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Abstract—This paper considers coding and predicting se-

quences of random variables generated from a large alphabet.

We start from the i.i.d model and propose a simple coding dis-

tribution formulated by a product of tilted Poisson distributions

which achieves close to optimal performance. Then we extend

to Markov models, and in particular, tree sources. A context

tree based algorithm is designed according to the frequency of

various contexts in the data. It is a greedy algorithm which seeks

for the greatest savings in codelength when constructing the tree.

Compression and prediction of individual counts associated with

the contexts again uses a product of tilted Poisson distributions.

Implementing this method on a Chinese novel, about 20.56%

savings in codelength is achieved compared to the i.i.d model.

I. INTRODUCTION

Large alphabet data compression does not have the luxury
of diminishing per symbol redundancy. Luckily, symbols in
a large alphabet are usually not equally probable in practice.
For example, in Chinese characters, a subset of 964 characters
covers 90% inputs in Chinese[1] though the vocabulary size
is no smaller than 106,230 in total [2].

Coding and prediction of strings of random variables gen-
erated from an i.i.d model have been considered for the large
alphabet setting with the restriction that the ordered probability
or count list rapidly decreasing [3], or satisfies an envelope
class property [4]. Although this i.i.d model is not the best for
compression or prediction when there is dependence between
successive characters, it serves as an analytical tool that more
complicated models can be based on, and helps understand the
behavior of coding and predictive distributions. In this paper,
we propose a simple coding method particularly applicable for
large alphabet compression and prediction problems, which
also performs almost optimally.

Suppose a string of random variables X = (X1, . . . , XN

)

is generated independently from a discrete alphabet A of size
m. We allow the string length N to be variable. A special case
is when N is given as a fixed number, or it can be random. In
either case, X is a member of the set X ⇤ of all finite length
strings

X ⇤
=

1[

n=0

Xn

=

1[

n=0

{xn

=(x1, . . . , xn

) : x
i

2 A, i = 1, . . . , n}.

Our goal is to code/predict the string X .
Now suppose given N , each random variable X

i

is gener-
ated independently according to a probability mass function
in a parametric family P⇥ = {P

✓

(x) : ✓ 2 ⇥ ⇢ Rm} on A.
Thus

P
✓

(X1, . . . , XN

|N = n) =

nY

i=1

P
✓

(X
i

)

for n = 1, 2, . . . We are interested in the class of all
distributions with P

✓

(j) = ✓
j

parameterized by the simplex
⇥ = {✓=(✓1, . . . , ✓m) : ✓

j

�0,
P

m

j=1 ✓j=1, j=1, . . . ,m}.
Let N = (N1, . . . , Nm

) denote the vector of counts for
symbol 1, . . . ,m. The observed sample size N is the sum of
the counts N =

P
m

j=1 Nj

. Both P
✓

(X) and P
✓

(X|N = n)
have factorizations based on the distribution of the counts

P
✓

(X|N=n) = P (X|N)P
✓

(N |N=n),

and

P
✓

(X) = P (X|N)P
✓

(N).

The first factor of the two equations is the uniform distribution
on the set of strings with given counts, which does not depend
on ✓. The vector of counts N forms a sufficient statistic for
✓. Modeling the distribution of the counts is essential for
forming codes and predictions. In the particular case of all i.i.d.
distributions parameterized by the simplex, the distribution
P
✓

(N |N = n) is the multinomial(n, ✓) distribution.
In the above, there is a need for a distribution of the total

count N . Of particular interest is the case that the total count
is taken to be Poisson, because then the resulting distribution
of individual counts makes them independent.

Poisson sampling is a standard technique to simplify analy-
sis [5][6]. Here we give particular attention to the target family
Pm

⇤ = {P
�

(N) : �
j

� 0, j = 1, . . . ,m}, in which P
�

(N) is
the product of Poisson(�

j

) distribution for N
j

, j=1, . . . ,m.
It makes the total count N ⇠ Poisson(�

sum

) with �
sum

=P
m

j=1 �j

and yields the multinomial(n, ✓) distribution by
conditioning on N = n, where ✓

j

= �
j

/�
sum

. And the
induced distribution on X is

P
�

(X) = P (X|N)P
�

(N).
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Ideally the true probability distribution P
�

(X) could be
used to code the sequence, if � were known. The regret

induced by using Q instead of P
�

is

R(Q,P
�

, X) = log

1

Q(X)

� log

1

P
�

(X)

,

where log is logarithm base 2 (We don’t worry about integer
constraint).

Here we can construct Q by choosing a probability distri-
bution for the counts and then use the uniform distribution for
the distribution of strings given the counts, written as P

unif

.
That is

Q(X) = P
unif

(X|N)Q(N). (1)

Then the regret becomes

R(Q,P
�

, X) = log

P
�

(N)

Q(N)

= R(Q,P
�

, N).

However, in reality � is usually unknown. Given the
family Pm

⇤ , we could instead use the best candidate with
hindsight P

�̂

(X) = max

�2⇤(P�

(X)) (corresponding to
min

�2⇤ log(1/P
�

(X))), and compare it to Q(X). The max-
imization is equivalent to maximizing � for the count proba-
bility, as the uniform distribution dose not depend on �, i.e.

max

�2⇤
(P

�

(X)) = P
unif

(X|N) max

�2⇤
P
�

(N)

= P
unif

(X|N)P
�̂

(N).

Then the problem becomes: given the family Pm

⇤ , how to
choose Q to minimize the maximized regret

min

Q

max

X

R(Q,P
�̂

, X) = min

Q

max

N

log

P
�̂

(N)

Q(N)

.

For the regret, the maximum can be restricted to a set of
counts instead of the whole space. A traditional choice being
S
m,n

= {(N1, . . . , Nm

) :

P
m

j=1Nj

=n,N
j

� 0, j=1, . . . ,m}
associated with a given sample size n, in which case the
minimax regret is

min

Q

max

N2Sm,n

log

P
�̂

(N)

Q(N)

.

As is familiar in universal coding [7][8], the normalized
maximum likelihood (NML) distribution

Q
nml

(N) =

P
�̂

(N)

C(S
m,n

)

is the unique pointwise minimax strategy when C(S
m,n

) =P
N2Sm,n

P
�̂

(N) is finite, and logC(S
m,n

) is the minimax
value. When m is large, the NML distribution can be unwieldy
to compute for compression or prediction. Instead we will
introduce a slightly suboptimal coding distribution that makes
the counts independent and show that it is nearly optimal for
every S

m,n

0 with n0 not too different from a target n. Indeed,
we advocate that our simple coding distribution is preferable
to use computationally when m is large even if the sample
size n were known in advance.

To produce our desired coding distribution we make use
of two basic principles. One is that the multinomial family
of distributions on counts matches the conditional distribution
of N1, . . . , Nm

given the sum N when unconditionally the
counts are independent Poisson. Another is the information
theory principle [9][10][11] that the conditional distribution
given a sum (or average) of a large number of independent
random variables is approximately a product of distributions,
each of which is the one closest in relative entropy to the
unconditional distribution subject to an expectation constraint.
This minimum relative entropy distribution is an exponential
tilting of the unconditional distribution.

In the Poisson family with distribution �
Nj

j

e��j/N
j

!, ex-
ponential tilting (multiplying by the factor e�aNj ) preserves
the Poisson family (with the parameter scaled to �

j

e�a).
Those distributions continue to correspond to the multinomial
distribution (with parameters ✓

j

= �
j

/�
sum

) when condi-
tioning on the sum of counts N . A particular choice of
a = ln(�

sum

/N) provides the product of Poisson distributions
closest to the multinomial in regret. Here for universal coding,
we find the tilting of individual maximized likelihood that
makes the product of such closest to the Shtarkov’s NML
distribution. This greatly simplifies the task of approximate
optimal universal compression and the analysis of its regret.

Indeed, applying the maximum likelihood step to a Poisson
count k produces a maximized likelihood value of M(k) =

kke�k/k!. We call this maximized likelihood the Stirling ratio,
as it is the quantity that Stirling’s approximation shows near
(2⇡k)�1/2 for k not too small. We find that this M(k) plays
a distinguished role in universal large alphabet compression,
even for sequences with small counts k. This measure M has
a product extension to counts N1, . . . , Nm

,

M(N) = M(N1) · · ·M(N
m

).

Although M has an infinite sum by itself, it is normalizable
when tilted for every positive a. The tilted Stirling ratio

distribution is

P
a

(N
j

) =

N
Nj

j

e�Nj

N
j

!

e�aNj

C
a

, (2)

with the normalizer C
a

=

P1
k=0 k

ke�(1+a)k/k!.
The coding distribution we propose and analyze is simply

the product of those tilted one-dimensional maximized Poisson
likelihood distributions for a value of a we will specify later

Q
a

(N) = Pm

a

(N) = P
a

(N1) · · ·Pa

(N
m

).

If it is known that the total count is n, then the regret is
a simple function of n and the normalizer C

a

. The choice
of the tilting parameter a⇤ given by the moment condition
E

Qa

P
m

j=1 Nj

= n minimizes the regret over all positive a.
Moreover, value of a⇤ depends only on the ratio between the
size of the alphabet and the total count m/n. Fig. 1 displays
a⇤ as a function of m/n solved numerically. Given an alphabet
with m symbols and a string generated from it of length n,
one can look at the plot and find the a⇤ desired according to
the m/n given, and then use the a⇤ to code the data.

2014 IEEE International Symposium on Information Theory

2505



0 200 400 600 800 1000

0
1

2
3

4
5

6
a*

m/n

Fig. 1. Relationship between a⇤ and m
n .

As compared to i.i.d class, Markov sources are much richer
and more realistic. Suppose given N , each random variable
X

i

is generated according to a probability mass function
depending on its context (string of symbols preceding it).
Following Williems’ notations in [12], a tree source can be
determined by a context set S . Elements of S are strings of
symbols from A or concatenation of “others” and prefixes of
the contexts. “others” represents complements of the contexts
in S with a common prefix. Prefix of a context is the part
except the last symbol. For example, the prefix for s = ab is
a, and for s = a equals nothing. The collection of distributions
is P⇥S = {P

✓s
(x) : ✓

s

2 ⇥S ⇢ Rm, s 2 S}, where ⇥S is
the parameter set defined later. For simplicity, we require the
order of the model no larger than T 2 {0, 1, 2, . . .}, so S 2 C

T

,
where C

T

is the class of tree sources with order T or less.
For each context s 2 S with a given S , let ✓

sx

denote the
probability of symbol x 2 A showing up after s, for all x 2 A.
Then ✓

s· = (✓
s1, . . . , ✓sm) lies in the set

⇥S = {✓
s· = (✓

s1, . . . , ✓sm) : x 2 A, ✓
sx

� 0,
X

x2A
✓
sx

= 1}.

Again, we could take advantage of factorizations based on
the distribution of the counts NS = (N

s·)s2S , where N
s· =

(N
s1, . . . , Nsm

) is the count for all symbols given context
s 2 S

P
✓

(X|N=n) = P (X|NS)P✓

(NS |N=n),

and
P
✓

(X) = P (X|NS)P✓

(NS).

Picking the distribution for the total count to be Poisson

again leads to the target family P |S|m
⇤ = {P

�

(NS) : �sj

�
0, j =1, . . . ,m, s 2 S}, in which P

�

(NS) is the product of
Poisson(�

sj

) distribution for N
sj

, j = 1, . . . ,m and s 2 S .
And the induced distribution on X is

P
�

(X) = P (X|NS)P�

(NS).

Fig. 2. An example context tree.

There are two sources of cost involved in using a tree model.
One is the coding cost C(X) for variables given the context.
Another is the description cost D(S) for describing the tree.
Overall, we want to find Q which uses shorter codelength for
sequences generated from an unknown tree source S 2 C

T

.
That is, to minimize

max

S2CT

max

X2S

C(S, X) = max

S2CT

max

X2S

(C(X) +D(S)) .

for a given set of sequences S. One choice of S could
be S

m,n,S = {NS :

P
s2S

P
m

j=1 Nsj

= n,N
sj

� 0, j =

1, . . . ,m, s 2 S} associated with a given sample size n.
We use the same coding distribution as given in equation

(2) for count variables conditional on each given context s.
The coding distribution for the counts given s is simply the
product

Q
as(Ns·) = Pm

as
(N

s·) = P
as(Ns1) · · ·Pas(Nsm

), (3)

with a properly chosen a
s

for each context s 2 S .
The tilting parameter a

s

can be chosen according to the ratio
of alphabet size m and the context count N

s

=

P
m

j=1 Nsj

for all s 2 S [3]. Using the tilted distribution P
�as

as a
coding distribution, the regret is simply a sum of the individual
regrets.

It is clear that when the context set S is provided, the coding
distribution and the regret it induces is easy to obtain. Yet the
questions is how to construct the context set to begin with.
We adopt a method similar to Rissanen’s approach in [13].
Different from the i.i.d model in which regret can be solely
relied on to evaluate the performance, for Markov models
different targets associated with different models need to be
taken account of. Hence, we focus on the total codelength
C(S, X) and use it as a standard to evaluate the performance
of different models and coding distributions. We use a greedy
algorithm to build the context tree with details discussed
in Section III-C. An illustrative example tree with a simple
alphabet A = {a, b, c, d} is given in Fig.2.

II. I.I.D CLASS

Let S be any set of counts, then the maximized regret of
using Q as a coding strategy given a class P of distributions
when the vector of counts is restricted to S is

R(Q,P, S) = max

N2S

log

max

P2P P (N)

Q(N)

.

2014 IEEE International Symposium on Information Theory

2506



Theorem 1: Let P
a

be the distribution specified in equation
(2) (Poisson maximized likelihood, tilted and normalized). The
regret of using a product of tilted distributions Q

a

= ⌦m

j=1Pa

for a given vector of counts N = (N1, . . . , Nm

) is

R (Q
a

,Pm

⇤ , N) = aN log e+m logC
a

.

Let S
m,n

be the set of count vectors with total count n be
defined as before, then

R (Q
a

,Pm

⇤ , S
m,n

) = an log e+m logC
a

. (4)

Let a⇤ be the choice of a satisfying the following moment
condition

E
Pa

mX

j=1

N
j

= mE
PaN1 = n. (5)

Then a⇤ is the minimizer of the regret in expression (4). Write
R

m,n

= min

a

R(Q
a

,Pm

⇤ , S
m,n

).
When m = o(n), the R

m,n

is near m

2 log

ne

m

in the following
sense.

�d1
m

2

log e  R
m,n

� m

2

log

ne

m

 m log(1 +

r
m

n
), (6)

where d1 = O
�
(

m

n

)

1/3
�
.

When n = o(m), the R
m,n

is near n log

m

ne

in the following
sense.

m log

⇣
1 + (1� d2)

n

m

⌘
 R

m,n

� n log

m

ne

 m log

⇣
1 +

n

m
+ d3

⌘
(7)

where d2 = O(

n

m

), and d3 =

1
2
p
⇡

n

2
e

2

m(m�ne) .
When n = bm, the R

m,n

= cm, where the constant c =

a⇤b log e+ logC
a

⇤ , and a⇤ is such that E
PaN1 = b.

Proof: The expression of the regret is from the definition.
The fact that a⇤ is the minimizer can be seen by taking partial
derivative with respect to a of expression (4). Details of proof
can be found in [3].

Remark 1: The regret depends only on the number of
parameters m, the total counts n and the tilting parameter
a. The optimal tilting parameter is given by a simple moment
condition in equation (5).

Remark 2: The regret R
m,n

is close to the minimax level
in all three cases listed in Theorem 1. The main terms in the
m = o(n) and n = o(m) cases are the same as the minimax
regret given in [14] except the multiplier for log(ne/m) here
is m/2 instead of (m � 1)/2 for the small m scenario. For
the n = bm case, the R

m,n

is close to the minimax regret in
[14] numerically.

Corollary 1: Let Pm

⇥ be a family of multinomial dis-
tributions with total count n. Then the maximized regret
R(Q

a

,Pm

⇥ , S
m,n

) has an upper bound within 1
2 log 2⇡n above

the upper bound in Theorem 1.

Proof: This can be easily seen by the following equation

log

P
�̂

(X1,. . ., XN

|N = n)

P
unif

(X1,. . ., Xn

|N1,. . ., Nm

)Q
a

(N1,. . ., Nm

)

= log

Q
m

j=1 M(N
j

)

P
�̂sum

(N = n)Q
a

(N1, . . . , Nm

)

' 1

2

log 2⇡n+ log

Q
m

j=1 M(N
j

)

Q
a

(N1, . . . , Nm

)

. (8)

Here ˆ�
sum

= n, hence the term 1
2 log 2⇡n is Stirling’s

approximation of log 1/P
�̂sum

(N = n).
Remark 3: The 1

2 log 2⇡n arises because here Q includes
description of the total N while the more restrictive target
regards it as given.

III. TREE SOURCE

A. Coding cost

For each context s 2 S , we use a product of tilted Stirling

ratio distributions with parameter a
s

as in equation (3) to code
the vector of counts N

s·. The coding distribution is the product
of all the Q

as(Ns·), i.e.

QS
a

(NS) =
Y

s2S
Q

as(Ns·).

Corollary 2: Using independent tilted Stirling ratio distri-
bution QS

a

to code the counts in S
m,n,S , the regret equals

R(P |S|m
⇤ , QS

a

, S
m,n,S) =

X

s2S
(a

s

N
s

log e+m logC
as) .

This can be easily seen by applying the definition.

B. Description cost

To describe a given context set S , we use the following rule

D(S) = 1 +N
branches

(1 + log |A|) ,

where N
branches

is the number of “labeled” branches in the
tree. Here “labeled” means a specified symbol in the alphabet.
For instance, N

branches

= 5 in the example tree.
The first bit is used to describe if the model is nondegenerate

(i.i.d or Markov). For each branch other than “others”, we
could use logm bits to convey which symbol it is, and then
another 1 bit to say if it is nondegenerate. Our example tree
uses 1 + 5(1 + log 4) = 16 bits.

C. Using codelength to construct the tree

Here we use the example in Fig.2 to describe how we
construct the tree. Starting from the root which conditions on
nothing (the i.i.d model), we choose the first symbol (c) that
produces the most savings (if any) in codelength to condition
on. Next, we consider two possible ways to expand the tree:
one is another symbol (a) that makes the most savings; the
other is to further condition on one more symbol (b) preceding
the first found one (c). After calculating and comparing savings
produced by these two candidates, we then decide which one
to pick again by choosing the one with the greatest savings.
Continue these procedures until conditioning provides no more
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Fig. 3. Context tree for Fortress Beseiged.

savings or the maximum number of symbols to condition on
(T ) is reached, we have the context tree built. At each layer,
the label “others” represents all other symbols that are not
picked up in that layer, for example, “others” includes b and
d in the first layer in the example.

When expanding one branch from the tree, we are con-
ditioning on one more symbol. This leads to a different
target model. We calculate the coding cost by adding up the
minimized codelength for the target model and the minimax
regret by using Szpankowski’s approximation [14], because the
minimized regret of using the tilted Stirling ratio distribution
is very close to the minimax level. Then the overall codelength
is used for comparison in tree construction.

IV. A REAL EXAMPLE

We apply the proposed method to a
contemporary Chinese novel named
and translated as Fortress Besieged [15]. The book contains
216,601 characters in total, and it is encoded in GB18030, the
largest official Chinese character set which contains 70,244
characters [16].

We start from the i.i.d model which uses 1,954,777
bits. The first single character to condition on is ,
which produces 12,631 bits of savings. It is actually the first
character of the protagonist’s first name in the novel. It is
indeed not surprising that seeing the first character highly
indicates the next thing to see is the second for a two-character
name.

We restrict the order of the Markov model to be no larger
than 5, but in fact no context exceeding two characters is
chosen. There are 342 branches in the tree, among which 95
are in the first layer, and 5 of them extends to the second layer.
In fact, second layer branches are picked up only after most
first layer branches have already been chosen. A small part of
the tree is displayed in Fig.3.

The dots on the right stand for the rest of the model that
cannot be shown. And the blank cell in the middle of the
first layer is actually the space symbol. The total savings
amounts to 401,922 bits (about 20.56%) as compared to the
i.i.d model. Please note that existing models for tree sources
are mostly designed for small alphabet compression, hence
direct comparison with which would not be quite fair.

V. CONCLUSION

We consider a compression and prediction problem under
both large alphabet i.i.d model and bounded tree models, and
design a method to construct the context tree. Combining
this method with tilted Stirling ratio distribution as coding

distributions for symbols with given contexts, we have a
convenient and efficient way for compression and prediction.
Implementing the proposed method on a Chinese novel, con-
siderable savings in codelength is produced compared to the
i.i.d model.
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