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Abstract— We review recently developed theory for the Mini-
mum Description Length principle, penalized likelihood and its
statistical risk. An information theoretic condition on a penalty
pen(f) yields the conclusion that the optimizer of the penalized log
likelihood criterion log 1/likelihood(f) + pen(f) has risk not more
than the index of resolvability, corresponding to the accuracy
of the optimizer of the expected value of the criterion. For the
linear span of a dictionary of candidate terms, we develop the
validity of description-length penalties based on the `1 norm
of the coefficients. New results are presented for the regression
case. Other examples involve log-density estimation and Gaussian
graphical statistical models.

I. INTRODUCTION

From information theory and statistics the demand for high-
quality data compression and accurate statistical estimation
has led to the minimum description-length (MDL) principle as
reviewed for instance in [7] and [12]. An application of this
principle leads to a penalized likelihood criterion, optimizing
log 1/pf (data)+pen(f), where pen(f) is related to the length
of a description of candidate functions and log 1/pf (data)
(rounded up to an integer) is the length of the Shannon code
for data given f . Building on earlier work [4], [16], in a recent
paper [5] (see also [6]), joint with Cong Huang and Jonathan
Li, we analyzed the statistical risk of penalized least squares
and its relationship to the redundancy of data compression and
exhibited the tradeoff between the accuracy of approximation
and the level of complexity of candidate functions f . For this
presentation (at the Workshop on Information Theoretic Meth-
ods in Science and Engineering, Tampere, Finland, August
2008) we briefly review the main conclusion of that work
and give new implications for penalties based on `1 norms of
coefficients in regression models based on linear combinations
of terms.

The setting is as follows. The data may come from a general
sample space U . It is traditional to think of finite length strings
U = Un = (U1, U2, . . . , Un), consisting of a sequence of
outcomes X1, X2, . . . , Xn or outcome pairs (Xi, Yi)n

i=1. We
write PU |f (or more briefly Pf ) for the distributions on U
indexed by functions f in some collection F . Likewise EU |f
or more briefly Ef denotes the expected value. When being
explicit about sample size, we index by n, as in PUn|f or P

(n)
f .

These distributions are assumed to have density functions
p(u|f) = pf (u), relative to a fixed reference measure, which
provides the likelihood function of f at data U . The reference
measure is assumed to be a product of measures on the
individual spaces. For the special case of i.i.d. modeling, there
is a space U for the individual outcomes with distributions
P

(1)
f = Pf and then U is taken to be the product space Un

and PUn|f = Pn
f is taken to be the product measure with joint

density pf (un) =
∏n

i=1 pf (ui).
The Kullback divergence and a Bhattacharyya, Rényi,

Hellinger divergence are used in examining the quality of
statistical estimates and data compression. The Kullback diver-
gence D(PU‖QU ) = E log p(U)/q(U) is the total expected
redundancy for data U described using q(u) but governed
by a density p(u). Likewise the Bhattacharyya, Hellinger,
Rényi divergence [8], [11], [19] is given by d(PU , QU ) =
2 log 1/

∫
(p(u)q(u))1/2. We use Dn(f∗, f) and dn(f∗, f) to

denote the divergences between the joint distributions PU |f∗

and PU |f . In the i.i.d. modeling case these take the form
Dn(f∗, f) = nD(f∗, f) and dn(f∗, f) = nd(f∗, f), re-
spectively, where D(f∗, f) and d(f∗, f) are the divergences
between the single observation distributions PU1|f∗ and PU1|f .
The divergences measure how well f approximates f∗.

Writing D(P ||Q) = −2E log(q(U)/p(U))1/2 and employ-
ing Jensen’s inequality shows that D(P‖Q) ≥ d(P,Q). The
relationship to the squared Hellinger distance H2(P,Q) =∫

(p(u)1/2 − q(u)1/2)2 is d(P,Q) = −2 log(1− 1
2H2) which

is not less than H2(P,Q). These divergences upper bound the
square of the L1 distance. Moreover, d(P,Q) is locally equiva-
lent to the Kullback-Leibler divergence when log p(u)/q(u) is
upper-bounded by a constant. Moreover, it evaluates to familiar
quantities in special cases, e.g., for two normals of mean µ
and µ̃ and variance σ2, it is 1

4 (µ−µ̃)2/σ2. The most important
reason for our use of the Bhattacharyya, Rényi, Hellinger loss
function is that it allows clean examination of the risk, without
putting any conditions on the density functions pf (u).

Two-stage codes were used in the original formulation of the
MDL principle [20], [21] and in the analysis of [4]. One works
with a countable set of possible functions, perhaps obtained
by discretization of the underlying family F . In this case



the requirement on the penalty is that it corresponds to the
length of a description, which means satisfaction of the Kraft
inequality

∑
f 2−pen(f) ≤ 1. Then, for each function f and

data U , one has a two-stage codelength pen(f)+log 1/pf (U)
corresponding to the bits of description of f followed by the
bits of the Shannon code for U given f . Then the minimum
total two-stage codelength takes the form

min
f

{
log

1
pf (U)

+ pen(f)
}

.

A minimizer f̂ is called the minimum complexity estimator
for density estimation [4] and it is also called the complexity
regularization estimator for regression and classification prob-
lems [1].

Typical behavior of the minimal two stage codelength is
revealed by investigating what happens when the data Un are
distributed according to pf∗(un) for various possible f∗. It is
helpful to have a notion of a surrogate function f∗n, appropriate
to the current sample size n, which best resolves f∗. The
appropriateness of such an f∗n is judged by whether it captures
expected compression and estimation properties of the target.

The redundancy rate of the two-stage description is shown
in [4] to be not more than the index of resolvability defined
by

Rn(f∗) = min
f

{
1
n

D(PUn|f∗ ||PUn|f ) +
1
n

pen(f)
}

.

For i.i.d. modeling it takes the form

Rn(f∗) = min
f

{
D(f∗, f) +

pen(f)
n

}
,

capturing the ideal tradeoff in error of approximation of f∗

and the complexity relative to the sample size. The function
f∗n which achieves this minimum is the population counterpart
to the sample-based f̂ . It best resolves the target for the given
sample size. Since f̂ is the sample-based minimizer, one has an
inequality between the pointwise redundancy and a pointwise
version of the resolvability

log
pf∗(U)
pf̂ (U)

+ Ln(f̂) ≤ log
pf∗(U)
pf∗n(U)

+ Ln(f∗n).

The resolvability bound on the expected redundancy is the
result of taking the expectation of this pointwise inequality.

This Rn(f∗) also bounds the statistical risk of f̂ , as we re-
call. First we recall such a risk bound for penalized likelihood
with a countable set F̃ of candidate functions. Henceforth
we use base e exponentials and logarithms to simplify the
mathematics (the units for coding interpretations become nats
rather than bits). The following result originates in Jonathan
Li’s thesis [16] and is proven also in [5], [6], [15], [12].

Theorem 1.1: Resolvability bound on risk. For a count-
able F̃ , suppose pen(f) ≥ 2Ln(f) where Ln(f) satisfies∑

f∈F̃ e−Ln(f) ≤ 1 and let f̂ be the estimator achieving

min
f∈F̃

{
log

1
pf (Un)

+ pen(f)
}

.

Then, for any target function f∗ and for all sample sizes, the
expected divergence of f̂ from f∗ is bounded by the index of
resolvability

Edn(f∗, f̂) ≤ min
f∈F̃

{Dn(f∗, f) + pen(f) }.

In particular with i.i.d. modeling, the risk satisfies

Ed(f∗, f̂) ≤ min
f∈F̃

{
D(f∗, f) +

pen(f)
n

}
.

Corollary 1.2: If, in the i.i.d. case, the log density ratios are
bounded by a constant B, that is, if | log pf∗(u)/pf (u)| ≤ B
for all f ∈ F̃ , then there is a constant CB ≤ 2 + B such that
the Kullback risk satisfies

ED(f∗, f̂) ≤ CB min
f∈F̃

{
D(f∗, f) +

pen(f)
n

}
.

Corresponding results for uncountable F were developed in
[5], [6], allowing application to optimization over real-valued
parameters in standard statistical models. In that analysis an
important role is played by a measure of the discrepancy
between empirical and population values of the log-likelihood
ratio at a candidate f . As explained there it is given by

dis(f) = log
pf∗(U)
pf (U)

− 2 log
1

E(pf (U)/pf∗(U))1/2
.

In the proof of Theorem 1.1 from the countable case, if
an information-theoretically valid penalty pen(f) is added to
the discrepancy, then uniformly in f (i.e., even with a data-
based f̂ in place of a fixed f ) the expectation of the penalized
discrepancy is positive.

This leads to consideration, in the uncountable case, of
penalties which exhibit a similar discrepancy control. We say
that a collection F with a penalty pen(f) for f ∈ F has
a variable–complexity variable–discrepancy cover suitable for
pf∗ if there exists a countable F̃ and L(f̃) = 2L(f̃) satisfying∑

f̃ e−L(f̃) ≤ 1, such that the following condition (∗) holds
for all U :

inf
f̃∈F̃

{
dis(f̃) + L(f̃)

}
≤ inf

f∈F

{
dis(f) + pen(f)

}
.

(∗)
This condition captures the aim that the penalty in the uncount-
able case mirrors an information-theoretically valid penalty in
the countable case. The above condition gives what we want
because the minimum over the countable f̃ is shown to have
non-negative expectation and so the minimum over all f in F
will also.

Equivalent to condition (∗) the following characterization
(∗∗) is convenient. For each f in F there is an associated
representer f̃ in F̃ for which

pen(f) ≥ log
pf (U)
pf̃ (U)

−2 log
E(pf (U)/pf∗(U))1/2

E(pf̃ (U)/pf∗(U))1/2
+2L(f̃) .

(∗∗)
The idea is that if f̃ is close to f then the discrepancy
difference is small. Then the complexity of such f̃ along
with the discrepancy difference assesses whether a penalty
pen(f) is suitable. The minimizer in F̃ depends on the data



and accordingly we allow the representer f̃ of f to also have
such dependence. With this freedom, in cases of interest, the
variable complexity cover condition indeed holds for all U ,
though it would suffice for our purposes that (*) hold in
expectation.

One strategy to verify the condition would be to create a
metric-based cover of F with a metric chosen such that for
each f and its representer f̃ one has | log pf (U)/pf̃ (U)| plus
the difference in the divergences arranged if possible to be
less than a distance between f and f̃ . Some examples where
this can be done are in [4]. Such covers give a metric entropy
flavor, though the L(f̃) provides variable complexity rather
than the fixed log-cardinality of metric entropy.

Condition (∗∗) specifies that there be a cover with variable
distortion plus complexity rather than a fixed distance and
fixed cardinality. This is analogous to the distortion plus rate
tradeoff in Shannon’s rate-distortion theory. In our treatment,
the distortion is the discrepancy difference (which does not
need to be a metric), the codebook is the cover F̃ , the
codelengths are the complexities L(f̃). Valid penalties pen(f)
exceed the minimal sum of distortion plus complexity.

The generalization of Theorem 1.1 to the case of uncount-
able F , is the following.

Theorem 1.3: Consider F and pen(f) satisfying the dis-
crepancy plus complexity requirement (∗) and the estimator f̂
achieving the optimum penalized likelihood

min
f∈F

{
log

1
pf (U)

+ pen(f)
}

.

If the data U are distributed according to PU |f∗ , then

Edn(f∗, f̂) ≤ min
f∈F

{
E log

pf∗(U)
pf (U)

+ pen(f)
}

.

In particular, for i.i.d. modeling,

Ed(f∗, f̂) ≤ min
f∈F

{
D(f∗, f) +

pen(f)
n

}
.

II. Information-theoretic validity of `1 penalty for
log-densities

Before giving the new implication for regression, we recall
first in this section the implication for log-density estimation.

In this case f models the log density function of indepen-
dent random variables X1, . . . , Xn, in the sense that for some
reference density p0(x) we have

pf (x) =
p0(x) e f(x)

cf

where cf is the normalizing constant. Examining the difference
in discrepancies at f and a representing f̃ we see that both
p0(x) and cf cancel out. What remains for our penalty
requirement is that for each f in F there is a f̃ in a countable
F̃ with complexities L(f̃) for which

pen(f) ≥

2L(f̃)+
n∑

i=1

(f(Xi)−f̃(Xi))+2n log E exp{ 1
2 (f̃(X)−f(X))}

where the expectation is with respect to a distribution for X
constructed to have density which is the normalized pointwise
affinity pa(x) = [pf∗(x)pf (x)]1/2/A(f∗, f).

In this section we illustrate how to demonstrate the existence
of such representers f̃ using an `1 penalty on coefficients
in representation of f in the linear span of a dictionary of
candidate basis functions.

Let F be the linear span of a dictionary H of functions.
Thus any f in F is of the form f(x) = fθ(x) =

∑
h θhh(x)

where the coefficients are denoted θ = (θh : h ∈ H). We
assume that the functions in the dictionary are bounded. We
want to show that a weighted `1 norm of the coefficients
||θ||1 =

∑
h |θh|ah can be used to formulate a valid penalty.

Here we use the weights ah = ‖h‖∞. For f in F we denote
Vf = min{‖θ‖1 : fθ = f}. With the definition of Vf further
extended to a closure of F , this Vf is called the variation of
f with respect to H. We will show that certain multiples of
Vf are valid penalties.

The dictionary H is a finite set of p candidate terms,
typically much larger than the sample size. As we shall see,
the codelengths of our representers will arise via a variable
number of terms times the log cardinality of the dictionary.
Accordingly, for sensible risk bounds, it is only the logarithm
of p, and not p itself, that we need to be small compared to
the sample size n.

A valid penalty will be seen to be a multiple of Vf ,
by arranging the number of terms in the representer to be
proportional to Vf and by showing that a representer with that
many terms suitably controls the discrepancy difference. We
proceed now to give the specifics.

The countable set F̃ of representers is taken to be the set
of all functions of the form f̃(x) = V 1

K

∑K
k=1 hk(x)/ahk

for terms hk in H ∪ −H ∪ {0}, where the number of terms
K is in {1, 2, . . .} and the nonnegative multipliers V will be
determined from K in a manner we will specify later. We let
p be the cardinality of H ∪−H ∪ {0}, allowing for h or −h
or 0 to be a term in f̃ for each h in H.

The main part of the codelength L(f̃) is K log p nats to
describe the choices of h1, . . . , hK . The other part is for the
description of K and it is negligible in comparison, but to
include it simply, we may use a possibly crude codelength
for the integer K such as K log 2. Adding these contributions
of K log 2 for the description of K and of K log p for the
description of f̃ given K, we have

L(f̃) = K log(2p).

To establish existence of a representer f̃ of f with the de-
sired properties, we put a distribution on choices of h1, . . . , hK

in which each is selected independently, where hk is h with
probability |θh|ah/V (with a sign flip if θh is negative). Here
K = Kf = dVf/δe is set to equal Vf/δ rounded up to the
nearest integer, where Vf =

∑
h |θh|ah, where a small value

for δ will be specified later. Moreover, we set V = Kδ, which
is Vf rounded up to the nearest point in a grid of spacings δ.
When Vf is strictly less than V there is leftover an event of
probability 1− Vf/V in which hk is set to 0.



As f varies, so does the complexity of its representers. Yet
for any one f , with K = Kf , each of the possibilities for
the terms hk produces a possible representer f̃ with the same
complexity Kf log 2p.

The key property of our random choice of f̃(x) representing
f(x) is that, for each x, it is a sample average of i.i.d. choices
V hk(x)/ahk

. Each of these terms has expectation f(x) and
variance V

∑
h |θh|h2(x)/ah − f2(x) not more than V 2.

As the sample average of K such independent terms, f̃(x)
has expectation f(x) and variance (1/K) times the variance
given for a single draw. We will also need expectations of
exponentials of f̃(x) which is made possible by the represen-
tation of such an exponential of sums as the product of the
exponentials of the independent summands.

The existence argument proceeds as follows. The quantity
we need to bound to set a valid penalty is the minimum over
F̃ of the complexity-penalized discrepancy difference:

2L(f̃) +
n∑

i=1

(f(Xi)− f̃(Xi)) + 2n log
∫

p(x)e(f̃(x)−f(x))/2

where p(x) = pa(x) is a probability density function as spec-
ified in the preceding section. The minimizing f̃ gives a value
not more than the expectation over random f̃ obtained by the
sample average of randomly selected hk. We condition on the
data X1, . . . Xn. The terms f(Xi) − f̃(Xi) have expectation
0 so it remains to bound the expectation of the log term. It is
less than or equal to the log of the expectation, so we bring
that expectation inside the integral. Then at each x we examine
the expectation of the exponential of 1

2 [f̃(x)− f(x)]. By the
independence and identical distribution of the K summands
that comprise the exponent, the expectation is equal to the Kth
power of the expectation of exp{ 1

2K [V h(x)/ah − f(x)]} for
a randomly drawn h.

We now take advantage of classical bound of Hoeffding,
easily verified by using the series expansion of the exponential.
If T is a random variable with range bounded by B, then
E exp{ 1

K (T − µ)} ≤ exp{ B2

8K2 }.
Let R(x) = maxh h(x)/ah − minh h(x)/ah be the range

of h(x)/ah as h varies for the given x, which is uniformly
bounded by 2. At x given, T = 1

2V h(x)/ah is a random
variable, induced by the random h, having range V

2 R(x).
Then at the given x, using the Hoeffding inequality gives
that the expectation of exp{ 1

2 (f̃(x) − f(x))} is bounded by
exp{ (V R(x))2

32K } which is not more than exp{ V 2

8K }.
The expectation of the log of the integral of this exponential

is bounded by V 2

8K or equivalently 1
8V δ. When multiplied by

2n, it yields a discrepancy difference bound of

1
4n V δ,

where V is not more than Vf + δ.
Now twice the complexity plus the discrepancy bound has

size 2K log(2p) + 1
4nVfδ + 1

4nδ2, which, with our choice of
K = dVf/δe not more than Vf/δ +1, shows that a penalty of
the form

penn(f) ≥ λVf + C

is valid as long as λ is at least 2
δ log(2p) + 1

4nδ and C =
2 log(2p) + 1

4nδ2. We set δ = ( 8 log 2p
n )1/2 as it optimizes

the bound on λ producing a critical value λ∗n equal to
(2n log 2p)1/2 and a value of C = 4 log(2p). The presence
of the constant term C in the penalty does not affect the
optimization that produces the penalized likelihood estimator,
that is, the estimator is the same as if we used a pure `1 penalty
equal to λVf . Nevertheless, for application of our theory giving
risk bounds, the C found here is part of our bound.

We summarize the conclusion with the following Theorem.
The setting is as above with the density model pf (x) with
exponent f(x). The estimate is chosen with f in the linear span
of the dictionary H. The data are i.i.d. according to pf∗(x).

Theorem 2.1: The `1 penalized likelihood estimator f̂ = fθ̂
achieving

min
θ

{
log

1
pfθ

(Xn)
+ λn||θ||1

}
,

or, equivalently,

min
f

{
log

1
pf (Xn)

+ λn Vf

}
,

has risk Ed(f∗, f̂) bounded for every sample size by

Rn(f∗) ≤ inf
f∈F

{
D(f∗, f) +

λnVf

n

}
+

4 log 2p

n

provided λn

n ≥
[

2 log(2p)
n

]1/2

.
In particular, if f∗ has finite variation Vf∗ then for all n,

Ed(f∗, f̂) ≤ Rn(f∗) ≤ λnVf∗

n
+

4 log 2p

n
.

Note that the last term 4 log 2p
n , is typically negligible compared

the main term, which is near[
2 log 2p

n

]1/2

Vf∗ .

Not only does this result exhibit [(log p)/n]1/2 as the rate of
convergence, but also it gives clean finite sample bounds.

Even if Vf∗ is finite, the best resolvability can occur
with simpler functions. In fact, until n is large compared to
V 2

f∗ log p, the index of resolvability will favor approximating
functions f∗n with smaller variation.

In this section we have demonstrated the validity of an `1
penalty for log-densities for bounded functions in the dictio-
nary. We would also like to deal with unbounded functions
satisfying certain moment conditions, as arises in the Gaussian
graphical models. In a separate work by Xi Luo, `1 is also
a valid penalty for such Gaussian graphical models verified
using Bernstein’s moment condition valid for the Gaussian
distribution.



III. Information-theoretic validity of `1 penalty for
regression

Now consider the linear regression case with fixed design.
At each xi we seek a fit f(xi) to a corresponding outcome
Yi. We use the Gaussian model of independent outcome
Y1, . . . , Yn with joint density function

pf (y|x) =
1

(2πσ2)(n/2)
exp

{
−

∑n
i=1 (yi − f(xi))

2

2σ2

}
.

The case of fixed (known) variance σ2 is considered first. In
this setting, the divergence d(PY |x,f∗ , PY |x,f ) for fixed x can
be written explicitly as

1
4σ2

n∑
i=1

(f(xi)− f∗(xi))2.

Then in accordance with (∗∗) we check validity of a penalty
pen(f) by verifying for a suitable representer f̃ that

pen(f) ≥ 2L(f̃)+
1

2σ2

n∑
i=1

[
(yi − f̃(xi))2 − (yi − f(xi))2

]
− 1

4σ2

n∑
i=1

[
(f∗(xi)− f̃(xi))2 − (f∗(xi)− f(xi))2

]
.

In this section we adapt the general strategy developed in
the previous section to the regression setting to demonstrate
that the `1 penalty on coefficients with suitable multipliers
is also an information-theoretic penalty for regression. The
result presented here is fascinating for us as it also reveals
what penalty parameter λ should employed for `1 penalized
regression to be justifiable for the MDL interpretation and
statistical risk analysis.

We allow the weights ah in this section to be empirical `2
norm ‖h‖x where ‖h‖2

x = 1
n

∑
i h(xi) instead of ‖h‖∞ in the

previous section. we no longer need a bounded range condition
nor an appeal to the Hoeffding inequality. The same sampling
strategy for generating a random f̃ also applies here.

We bound similarly the minimum over F̃ of the complexity-
penalized discrepancy difference by the quantity obtained
by the sample average of randomly selected hk. For the
discrepancy difference, adding and subtracting f(xi) in each
square, the squared terms of yi − f(xi) and f∗(xi) − f(xi)
cancel out when expanding out the squares and their cross
product terms with (f(xi)−f̃(xi)) vanish in expectation under
the random f̃(xi). What remains for the expected discrepancy
difference is the expectation of

1
4σ2

n∑
i=1

(f̃(xi)− f(xi))2.

Each summand (f̃(xi) − f(xi))2 for fixed xi under random
f̃ has mean not more than the (1/K) times the bound
V

∑
h |θh|h2(xi)/ah on the variance given for a single draw

h. The aggregated bound over xi yields

V

4σ2K

n∑
i=1

∑
h

|θh|h2(xi)/ah =
nV Vf

4σ2K

where n appearing in the equality is by the fact that∑n
i=1 h2(xi)/a2

h = n for each h.
Now the discrepancy difference plus twice the complexity

penalty is bounded by

2K log(2p) +
nV Vf

4σ2K
.

With our choice of K = dVf/δe = V/δ not more than Vf/δ+
1, we show that the penalty of the form

pen(f) ≥ λVf + C

is valid as long as λ is not smaller than
2Vf (log 2p)/δ + nVfδ/(4σ2) and C = 2 log(2p). Setting
δ = 2σ(2(log 2p)/n)(1/2) to optimize the bound for λ, the
critical value is λ∗ = (2n log(2p))(1/2)/σ and our analysis
shows that `1 is valid as long as the penalty parameter
exceeds λ∗.

Consequently we have a simple risk bound for this re-
gression setting with fixed design and known variance σ2. In
particular, the Kullback divergence and Bhattacharyya, Rényi,
Hellinger divergence measuring the density distance can be
explicitly written in the form of squared errors.

Theorem 3.1: The `1 penalized least squares estimator f̂ =
fθ̂ achieving

min
θ

{
1
n

n∑
i=1

(yi − fθ(xi))2 + 2σ
λn

n
||θ||1

}
has the following risk bound

E‖f̂ − f∗‖2
x

≤ 2 inf
θ

{
‖fθ − f∗‖2

x + 2σ
λn

n
‖θ‖1

}
+

8σ2 log(2p)
n

provided that λn

n ≥
[

2 log(2p)
n

]1/2

.
Next we generalize the result to the unknown σ case.

Following the MDL principle we are motivated to estimate
(f̂ , σ̂2) by optimizing

1
2σ2

1
n

n∑
i=1

(yi − f(xi))2 +
1
2

log 2πσ2

+
1
σ

λn

n
‖θ‖1 +

pen(σ2)
n

where the first two terms form the − 1
n log likelihood and

the next term is the penalty used in the fixed σ2 case. With
pen(f, σ2) similar to this, we show that such an optimization
indeed satisfies the requirement (∗∗) for validity of statistical
risk analysis. For the representer (f̃ , σ̃2) in a countable cover,
we adapt the same strategy of random K-term f̃ and use for
σ̃2 of a logarithmic discretization of σ2, that is, log σ̃2 =
b(log σ2)/εcε = K ′ε with the choice of ε to be specified
and K ′ an integer. We set the codelength in this case to
be L(f̃ , σ̃2) = K log(2p) + 2 log(K ′ + 1) where we crudely
encode K ′ by 2 log(K ′+1) for simplicity. The Bhattacharyya,



Rényi, Hellinger divergence d(PY |X,f∗,σ∗ , PY |X,f,σ) can be
written explicitly as

1
2(σ2 + σ∗2)

n∑
i=1

(f(xi)− f∗(xi))2 + log
σ2 + σ2

∗

2
√

σ2σ2
∗
.

Now checking (∗∗) involves the difference of these diver-
gences at (f, σ2) and at (f̃ , σ̃2) as well as the differences in the
log-likelihood. Some of the resulting terms in the difference
are negative (can can be dropped) by our choice of σ̃2 not
more than σ2 (by rounding down). What remains to verify is
that

pen(f, σ2) ≥

2L(f̃ , σ̃2) +
n∑

i=1

[
(yi − f̃(xi))2

2σ̃2
− (yi − f(xi))2

2σ2

]

−
n∑

i=1

[
(f∗(xi)− f̃(xi))2

2(σ2
∗ + σ̃2)

− (f∗(xi)− f(xi))2

2(σ2
∗ + σ2)

]
.

To show existence of a suitable representer f̃ we bound
again the sample average version. The same bound for
(f̃(xi) − f(xi))2 is used and we drop all non-positive terms
for cleanness. The discrepancy difference plus twice the com-
plexity is then bounded by

1
2σ2

[
(eε − 1)

n∑
i=1

(yi − f(xi))2 + eε nV Vf

K

]
+ 2K log(2p) + 2 log(K ′ + 1).

With K ′ = b(log σ2)/εc ≤ (log σ2)/ε and K = V/δ ≤
Vf/δ + 1, we set δ = 2σ((log 2p)/n)1/2e−ε/2 to optimize
the bound assuming ε fixed first. For simplicity, we pick ε =
1/(2n) to optimize over ε crudely and use e1/2n < 1+1/n to
simplify the multiplying constants. The resulting satisfactory
penalty requirement takes the form

pen(f, σ2) ≥ 1
2σ2

‖y − f‖2
x +

λVf

σ
+ 2 log σ2 + 2 log(4pn),

valid as long as λ ≥ (2 + 1
n )

√
n log(2p), where we denote

‖y−f‖2
x = 1

n

∑n
i=1(yi−f(xi))2. The main part of this penalty

is the λVf/σ term with the
√

n factor; the other terms are of
lower order. Recall that for f = fθ the Vf is determined by
the `1 norm ‖θ‖1.

Consequently we have the following theorem.
Theorem 3.2: The `1 penalized least squares estimator f̂ =

fθ̂ achieving

min
θ,σ

{
1

2σ2
(1 +

1
n

)
1
n

n∑
i=1

(yi − fθ(xi))2

+
λn

nσ
||θ||1 +

log(σ2)
2

(1 +
4
n

)
}

,

has the following risk bound

1
n

Ed(PY |x,f∗,σ∗ , PY |x,f̂ ,σ̂)

≤ inf
θ,σ2

{
1
n

D(PY |x,f∗,σ∗ ||PY |x,fθ,σ) +
λn

nσ
‖θ‖1

+
‖y − fθ‖2

x

2σ2n
+

2 log σ2

n

}
+

2 log(4pn)
n

.

provided that λn

n ≥ (2 + 1
n )

√
log(2p)/n.

COMMENT ON COMPUTATION FOR REGRESSION: The op-
timization producing θ̂, σ̂2 in Theorem 3.2 is reasonably
straightforward. Each value of σ2 corresponds to a multiplier
of the `1 penalty. For each value of σ2 one may optimize
over θ by standard `1-penalized least squares algorithms. A
particularly fast such method with computational guarantees
is the greedy algorithm in the manuscript [13], the log-
likelihood version of it is in section IV below. Then rather
than picking the multiplier by some auxiliary cross-validation
method, MDL chooses it (or equivalently chooses the single
parameter σ2) to optimize the above criterion.

Alternatively, we note that for θ the best σ2 = σ2
fθ

solves
a quadratic

(1 +
4
n

)σ2 = σ
λn

n
‖θ‖1 + (1 +

1
n

)‖y − fθ‖2
x.

Whence one may plug in the solution σ2
fθ

and optimize the
resulting function of θ above.

IV. GREEDY COMPUTATION FOR LOG-DENSITIES
ESTIMATION

Again for log-density estimation, consider a relaxed greedy
algorithm in which we successively optimize the `1 penalized
likelihood one term at a time, optimizing choices of α, β and
h in the update

f̂k(x) = (1− α)f̂k−1(x) + βh(x)

for each k = 1, 2, . . .. Our result is that it solves the `1
penalized likelihood optimization, with a guarantee that after
k steps we have a k component mixture within order 1/k of
the optimum. Similar results for `1 penalized least squares
are in [13]. Indeed, one initializes with f̂0(x) = 0 and
v0 = 0. Then for each step k, ones optimizes α, β, and
h to provide the the kth term hk(x). At each iteration one
loops through the dictionary trying each h ∈ H, solving for
the best associated scalars 0 ≤ α ≤ 1 and β ∈ R, and
picks the h that best improves the `1 penalized log-likelihood,
using vk = (1 − α)vk−1 + |β| ahk

as the updated bound on
the variation of f̂k. This is a case of what we call an `1
penalized greedy pursuit. This algorithm solves the penalized
log-likelihood problem, with an explicit guarantee on how
close we are to the optimum after k steps. Indeed, for any
given data set X and for all k ≥ 1,

1
n

[
log

1
pf̂k

(X)
+ λvk

]
≤



inf
f

{
1
n

[
log

1
pf (X)

+ λVf

]
+

2V 2
f

k + 1

}
,

where the infimum is over functions in the linear span of
the dictionary, and the variation corresponds to the weighted
`1 norm ‖θ‖1 =

∑
h∈H |θh|ah, with ah set to be not less

than ‖h‖∞. This inequality shows that f̂k has penalized log-
likelihood within order 1/k of the optimum.

This computation bound for `1 penalized log-likelihood
is developed in the Yale thesis research of one of us, Xi
Luo, adapting some ideas from the corresponding algorithmic
theory for `1 penalized least squares from [13]. The proof of
this computation bound and the risk analysis given above have
aspects in common. So it is insightful to give the proof here.

It is equivalent to show that for each f in the linear span
that

1
n

[
log

pf (Xn)
pf̂k

(Xn)
+ λ(vk − Vf )

]
≤

2V 2
f

k + 1
.

The left side of this desired inequality which we shall call ek

is built from the difference in the criterion values at f̂k and
an arbitrary f . It can be expressed as

ek =
1
n

n∑
i=1

[f(Xi)− f̂k(Xi)] + log
∫

pf (x)ef̂k(x)−f(x)

+ λ[vk − Vf ],

where the integral arising from the ratio of the normalizers for
pf̂k

and pf . Without loss of generality, making H closed under
sign change, we restrict to positive β. This ek is evaluated with
f̂k(x) = (1−α)f̂k−1(x)+βh(x) and vk = (1−α)vk−1+βah,
at the optimized α, β and h, so we have that it is as least as
good as at an arbitrary h with β = αv/ah where v = Vf .
Thus for any h we have that ek is not more than

1
n

n∑
i=1

[f(Xi)− ᾱf̂k−1(Xi)− αh(Xi)/ah] +

log
∫

pf (x)e[ᾱf̂k−1(x)+αvh(x)/ah−f(x)] + ᾱλ[vk−1 − v],

where ᾱ = (1 − α). Now reinterpret the integral us-
ing the expectation of eα[vh(x)/ah−f(x)] with respect to
p(x) = eᾱ[fk−1(x)−f(x)]pf (x)/c, where c is its normaliz-
ing constant. Accordingly, we add and subtract log c =
log

∫
eᾱ[fk−1(x)−f(x)]pf (x) which, by Jensen’s inequality us-

ing ᾱ ≤ 1, is not more than ᾱ log
∫

e[fk−1(x)−f(x)]pf (x).
Recognizing that this last integral is what arises in ek−1 and
distributing f between the terms with coefficients ᾱ and α,
we obtain that ek is not more than

ᾱek+α
1
n

n∑
i=1

[f(Xi)−vh(Xi)/ah]+log
∫

eα[vh(x)/ah−f(x)]p(x).

This inequality holds for all h so it holds in expectation with
a random selection in which each h is drawn with probability
ah|θh|/v where the θh are the coefficients in the representation
f(x) =

∑
h∈H θhh(x) with v =

∑
h |θh|ah = Vf . We

bring this expectation for random h inside the logarithm,
and then inside the integral, obtaining an upper bound by
Jensen’s inequality. For each x and random h the quantities
[vh(x)/ah − f(x)] have mean zero and have range of length
not more than 2v since ah ≥ ‖h‖∞. So by Hoeffding’s mo-
ment generating function bound, the expectation for random
h of eα[vh(x)/ah−f(x)] is not more than eα2v2/2. Thus

ek ≤ (1− α)ek−1 + α2V 2
f

for all 0 ≤ α ≤ 1, and so in particular with α = 2/(k + 1).
Also e0 ≤ 2V 2

f , so by induction

ek ≤
2V 2

f

k + 1
,

which is the desired result.
This computation bound and its regression counterpart in

[13] is related to past relaxed greedy algorithm work (with λ =
0 in [14], [2], [18], [9], [10], [17], [22], [3]. These previous
results control the number of terms k rather than their `1 norm.
The result stated here for `1 penalized log-likelihood and in
[13] for regression, takes the matter a step further to show that
with suitable positive λ the greedy pursuit algorithm solves the
`1 penalized problem.

This computation analysis fits with our risk results. In
the proof of Theorem 3.1, instead of the exact penalized
likelihood estimator f̂ , substitute its k term greedy fit f̂k, The
computation bound shows that this penalized likelihood ratio
is not more than its corresponding value at any f , with addition
of 2V 2

f /(k + 1). Accordingly, its risk is not more than

Ed(f∗, f̂k) ≤ min
f∈F

{
D(f∗, f) +

λnVf

n
+

2V 2
f

k + 1

}
+

C

n
.

The key step in our results is demonstration of approxima-
tion, computation, or covering properties, by showing that they
hold on the average for certain distributions on the dictionary
of possibilities.
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