




942 

integers and the functions defined by (each bit ot) the 
addition of two such integers are functions in P [, with 
L(f) = d+ 1. It follows that C/, B .:; 27rd( d+ 1) for the 
comparison and addition functions. On the other hand, 
they show that the majority function 1 {L::= 1  xj -d/2} 
(which has a simple network representation) is not 
in the class PL. Kushilevitz and Mansour [27] show 
that a class of binary decision trees represent Boolean 
functions satisfying L(f) .:; Tn, where Tn is the nnmber 
of nodes of the tree. It follows that C /, B .:; nnd for 
such decision trees. Bellare [28] generalizes the results 
of [27] by allowing decision trees with more general 
P L functions implemented at the nodes of the tree. 
He gives bounds on L(f) in terms of spectral norms 
of the node functions, from which bounds on C /, B 
follow for the classes of decision trees he considers. 
The implication of polynomial bounds on C/, B, as a 
consequence of the bound 2C /, B / yin from Theorem 1, 
is that a polynomial rather than an exponential number 
of nodes n is sufficient for accurate approximation by 
sigmoidal networks. 

X. LoWER BOUNDS FOR ApPROXIMATION 

BY LINEAR SUBSPACES 

The purpose of this section is to present and derive a lower 
bound on the best approximation error for linear combinations 
of any fixed basis functions for functions in r c. These results, 
taken together with Theorem 1, show that fixed basis function 
expansion must have a worst-case performance that is much 
worse that that which is proven to be achievable by certain 
adaptable basis function methods (such as neural nets). 

Let /L be the uniform probability distribution on the unit 
cube B = [O, I]d , and let d(f, g) = U[o. l]' (f(.x) 
g(x))2 dx) I/2 be the distance between functions in L2 (/L, B). 
For a function f and a set of functions G, let d(f, G) = 
infYEG d(f, g) . For a collection of basis functions h1 , 
h2 , " ' , hn 

(56) 

denotes the error in the approximation of a function f by 
the best linear combination of the functions h1 ,  h2 , " " hn , 
where H" = span (hI ,  h2 , ' . " hn). The behavior of this 
approximation error for functions in r c = r c, B may be 
characterized (in the worse case) by 

(57) 

Here, a lower bound to this approximation error is determined 
that holds uniformly over all choices of fixed basis functions. 
In this formulation, the functions hi are not allowed to depend 
on f (in contrast, sigmoidal basis functions have nonlinear 
parameters that are allowed to be adjusted in the fit to f). Let 

Wn = infh" . .  ,hn SUP/Ere d(f, span (hI , h2 , " ' , hn)) . 
(58) 

This is the Kolmogorov n-width of the class of functions r c. 
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Theorem 6: For every choice of fixed basis functions 
hI , h2 , " ' , hn, 

(59) 

where r;, is a universal constant not smaller than 1/(81re7r-1 ) .  
Thus, the Kolmogorov n-width of  the class of  functions r c 
satisfies 

C ( l ) l/d W > r;,- -n - d n 
(60) 

The proof of Theorem 6 is based on the following Lemma. 
Lemma 6: No linear subspace of dimension n can have 

squared distance less than 1/2 from every basis function in an 
orthonormal basis of a 2n-dimensional space. 

Proof' For the proof of Lemma 6, it is to be shown 
that if e 1 , . . . , e2n is an orthonormal basis and Gn = span 
{gt , . . .  , g,, } is a linear subspace of dimension n, then there is 
an Cj such that the squared distance d2(ej , Gn) � 1/2. Indeed, 
Ie! P denote projection onto Gn. Then, d2(ej , Gn) = I lej 
Pej 1 1 2  = I l ej 1 1 2  - I IPej I l2 = 1 - 1 1 Pej 1 1 2 . Thus it is equivalent 
to show that there is an ej such that the norm squared of the 
projection satisfies I IPej l 1 2 .:; 1/2. Without loss of generality, 
take g1 , . . .  , gn to be an orthonormal basis of Gn. Then the 
projection Pej takes the form L:�=1 (ej , gi)gi . So the norm 
squared of the projection satisfies I IPej l 1 2 = L:�=I (ej ,  gi )2 .  
Taking the average for .i = 1 " " ,  2n, exchanging the order of 
summation, and using I lgi l l  = 1, yields 

-
2n 2 

(61) 

Since the average value of the norm squared of the projection 
I IPej l 1 2 is equal to 1/2, there must exist a choice of the basis 
function ej for some 1 .:; .i .:; 2n for which I IPej 1 1 2 � 1/2. 
This completes the proof of Lemma 6. D 

Proof of Theorem 6: Let ht,  h� , . . . be the functions 
cos (w . x) for w = 27rk for k E {a, 1, . . . }d ordered in terms 
of increasing h norm Ik l 1  = L:�=l lh l · Let H2n denote the 
span of h! , . . .  , h;n ' We proceed as follows. First reduce the 
supremum over rc by restricting to functions in H2n, then 
lower bound further by replacing the arbitrary basis functions 
h i ,  . . .  , hn with their projections onto H2n, which we denote 
by .111 , . . .  , gn ' Then gl , . . . , gn span an n-dimensional linear 
subspace of H2n and a lower bound is obtained by taking 
the infimum over all n-dimensional linear subspaces Gn . The 
supremum is then restricted to multiples of the orthogonal 
functions hi that belong to r c, which permits application of 
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the lemma. Thus, putting it all together, 

Wn = inf sup d(f, span (hI , h2 , · · · , hn)) 
h" . · · ,h" JEre 

� inf sup d(f, span (h1 , h2 , · · : , hn)) h , ,. · · ,h,, JEH;n n rc 
� inf sup d(f, span (gl ,  g2 , ' "  , gn)) 

h , , . · · ,h,, JEH;" n rc 
� inf sup d(f, Gn) 

Gn JEHin nrc 
� inf sup dU, Gn) 

Gn JE{(C/IWj l) cos (Wj "x) , j=l , . · ,2n} 

> min (�) - j=1,. · · ,2n 27r lkj l  
. (infGn sUPJE{COS (Wj .x) , j=1 , . . . ,2n} d(f, Gn)) 

> min (�) � - j=1, . . ,2n 27rlkj l  2 

> �  
- 47rm ' 

(62) 

for m satisfying (m;jd) � 2n (such that the number of 
multiindices with norm Ikl :::: m is at least 2n). A bound from 
Stirling's formula yields (m;jd) � (m/Td)d for a universal 
constant T ::::> e,,-l .  Setting m = ITdnl/dl and adjusting the 
constant to account for the rounding of m to an integer, the 
desired bound is obtained, namely, 

C ( l ) l/d 
W > -- -n - 87rTd n 

This completes the proof of Theorem 6. 

XI. CONCLUSION 

(63) 

o 

The error in the approximation of functions by artificial 
neural networks is bounded. For an artificial neural network 
with one layer of n sigmoidal nodes, the integrated squared 
error of approximation, integrating on a bounded subset of 
d variables, is bounded by cf / n, where cf depends on a 
norm of the Fourier transform of the function being ap
proximated. This rate of approximation is achieved under 
growth constraints on the magnitudes of the parameters of 
the network. The optimization of a network to achieve these 
bounds may proceed one node at a time. Because of the 
economy of number of parameters, order nd instead of nd, 
these approximation rates permit satisfactory estimators of 
functions using artificial neural networks even in moderately 
high-dimensional problems. 

APPENDIX 
In this appendix, equivalent characterizations of the class 

of functions r are given in the context of general Fourier 
distributions on Rd. This appendix is not needed for t!i.e proofs 
of the theorems in the paper. It is intended to supplement 
the understanding of the class of functions for which the 
approximation bounds are obtained. 

Recall that r is defined (in Section III) as the class of 
functions I on Rd such that I(x) = 1(0) + lRd (eiW X  -

I)F(dw) for some complex-valued measure F(dw) for which 
lRd Iw I IF(dw) l · Complex-valued measures take the form 
ei8(w) F(dw), for some real-valued measure F(dw) = IF(dw) 1  
called the magnitude distribution and some function (J(w) 
called the phase (see, for instance, Rudin [29, theorem 
6.12]). A complex vector-valued measure G(dw) on Rd is 
a vector of complex-valued measures (G1 (dw), " ' , Gd(dw)).  
Let IG(dw)h = L:�=l IGk(dw) 1  denote the sum of the 
magnitude distributions of the coordinate measures. 

Proposition: The following are equivalent for a function I 
on Rd. 

a) The gradient of I has the Fourier representation 
\l I(x) = 1 eiw xG(dw) for some complex vector-valued . 
measure G with I IG(dw) 1  < 00 and G({O}) = 0 (in 
which case it follows that G(dw) = iwF(dw) for some 
complex scalar-valued measure F). 

b) The function I has the representation I(x) = 1(0) + 
1 (eiw x - 1  )F( dw) for x E Rd, for some complex-valued 
measure F with l lw I IF(dw) 1  < DC .  

c) The increments of the function I of the form !h(:r;) = 
I(x + h) - I(x) have a Fourier representation Ih (X) = 
1 eiw'X (eiw.h - l)F(dw),  x E �, for each h E Rd, for 
some complex-valued measure F with l lwIF(dw) 1  < 
DC. 

If any one of a), b), or c) is satisfied for some F, then the 
other two representations hold with the same F. 

Proof' The proof of this proposition is as follows. First, 
recall that l eiw.h - 1 1 is bounded by 2hlw l , so 1 IwI IF(dw) 1 < 
00 implies the absolute integrability of the representations in 
b) and c). Now, b) implies c) since the difference of the 
integrands at x and x + h is integrable, and c) implies b) 
by taking a specific choice of x and h; consequently, b) and 
c) are equivalent. Next, a) follows from c) by the dominated 
convergence theorem; c) follows from a) by plugging the 
Fourier representation of the gradient into I(x + h) - I(x) = 

10
1 h . V I(x + th) dt and applying Fubini's theorem. 
It remains to show that in a), if the gradient of I has 

an absolutely integrable Fourier representation \l I (x) = 
1 eiw.xG(dw), and if G assigns no mass to the point w = 
0, then G ( dw) is proportional to w (that is, the measures 
(l/wk)Gk(dw) are the same for k = 1 ,  2, . . . , d). Now, 
if the gradient of I has an absolutely integrable Fourier 
representation, then so do the increments fh . Indeed, !h (x) = 
101 h . \l I(:r; + th) dt = J� h . lRd eiw.(x+th)G(dw) dt, 
and integrating first with respect to t yields Ih (x) = 
J�d eiW X « eiW h _ l)/iw . h)h · G(dw) (the exchange in order 
of integration is valid by Fubini's theorem since the integral 
of eit:.;·h is (eiw .h - l)/iw . h, which has magnitude bounded 
by 2). Thus, II. has a Fourier distribution 

It is argued that the factor h . G(dw)/h . w .determines a 
measure that does not depend on h (from which it follows 
that G(dw) is proportional to w). Now, the increments of I 
satisfy !h (X + Y) = ly+h (X) - Iy(x), so it follows that their 
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Fourier distributions satisfy 

eiw,y A (dw) = Fy+h(dw) + Fy (dw) (65) 

for all y, h E Rd, Examination of this identity suggests that 
A (dw) must be of the form (eiw'h - l)F(dw) for some 
measure l' which does not depend on h. Indeed, by (64), 
the measures Fh are dominated by IG I I  for all h, so (64) and 
(65) may be reexpressed as identities involving the densities 
of these measures with respect to IGl l '  Consequently, 

eiw Y(eiw'h _ 1 ) 
h ·  g(w) 

h · w  
= (eiw, (y-h) _ 1) 

(y + h) · g(w) 
(y + h) · w 

+ (eiw,y - l) y ' g(w)
, (66) y · w  

where g(w) is a complex vector-valued function such that 
G(dw) = g(w) IG(dw) l l '  (For each y and h in Rd, (66) 
holds-except possibly for a set of w of measure zero with 
respect to IG l l-so if y and h are restricted to a countable 
dense set, then there is one I G 1 1 -null set outside of which 
(66) holds for all such y and h.) Now take a derivative in 
(66), replacing h with th, dividing both sides by t, and letting 
i -t 0 (along a countable sequence of values with th restricted 
to the dense set). The identity that results from this derivative 
calculation, after a rearrangement of the terms, is 

W . h ( eiW ,y - 1 _ ieiW,y) ( h ' 9(W) _ y , g(w) ) = 0 . (67) w · y  h · w  y · w  
Therefore, h . g(w)/h · w = y . g(w)/y . w, whenever h . w 
and y . w are not equal to zero (for y and h in the countable 
dense set and for almost every w). Let p( w) = y . g( w) / y . w 
denote the common value of this ratio for all such y (for w 
outside of the null set). Then, y .  (g(w) - wp(w») = 0; so 
taking d points y which span Rd, it fol lows that yew) = wp(w) 
for almost every w. Consequently, G(dw) = wp(wllG(dw) l l , 
which may be expressed in the form G(dw) = iwF(dw) for 
some complex-valued measure l' on Rd. This completes the 
proof of the proposition. 0 

The usefulness of the above proposition is that it provides 
a Fourier characterization of l' for functions in r in the 
case that I 11'( dw) I is not necessarily finite. It is the unique 
complex-valued measure such that G(dw) = iwF(dw), where 
G is the Fourier distribution of the gradient of the function. 
For several of the examples in Section IX of functions in r, 
including sigmoidal functions, the function f does not possess 
an integrable Fourier representation (in the traditional form 
f(x) = I eiw,x F(dw» , but the gradient of f does possess 
an integrable Fourier representation, and in this way F is 
determined for the mQdified Fourier representation f(.T) = 
f(O) + I(eiw.", - l)F(dw) . 

A Remark Concerning Functions with a Linear Component: 
If the Fourier distribution G of the gradient of the function f 
has G( {O}) # 0, that is, if the gradient has a nonzero constant 
component, then (strictly speaking) the function f is not in r, 
Nevertheless, it is possible to treat this more general situation 
by using the representation f(x) = f(O) + a ·  x + I(ei,"'x -
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l)F(dw), where a = G({O}), and F(dw) is characterized by 
G(dw) = iwF(dw) on Rd - {O}. The component a . x is 
approximated by linear combinations of sigmoidal functions 
in the same way as the sinusoidal components as in the proof 
of Theorem 1. Now let Cj• B = I IG(dw) IB,  where IGIB is 
the measure that assigns mass IG( to} ) IB  = la lB at w = 0, 
and that equals IG(dw) IB  = Iw IB I IF(dw) 1  when restricted to 
Rd - {O} (recall that, by definition, lalB = SUPXEB la . xj). It 
can be shown in this context that there is a linear combination 
of n sigmoidal functions fn(x) of the form (1), such that the 
L2 (p" B) norm of the error f - fn is bounded by 2Cj, B/..;n. 
The same bound can also be obtained by the extrapolation 
method in example (14). 

Additional Remarks: In the case that the distribution l' 
has an integrable Fourier density jew), there is a forward 
transform characterization in terms of Gaussian summability, 
that is, 

for almost every w (see, for instance, Stein and Weiss 
[30]). In the same way, iwJcw) is determined as the 
Gauss-Fourier transform of \l f(x) for functions in r in the 
case that Fourier distribution of the gradient is absolutely 
continuous. If f(x) or \l f(x), respectively, is integrable on 
Rd, then j (w) is determined by an ordinary forward transform, 
that is, ](w) = (27f) -d I e-iW'Xf(x) dx or iwJ(w) = 

(27r)-d I e-i"" X\lf(x) dx for almost every w. 
Note Added in Proof: A factor of two improvement in the 

constant in the approximation bound can be obtained.Indeed, 
if rj;(z) is a given sigmoid with range in [0,1 ], then subtracting 
a constant of 1/2 yields a sigmoid with range in [-1/2, 1/2. 
Allowing for a change in the additive constant Co, the class of 
functions represented by superpositions of this new sigmoid 
is the same as represented by superpositions of the original 
sigmoid. Therefore, an approximation bound using the new 
one also is achievable by the original sigmoid. Now the new 
sigmoid has norm bounded by 1/2 instead ofl. Applying this 
fact in the proof of Theorem 1 yields the existence of a network 
function f n (x) of the form (1) such that 

J 2 ch (f(x) - fn(x) ti(dx) � � .  
B 

(69) 

Other scales for the magnitude of the sigmoid are also permit
ted, including popular choices with for whieh rj;(z) has limits 
±1 as z -t ±oo. In that case, the bound (69) holds with the 
constraint on the coefficients of fn that :L:�=1 I Ck I� C, 
provided the spectral norm satifies Cj,B � C, 
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