o<<x 14 (x)l, which are finite since the 
(j are polynomials. Now, choose the 7rj' so that Ej aj7j < oo to assure that fT 
is a density with probability 1 and Ej bjTj < oo. Let An,i = [(i - 1)/N, i/N), 
where N = [n/log(n)], for i = 1,..., N. Let 6n = {An i,..., An, N. Define 

yn,= sup If\(x) -fp(Y)\, 
x, yE An, i 

Xn = sup loge (x) 
x, yeAni Tf(Y) 

Let e > 0. Since X, i < A implies Yn i < exp(A) - 1, we need to show that 
with 8 = an = ?2/32 as in Corollary 2, there exists cl, c2 > O0 such that 
Pr(Xn j > log(l + 8)) < c1 exp(-c2n) for all but finitely many n. Let A = 
log(l + 6). 

Now, for x, y e A , write 

f((x) _ 

logf() - j[ j(x) - b1i(Y)J fi(y) j=i 

= Jjf(t) dt 
j= Y 

< Ebjl\\x y\jl Ix-y i N : bljl. 
j=1 j=1 

Let Z - N(O, 1). Then 

7T(Xn j > A) < 7T( bjI;I > NA) 

= Texp[ bjlIJl] > exp[NA] 

< inf exp(- NA t) E exp( j t b 
to > 0 7; 
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= inf exp( -NAt) HI E exp(tbjlZI) t?o j=1 

= inf exp(-NAt) n [2b( bjt)exp( t2bj2j/2)] 
t > 0 J =1 

< exp -Nt0 + bt /2l H [2)(bjt,to)], 
\,~ ?~zc ==1 /=I 

where 1& is the standard normal distribution function and to > 0. Suppose 
that we choose the Tj so that EJ= bj < oo. Let to = NA/E= 1 bj22. Then 

Hni=[24((bjTjto)] = C1 < oo, and 

N 2A2 
Pr(X,> j> A) < cliexp 2-NJ= . 

Since N2 > n, this completes the proof that the prior probability of J is 

exponentially small, where 9n- is as in Corollary 2. 
The uniform density on [0, 1] is Lebesgue measure A. We want to show that 

if A(PO; A) < oo then, for every 8 > 0, -r(N8) > 0. First, suppose that there 
exist m and a,,..., am such that log fo = E aJm 1 oj - c(a). Let 

p(P, Q)= sup |log fp(x) - log fQ(x) , 
0<x< 1 

and let B8 = {P: p(Po, P) < s}. A simple calculation shows that A(P; Q) < 

p(P, Q). So it suffices to show that 7r(B,) > 0. 
Let Z,(r) = {q = (1A, 02, . . ): E=r ajl il < I }. Then 7r(B,) > 

r(B|IZ4(r))7r(Z4(r)). Recall that the rj's have been chosen so that Ej aj I is 
finite with probability 1. It follows that for any 4 > 0, there exists ro such 
that 7r(Z(ro)) > 0. Choose 5 = e/2 and choose r = max{ro, m + 1}. For q, e 

Z,(r) and defining aj = 0 for j > m, we see that 

p(Po,PP) = sup ,(j 
- 

aj)j(x) 
O<x<l1 j 

< ,ajl qj - Ojl 

r 

< ajl llrj - ajl + ( 
j=1 

So 

7r(BIZ,6(r)) > i aj,lj 
- ajl+ + < 8 Z,(r) 

> IT EajIf 
- aI< - Z, (r) 

=1 (a </ 

E J J7 2e 

553 



A. BARRON, M. J. SCHERVISH AND L. WASSERMAN 

Since the marginal distribution of (i1,..., /r) has support over all 8r', we see 
that this latter event has positive probability. Thus, 7T(BJIZ&(r)) > 0. 

Now consider any P0 such that J(P0; A) < oo. Lemma 9 says that for any 
a > 0 there exists a distribution P with density f such that log f is a 
polynomial of finite degree and such that A(P0; P) < a. Further, 

f(x) 
(PO;PW) ?<(P0;P) + sup log < a + p(P, P). 

O<x<1 f4 (x) 

Choose a = s/2 and note that Be/2 
c N,. Since we have already shown that 

B?/2 has positive prior probability, the proof is complete. D 

3.4. Mixtures of priors. In the examples earlier in this section, the poste- 
rior distributions are somewhat sensitive to the choice of prior predictive 
distribution P*. In particular, the posterior predictive densities of future 
observations computed from histogram and Polya tree priors tend to have 
noticeable jumps at the boundaries of the sets in the partitions 6n and 9k. 

Also, a choice of P, that is particularly unlike the sample distribution of the 
data will make the convergence of the posterior very slow. One way to 
alleviate these problems is to use a mixture of prior distributions. 

Suppose that we replace P* by a family of distributions {Po: 0 E fl} where 
(fl, -) is a measurable space and each P, << A. (One typical choice is a 
location/scale family that one thinks of as a first-order approximation to the 
distribution of the data.) Let v be a prior probability measure on (Q, r). Let 
O be a random variable such that, conditional on 0 = 0, the prior distribu- 
tion on (c^, W) is 77o, where iT, is constructed just like a 7T in one of the other 
examples in this section with PO replacing P,. Let Tr(- lx') denote the 
conditional posterior distribution on (<, ) given 0 = 0 after observing 
Xn = xn. Let v? Ixf) denote the posterior distribution of 0 given Xn = xn. 

Then the posterior on (c9, W) is 

ir(B xn) = |f r(BIx8) dvp(Olx). 

To prove consistency of this posterior, we will make some additional 
assumptions. Assume that v({0: AY(P0; P,) < oo}) = 1. Suppose that ^(TIXn) is 
uniformly consistent a.s. [v], that is, there is a subset B of ?c with 
PO(B) = 1 such that for every xx E B and 8 > 0, there exists Bx. E T and 
N(xW) such that v(B,x) = 1 and n > N(x") implies ?-j,(A,lIx) > 1 - 6 for all 
0 E Bx. 

First, note that the conditional distribution of Xn given 0 = 0 is abso- 
lutely continuous with respect to A with density gn(xn10) = 

f ni1 f p(xi) d^9(P). It follows from the measure-theoretic version of Bayes' 
theorem that, for each n, v( IXn) << v with probability 1 under Mn, the 
marginal distribution of Xn. [See Schervish (1995), Theorem 1.3.1.] 

Next, note that in the earlier examples in this section, we transformed the 
data to the interval (0, 1) using F*. The resulting distribution for P, the 
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distribution of the transformed data, gave probability 1 to the set of probabili- 
ties with densities that are strictly positive on all of (0, 1). This, together with 

APO; PO) < oo implies that for all n, the n-fold product of P0 on in is 
absolutely continuous with respect to Mn. 

Let C be the set of sequences x? such that V(Ilxn) < v for all n. Since 
Mn(C) = 1, then P (C) = 1 and P'(C n B) = 1. For each x E- C n B, n > 
N(x0) implies 

r(A_,Ixn) = f J(A,Ixn)dv(lzxn) > (1- 6)v(Bx|lx) = 1-S. 
x 

Since 5 is arbitrary, this proves that P'(lim,^ ir(A,lx") = 1. 
Uniform consistency is difficult to verify in general, and we do not believe 

that it is a necessary condition. [For example, Ghosal, Ghosh and Ramamoor- 
thi (1999b) use a continuity condition instead of uniform consistency to prove 
a weaker form of consistency for location mixtures of symmetric Polya trees.] 

On the other hand, uniform consistency does hold in the simple case in 
which fl is a finite set. For example, fl might consist of a Polya tree, an 
exponential family and a histogram. The posterior, as the prior, would then 
be a mixture of these three types of distributions. 

3.5. A counterexample. In this section, we present an example in which 
Assumption 1 holds but Assumption 2 fails and the posteriori is inconsistent. 
The idea of the example is that the prior v is split evenly between disjoint 
sets of probabilities 90 and ,,. There are distributions P eo90 such that 

a(Po; P) is arbitrarily small and 1r(N,) > 0 for all e > 0. The densities in ^ 
however, are very far from P0 in Hellinger distance, yet they track the data 
sufficiently well to acquire significant posterior probability infinitely often. 

For each positive integer N, let 

1 2 I2N2 _,i 
{N [ 2N 2N2 ' 2N222 2 ) 2N2 1 

be a partition of [0,1]. Let AN be the set of probabilities with density 
functions that are constant on every interval in 5N and that assume only the 

two values 0 and 2. The cardinality of _AN is qN = (2f22). Let aN = N-2/C, 
where 

(28) Co E 1/N2. 
N= 1 

Our prior distribution will place probability aN/[2 qN] on each distribution in 
9N for all N. The other half of the probability is distributed as follows. Let 'o 
be the set of all normal distributions with variance 1 and mean /L where 
,p E [0, F2t]. Let e = p.2/2. Let e have prior density 

(29)1\ ex(- 1w 
(29) I-exp -- 

IAo,) ( ) where c I=exp-- jdO. 
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Let o90 be the collection of all distributions on [0, 1] obtained by transforming 
the distributions in '0 by the standard normal cumulative distribution 
function (. That is, each PO E o has density of the form fp(x) = exp(-6 
+ V21-1(x)) for 0 < x < 1 and some 0 E (0,1). 

Now, suppose that fo(x) 1 is the uniform density on [0, 1] and that 

X,, = 1 are i.i.d. with this density. We will show that Assumption 1 holds but 
that the posterior is not consistent in the Hellinger distance metric. Using the 
well-known formula for Kullback-Leibler distance between Normals, it fol- 
lows that 5A(PO; PO) = 0 and the prior for O puts positive probability on every 
neighborhood of 0, which means that iT puts positive probability on every set 

N,. So Assumption 1 holds. Second, let * =- U N=1 IN. Each P E-- 

satisfies d(Po, P) = V2 - 2, so A8 n * =0 for all e < 2 - 2 . We will 
prove that lim sup8 

_ 
xr(y 8Xn) = 1 a.s., hence the conclusion to Theorem 1 

fails. 

If N2 2 n, then for all xl,..., x8, there are at least (2N2n) distributions 

P 'N such that n=H fp(xi) = 2n. So, for every x?, 

n 
a=1 N>~~2 2N2 -nJ 

n2 
n 

1(N) 

fi[ p(x rdniPz 2 d 2T(P N2 2)2 

N? ( - n2 ) N1 n 

exp( - 2) 

2cnN 

to (N2 - n + 1)/(2N2). 

N> Fn 
2 N 

( 3 0 ) > 
1-,r 

> 
2 N 2 

n-1 aN 
> 

772 2 2 

n21""^ ; 2c n 

exp( 
- 

2) 

for all but finitely many n, where co is defined in (28). The inequality on the 
combinatorial terms follows from noting that the ratio of the two terms 
consists of the product of n fractions, each of which is greater than or equal 
to (N2 - n + 1)/(2N2). 
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Next, consider the integral over 90. Recalling the definition of cl in (29), 
we have that for all x0 and all n 

Hfp(xi) dr(P) e= 2c exp - - n0 + 20 -(xi) dO 
oi= 2c, \ o i0 

< lexp -2fn + V2 max{O, E)-1(X)}) 
2c, I=1 

because 1/0 + nO > 2VFn for all 0 E (0,1) and all n. We know that with 
probability 1, max{0, E=1 E>- l(xi)} = O infinitely often according to the law of 
the iterated logarithm. It follows that, with probability 1, 

n 1 
(31) H fp(xi) d(P) < -- exp(-2VW), i.o. 

oi=l 2c, 
It follows from (30) and (31) that 

T(^J^) exp(2[v^ 
- 1]}cl 

(32) P T( X) exp(2 [ i.o. = 1 
_ n (^ol"n ) con 

Since the fraction on the right-hand side of the inequality in (32) goes to 
infinity and W7(0o uA* lxn) = 1, we have that 

limsup r(7* Ix) = 1 a.s. [Pt]. 
n ->oo 

4. Discussion. We have given two conditions that imply consistency of 
the posterior, and we have shown how to verify the conditions in a few 
examples. Geman and Hwang (1982) and Wong and Shen (1995) give results 
on consistency of sieve maximum likelihood estimators (MLE's). Some of their 
conditions are similar to ours. Our major difference between proving consis- 
tency for MLEs and posterior distributions using sieves is that for MLEs the 
sieve plays a crucial role in the definition of the MLE. That is, the MLE is the 
element of in that leads to the largest value of the likelihood function. If one 
changes to a different sieve, the sequence of MLEs will change. On the other 
hand, when using sieves to prove consistency of posterior distributions, only 
the prior distribution and likelihood affect the posterior. The particular sieve 
used to prove consistency is only a tool for the proof. Of course some sieves 
are easier to work with than others, but they do not figure in the computation 
of posterior probabilities. 

We have not discussed rates of convergence in this paper. It is possible to 
compute rates of convergence by replacing the fixed e in Theorem 1 with a 
decreasing sequence {En}= . See Shen and Wasserman (1998) and Ghoshal, 
Ghosh and van der Vaart (1998). 

APPENDIX 

Proof that Radon-Nikodym derivatives are jointly measurable. We 
use the following lemma in much of this paper. The notation comes from 
Section 2. 
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LEMMA 10. For every Q E d, there is a version fQ of dQ/dA such that the 
function g: & x - -> R defined by g(Q, x) = fQ(x) is jointly measurable. 

PROOF. Since W(, _) is separable, there exists a countable collection 
0 = {Bnn= 1 of elements of _S such that M is the smallest uX-field containing 

So. Create a sequence { Pn}n= of partitions of^ as follows. Let p, = {B1, Bf). 
For n > 1, let p, consist of the intersections of Bn and B C with all of the 
elements of Pn- I. In this way we have that Pn is a refinement of Pn- for all 
n > 1 and U =i pn generates the a-field M. Let m, be the number of 
distinct nonempty sets in p, and let p, = {Bn ,..., Bn mn}. 

For each Q E @ each n and each x E X, define 
mn Q(B i) 

(33) fQ,n(x) = I A(B IB. ) 
i=1 A(Bn, J B 

where we can let the fraction be 0 whenever A(Bn i) = 0. We will prove that 

g,: n x -> DR defined by gn(Q, x) = fQ n(x) is jointly measurable, that 
g' = lim supnoo gn is a jointly measurable and that g'(Q, ) is a version of 
dQ/dA for each Q. 

First, define hn i(Q) = Q(Bn i). This function is clearly continuous in the 
total variation topology and hence in the Hellinger topology. Since continuous 
functions are measurable, hn, is measurable as a function from I to 1R. Since 
hn i depends only on Q, it can also be considered as a measurable function 
from & x to 1R. Since B i E , we know that IB i is measurable as a 
function from X to [R and can also be considered as a measurable function 
from & x X to 1R. Hence hn, i IB is a measurable function from @ X to 0R. 
Since all A(B di) are constants, we have that each term in the sum in (33) is 
measurable, so the sum is measurable. Hence, gn(., *) is jointly measurable. 
Which terms in the sum are 0 for all x and Q is predetermined by the values 
of A(Bn i), so this does not affect measurability. Since the limsup of a 
sequence of measurable functions is measurable, it follows that g'= 
lim supn ,, gn is measurable. 

All that remains is to show that g'(Q, ) is a version of dQ/dA for each Q. 
For each Q -E , let f$ be an arbitrary version of dQ/dA. Since we have 
assumed that A is a probability measure we can think of f$ as a finite-mean 
random variable on the probability space (X, M, A). Let - stand for the 
finite or-field generated by the partition Pn. It follows that S is the smallest 
u-field containing U n= 1 n. If A E 74n, then A is a union of some of the B, n, 
say B il,*..., Bn, ik. It follows that 

fQ(x) dA(x) =Q U Bn, i. = Q (Bn,) = gn(Q, x) dA(x). 
)A \J=i ji 

A 

It follows that gn(Q,) = E(fQlIn) for all n. Since {n}n= is an increasing 
sequence of c-fields, we have that gn(Q, *) is a martingale adapted to that 
sequence of c-fields. Since E(lfl) = 1, Levy's theorem [Schervish (1995), 
Theorem B.118] applies and gn(Q, ) converges a.s. [A] to E(f I-,), where -, 
is the u-field generated by U = 1 =In. We already saw that .c% = S. Since fQ 
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is pW-measurable, we have that gn(Q,) converges to fQ a.s. [A]. This implies 
that lim supn , gn(Q, x) = fQ(x) a.s. [A], hence g'(Q, * )is a version of dQ/dA. 

Measurability of A(PO; P). 

LEMMA 11. Y(P0; P) is measurable as a function of P. 

PROOF. Let g(P, x) = fp(x) be the function constructed in the proof of 
Lemma 10. Define h: Xr-> R U {?oo) by 

h(P, x) = fo(x)log (x) 
g(P,P 

M 

This h is also jointly measurable and -(PO; P) = fx h(P, x) dA(x). Let h = 
h+- h- where h+2 0 and h - 0 are known as the positive and negative 
parts of h. Since >Y(PO; P) > 0 for all P and since 

>(PO;P) f= fh(P, x) dA(x) 

(34) 
= h+(P, x) dA(x) - fh-(P, x) dA(x), 

we must have that f h-(P, x) dA(x) < oo for all P. So, if we can prove that 
both integrals on the far right-hand side of (34) are measurable functions of 
P, we are done. The proofs are identical. Let h* be a nonnegative measurable 
function of (P, x) and approximate it from below by a sequence {h,}n=1 of 

nonnegative simple functions, where each hn(P, x) = E>n, an iIA (P, x). The 
monotone convergence theorem implies that for every P, 

lim hn(P, x) dA(x) = fh*(P, x) dA(x). 
n - oo 

Since the limit of measurable functions is measurable, all we need to prove is 
that the integral of each hn is measurable. But this will follow if the integral 
of each indicator function is measurable. This last fact is proven in Schervish 
(1995), Lemma A.61. D 

PROOF OF LEMMA 9. Fix e E (0, 1). Let h = log dPo/dA and let Ab = {x: 

Ihl < b}, A'= {x: h > b} and Ab= {x: h < -b}. Define p(x) = h(x)IA(x) + 
bIA+(x) - blAb. Choose b such that E(IhIIlhl, b) < e where the expectation is 
with respect to A. Thus, E(Ih - pI) < e and by Markov's inequality, Po(IhI > 
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b) ?< /b. Choose g E _b such that lip - gl dA < S2e-b. Let a = eb. Then, 

dP0 

fIp-gjdPo= fp- g dA 
d 

<a \p-gld +(b+rb)P dP >a ( dA 

< + (r + 1) bPo log d > b) 

< + (r + 1)e. 

Let c = feg dA. Then 

P dP \ 
(Po;Pg) 

= 
E(log^ 

- g +logc 

dPo < E log - p + E p - g + logc dA 

< (r + 3)8 + logc. 

Finally, 

c < eP dA + erbA(g - p> ) 

< (1 + e-b)e + erb.-l fIg - p\ dA 

< (1 + e- b)e8 + 8 

< 1 + e-(b-l) + ee. 

For large b, log c < e(b 1) + e? < 38 so that >(PO; Pg) < (r + 6)?. D 
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