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Introduction

Frequently, in solving performance prediction
problems, rigorous mathematical or physical solutions
are impractical or non-existent. Such is the case
in the field of weather forecasting. Theoretical
solutions to modeling meteorological activity can
only be approximations. The atmosphere is subject to
innumerable perturbations near the surface and is
open-ended at the top. HEmpirical solutions to model-
ing weather are accurate only if theyv account for the
remarkable diversity of weather and adapt to its ever-
changing face.

The authors believe, and demonstrate prelimi-
narily in this paper, that the Adaptive Learning Net-
work (ALN) pattern recognition methodology is emi-
nently suitable for improved solution of those classes
of weather forecasting problems that involve density
and pressure predictions. Forecasting of precipita-
tion, temperature, visibility, lmmidity, winds, and
severe storms should, in turn, be improved by better
advance knowledge of density and pressure distribu-
tions. It is also possible that factors such as
precipitation could be predicted directly and with
greater accuracy via ALN techniques, but that has
yet to be investigated.

Many examples of ALN use for empirical modeling
and forecasting are contained in recent literature,
including the preceding paper on steel shipment fore-
casting in this conference.

A specific atmospheric modeling problem had been
previously subjected to ALN methodology: knowledge
of the refractivity of the atmosphere between a radar
and an observed aircraft had been provided by model-
ing a limited mumber of variables, including the radar
metric parameters and the known height of the observed
aircraft. [1, 2]
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This earlier success proumpted a desire to find
if some aspects of weather forecasting can be solved
by using AIN techniques. Furthermore, weather fore-
casting presents the challenge of being inherently
a four—dimensional problem involving recognition of
patterns in the three dimensions of space, a descrip-
tion of the evolution of these patterns with time,
and prediction of future patterns. Weather fore-
casting is tlus representative of a class of multi-
variate data processing problems in which patterns
among the observed variables undergo continucus,
dymamic variation. These problems must be approached
fram the standpoint of data~compressive transforma-
tions used to reduce the miltiple measurements taken
at each of a number of givea locations into a few
informative parameters, then map these parameters
into dynamic three~ (or at least two-) dimensional
patterns. The latter may then be further parameter-
ized by extraction of suitable features of the
patterns. These features, along with their time
derivatives (or, equivaleily, the mumerical values
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of the features at successive times) embody the requi-
site information for forecasting.

The vast number of atmospheric measurements
routinely available to the forecaster for many alti-
tudes and stations has required that this project
begin modestly, and be followed, step-by-step, with
more parameters and forecast elements used as success
warrants.

Data Parameterization

In the present preliminary inquiry, only the first
stage of parameterization has received close attention,
viz., generation of data-campressive transformed vari-
ables indicative of conditions within essentially
vertical filaments of the atmosphexrg probed by radio-
sondes (balloons) at the given sites. (These soundings
are routinely made every 12 bhours by the Govermment
at a large number of locations throughout the United
States and, to a lesser degree, at off-shore stations.)
The authors show in this paper that transformed infor-
mation cammunicated from as few as two known observa-
tion sites scattered within a radius of approximately
500 miles of Washington, DC, can be used to produce
valid 12-hour forecasts of atmospheric density and
pressure for that city.

In the first part of this study, computed
values for the air density at 3 km. over each oi
twelve stations at midnight during the months of
January 1971 and January 1972 were used to create AIN
models for predicting the following midday depnsity
values over Washington, DC, during January of these
or other years. Next, predictive AIN models
were obtained for noon atmospheric surface pressure
at Washington, DC, during Jamuary.

Density was used as a modeling feature because it
is a function of pressure, temperature, and relative
humidity at a given height; not only does it transform
several meteorological variables into one, but density
has considerable physical significance. It is hypothe-
sized by the authors that gradients between densities
at neighboring stations determine the motion and
activity of weather. On the other hand, predictive
modeling of surface pressure was investigated because
surface pressure is a readily monitored and universally
recognized meteorological variable.

ALN Synthesis

The principal steps in creating preliminary AIN
models for local forecasts of meteorological varisbles
were:

(1) Data preprocessing and selection of variables
for input to the ALN;

Partitioning of the data bese into three
statistically-similar but independent sub-
sets — fitting, selection, a.nd eva»lu‘a.t‘ion;

@)

yTne moath of January was chosen for this preliminary
investigation partly because of the greater consis-
tency of weather patterns during that time of the
year and partly because of interest now focused on
the winter months due to limited fuel supplies.



Training the AIN on data from the fitting
and selection subsets; and

Evaluating the network by testing its
ability to predict when interrogated on an
independent evaluation data subset (January
1973 in this case).
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(4)

let us now consider each of these steps briefly.

Data preprocessing was critical in this project
because the available ipput data were numerous.
Candidate variables were chosen carefully to minimize
the costs of future measurement, reporting, and com-
putation tasks., However, once the dimensionality of
the data was reduced, it wes found that selection
of variables for input to the ALN was not particularly
critical, as the ALN synthesis algorithm auto- ’
matically rejects ponessential information and poor
performers anong ‘the candidate input parameters. For
the preliminary models described in this summary, 12
observation stations, as shown in Figure 1, were
retaincd 2s candidote observation sites in the data
base. The densities at a geopotentisl altitude of
3 k. and surface pressures were chosen as input vari-
ables for the first and second preliminary models,
respectively. :
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FIGURE 1: TWELVE CANDIDATE OBSERVATION STATICNS
FOR FORECASTING WASHINGTON, DC, DENSITY

AND PRESSURE

Partitioning of the data base was performed by
incorporating observations from Jamuary 1971 in the
fitting subset, Japuary 1972 in the selection subset,
and January 1973 in the evaluation subset. (No direct
test, such as a clustering anslysis, was performed to
verify the statistical similarity of these subsets;
however, the AIN's gave camparable performance on
each, which is & good ad hoc indication.) Each
observation consisted of midnigbt density or pressure
values at each of the 12 candidate stations and the
known value of the following poon density or pressure
for Washington, DC. Cbservations were ignored when
information for any dasy was incomplete; thus same
gaps exist in the data base used. 1/

Network training was accomplisbed by creation of
nonlinear algebraic networks of polynamial building-
block elements. Each of the basic elements was &
function of two input variables or of outputs fram
elements of previous layers of the metwork. Each
element was of the basic form:

1

v This points up the need for baving a family of
alternative AIN's that can function without infor-
mation from “missing’' sites.
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T =Wt WX Y WXp F W Xg F WXy Y WX,
where Xy and Xy denote inputs, the w's are constants

determined during AIN synthesis, and y is the element
output. These elements were connected in a series-
parallel array via the AIN synthesis algorithm, as
discussed in the references to the preceding paper.

The ALN January forecasting model for 3-km. den-
sity, which retained inputs from four of the candidate
12 stations, is shown in Figure 2. A six-station ALN
January model for surface pressure forecasting is shown
in Figure 3. Figure 4 shows that the accuracy of 3-km.
density predictions increased as the syntbesis algo-
rithm was allowed to enlarge the number of observation
stations used by the AIN. Network evaluation was
accomplished using the January 1973 observations, as
discussed below. (January 1973 data were not involved
in training of the AlN's.)
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FIGURE 2: ALN USING FOUR OBSERVATION STATIONS FOR
FORECASTING OF 3-KM. DENSITY AT
WASHINGTON, DC
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FIRURE 4: EXPLAINED VARIANCE OF 3-KM, DENSITY
FORECASTS VS. NUMEER OF OBSERVATION
STATIONS USED BY AIN's.

Preliminary Results

Figure 5§ shows a comparison between the fitting-
data subset, six-station AIN, Washington, DC, noon,
surface-pressure forecasts for January 1871 and the
a2ctual pressure values during that month. Figure 6
presents a similar comparison for data in the evalua-
ticn subset, which reveals how the AIN would have
predicted fluctuations in surface pressure on an
independent test during Jamuary 1973. Note that in
both figures the predicted values were close to the
actual, and that, furthermore, the predicted values
correctly anticipated whether the actual pressure
wnld rise or fall. The ability to forecast pressure
changes correctly is seen most graphically in a
plot of the sign of the pressure changes, sgn(Ap),
that occurred between successive observations of the
actual ad prudicted pressures. Such a plot for the
January 1973 data is showm in Figure 7.
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FIGURE 5: ACTUAL AND PREDICTED SURFACE PRESSURES AT
WASHINGTON, DC, IN JANUARY 1971
(FITTING DATA SUBSET)
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FIGURE 6: ACTUAL AND PREDICTED SURFACE PRESSURES AT
WASHINGTON, DC, IN JANUARY 1973
(EVALUATICN DATA SUBSET)
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TFIGRE 7: SIGNS OF ACTUAL AND PREDICTED WASHINGT(N, DC,’
SURFACE PRESSURE CHANGES (EVALUATICN
DATA SUBSET)

Results obtained with ALN forecast models for
pressure and density are also campared to three bLase-
line forecasting technigues in Tables 1 and 2. The
"constant" forecast assumed that the Washington, DC,
noon pressure (or density) for a given observation was
equal to the average noon pressure (or density) at
Washington, DC, in Jamiary. 1/ The "poon persistence"
forecasts shown in the tables assumed that the noon
¥ashington, DC, pressure (or density) for a given day
was equal to its own value measured at the previous
noon. The "midnight persistence' forecasts assumed
rersistence of conditions observed at midnight until
the following noon. These three techniques, mone of
which could predict changes in pressure or demsity,
provide means for judging accuracy of the ALN forecasts
(which are superior for both pressure and density and
for both the training and evaluation data subsets).

It is also significant that ALN accuracies, as measured
on the evaluation data, were substantially the same

as on the training data. This indicates that the AIN's
generalized correctly on their limited training exper~
lence and therefore lmd not been overfitted during
training.

Y To compute this average, the authors assumed that
the mean January pressure (or density) for the years
'7T1-'73 equalled the historical (pre '71) January
mean .




TRAINING DATA EVALUATIOR DATA

Average % Average Average % Average

TYPE OF shsolute _Absolute Absolute Absolute

FORECAST Differance| hifference | Difference i Difference
Consiant 6.55 650 7.55 .750
{1107.0 mBars)
Roon B.74 .B&8 €.56 .651
Persistence
¥idnight 4.43 .440 3.30 .328
Persistence
€-Scation 2.19 .217 2.44 .242
ALN

TABLE 2

WASHINGTON, DC, FORECASTS OF
3-K¥, DENSITY AT NOON

TRAINIRG DATA EVALUATION DATA
Average € Averxge Average % Average -
TYPL OF Absolute absolute Absolute Absolute
FORECAST Difference | Difference | Difference | Differepce
Constant a7
[.92187 k‘/n:!) .0153 1.66 L0136 1
Koon .0143 1.55 .0078 .86
Persistence
Micnight .0087 .94 L0064 .69
Persistence
L-Station
. 0055 .59 L0059 .64
ALN oo

Plans For Future Investigation

The next step in this study will investigate the
feasibility of including wind direction and speed
information in the demsity and pressure models. A
weighted-mmean wind vector for each radiosonde obser-
vation will be computed by finding the vector sum of
wind values at the verious heights. The vector at
each height in this summtion will be weighted accord-
ing to density 2t that height and the difference in
heights between adjacent wind measurements, Addition-
ally, the vertical density and pressure profiles will
each be expressed with only two parameters, e.g.,
their values measured at ground level and the exponen-
tial rates of decay of these quantities with increasing
aititude.

Each station, with its transformed wind, demsity,
and pressure information (and possibly temperature and
humidity information 1/} will thus be represented by &
point in a two—dimensional data field (perhaps seven
or eight data fields in all will be used). Parameters
(features) that charascterize the entire fields at
given times will then be extracted via pattern recog-
nition techniques. Each of these parameters will form
a sequence over successive times of observetion.
Characteristics of these time series will become
candidate inputs to AIN's.

i/ Note that density, pressure, temperature, and humid-
ity are related via the Gas Law; thus one of these four
variables may be cmitted, in gemeral, with po loss of
campleteness in characterizing the state of the atme~
phere at that point.

It is expected that the advantages of this approach
will include further reduction of the number of observa-
tion stations needed in the data field, furtber compres-
sion of large quantities of metecrological data into a
few short-duration time series, and (potentially) fore—~
casting of factors such as rainfall.

As in this work to date, the attendant advantages
of AIN modeling will be:

o JIdentification of the most relevant parameters,

e Adaptive evolution of both the structure and
the coefficients of the models,

e Modeling of nonlinear as well as linear inter-
actions between parameters,

Avoidance of data overfitting,
Rapid computations with the trained models.

Conclusions

Techniques have been investigated for parameter-
izing multi-station, multi~level meteorological data
and for syntbesizing AIN forecasting models using these
data. These mpdels require very few inputs to provide
useful 12-hour predictions of surface pressure and
3-km. density and to anticipate accurately whether
surface pressure will rise or fall.

Further investigations should be conducted tc
‘enlarge upon the findings of this prelimipary study.
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