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Abstract— For the additive Gaussian noise channel with aver-
age codeword power constraint, sparse superposition codes and
adaptive successive decoding is developed. Codewords are linear
combinations of subsets of vectors, with the message indexed by
the choice of subset. A feasible decoding algorithm is presented.
Communication is reliable with error probability exponentially
small for all rates below the Shannon capacity.

I. INTRODUCTION

Sparse superposition codes with computationally feasible

decoding is shown to achieve exponentially small error prob-

ability for any rate below the capacity. A companion presen-

tation [5] gives bounds for optimal least squares decoding.

Code construction is by linear combination of vectors of

length n. Let X1, X2, . . . , XN be a dictionary of such vectors.

Organize it in a matrix X of N = BL columns, partitioned

into L sections of size B a power of 2. Codewords are

superpositions Xβ =
∑

j βjXj with each section having 1
term non-zero. The set of such β is not closed under linear

combination, so these are not linear codes in the algebraic

coding sense. Nevertheless, they are fast to code and decode.

The message is conveyed by the choice of the subset of

L terms, with one from each section. From an input bit

string u = (u1, u2, . . . , uK), with K = L log2 B, encoding

is realized by regarding u as a concatenation of L numbers,

each with log B bits, specifying the selected columns. The

codewords c = Xβ have power (1/n)
∑n

i=1 c2
i , which will be

near P when averaged across the 2K possible codewords. The

received vector is Y = Xβ + ε with ε distributed N(0, σ2I).

A decoder maps the received vector into an estimate û.

With sent = (j1, j2, . . . , jL) being the terms sent, the decoder

produces estimates ĵ1, ĵ2, . . . , ĵL. Overall block error is the

event û �= u and section error is the event ĵ� �= j�. The fraction

of section mistakes is (1/L)
∑L

�=1 1{ĵ� �=j�}.

The reliability requirement is that the mistake rate is small

with high probability or the block error probability is small,

averaged over input strings u as well as the distribution of Y .

The supremum of reliable communication rates R = K/n is

the channel capacity C=(1/2) log2(1+P/σ2), as in [28], [10].

The challenge is to achieve arbitrary rates below the capac-

ity, with reliable decoding in manageable computation time.

Here communication rates are identified which are moderately

close to the capacity and a fast decoding scheme is devised. It

is demonstrated to have probability that is exponentially small

in L/(log B)2 of there being more than a moderately small

fraction of section mistakes.

The setting adopted is the discrete-time channel with real-

valued inputs and outputs and independent Gaussian noise.

Standard communication models have been reduced to this

setting as in [16], [14], when there is a frequency band con-

straint with specified noise spectrum. Solution to the coding

problem, married to appropriate modulation, is relevant to

myriad settings involving transmission over wires or cables

for internet, television, or telephone or in wireless radio,

TV, phone, satellite or other space communications. Previous

standard approaches, as discussed in [14], entail a decompo-

sition into separate problems of modulation, of shaping of a

multivariate signal constellation, and of coding. Though there

are practical schemes with empirically good performance,

theory for practical schemes achieving capacity is lacking. In

our analysis, shaping is built directly into the code design.

The entries of X are generated with the independent stan-

dard normal distribution. The coefficients are βj equal to√
P(�) for j = j� in sent and equal to 0 otherwise, with sum

of squares
∑L

�=1 P(�) = P matching the power constraint. In

the simplest case, the same power is allocated to each section

P(�) = P/L. We also consider the choice of variable power

with P(�) proportional to e−2C�/L and a slight variant of this

allocation in which the power is variable across most � and

then levels for �/L near 1.

For a rate R code, nR = L log B, so the codelength n and

the subset size L agree to within a log factor. Setting L = B is

sensible, or, for a target codelength n, one may set B = n and

L = nR/ log n. For the best case developed here, the rate R is

chosen to have a drop from capacity that is near 1/ log B, to

within a loglog factor. When the signal to noise ratio is large,

one finds it desirable to arrange log B to be at least as large

as C to achieve at least a constant fraction of capacity.

Let’s summarize our findings. With constant power allo-

cation, a two-step algorithm and a multi-step improvement

reliably achieve rates up to a rate R0 = (1/2)P/(P+σ2) less

than capacity. With variable power and order log B steps, we

bring the achievable rate up near capacity C, albeit with a gap

from capacity of order 1/
√

log B. With the variant in which

the power is leveled for �/L near 1, the gap from capacity

is reduced to order 1/ log B, to within a loglog factor, and,

moreover, the section mistake rate is less than a constant times

1/ log B, except in an event of probability exponentially small

in L/(log B)2. Our tools provide reasonable constants, though

the best values of these for our scheme are not known.
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The performance, as measured by the gap from capacity

at a similar reliability level, is comparable to benchmarks of

performance for schemes not demonstrated to be practical,

including [5] for least squares decoding of related superpo-

sition codes, and [24] for theoretically optimal codes. For a

gap from capacity of order 1/ log n, the best error probability

is exponentially small in n/(log n)2. As our probability is

exponentially small in L/(log n)2, which is n/(log n)3, there

is potentially some room for improvement.

The decoder initially computes for the received Y , its inner

product with the terms in the dictionary, and sees which are

above a threshold. Such a set of inner products and compar-

isons is performed in parallel by a basic computational unit,

e.g. a signal-processing chip with N parallel accumulators, in

time of order n. These are pipelined so that the inner products

are updated in constant time as each element of Y arrives.

The threshold, set high enough that incorrect terms are

unlikely to be above threshold, leads to only a small fraction

of terms decoded in any one such step. Additional steps are

used to bring the total fraction decoded near 1. These steps

take the inner products with residuals of the fit from the terms

previously above threshold. A variant of the inner product with

residuals is found to be somewhat more amenable to analysis.

The decoder does not predetermine which sections are to

be decoded on any one step, rather it adapts the choice in

accordance with which has inner product observed to be above

threshold. Thus we call it adaptive successive decoding.

We determine a function g(x) mapping from [0, 1] into

[0, 1], which has the role that if xk−1 is a likely fraction of

sections correctly decoded from previous steps up to k−1 then

g(xk−1), slightly adjusted, provides a value xk of total fraction

of sections likely to be correctly decoded by step k. This

function depends on the power allocation rule and the choice

of rate. A choice of communication rate is acceptable if the

function g(x) is greater than x over most of the interval. Such

a function g is said to be accumulative, allowing the succession

of steps to build up a large fraction of correctly decoded

sections, with only a small fraction of mistakes remaining.

The role of g(x) is illustrated in Figure 1.

Our analysis provides summary formulas for the rate and the

target fraction of mistakes that arise from bounding the extent

of positivity of g(x) − x. These summary formulas provide

proof of a favorable scaling of rate by our scheme for the

particular reliability targets, indexed by the size of the code.

Moreover, the function g(x) can be evaluated in detail to

choose settings of parameters (a, c, and γ below). This allows

computation of the best communication rate our analysis

achieves, for given error probability and target mistake rates.

The parameter a arises in the threshold τ =
√

2 log B +
a of the standardized inner products. The parameter c sets

the height at which the variable power is leveled, with power

P(�) chosen to be proportional to max{e−2C(�−1)/L, cut}, with

cut = e−2C(1+δc) where δc = c/
√

2 log B.

Allowing power proportional to max{e−2γ(�−1)/L, cut},

with cut = e−2γ(1+δc), for γ between 0 and C, interpolates

between the constant and variable cases.
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Fig. 1. Plots of g(x) and the sequence xk . For snr = 15 the plot takes
a = 0.86, c = 1.6 and γ = 0.8C and the final false alarm and failed
detection rates are 0.026 and 0.013 respectively, with probability bound of at
least that fraction of mistakes equal to 0.002. For snr = 1, constant power
allocation is used with a = 0.56 and the false alarm and failed detection
rates are 0.026 and 0.053 respectively, with probability bound 0.0007.
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Fig. 2. Curve showing achieved rates as a function of B for snr = 15 and
snr = 1. The x-axis has B plotted on the log scale.

Figure 2 plots the rate R as a function of B, from opti-

mization of a, c, and γ, maintaining the bound 10−3 on the

probability of a fraction of mistakes exceed 0.10. Both the

case L = B, and a large L limit are shown as well as some

results of simulation of the algorithm with L = 100.

Signed superposition coding in which the �’th non-zero

coefficient value is ±√
P(�) increases the number of code-

words to (2B)L with the same reliability bounds, thereby

improving the rate by a factor of 1 + (log 2)/(log B), above

what is shown in Figure 2. Arbitrary L term subset coding

(without partitioning) is possible, though not as simple, for

a total rate improvement by a 1 + (log 2e)/(log B) factor.

For this presentation, we focus on the unsigned, partitioned

superposition code case.

To prevent block errors, our subset superposition codes

combine with error correction codes. The idea is to arrange

sufficient distance between the subsets. Consider composition

with an outer Reed-Solomon (RS) code of rate 1 − 2δ near

one, for an overall rate (1−2δ)R. The alphabet of the RS code

is taken to be of size B. Interpret its codewords as providing

the sequence of labels j1, j2, . . . , jL of the terms selected from

the sections. The RS codelength L is taken to be either B− 1
or B using a standard extension. RS code properties as in [23]

guarantee correction of any fraction of section mistakes less

than δ. For advocacy of code concatenation see [13]. As a

consequence of our result for the inner code, the composite

code makes no mistakes, except in an event inheriting the

exponentially small probability in L/(log B)2.

A fascinating alternative approach is channel polarization
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[1], [2], which achieves high rates for binary signaling with

feasible decoding, with error probability exponentially small

in n1/2. For our scheme the error probability is exponentially

small in n1−ε for any ε > 0 and communication is permitted

at higher rates beyond that associated with binary signalling.

Codes empirically demonstrated to be good include low

density parity check codes and turbo codes, both with iterative

statistical belief propagation decoding, but mathematically

proof of performance near capacity is so far limited to special

cases such as the binary erasure channel [21], [22].

Another approach to sparse superposition decoding is con-

vex projection with �1 constraint, arising from analogous prob-

lems of statistical learning and signal recovery. Iterative proce-

dures and properties for such projection are in [18],[3],[20],[4],

[17], with preliminary findings for communication in [29].

Each iteration would find in each section the term of highest

inner product with the residuals and use it to update the convex

combination. It is unclear to us whether convex projection for

communication can be reliable at rates up to capacity.

The conclusions may be expressed in the language of

sparse signal recovery. L terms from a dictionary are linearly

combined and subject to noise. For signals Xβ recovery of the

terms from the received noisy Y is possible provided the num-

ber of observations n is at least (1/R)L log B. Recovery using

�1 constrained convex optimization is accurate provided R<
R0 in the equal power case. For our variable power designs,

our results establish recovery by other means at higher R<C.

These findings complement work in [30],[31],[12],[11],[7],

[25],[19]. For typical signal recovery problems there is greater

freedom of design with non-zero coefficients values regarded

as unknown, leading to bounds based on the minimum non-

zero signal size, rather than exclusively based on the total

signal power as in the communication capacity.

Superposition codes began with [9] for the broadcast chan-

nel, and later for multiple-access channels [8],[27]. Our pur-

pose of computational feasibility is different from the original

purpose of identifying the set of achievable rates. Another

connection is the consideration of rate splitting and successive

decoding. Our adaptive successive decoding yields feasibility

in the single-user case and should work also in multi-user

settings.

II. THE DECODER

From the received Y and knowledge of the dictionary,

decode which terms were sent by an iterative procedure. In

the constant power allocation case set Pj = P/L. For the

variable power case let Pj = P(�) for j in section �.

First Step: For each term Xj of the dictionary compute the

statistic Z1,j = XT
j Y /‖Y ‖.The terms for which the statistic is

above a threshold τ =
√

2 log(B)+a are regarded as decoded

terms. Denote the associated event Hj = {Z1,j ≥ τ}. The

idea of the first step threshold is that very few of the terms

not sent will be above threshold. Yet a positive fraction of the

terms sent will be above threshold and hence will be correctly

decoded on this first step, with an average likely to be at least

a positive value q as will be quantified.

Let dec1 = {j : 1Hj
= 1} be the set of terms decoded on

this step. The first step provides the fit F1 =
∑

j

√
Pj Xj1Hj .

Second Step: For each of the remaining terms, form the inner

product with the vector of residuals r = Y − F1, that is,

compute XT
j r or its normalized form Zr

j = XT
j r /‖r‖. A

quantity with similar properties is found to be equally easy to

compute and somewhat simpler to analyze. Indeed, compute

FY = [FT
1 Y/‖Y ‖2] Y which is the part of F1 in the direction

Y and the vector G = F1−FY which is the part orthogonal to

Y . For each of the remaining j compute Z2,j = XT
j G /‖G‖.

Then form the combined test statistic

Zcomb
2,j =

√
1−λZ1,j −

√
λZ2,j ,

with λ = q P/(σ2+P ). The specified λ is chosen to maximize

the mean separation between correct and wrong terms. For the

two-step version, complete the decoding, in each section not

previously decoded, by picking the term for which this statistic

is largest, with no need for a second step threshold in that case.

Extension to Multiple Steps: We briefly describe how the

algorithm is extended to multiple steps to provide increased

reliability. The process initializes with V1,j = Xj the vectors

of terms in the dictionary with index set J1 consisting of all the

terms. From the first step, G1 = Y is the received vector and

the statistics Z1,j are XT
j G1/‖G1‖ for j in J1 with associated

events H1,j = Hj .

For the second step the vector G2 = G is formed, which

is the part of F1 orthogonal to G1 = Y . The set of terms

investigated on this step is J2 = J1 ∩ {j : 1H1,j
= 0}. For

j in J2, the statistic Z2,j = XT
j G2/‖G2‖ is computed as

well as the combined statistic Zcomb
2,j =

√
λ1Z1,j −

√
λ2Z2,j ,

where λ1 = 1 − λ and λ2 = λ. What is different on the

second step is consideration of the events H2,j = {Zcomb
2,j ≥

τ} with the same threshold τ , leading to an additional part

F2 =
∑

j∈J2

√
Pj Xj1H2,j

of the fit F1 + F2. The second

step provides some increase in separation, without attempting

to resolve all in two steps.

Proceed, iteratively, to perform the following loop of cal-

culations, for k ≥ 2. From the output of step k−1, there

is available the partial fit vector Fk−1 and for k′ < k the

previously stored vectors Gk′ and statistics Zk′,j at for j in the

previous set Jk−1. Plus there is a set Jk of remaining terms for

us to consider at step k. From the residual r = Y −fitk−1, one

may compute Zres
k,j = XT

j r/‖r‖. Instead, for simplification of

the analysis, compute the part Gk of Fk−1 orthogonal to the

previous Gk′ and for each j in Jk compute

Zk,j = XT
j Gk/‖Gk‖

and the combined statistic

Zcomb
k,j =

√
1 − λk Zcomb

k−1,j −
√

λk Zk,j ,

where the value of λk we shall specify is again chosen to

maximize a measure of separation between correct and wrong

terms. The statistics Zres
k,j are similar, entailing empirically

determined values of λ̂k. The statistics Zcomb
k,j are compared
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to the threshold, leading to the events Hk,j = {Zcomb
k,j ≥ τ}.

The output of step k is the vector

Fk =
∑
j∈Jk

√
Pj Xj1Hk,j

,

providing the update fitk = fitk−1+Fk. Also the vector Gk and

the statistics Zk,j are appended to what was previously stored,

at least for the terms j in Jk. This step updates the set of

decoded terms deck to be deck−1 ∪ {j ∈ Jk : 1Hk,j
= 1} and

updates the set of terms remaining for further consideration

Jk+1 = {j ∈ Jk : 1Hk,j
= 0}. This completes the actions of

step k of the loop. The idea is that on each step k we decode

a substantial part of what remains, because of growth of the

mean separation between terms sent and the others.

III. RELIABILITY

Let q̂k, f̂k be the fraction of correct detections and false

alarms at step k. Also let f̂1,k = f̂1 + . . . + f̂k be the total

fraction of false alarms after k steps. For the variable power

case let πj = Pj/P and use q̂k =
∑

j sent πj 1Hk,j
and f̂k =∑

j not sent πj 1Hk,j
, as weighted fractions, relative to the total

weight of terms sent.

It is not hard to see that q̂1,k = (1/L)
∑

j sent πj 1Hk,j
is

a lower bound on q̂1 +. . .+ q̂k the total weighted fraction of

correct detections from steps 1 to k.

Let’s specify a target false alarm rate f∗ that arise in our

analysis for each step. For step k, for given a > 0, set

f∗ =
1

(
√

2 log B + a)
√

2π
exp{−a

√
2 log B − (1/2)a2}

and likewise set values f > f∗. Recall that the threshold τ =√
2 log B + a. Indeed, it is unlikely that f̂k exceeds f .

Similarly, using distributional properties of q̂1,k using the

function g(x) discussed below, we specify a value q1,k for

which we expect that q̂1,k is likely to be at least q1,k. Further

define, x0 = 0 and for k ≥ 1,

xk = qadj
1,k =

q1,k

1 + f1,k/q1,k
,

where f1,k = kf . These xk are used in setting the weight λk

and in expressing the mean separation ak,j between terms sent

and terms not sent. Indeed λk = wk(1 − xkν) with

wk =
1

1 − xkν
− 1

1 − xk−1ν

measuring the increase in a quantity used in specifying the

separation. For establishing reliability, the critical matter is to

demonstrate that xk = qadj
1,k grows to a value near 1. Define

μx(u) =
( √

u√
1 − xν

− 1
) √

2 log B − a′.

Here ν = P/(σ2 + P ) = 1 − e−2C and a′ = a + h, where h
is a small number positive number.

The Zcomb
k,j are not normally distributed, nevertheless, it is

demonstrated by induction that in a set of high probability, they

are greater than normal random variables which have mean

0 for terms not sent and mean ak,j for terms sent. Across

the terms j, the joint normal distribution that arises in this

construction has a covariance I − νkββT /P where νk ≤ ν =
P/(P +σ2), for which it is shown that the joint density is not

more than a constant 1/(1−ν)1/2 = eC times the joint density

that would arise if they were independent standard normal.

In the constant power case with R = R0, let g(x) = Φ(μx).
where μx = μx(1). Then for terms sent ak,j = −μxk−1 and

q∗1,k = g(xk−1) at xk−1 = qadj
1,k−1. If g(x) exceeds x, then

there is room to set q1,k just below q∗1,k, so that if f1,k = kf

is small enough, then xk = qadj
1,k is indeed larger than xk−1.

The g(x)− x stays above a positive gap for all 0≤x≤x∗.

For the constant power case the positivity holds at x∗ provided

x∗ is separated from 1 by at least a polynomial in 1/B, and

this gap at x∗ is the minimum value in [0, x∗] provided a′ ≤√
2π(.5 − x̄∗) and Φ(−a′) ≥ x̄∗ where x̄∗ = 1−x∗.

Lemma 1: If g(x)−x is at least a positive gap on an interval

[0, x∗], choose small positive η and f > f∗. Arrange Λ =
gap−η to be positive and for 4f x∗ ≤ Λ2 and arrange q1,k =
q∗1,k − η where q∗1,k = g(qadj

1,k−1). Then the increase on each

step q1,k − q1,k−1 for which qadj
1,k−1 ≤ x∗ is at least Λ̃, where

Λ̃ satisfies Λ̃ = Λ − x∗ f/Λ̃, quadratic in Λ̃ with solution

Λ̃ = Λ{1 + (1−4 x∗ f/Λ2)1/2}/2. Moreover, the number of

steps m required such that on step m − 1, the qadj
1,m−1 first

exceeds x∗, is bounded by m ≤ 1/Λ̃ steps. At the final step

q1,m exceeds g(x∗) − η.

We also consider the variable power case. A quantity needed

in our analysis is C�,R = π(�) L ν/2R. With π(�) proportional

to u� = e−2C(�−1)/L, this C�,R becomes u� CL/R, where the

value CL = (L/2)(1 − e−2C/L) is near the capacity C. Then

C�,R is near u� when R is near the capacity C. In the variable

power case, the mean separation of the Zk,j is given by ak,j�
=

−μx(C�,R) for section �. Likewise the role of the function

g(x) is played by

gL(x) =
L∑

�=1

π(�) Φ(μx(C�,R)).

When π(�) is proportional to u� = e−2C(�−1)/L this gL(x) is

at least the value of a nearby integral

g(x) =
1
ν

∫ 1

e−2C

Φ(μx(uC/R)) du.

This g(x) is found to compare favorably to x, to yield the

required growth of the xk.

Consider the case allowing leveling with which π(�) =
max{u�, cut}/sum, for which the normalizing sum is found

to be (Lν/2C)[1 + δ2
sum], where δ2

sum is near D(δc)/snr,

bounded by δ2
c/(2snr), with δc = c/

√
2 log B and D(δ) =

(1+δ) log(1+δ) − δ. The function gL(x) is defined as above

with an analogous nearby integral with max{u, cut} in place

of u. Set r > 0 and consider the rate

R =
C

(1 + δ2
sum)(1 + δa)2(1 + 2r/τ2

B)
,

where τ2
B = 2(log B)(1+δa)2 with δa = a′/

√
2 log B. Setting

a suitably small false alarm rate to not interfere with the
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accumulation of correct detections, the resulting δa is of order

[log log B +log snr]/(log B), so all three sources of rate drop

above, δ2
sum, δa and r/τ2

B are of order 1/ log B to within a

loglog factor. A relevant lemma is the following.

Lemma 2: Let xup be near 1 with 1−xup = (1/snr)(2r/τ2
B).

For any non-negative a, c, and r, with the rate given above,

the function g(x) − x for 0 ≤ x ≤ xup, is minimized at xup.

The proof is based on an evaluation of the integral

g(x) which has expression in terms of the variable z =
μx(cut C/R) which is one-to-one with x. The value xup

corresponds to a point zup = ζ with favorable properties.

Expressing the function in terms of z, one makes separate

treatment of the behavior for z ≤ −ζ, where the function is

close to decreasing, and for −ζ ≤ z ≤ +ζ, where the function

is close to symmetric, slightly skewed to be lower at +ζ.

The value of ζ is near c/2. Consider choices that

approximately optimize the overall rate, yielding ζ near√
log+((log B)/4π), at which the gap of g(x) − x at xup

is at least a value near (1/snr)(2r − 1/2)/τ2
B , positive for

r > 1/4. Moreover, choosing a such that the false alarm rate

f = 2f∗ equals (gap−η)2/4, so that the conditions of Lemma

1 are satisfied, it produces a value of δa of the indicated form.

Let’s state the result regarding reliability of the multi-step

adaptive successive decoder. The proof is based on the above-

mentioned normal approximation bound and a large deviation

bound for weighted combinations of Bernoulli random vari-

ables, for which one may see the full manuscript [6].

Theorem 3: Suppose the communication rate and power

allocation are such that g is accumulative, with g(x) − x > 0
on [0, x∗]. Pick ηk = η and f > f∗ such that the conditions

of Lemma 1 are satisfied, or more generally arrange q1,k =
g(qadj

1,k−1) − ηk so that the increase q1,k − q1,k−1 remains

positive for k < m. If the penultimate step m− 1 is such

that qadj
1,m−1 is the first with value at least x∗, then with

rem = 1 − q1,m, the m step single-dictionary decoder incurs

a fraction of errors less than mf + rem, except in an event

of probability not more than the sum for k from 1 to m of

e−LπD(q1,k‖q∗
1,k)+c0k + e−Lπ(B−1)D(p‖p∗) + e−(n−k+1)Dεk .

Here D(·‖·) refers to the Kullback-Leibler divergence between

two Bernoulli random variables; p, p∗ equal the corresponding

f, f∗ divided by B−1; and Dε = − log(1 − ε) − ε which

is at least ε2/2. Also εk = (nε−k+1)/(n−k+1), where

ε = 1 − (1 − h/
√

2 log(B) )2, and c0 = C. Moreover, Lπ =
1/ max� π�, approximately a constant multiple of L for the

designs investigated here.

To produce each step q1,k from q∗1,k, one may set a constant

difference ηk = η and invoke the bound D(q1,k‖q∗1,k) ≥ 2η2.

A preferred tactic, used in producing the curves shown earlier,

is each step to choose q1,k to produce constancy of the

exponent D(q1,k‖q∗1,k) at a prescribed value, equalizing the

contributions to the above probability bound from each step.
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