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I. INTRODUCTION

The GMDH family of modeling algorithms used today discovers the structure
(functional form) of empirical models as well as performing the traditional
task of fitting model coefficients to bases of observational or postulated
data. Forty years ago scientists began seeking such inductive algorithms

in their quest for underlying principles governing the activity of the central
nervous system. It was believed—with good reason—that a grasp of these
principles would yield improvements in feedback control systems and in the
design of automatic calculating machines. )

In the United States, algorithms related to GMDH are traceable directly
to studies in the 1940s of the behavior of neurons and neuron aggregates. In
the USSR, more emphasis was directed (particularly in the 1960s) toward
the mathematics of cybernetic systems than toward the emulation of neurons.
Both lines of development began to flow together for the 1970s, and in the
past five years, scientists in Japan have also had an impact on the course
of GMDH work.
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Recent U.S. activity has emphasized use of a predicted squared error
criterion for prevention of model overfitting. Using this criterion, it is not
necessary to divide the data base into groups: all available data can be used
for model fitting, and overfitting is prevented at each stage of model syn-
thesis, including establishment of the structures of individual elements
within the network (polynomial model). Because the data base is not grouped
into subsets, much of the current U.S. work in the field of this book cannot
strictly be said to be GMDH activity. Nevertheless, the GMDH imprint has
been indelible, and the authors feel it appropriate to outline the principal
U.S. line of development—generally referred to as the adaptive learning
network (ALN) approach—in a volume devoted substantially to the Soviet
treatment, known as GMDH.

This chapter will trace the origins and development of the ALN method
in relation to GMDH, summarize the predicted squared error criterion and
its use in ALN synthesis, outline other principal distinctions between ALN
and GMDH algorithms, and report on representative applications of the
ALN method. No attempt will be made to describe details of the GMDH
algorithm; these are treated elsewhere in this volume, as is the derivation
of the predicted squared error criterion. In some cases the authors of the
present chapter quote at length from earlier papers that are not available
in readily accessible publications.

II. BACKGROUND: DEVELOPMENT OF ADAPTIVE LEARNING
NETWORK TECHNIQUES PRIOR TO 1971 k

In the 1940s, the physical and information sciences had already felt the
impact of probabilistic models replacing many of the earlier deterministic
representations of natural phenomena. The mathematics of these probabil-
istic models appealed to interdisciplinary scientists seeking to explain the
actions of the human nervous system and apply their findings to the improve-
ment of communication and control processes. Wiener et al. [1] in their
1943 paper ""Behaviour, Purpose, and Teleology' showed the "possibility
of treating such teleological notions as 'goal, ' 'purpose, ' 'evolution,’ etc.
in a quantitative manner. Philosophers had been debating these terms for,
centuries, and it was quite startling in the context of the times to be shown
that a quantitative treatment was indeed possible. As an outgrowth of this
way of thinking, Wiener in 1948 founded the science of Cybernetics [2],
meaning, in his words, the study of control and communication in animal
and machine [3].

Continuing from Ref. 3:

Wiener's development of this theme was couched in a highly abstract
form for the times and not easily accessible to the engineer. His ideas
were put at the digposal of the cnginecr by the British paychiatrist,

W. R. Ashby |4,5] - . - |[who| domonatratod . . . that it I8 possible,
working from puroely eybornotle ldons, to dovelop machinog that would
show such pocullar nnlima - chaprotoetation an paeposa, goal, nnd
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survival potential in an a priori unknown environment. It is important
to note that a brain was not being constructed, but rather a machine
which exhibited behavior which is presumed to be caused, in animals,
by a nervous system.

Ashby amplified the definition of Cybernetics as follows: "Many a book
has borne the title 'Theory of Machines,' but it usually contains infor-
mation about things, ‘about levers and cogs. Cybernetics, too, is a
"theory of machines' but it treats not things but ways of behaving. It
does not ask, '"What is this thing?' but, "What does it do?' It is thus
functional and behavioristic.”" . . . The point of Cybernetics, then,

is the explicit possibility of quantitatively treating such behavioral
parameters independently of the mechanisms presumed to give rise

to them.

A number of scientific people . . . were caught up in the ferment of
these ideas. The U.S. Department of Defense became interested, and
in the period 1958-60, through one of its elements, the U.S. Air Force,
initiated the Bionics (another word for applied Cybernetics) program.
We will not go into detail on the various types of learning and self-
organizing machines studied since this period. One type, known as a
probability state variable (PSV) machine, was ultimately selected for
intensive development. .

The concepts for a PSV machine grew out of the work of R. J. Lee in
the 1950s and early 1960s on artificial neurons and neuron networks [6-9].
Theoretical work began in 1961 on the use of PSV machines for control sys-
tem applications [10, 11], and a laboratory prototype of a PSV controller
was first constructed in 1964 [12]. Successful flight testing of an elementary
PSV controller took place in 1969 [13, 14].

A PSV controller is self-directed toward a performance goal, using
internal "reward" and "punishment'' (selective reinforcement) actions to
influence its behavior. These rewards and punishments are interpreted by
the controller in the context of the prior decisions that produced them, and
the controller modifies the statistics of its internal states accordingly.

To acquire sufficient feedback information for the purposes of identifi-
cation and control of a plant, PSV controllers must interact with that plant.
This interaction takes the form of small experiments conducted at a rate
that is generally comparable to the bandwidth of the closed-loop system.
There are many interesting theoretical and practical topics associated with
this class of controller; unfortunately, these are outside the scope of this
paper.

References 10 to 33 detail many of the aerospace applications of PSV
self-organizing controllers (SOCs). Other uses of PSV control have been
made, chiefly in systems that must continuously rcallocate resources in
the context of rapid environmontnl changos; thoro is, however, little in the
open literature on these othor appllentionn.

U. 8. eybornetles reosenrel In the 1960x Londod (o focus on solf-organiz.—-
Ing control procosson, but n 10U, atlentlon bognn o be divoctod lownrd
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aspects of empirical modeling (a design process). Although self-organizing
control systems cannot have an explicit "teacher' and must rely on self-
assessment of performance, empirical modeling processes usually can be
guided by an explicit, stored data base and gauge their performance by
means of a goodness-of—fit criterion. In 1963 it was not known how to dis-
cover the structure of an empirical model from the data base, except to the
extent that identification of parameter values within an assumed overall
structure might cause certain terms in the model to become negligible. The
structure was postulated by the analyst, and a multiparameter numerical
search was used to find the values of the model parameters [34,35].

The first empirical modeling application addressed from a cybernetics
viewpoint appears to have been the high-speed prediction (in 1963) of trajec-
tories of atmospheric ballistic reentry vehicles [34,35]. A network of 72
algebraic elements was prestructured using multilinear, two-input elements
of the form

= + + +
y w0 wlxi wzxj wxix_ (1)

31ij

where xj and xj represent the inputs; wy, ..., w; are constants; and y is
the output of the element. A "guided" random search was employed to find
the values of the 288 parameters in this network. The performance objective
for the search was the minimization of average absolute error on all points
in the training data set. After training, an independent testing set was used
to verify that the model performed properly on new data. A typical data
base consisted of radar tracking data for 50 trajectories, with half the data
used in the training set and the balance in the testing set. Prediction accu-
racies for these models were comparable to those usually obtained through
serial integration of differential equations of motion, and solution speeds
were several orders of magnitude faster than via integration.

From the perspective afforded by the 1960s trajectory prediction model
synthesis work, L. O. Gilstrap, Jr. wrote as follows in 1971 [36]:

One of the more critical problems in the design of intelligent machines
is how to construct a large enough space of possible transformations or
mappings in the performance unit of a learning machine. If a learning
system is to find a suitable mapping of inputs into outputs, that mapping
must be within its range of possible mappings.

This problem is most acute in systems with many interacting variables.
One important solution to this problem is provided by a method for
approximating nonlinear hypersurfaces. Just as arbitrary (but reason-
ably well-behaved) functions of one variable can be approximated by a
polynomial, so can arbitrary functions of many variables be approxi-
mated by a suitable high-degree multinomial.* Constructing a space of

*Kolmogorov-Gabor polynomlal.
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hypersurfaces must be done indirectly, however. To show this we de-
fine first multi-linear, homogeneous, and complete multinomials.

A multi-linear multinomial is a polynomial in m variables in which
all possible product pairs, product triples, ..., and the m-way
products appear, but no variable appears to a degree higher than
first. ;

As an example, the multi-linear multinomial in three variables is

Y = agy T apX) t agpX, T 201Xz F ayoX X, t a10:%X5 F 811X, X5

+ a111¥%1X, X,

Note that 9y/8x; is not a function of x;, and similarly for the other vari-
ables in a multi-linear multinomial. Also, if none of the coefficients is
zero, there are Ny = 2 terms in a multi-linear multinomial in m
variables.

A homogeneous multinomial of degree d in m variables is a poly~
nomial such that the exponents of all the variables that make up
each term sum to d.

As an example, the homogeneous multinomial of degree two in three
variables is

- 2 2 2
Y T AxoX] T agpX5 T agpaXi T 50X X, T 2301%X5 T 2011X,X,

Note that if none of the coefficients is zero, the number of terms in a
homogeneous multinomial of degree d in m variables is

_ (d+m -1)!
Ny = dTam -1

A complete multinomial of degree n in m variables is the sum of
all homogeneous multinomials from zeroth degree through nt
degree.

The number of terms in a complete multinomial of degree n in m vari-
ables, provided none of the coefficients is zero, is

_ (nt+tm!

Ng = nlm!

From the magnitudes of Ny, Np, and N¢ for even relatively small
values of n and m, it is apparent that it is not practical to use multi-
nomials directly to approximate nonlinear hypersurfaces. For example,
in tho caso of m - 24 variablos, for which a fifth degree (n = 5) surface
I8 to bo fHlod, Nevo (84 40 5YL/24181 < 118, 766 coolficionts would be
roquirod Lo apestfy the marfaeo, (F 0 mulbl=lnenr multinomial i thoso
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Fig. 1 Uniform spiral 72-element network.
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24 variables were desired, then Ny = 2% = 1.6 x 107 coefficients would
have to be specified.

However, high degree multinomials in many variables can be generated
using a basic building block element that computes a multi-linear multi-
nomial in two variables:

Y = Wo T WiXy T WX, T WiXX,

where x, and x, are inputs, y is the output, and the w's are arbitrary
coefficients. .
If three of these scaled units are connected into a triangular network

., all the terms in a multi-linear multinomial in the four input
variables, x;, ..., X,, appear in the output, y,. However, it should be
noted that the coefficients appearing in y, are not all independent. As
stated earlier, a multi-linear multinomial in four variables requires
2* = 16 independent coefficients, while y, has only 12 independent coef-
ficients (the four w's in each of the three units, . . . . While this [lack
of independence for all coefficients in the multinomial] might appear to
be a defect in the generation of larger multinomials, it turns out to be
the key factor in the practical realization of high degree multinomials
in many variables. Although physical systems in many variables can
exhibit strong interactions in these variables, the interactions are
constrained in many respects, and a multinomial with relatively few
degrees of freedom in the coefficients can be used to describe the
interactions.
The degree of the multinomial produced by a network is dependent on
the connectivity pattern of the building block elements. Figure 1 shows
a rectangular network of 72 [multi-linear, two-input] elements con-
nected in a feedforward fashion. In a rectangular net, the highest degree
term in any one variable can be as high as one less than the number of
columns in the net. The cross-product terms will appear to higher
degree; e.g., in the net in Fig. 1, cross products with 12 variables
appear in the net output, so that the multinomial produced by the net is
a sum of two complete multinomials of degree five in 12 variables and
two multi-linear multinomials of degree six.
It is important to obtain complete mixing of inputs in a net if there is
no prior knowledge as to which cross-product terms in the multinomial
are needed. When the products of all pairs of inputs to a net appear in
the net output, the net is said to have sufficiently rich connectivity.
The multinomial produced by a sufficiently rich connectivity generally
contains all the zeroth, first, and second degree terms, i.e., is at
least a quadratic multinomial. The net shown in Fig. 1 does not satisfy
the sufficiently rich condition. It is a cylindrically connected net with
a uniform spiral of pitch two; i.e., the outputs from any row element
are connected to the elements in the same row and to the elements two
rows lower. The last two elements are connected back to the first two
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rows, much as if the net were wrapped around a cylinder and then con-
nected according to a uniform pattern. Rectangular nets with 12 rows
and six columns with an alternating pitch of one and two do satisfy the
sufficiently rich condition, although nets of pitch one or two alone do
not. Note also that a sufficiently rich rectangular net with 72 elements
and 24 inputs similar to that of Fig. 1 would actually produce a multi-
nomial with more than the 118,755 terms in a fifth degree multinomial
in 24 variables, and it is apparent why no effort was made to write out
the output of the net of Fig. 1. . . .

There are several questions that might be posed of this method of
approximating multinomials, even assuming that the correct coefficients
can be found, such as:

1. How good is the approximation to an arbitrary multinomial?
2. Is the set of network coefficients unique ?

The first question is difficult to answer theoretically, but, on purely
practical grounds, various empirical data bases containing from eight
to 24 variables have been satisfactorily approximated. Since it is
impractical to realize fifth-degree functions of as many as 24 variables,
there is nothing to compare results with. About the best that we can do
is to compute the distribution of errors over the hypersurface. If the
distribution of errors is acceptable, then the network approximation
can be used, much as any function-generator or multi-variable table
can be.

In general, the set of network coefficients is not unique, but uniqueness
of the coefficients is important only when the coefficients have some
physical meaning, and it is the values of the coefficients that are de-
sired, rather than the approximation to the multinomial. Since network
coefficient values are partly a result of the connectivity pattern of the
net, they cannot have much physical meaning, and the question of
uniqueness is somewhat irrelevant.

Having indicated that it is possible to generate multinomials, the next
problem is how to find the four coefficients in each of the network ele-
ments. Classical matrix inversion is clearly of no value here, since
the coefficients of the multinomial terms are nonlinear combinations

of the coefficients in the multi-~linear multinomials in the elements of
the net. (In the network of Fig. 1, there are four coefficients per ele-
ment and 72 elements in the net, for a total of 288 coefficients to be
found.) The most satisfactory procedure for finding these coefficients
should be independent of the initial values used in the search and should
converge quickly; such a procedure is provided by . . . guided random
search. . . .

Search processes can be divided into two groups, detorministic and
random. The lattor group apponrs to bo tho mosat sultable for {inding
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multinomial coefficients. R. L. Barron [14] has summarized a com-
parison of a guided random search with the gradient search (one of the
deterministic searches) as follows:

1. The guided random search converges faster for spaces of high
dimensionality. .

2. The guided random search is effective for multi-modal surfaces
(the gradient search is basically suited only for unimodal surfaces).

3. It [the guided random search] is an effective search for time-vary-
ing surfaces.

4. The guided random search is more effective in coping with sensor
or measurement noise than the gradient search.

5. The guided random search can be used to search all parameters
simultaneously.

6. The guided random search can be mechanized simply, and in soft-
ware versions generally requires less storage and less computation
time than the gradient search.

In view of the advantages of guided random searches, we will discuss
only the random searches in what follows. Much of the discussion has
been excerpted from an earlier paper by R. L. Barron [37].
Let X =(x1, X2, «.., Xp) be a point in an n-dimensional space being
searched. Associated with each point in space is some type of index or
score, S(X), which is a measure of the value or utility of that point.
Typically, the objective of any search is to find the point, X, which
yields the maximum (or minimum) value of S. Frequently, there are
constraints on the permissible choices for X; among the simplest of
these constraints is an upper and lower bound on each of the variables
being searched. One consequence of a constraint of this type is that the
maximum or minimum found within a permissible region may not cor-
respond to the theoretically optimum point, since that point might lie
outside the permissible region. Also, there is, in general, no guaran-
tee that the point, X, in a bounded space is unique, but uniqueness
is not always an essential characteristic of a solution to a search
problem.
The rule for halting the search process, called the stop rule, may
depend on such practical matters as having a fixed time in which to
perform the search, or may be determined from the score function
itself. For example, if a minimum value of the score function is sought
and if that minimum value is zero, then the search can be halted if a

. selected set of coefficients produces a score that is arbitrarily
close to zero.

In an unguided (or parallel) search, the sequence of trial points, x1,
X2, ... , Xk, ta solectod nceconding to a fixed formula or algorithm
which doon not tnko Into necount the results of ocach {rial point. In a

guldod sonreh, the nooroe from ono trind polnt I8 used to gulde the
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selection of the next trial point, i.e.,
+1
XL e, N

v::llllere. AXK*L 5o Selected on the basis of Sk, the score obtained on the
k¥ trial, and the gearch becomes an iterative procedure.

Most of the guided random searches are modifications to the basic,
unguided random search. In the unguided random search, points are
selected at random from the total space being searched; scores are
{1ote.d for all of the points and, after k trials, the best estimate for X,
18 simply the point corresponding to the maximum score obtained dur-
ing tl.le k.trials - Brooks [38} has shown that the probability, p(f), that
Xm lies in a certyin fraction, f, of the total space after k trials is

pM) =1 - -gF

which approaches unity as k increases indefinitely. The expected num-
ber of trials to achieve a given level of confidence that the maximum

lies in a fraction, f, of the total space can be obtained from the above
equation:

Kk = log [1 —
log (1 - )

In the basic, unguijded random search, the sampling of points is obtained
from a rectangula distribution, and no use is made of information
gained on prior trisls.
Although the unguiided random search is slow compared to all guided
sea?‘ches, it is independent of the modality of S, i.e., it can be used
to find the global xyaximum of S and is not subject to "trapping' by
local maxima. Be cause of this desirable feature of the unguided random
§earch, several modifications to the algorithm have been devised to
lmprove the rate at which it converges. The simplest of these modifi-
cations is the chamge from sampling from a rectangular distribution for
each V.ariable to siampling from a normal distribution centered about
t}}e point correspanding to the maximum score obtained from the begin-
ning of the search to the current trial. This search is guided, but it
m?.kes minimal usye of prior information. Additional modifications to
this alg.orith.m incllude reversal, hill climbing, acceleration, and
sm.oothmg of the tierminal search. These modifications assume conti-
nuity Of.S but are iso designed that the search reverts to an unguided
search if continuity does not hold and no correlations can be found in
the accumulated iryformation.
Reversal is based upon the principle that the opposite of downhill is
actually uphill. Hence, if a given step, ,» produces a worsening of
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the score, AXK'1 ig set to -AXK; if this step also produces no improve-
ment in score, then the step AXKT2 i5 taken at random.

Once a direction is found that produces an improvement in score, either
by a random trial or by reversal, the continuation of trials in the same
direction is . . . hill climbing. Although an uphill direction selected at
random will not, in general, coincide with the direction of the maximum
slope, improvement in performance may be noted for several steps in
any uphill direction. Since the expected number of experiments [at the
beginning of the search] required to find an uphill direction (not neces-
sarily the maximum slope), is about one-half [the number of experi-
ments performed], then hill climbing is seen to be a means for ex-
ploiting this limited information acquired by random trials.

The information as to whether a given direction is uphill or downhill is
of limited value, and it should be exploited as quickly and efficiently as
possible. This can be done by lengthening the average step size as long
as performance continues to improve. Both arithmetic and geometric
progressions of step sizes have been used in random searches during
the hill climbing phase. This increase in step size each step is called
acceleration of the search. In a geometric acceleration, e.g., doubling
the step size each step, large overshoots can occur, and Matyas [39]
has employed a deceleration to come as close as possible to the highest
point in the given random direction. . . . Matyas also employed a
bound on the largest possible step size. . . .

Although bounding the maximum possible step size does not speed up
the random search, control of the average step size does appear to
provide some improvement in the terminal search. Scaling of the aver-
age step size as a function of the score provides smoothing of the
search in the region near the maximum as well as improving speed of
search. In searching for minima using, for example, least squares
score functions, average step size can be set proportional to the best-
to-date score to provide automatic and continuous scaling of step size.
The constant of proportionality can be adjusted for each problem. In
searching for maxima, scaling can be inversely proportional to the
score or can be any convenient, monotonically decreasing function of
score.

More recently, Mucciardi [40] has described further refinements of
the guided random search that improve the ability to shift modes.

A bibliography on random search is presented in Ref. 41. Further
summaries of the pre-1971 development of ALN techniques in the United
States are contained in Refs. 42 and 43.

In 1968, one of the authors of this chapter had the privilege of meeting
with A. G. Ivakhnenko in the USSR while attending technical conferences in
that country. Translations of several of Ivakhnenko's works on the theory
of self-organizing systems and his earliest writings on GMDH had just begun
to appear in the United States, although not in publications generally
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accessible to the scientific community. Ivakhnenko was invited to submit a
paper on GMDH for publication in the Transactions on Systems, Man, and
Cybernetics of the Institute of Electrical and Electronics Engineers, Inc.
The paper he produced, "Polynomial Theory of Complex Systems' [44],
greatly stimulated interest in GMDH outside the USSR following its appear-
ance in 1971.

The writings of Ivakhnenko on GMDH, which have appeared primarily
in the bimonthly Kiev journal Avtomatika, are extensive.* Reference 45 is
a succinct presentation of GMDH research by Ivakhnenko and his associates
through the late 1970s.

M. APPLICATION AND REFINEMENT OF GMDH: DEVELOPMENT
OF ADAPTIVE LEARNING NETWORK TECHNIQUES
FROM 1971 TO 1978

The greatest significance of GMDH is in its capacity for "discovery" of the
functional forms of empirical models. This capacity greatly lessens the
need for analyst involvement in the model synthesis process and reduces
the time (calendar and computer) that must be expended.

In 1970, Armco Steel Corporation became interested in the application
of ALN techniques to processes in the steel industry. Their sponsorship of
basic and applied research and development (R&D) in ALN areas was a sig-
nificant factor in the development of GMDH empirical modeling in the United
States, because the industrial emphasis of the Armco support demanded
improvement in cost-effectiveness of the ALN methodology. Predicated on
Ivakhnenko's paper [44], a "Polynomial Network Training Routine (PNETTR),
Version I"" was programmed and evaluated. Following on its success,
Mucciardi formulated in 1971-1972 a Version II algorithm that incorporated
several procedures that enhanced the basic GMDH. Version II was used ex-
tensively for approximately eight years, and proved itself in a great variety
of applications [46].

The primary characteristics of PNETTR II not found in prior GMDH
programs were:

1. The Mucciardi-Gose clustering procedure [47] was used to ensure the
representativeness of the data groups (subsets), as discussed further
below. )

2. Three independent data subsets were employed—Fitting (¥), sometimes
called the Training subset; Selection (S), also referred to as the Testing
subset; and Evaluation (E), used after model synthesis to predict the
accuracy of the model.

*These works are available in the English-language translation of Avtomat-
ika, titled Soviet Automatlc Control, availablo through Seripte Publishing
Company, 7961 Enstorn Avenuo, Silvor Spring, MD 10910.
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3. The original candidate inputs considered in layer 1 of the model were
reintroduced as candidate inputs to each following layer (fogether with
the outputs of the immediately preceding layer), thereby enlarging the
combinational possibilities during evolution of the model.

4. The first minimum in the S subset error rate was used as the stopping
criterion in model sypthesis unless a significantly lower minimum was
reached within a predetermined number of additional layers.

5. After preliminary synthesis of the model was obtained substantially in
the manner taught by Ivakhnenko, the coefficients (weights) within the
entire model were optimized (keeping the structure fixed) by means of
a multiparameter search routine.

6. Except in instances which suggested that overfitting would have resulted,
multiple, parallel subnetworks were created, with their outputs com-
bined by summation, each subnetwork having been trained and tested on
the error residuals (in F and S, respectively) from the aggregate of all
lower-order subnetworks.

The use of a clustering algorithm was found to be valuable in applying the
GMDH cross-validation procedure. It was also found that the identified
cluster structure was highly useful in subsequent data screening to ensure
that the model was being interrogated under conditions for which it had been
trained [48]. It came to be more fully recognized than before that data clus-
ter structures are, in themselves, valuable models if the behavior of the
modeled system can be unambiguously correlated to the various input (ob-
servational) data clusters. The utility of a known prior cluster structure
for data screening and data modeling was found to stem in part from the
finite boundaries of data clusters—these boundaries signal immediately if
the model is being called upon to extrapolate (risky) or interpolate (usually
safe) [49]. Finally, it was found that the identification of cluster member-
ship for an unknown input data point can sometimes be used as a "pointer'
to lead the decision process to ALN-type models tailored for the particular
clusters.

It is emphasized that data clusters are inherently bounded regions,
whereas polynomial networks synthesized by GMDH and ALN methods ex—
tend to infinity along each axis of the modeled spaces. Because of their
importance to the subject of empirical modeling and the discovery of data
structures, attention is directed here to some of the details of cluster
analysis.

The main idea in cluster analysis is to ""discover'' the groups, or clus-
ters, of points that lie close together in the data space. Closeness is defined
by a distance measure. The most suitable clustering algorithms are those
that make the weakest assumptions about the statistical structure of the
data, are order independent (i.e., the data may be introduced in any arbi-
trary sequence without matorially altering the inferences made by the algo-
rithm about tho structure ol tho data base), and are recursively updatable
(I. 0., oneh Lmo an additionnl Input data point 1 Introduced, the structure
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can be updated without calling forth the prior data except in terms of their
statistical properties).

After a clustering analysis has been employed to examine the geometric
(spatial) interrelationships of observed data, the results obtained include:

1. Structure of the Data Space: the number of distinct clusters (classes)
that are discriminable based on a set of N measured parameters

2. Identification of Noisy Data: clusters or isolated points that are far
removed from the main data body

3. Detection of Nonstationary Conditions: consistent observations of new
data, which fall in the periphexry or just outside existing clusters, whose
effect is to cause cluster migration

4. Discovery of New Operating Regions: new data that form clusters which
do not overlap with existing clusters (i.e., are statistically distinct via
a multivariate ¥-test), but are not far enough removed to be considered
noise ‘

5. Avoidance of Extrapolation Error: screening new observations before
interrogating a model to ensure that new data fall within or near those
regions of N-space for which the model was synthesized

6. Establishment of Model Confidence Regions: modeling the error of a
model to assign probabilities of error to future model outputs on new
observations

A clustering analysis can therefore be used as an information filter [48] to
detect the foregoing process descriptors from experimental data. These
six aspects of data structural analysis are discussed below; further details
can be found in the quoted references.

The Mucciardi-Gose CLUSTR algorithm [47] will now be outlined (refer
to Fig. 2). The first data sample (a vector observation of N components) is
introduced and the first cell (cluster) is centered at this point. The cells
are hyperellipsoids, and their initial radii (principal axes) are preselected.
The birth of each cell defines a new cluster in the space. The next sample
is presented and it either falls within the boundary of the existing cell,
within a '"guard zone" surrounding the cell, or outside the guard zone so
that a second cell is generated and centered at this point. Similarly, all
succeeding points either fall within the cells in existence at that time,
within their guard zones, or determine the generation of new cells. When
a point falls within a cell, the location of the cell (its mean) and radii are
changed to accommodate this new point. The cells thus locate themselves
at the dense regions (modes) of the data and assume shapes that conform
to the spread of data about these modes.

The CLUSTR algorithm requires the following parameters for each
cell, which control the birth and growth rate of the cells: (1) shape factors,
oy, proportional to the distances from tho cell conlor to the coll boundarios
in each dimension (theseo doscribe tho N-dimonstonal shapo of the coll);

(2) n coll ulzo fuotor, 7, oqunl {o tho vadlua of n hyporaphero contnining tho
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Guard zone with principal axes QTOi & STOj

Ellipsoidal cell with principal axes Toi & Toj

Fig. 2 Cell descriptors.

same hypervolume as the cell; and (3) a guard zone size factor, 0, which

is the ratio of distances from the cell center to the outer and inner bound-

aries of the guard zone (see Fig. 2). The centers and shapes of the cells

are adaptively updated as the data are sequentially introduced, and a pro-

vision is made for merging cells containing few points with their nearest

large neighbor (if sufficiently close) after all the data have been examined.
Points falling within cell m satisfy

- 2
N -
Z Xi xmi(t) < 7_2
=1 L Tmi® B

where ;<mi(t) and oy, ;(t) are the center coordinate and shape factor of the
cell in dimension i at some time t, and xj is the ith component of the input
vector X. Points X satisfying the inequality are likely to lie inside or on the
boundary of a hyperellipsoid in N dimensions with principal axes 7oy ;-
Colls are prevented from overlapping, at least during the initial part
of tho growth phase, by tho use of a guard zone. A point falling in the guard
zona {8 not nllowod to gonevate a now coll. All such points are temporarily
dtored and taggod for later processing. If tho sizo of the guard zone is
enrofully ohoson, It will provent the birth of now cells at points which are
alose onough to currant colls po thal tho colls would bo lkoely to covor
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common regions of space after attaining their full growth. The reason for
temporarily storing these points is that the closest cell may grow due to
the influence of newer data. Thus, at some later time, a point that was
originally in the guard zone of a cell may be contained inside the cell. If
this does not happen after all the data have been examined, each point re-
maining in storage is used to update the cell nearest it. Mucciardi and
Gose [47] provide techniques for computing the cell descriptors as a func-
tion of dimension, N. The results reported by the CLUSTR algorithm are:

The number of clusters (i.e., cells)

Their (N-dimensional) location

Their (N-dimensional) shape

The identity of the data points in each cell

The amount of overlap existing (if any) between cells

The CLUSTR program also computes the probability of observing new data
in the overlap regions. One of the uses of this information is for cluster
merging. When all clusters have been computed, a multidimensional F-test
is used in CLUSTR to determine if some of them are not statistically dis-
tinct. The generalized multivariate F-test for two N-dimensional distribu-
tions containing n, and n, points and with mean vectors and covariance
matrices X, X, and 8, S,, respectively, is

F_n1+n2—N—1 nn, <. - TS, + 594X, - X
_N(n1+n2-2)2 n1+n2( 1~ 2) (1 2) (1— 2)

a;3N,n;+n, -N-1 at the = 0.05 level of

significance. If F is less than the tabular value, the hypothesis that the two
distributions are not statistically distinct is accepted. Any clusters that are
not distinct are merged automatically. The final result is a parsimonious
description of the data base structure. This description is useful in estab-
lishing an unbiased partitioning of data bases, in defining the effective
boundaries of prior data regions, and in determining exact relationships
between a new data point and prior data clusters, regardless of the dimen-
sionality of the space.

The structure of the multivariate data space can be inferred from the
results given above. For example, one cluster containing the majority of
the data, surrounded by clusters containing a few points each, is the usual
result for a unimodal data structure. A bimodal data structure produces
either two clusters containing all the data, or two clusters containing a
majority of the data, surrounded by smaller satellite clusters, and so on.

If the data are from K classes and are to be used for synthesizing a
pattern recognition system, it is vory helpful 1o porform K cluster analyses,
ono for tho fontures of cach ¢lags. The degroo of ovorlap botwoon clusscs
In 0 moasuro of tho frroductblo orror bnsod on the pnronmotors monsurad,

This statistic may be compared to F
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and this information can be used both for parameter selection and the design
of the classifier.

The CLUSTR algorithm plays an important role in determining the
quality and consistency of the observations in a multivariate data base.
Sensor information might be degraded due to equipment failure or to tempo-
rary interruptions, such as dust or steam shielding an optical sensor.
Therefore, it is very important to screen data in the input vector. Screen-
ing can be performed in the following way. A clustering analysis is first
conducted on a set of data free of fault conditions to find the regions of the
operating space in which the valid sensor data are clustered. Then, in an
operational mode (as new data are observed), the cluster to which a new
input vector is "closest' is determined (see below). The input vector is
accepted as legitimate if it falls within the "nearest' cluster. If not within,
this event signals either a fault condition or a time shift of the process.

Once a prior data cluster has been found, a normalized metric, D?,
may be computed for the distance between any new multidimensional point,
X, and the mth cluster by the following equation:

- 2

N /x, - Xmi
D? (m,X) = Z i mi
i=1 mi

where X,; is the mean value of x; for the mth cluster and oy, is the length
of the ith principal axis of this cluster. D? is computed from each cluster,
and thus the value of D? is found for that cluster, m*, for which the normal-
ized distance to point X is a minimum. If D?(m*,X) is less than unity, X is
inside cluster m*; if this distance equals unity, X is on the m* boundary;
and if X is greater than unity, X is outside cluster m*.

A decision to classify an input vector as a noisy, or fault, condition
would probably be rendered if the data point is far from the nearest cluster.
This is reasonable, since a distant point can result from one or more of its
components taking on an extreme value with respect to the main portion of
the data.

On the other hand, new observations which are just outside or in
peripheral portions of clusters which represent the past observed operating
regions probably suggest that a time shift is occurring. Depending on the
physical process involved, the time shift may take the form that (1) all
operating regions are moving simultaneously at the same rate, or (2) all
opoerating regions are moving simultaneously but at different rates (some
of which may be zero). The CLUSTR program can be used to detect which
of the two types of time shift is taking place and to determine the rate of
movoment of oach operating region (cluster) with respect to the coordinate
uxes of tho data space.

11 tho froquoney of dufn obsorvations fur romoved from the main clus-
tord Inceronson and If 1 chook conllrma thnt tho sonsora aroe roporting prop-
arly, tho pousibility that new opoeraling roglon(s) are bolng ohrorvod has to
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be considered. New regions could signal, for example, previously unob-
served states of equilibrium in a chemical process. Incoming data points
should be screened to avoid extrapolation errors. Usually, the points that
are interior to prior data regions can be safely admitted for model interro-
gation, while points that are exterior should be kept in memory for use in
updating the model. ,

To aid the analyst in visualization of cluster structures of high dimen-
sionality, one may reduce the displayed dimensionality of the cluster struc-
ture (with attendant loss of completeness) by computing eigenvectors (the
principal components zq, zg, ..., Z,) of the entire prior-available data
base, then transforming the boundaries of each X-space cluster into the
corresponding Z-space boundaries. The kth eigenvector parameter is de-
rived as a linear transformation of the x's:

N -
' L Ye; Xy~ %)

i=1

where i is the ith coefficient of the kth eigenvector of the N X N covari-
ance matrix and xj is the mean value of the ith parameter. The clusters
may now be plotted as they appear when projected onto the z;-z, plane,

and, as a further convenience, cluster ellipses may be drawn as rectangles.
The width of the jth cluster expressed as a rectangle along the kth z axis

(1 Batch)

Cell 3

is given by
7 5 3 :
1 1 % lower Z uki[(xi - sji) _xji]
| 1 i=1
and
AR N -
\ \\ z =) u [+ 8) - X ]
\ AN k,upper 2 kUi it Tt
\.—4 & \\§
e i
i § where x.. and s;; are the mean and standard deviation values of the jth
§,8 @ \\ cluster along the ith coordinate.
\ G \ The first two eigenvectors (z, and z,) are often adequate to reveal sepa-
\\\\ rations between the data clusters, because these eigenvectors account,

(2 Batches)

Cell 2

7]

%

cumulatively, for much of the variance in the data base (usually more than
half). An example is an industrial crystallization process for which data
clusters are drawn in Fig. 3. Data on initial conditions of 48 product batches
from thig process were recorded during the interval May 14-19, 1975; these
data clustered as shown In the crosshatched rectangles. Data on another 20
batches wero thon rocordoed during the poriod Soptember 16-19, and these
lntor date wore found to cluator ns shown In the open rectangles. From

IMg. 3 1t 18 roadlly coneluded (hat the procean oporating conditions, mens-

Fig. 3 Data structure for an industrial process. (From Ref. 49.)
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uring instruments, and/or the process itself were sufficiently different in
September to be far removed in data space from the situations observed in
June. This conclusion was not so immediately obvious to the analyst when
inspecting a 30-dimensional data file!

The CLUSTR data screening procedure, using the D? distance metric,
also detected that the September data from this process did not belong to
the June data distribution. Accordingly, to avoid extrapolation, models
trained on June data were not interrogated with the September data until
model updating had been performed.

Once the statistical structure of the data base has been established as
described above, the data base can be rationally divided into two or more
parts for GMDH model synthesis (PNETTR II). The first part, the design
data, consisting of F and S subsets, is used for model synthesis (i.e.,
model structure and coefficient determination). The second part, the evalu-
ation data, used after the model has been found, is employed in a final test
to ensure that the error rate that was obtained on the design data will sccur
approximately for all future data within the same regions in the N-dimen-
sional parameter space. Notice that the X vectors are clustered as one
group and then divided into subsets by selection (typically at random)
within each cluster.

Once a model has been found, its output is an estimate of the dependent
quantity: ‘

y = f(xl,...,xN)

whose true value is y. For each observation j, let ij denote the error
committed by the model:

The X vectors can now be divided according to their associated errors.
That is, label as class 1 the set of X vectors for which the model produces
the lowest error:

X c1X i
jc{ I layl < e

and so on until the class k set has been established as comprising the re-
maining observation vectors for which the model is least accurate (i.e.,
has the largest error):

Xje {X}k if € 1< 1Ay, ! < €

i

Tho data base has thus beon dividod Into sotg basoed on the modeling crror,
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and now the model error can in turn be modeled as a multiclass pattern
recognition problem. That is, given an X, what is the probability that the
estimate of the model will be in error between ¢ _1 and € ? This is ex-
pressed as

P(ek_1< lAyml 5ek] Xm) =:P(Xm| € 1< IAymlgek) xP(ek_1<|Aym|5_ek)

The conditional probability distribution function (PDF) for the kth class,

PX f - i
( ml €1 < lAyml < ek), can be found from a k-class cluster analysis

in which each of the classes is clustered separately [50].

The PDF for class k can be approximated by fitting a Gaussian distri-
bution to each of the C major clusters for that class, using the data within
the jth such region (1 < j < Cy) to estimate the mean and covariance matrix
of that region and creating a weighted sum of the statistically distinct
regions:

%

N 1 T -1
Pl < 1Ayl sep = j;1 Vi P [' 2 ®m Ay S - ij)}

where wy; is the fraction of class k data in the jth region and Ay; is a con-
stant inversely proportional to the square root of the determinant of Skj'

As each new data point is observed and an estimate of y; is rendered,
the confidence in the estimate can be assigned via the last two equations
above. This process can be easily made adaptive if the cluster structure is
updated as soon as the true value of the error for X; is available [51]. If
Ayj fell within the kth error band that was predicted, the regions of class k
in which Xj falls is modified by updating its mean and covariance matrix
due to the influence of this new point. If, on the other hand, Ay; was not in
the predicted kth error band, but fell instead in the nth error band, a new
operating region for class n has been found. In this way, the probability of
correctly classifying X—that is, the probability of assigning the correct
model confidence—is made an adaptive process.

IV. POST-1978 DEVELOPMENT OF
ADAPTIVE LEARNING NETWORKS

The utility of PNETTR O concealed, for a time, its deficiencies, which
were:

1. Strong tendoncy to overfit the design data
2. Poor corrolation botwoon model structure and underlying '"physics' of
the modoled procous
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3. Need to partition the data base, which reduced the quantity of data avail-
able for model fitting

4. Limitation of model elements ("'partial descriptors'—[44]) to bivariate,
quadratic form

5. Limitation of model to a single output variable (requiring creation of
multiple, unrelated models for the case of multiple outputs)

6. Inadequate mechanisms for influencing model synthesis and behavior on
the basis of estimated errors in old and new observational data

In the 1970s, the work of Akaike [52, 53] in Japan influenced additional devel-
opments in ALN synthesis algorithms. Akaike introduced an information
criterion that incorporated two fundamental types of terms: one that signi-
fied the error performance of a model and a second term that conveyed a
measure of the complexity of that model. Akaike suggested that the optimum
model was that which, in any given instance, produced the minimum sum of
error and complexity terms.

A. R. Barron ([54] and in Chap. 4) has carried the reasoning further.
He suggests that two related questions have had a major role in the evolution
of adaptive learning network synthesis programs. They are:

1. What is the criterion for determining ALN structure ?
2. What is the expected performance of the ALN when it is presented with
new data?

Ideally, there is one answer that resolves both of these questions; for if we
know that a first structure will perform better on new data than another,
we should adopt the first. The performance measure recommended by A. R.
Barron is the expected squared error on new observations. Two estimates
of the expected squared error, derived by him, are discussed below.

A natural way to estimate the expected squared error is by withholding
a subset of observations during ALN training and evaluating the (empirical)
average squared error on this subset. If the evaluation subset is kept inde-
pendent of the creation of the ALN, and is representative of the universe of
potential observations, it then provides a feasible measure of the perform-
ance of the model. However, if this subset is used, as in the GMDH cross-
validation treatment, to help select the structure of the ALN, the withheld
subset no longer provides an independent measure of future performance.
In fact, the selection subset used in GMDH and in PNETTR II influences the
future performance through the ALN it selects. Thus a selection data subset
is not ideal for its original purpose—selecting structure according to an
independent measure of performance on as yet unseen data. In PNETTR II
a third group of data, the evaluation subset, did not participate in creation
of the ALN and was used to estimatoe the oxpected squarod orror of the final
model.

Tho udo of two or throo subsold of data pormiy using crosa-validation
to avold ovorlitting und nlko (uxlng Lhroo subsots) providos an oslimato of
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the expected squared error. However, use of the cross-validation technique
requires attention to the partitioning of the original observations into repre-
sentative data groups and reduces by a factor of 2 to 3 the quantity of data
available for model synthesis.

A. R. Barron has shown that the expected squared error on new data can
be evaluated analytically with only mild statistical assumptions. The result is
a criterion that can be applied to training data to predict the future perform-
ance of the ALN, thereby eliminating the need for data base partitioning.
Specifically, it is assumed that the model errors are zero-mean, pairwise
uncorrelated, and have common variance o?. The errors need not be
Gaussian random variables and need not have the same distribution. The
model may be nonlinear in the input variables. The derivation assumes
linearity in the coefficients. Individual elements of ALNs are linear in their
coefficients, but networks of elements are not. Nevertheless, the criterion
is believed to be a useful and realistic result for ALNs.

Under the assumptions noted above, expected squared error on future
data is given by (see Chap. 4)

1
T
I
d n @)

2 -—
o“ trace (BF_B

where Rt is the "training covariance' matrix composed of average cross-
products between the transformed input variables used in the ALN (the
average being over the n training observations) and Ry is the corresponding
"future covariance' matrix (the average being over any set of observations
with errors uncorrelated with training errors).

The two terms in formula (2) correspond to two factors contributing to
error on future data. The first term, o2, is the expected squared error of
the "true' or optimum (but unknown) model. The second term is the expected
squared difference between the trained model and the true model when eval-
uated on data not used for training. If the "covariance structure' of training
observations is nearly the same as for future observations, then BFB’E‘I =],
the identity matrix of dimension k. In that case the expected squared error
(2) reduces to

o + o’k

(3)

where k is the number of estimated coeificients. Thus models of high com-
plexity and many estimated coefficients are not expected to perform well
unless there are enough training observations that the second term in (3) is
negligible. Small training data bases necessitate simpler models.

Since the true model, Its orror variance (0?), and number of parameters
k are rogarded a8 unlknown, formuln (3) 18 not yot in tho form of a usable
critorton for solooting tho wiructuros of ALNH. Wo neod n family of estimates
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of (3) which for each ALN indicates how well it will perform on new data.
Then we adopt that ALN which we estimate will perform best. The suggested
estimate of an ALN's performance, used in the most recent ALN synthesis
algorithm, PNETTR IV, is the predicted squared error (PSE):

2
20‘Pk

PSE = TSE + )

where TSE is the (empirical) average squared error of the ALN on the
training data and ¢} is a prior estimate of o (which does not depend on the
ALN being examined). The fixed op in the penalty term is used because we
do not want PSE to underestimate future squared error when the particular
ALN considered is incorrect (e.g., an overly complex ALN with low error
on training data). The factor 2 appears because the training squared error
(TSE) is biased below o? by a factor of ¢’k/n. From analysis of the statis-
tical properties of PSE, it is found that prior knowledge of 0* need not be
accurate, although having ai, > ¢ is helpful to avoid overfitting [54]. Typ-
ically, it is reasonable to assume that o is less than the variation in the
dependent variable y, which is given by

1 -
o = Z(yi—y)2

where y = Zyj/n. If no prior value is provided, PNETTR IV uses (rf) = of/2.
Experience has verified that this choice gives acceptable results.

The PSE criterion resembles criteria proposed by Mallows [55], and
Akaike [52,53]. The differences and reasons for preferring the PSE crite~
rion are discussed by A. R. Barron. Implicit in the derivations of Mallows
and Akaike are quantities such as (3) [but not (2)]. Bibby and Toutenburg [56]
have also examined expected performance on future observations [and (2)
can be derived from their equations 1.5.5 and 1.5.13}; however, they do
not derive a criterion for selecting among many models.

The result (2) can be very useful after an ALN has been selected and
is being applied to new data for which one does not know the true value of
the dependent variable y and wishes to know how accurate is the ALN esti-
mate. Result (2) indicates that one should monitor the ""covariance struc-
ture" Ry (the matrix of average cross-products) of the new input data. If
trace (RFRT) is less than or comparable to k, the ALN should be satis-
factory. However, if trace (RpR7T) tends to be much greater than k, the
ALN may not be suitable for the new data. In such a case the ALN should
be adapted or retrained.

The work of A. R. Barron led him to the development of versions IIl and
1V of PNETTR. Becauso PNETTR II and PNETTR IV do not use data groups
(subsets of data for cross valldation), thoy avo not, strietly spouking,
examplos of the group mothod of dutn handlng. Instond, polynomial ATNs
wro arontod vin PNIFTTR T and 1V using Informatlon-thooratlo eritoris to
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govern the selection of terms in the elements and which elements remain in
the model. Table 1 summarizes versions II to IV of the ALN polynomial net-
work training routine.

Numerous applications of the ALN synthesis methodology have been
made. The preponderance of these applications have arisen in signal, image,
and time-series estimation (forecasting, target detection, target discrimi-
nation, and the like), but’uses have also appeared in discrete modeling solu-
tions. Because of the emphasis on signal processing and analyses of time
series, considerable attention has been devoted to the development of com-
puter routines for extraction of signal (time-series) parameters (‘'features').
Practitioners of ALN modeling now have at their disposal a battery of related
computational aids, including time-domain and frequency-domain feature
extraction, clustering algorithms (hyperellipsoidal and hypercubical), multi-
modal Bayes decision-rule synthesis algorithms, and so on.

These same numerous applications have generally been conducted under
the assumption that the model to be found,

y = f(xl, . ,xN)

expresses an analytic relationship between the dependent quantity y and the
feature vectors xj through xy. The Kolmogorov-Gabor (K-G) polynomial
discussed at length elsewhere in this volume represents such an analytic
relationship. The need to generalize to a class of nonanalytic polynomial
representations has been recognized by Cook and Craig [57]. The generali-
zation admits singularities into the analytic background represented by the
K-G polynomial. Using this representation, basic building blocks of ALNs
can be constructed by PNETTR IV in such a manner that the resulting net-
works can represent symmetric and asymmetric singularities, discontinu-
ities, and jumps embedded in analytic backgrounds.

It is particularly noteworthy that elementary forms of the ALN synthe-
sis algorithms now exist in new instruments that exploit advances in micro-
processor (integrated circuit) technology to achieve completely self-
contained ALN capabilities in portable devices. Although it will be some
time before the power and generality of these compact devices rival the
capabilities of, say, PNETTR IV installed in mainframe scientific com-
puters, it is visualized that the gap in capabilities between portable and
lixed-base ALN systems will be gradually closed over the next several
yoars.

One other future trend is discernible at the time of this writing. Tradi-
Lionally, artificial intelligence (AI) techniques have been oriented almost
lotally toward realization of Al via emulation of the behavior of human ex-
ports. GMDI and ALN tochniques provide a useful augmentative or alterna-
Live approach for Ltho roalzation of avtificial intelligence; that is, some AT
cnpabiltlos may bo aahlovad by mothods that are relatively alien to human
thought procodsan bul explolt the arlthmotie nnd Toglanl powers of computers.
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The challenge for ongoing research will be to meld an effective union between Table 2 Representative U.S. Applications of Adaptive Learning Networks

the traditional (rule-based) and ALN (inductive) approaches toward Al [58].

Process control
Hot strip steel mill runout table cooling sprays
Crystallization processes
Fermentation processes

Radar
Reentry vehicle trajectory prediction
Radar imagery target classification
Detection and identification of tactical targets
Radar pulse classification

Passive acoustic and seismic analyses
Ocean platform detection and classification
Seismic discrimination

Infrared
Target acquisition and aim-point selection
LANDSAT scene classification

X-ray
X-ray image analysis for bomb detection in luggage

Ultrasonics and acoustic emission
Ultrasonic imaging
Feedwater nozzle inspection
Turbine rotor inspection
Ultrasonic pipe inspection
Monitoring of crack-growth activity

Eddy currents
Automatic bolthole inspection
Recirculating steam generator tubing inspection
Once-through steam generator tubing inspection

Missile guidance
Air-to-air guidance law synthesis

Materials
Radiation embrittlement modeling
Modeling of single-particle erosion of heat shields
Weld strength estimation

Multisensor signal processing
Physical security systems

Microprocessor-based hardware
"Smart" ultrasonic flaw discriminator
Blomeadical modeling
Sloep stage classification
Cragh Injury modeling
eonomoirle forocnsting
Stool shipmont Torocasting
Coul-patimating rolallonships

V. APPLICATIONS OF ADAPTIVE LEARNING NETWORKS

Table 2 summarizes recent U.S. applications of ALNs, and the following
sections of this chapter detail a few of these applications with a view to
illuminating the principles involved.

A. Scene Classification of LANDSAT Multispectral
Scanner Data

The adaptive learning network (ALN) methodology was used to classify a
LANDSAT scene into three terrain classes: water, forest, and nonforest.
The U.S. Army Engineer Waterways Experimental Station provided training
and evaluation sets of LANDSAT multispectral scanner data taken from the
13 October 1975 LANDSAT 2 scene located 40 km northwest of Vicksburg,
Mississippi.

The training data consisted of 545 classified radiance vectors. Each
radiance vector contained a mean radiance for each of four spectral bands
which was obtained from 3 X 3 pixel arrays. The number of vectors in the
water, forest, and nonforest classes of the training data was 8, 156, and
381, respectively. The geographical distribution of the 545 3 X 3 pixel
arrays was not made available.

The ALN classifier synthesized from these training data was used to
classify 52,000 pixels in an independent evaluation set. The classification
results were essentially 100% accurate, based on a comparison with the
actual terrain conditions. Considering the large evaluation set compared
to the training data set, together with the speed and simplicity of the derived
ALN, the ALN methodology was deemed to be ideally suited to rapid classi-
fication of large LANDSAT scenes [59, 60].

B. Target Recognition for Missile Guidance

The ALN synthesis methodology has been used to create a ground target
image classification algorithm for infrared images representative of those
obtained with seekers in tactical air-launched missiles. Using features ex—
tracted from transforms of the original image, the classification algorithm
achieves range- and aspect-angle-independent separation of images that
contain a specific target type from images that do not contain that type. A
receiver operating characteristic (ROC) analysis of the algorithm, using

385 sample images, shows 95% detection rate, 5% false-alarm rate, and a
small (<1%) false-dismissal rate. This study oxamined tho potontinl for
ALNs to rocognize spoclfic targots of torost In infrared Images. Papticular
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emphasis was placed on designing a target recognition algorithm that is
independent of the target range and aspect angle [61, 62].

C. Missile Guidance Laws

The feasibility of using ALN techniques to provide passive implementation
of modern optimal guidance laws has been demonstrated via simulations.

A modified proportional navigation (MPN) optimal guidance law was used
to establish the ALN training data base. (The details of MPN guidance laws
are described in Ref. 63.) The resulting ALN guidance law was found to be
superior to constant-gain proportional navigation and to have performance
comparable to that of the ideal, but passively unrealizable MPN guidance
law over the envelope of MPN launch conditions {57, 64, 65].

The MPN law was defined to be the one that provides desirable com-
mands for missile acceleration, but for implementation the MPN law re-
quires knowledge of passively unobservable range to target and range rate;
and an estimate of the completely unobservable time to g0, tgo, is also
required. Thus the basic idea was to use MPN to produce a training data
base of intercept engagements and have the ALN model the acceleration
commands in this data base using, as ALN inputs, only passive-seeker
observables. To perform as well as MPN, the ALN had to learn to infer
the unobservable information (combinations of range, range rate, and tgo
appearing as optimal gains in the MPN formulation) from passive observ-
ables in the missile-target engagements incorporated in the training data
base. (A description of the training data base is given in Ref. 64.)

The ALN implementation of MPN showed excellent performance. In an
independent six-degree-of-freedom simulation of 266 engagements of a
maneuvering target in which the missile was under the control of the passive
ALN guidance law, the missile "hit" the target in 212 engagements (79. 7%).
The corresponding figure for the active MPN guidance law was 200 engage-
ments (75.2%), and for classical passive proportional navigation it was 159
engagements (59.8%). Because of the success of the ALN in modeling MPN
guidance while requiring only passively observable inputs, this new approach
is viewed as offering significant improvements over classical guidance
techniques for passive systems and a promising approach for active and
hybrid systems.

D. Development of a Distributed, Adaptive,
Intrusion Detection System

A laboratory prototype of an adaptive, fixed-site, physical security system
has been developed which incorporates a distributed microprocessor net-
work, fiber-optic data links, and adaptive signal processing tochnologics
{66~69]. Tho system achioves a high probability of dotoction and a low
huisance alarm rato by using ALN-basod doteotion nlgorithma to porform
multisonsor stgnal provouning. Tho doctulon loglo Almultanoounly intogratos
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the outputs of geophones and three other types of sensors (SPIR, RACON,
and MILES). The detection algorithm is an "alerted classifier'; that is,
energy in any of the detectors above a threshold initiates the classification
of the combined waveforms as intruder or nonintruder induced. The ALN
classifier is trained on representative data. The system features the ability
to adapt to site-specific characteristics. The adaptation takes place by
training/retraining the classifier on data collected by the ALN system at
that site. This capability resides in the software resident on the system
hardware. The system also has a capability of recognizing that its environ-
ment has changed and alerting the system operator accordingly.

E. Establishing Signal Processing and Pattern Recognition
Techniques for In-Flight Discrimination Between Crack-~
Growth Acoustic Emissions and Other Acoustic Waveforms

Signal processing and pattern recognition algorithms have been developed
to discriminate crack-growth acoustic emissions from other innocuous,
extraneous acoustic sources. Laboratory experiments were performed to
record thousands of crack-growth and noise waveforms on aircraft struc-
tural aluminum plates of different geometries and alloy compositions. The
problem was separated into four stages, each solved in an automatic mode:
detection of signal in background noise, windowing of various parts of the
signal, feature extraction, and classification. The algorithms were designed
keeping the limitations and requirements of real-time implementation in
mind. The ALN methodology was used to select the most important features
from the candidate feature list and to derive nonlinear classification func-
tions. Results indicate that optimum combinations of temporal and spectral
features result in significantly improved acoustic emission signal identifi-
cation [70].

F. Quantitative Nondestructive Evaluation of Materials

Adaptive learning networks were first applied to quantitative nondestructive
evaluation (NDE) in 1973. The combination of digital signal processing as a
preprocessing step and ALNs to model time- and frequency-~domain wave-
form features has led to a new level of performance of NDE systems. Prior
to the introduction of ALNs, the detection and assessment of material de-
focts (such as cracks in pipe welds) was based almost solely on the ampli-
lude of a pulse-echo or through-transmission ultrasonic response.

Typical candidate features that are computed from the ultrasonic (i.e.,
"R gignal for possible usc as ALN inputs are given in Table 3. Usually,
tho time-domain foatures are dorived from the analytic envelope of the
Hignnl, ostimatod vin the HIbort transform. The frequency-domain features
nro obtalnod Trom tho Fourlor teansform.,

Typleal ALNA for delarmhdng dolocet typo ("eharactorlzation') and size
nro shown o g, 4 Phore models worae doelvod uglng tho PNETOUR TV
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Table 3 Typical Ultrasonic RF Waveform Features

Rise time 25-90%

Pulse width at 60% amplitude
Pulse width at 25% amplitude

Fall time 90-25%
Polarity at 25% on rising edge
Polarity at 60% on rising edge
Polarity at 90% on rising edge
Polarity at peak
Average phase between 25% points
Average phase between 60% points
Average phase between 90% points

Energy band,
Energy band,
Energy band,
Energy band,
Energy band,
Energy band,
Energy band,
Energy band,
Energy band,
Energy band,
Energy band,
Energy band,
Energy band,
Energy band,
Energy band,
Energy band,
Energy band,
Energy band,
Energy band,
Energy band,

analytic power
analytic power
analytic power
analytic power
analytic power
analytic power
analytic power
analytic power
analytic power
analytic power

Computed from the Hilbert transform
analytic envelope

Computed from the Hilbert transform

spectrum at 0.156 MHz
spectrum at 0.313 MHz
spectrum at 0.469 MHz
spectrum at 0.625 MHz
spectrum at 0.781 MHz
spectrum at 0.938-1.094 MHz
spectrum at 1.250~1.406 MHz
spectrum at 0.156-0.625 MHz
spectrum at 0.781-1,250 MHz
spectrum at 1.406-2.500 MHz

RF power
RF power
RF power
RF power
RF power
RF power
RF power
RF power
RF power
RF power

spectrum at 3.
spectrum at 3.
spectrum at 4.
spectrum at 5.
spectrum at 5.
spectrum at 3.
spectrum at 4.
spectrum at 4.
spectrum at 3.
spectrum at 4.

44-3.75 MHz
75-4.38 MHz
38-5.00 MHz
00-5.63 MHz
63-6.25 MHz
44-4.06 MHz
06-4.84 MHz
84-6.25 MHz
44-4.53 MHz
53-6.25 MHz

Ratio of RF energy bands: feature 27/feature 28
Ratio of RF energy bands: feature 28/feature 29
Ratio of RF energy bands: feature 27/feature 29
Moment of the RF power spectrum, center of mass

Moment of the RF power spectrum, standard deviation

Moment of the RF power spectrum, skewness
Moment of the RF power spectrum, kurtosis
Moment of the analytic signal, center of mass
Moment of the analytic signal, standard deviation
Moment of the analytic signal, skowness

Momeont of the analytic signal, kurtosls
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(a) Sizing Model

size

____*Mathematical form of element blocks

single-~Feature Blocks:
+ 2, ax’
vy S Ay tax Ay 31
Two-Feature Blocks:
2 2 + a X 3 + a X 3
+ a.x.
y, = ag tapx) fayk, vagnXx) ¥ ags v et 671 7%2
Three-Feature Blocks:
+ X X + a_X_X
y, Tag tagx fayx, vagxyd a ¥ Aty T %
2 2 2 3, 3, .3
+agx "t agk, t+agXxy +ajgX) T A% 12%3
(b) Characterization Model
LAY
%
Hyn 1
a1 - ¥
ot 2 2 b 73 Yy,
Xy 2 3 | Ye
X1¢ 4 ~
26 I— 5 v
X3¢ 6 type

*Nota: Tnput features are shown in Table 3. Model structure and coefficients
(a's) learned from the training data.

I'lg. 4 Adaptive learning network models to (a) estimate the size of
nurface—connected cracks, and (b) discriminate between crack and inclusion-
lype defects in turbine rotor bores.
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algorithm. The following are representative examples of ALN NDE appli-
cations.

1. Under-Fastener Cracks in Aircraft Components

The feasibility of adaptively synthesized nonlinear signal processing tech-
niques for characterization of ultrasonic waveforms to detect and evaluate
under-fastener fatigue cracks in aluminum was demonstrated in 1976. Reli-
able detections and accurate size measurements over the entire flaw size
range of 10 to 270 mils represented by the tested specimens was achieved.
Previous NDE techniques provided no detection capability below approxi-
mately 35 mils and no size measurement capability whatever [71].

2. Multilayered Adhesively Bonded Materials

The ultrasonic waveforms obtained from pulse-echo testing of multilayered,
adhesively bonded materials is a complex function of the number and compo-
sition of the layers and the adhesive bonds, multipath reflections, the inci-
dent angle of the main ultrasonic beam with respect to the material surface,
and the presence of numerous spurious reflectors. ALNs can successfully
detect bond-line defects, classify the types of these defects (disbonds,
delaminations, porosity, etc.), and report their sizes and locations [72].

3. Austenitic Pipe Welds

ALNs have been synthesized for detecting, locating, and classifying flaws
produced by intergranular stress-assisted corrosion cracking in austenitic
pipe welds. These cracks are a critical problem in the operation of reactors
for nuclear power generation. The detection of the cracks is complicated by
the presence of numerous geometrical reflectors and by the high attenuation
of acoustic signals propagated through stainless steel. The geometrical re-
flectors consist mainly of the stainless steel grain structure and other sur-
faces induced in the machining and welding steps. True defects can be
accurately discriminated by ALNs, and information regarding flaw sizes,
locations, and orientations can be extracted from the ultrasonic waveforms.
As a direct outgrowth of this project and related work, a nondestructive
evaluation "smart'" automatic pipe inspection system for use during in-
service ultrasonic inspections of nuclear power plant piping has been
developed [73].

4. Turbine Rotor Boresonic Inspection

Advanced signal processing techniques have been applied to the evaluation

of ultrasonic data collected from nuclear powor plant turbine rotors. Tho
data have been analyzod and algorithms dovolopaed to meroase the transducor
output signal-to-noise ratlo by both Lompornl and spatinl bonmforming toch-
nlquos. A smart slgnal procouning syslom bhasod on ALNa lor turbnoe rotor
bore npostlon hus boon duveloped 741,
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5. Spot Weld Strength

An NDE system has been developed to measure and document the strengths
of resistance spot welds in automobile bodies. Experimental instrumentation
was used to measure and record a variety of welding variables, including
electrical, mechanical, and acoustic emission signals. Sheet metal coupons,
welded and monitored in laboratory and plant environments, were tested de~
structively to determine their tensile shear strengths. Using a data base
consisting of the waveforms recorded during the welding process and the

net strengths obtained from the destructive tests, ALN techniques were

used to synthesize models to predict net strength from the instrumented
signals. The feasibility of estimating the strengths of resistance spot welds
from measurements made during the welding operation was established
based on the results of modeling the strength of more than 600 welds [75].

6. Molten Metal Inspection

In the history of nondestructive evaluation of materials, attention has
focused almost exclusively on detection (and, more recently, characteri-
zation) of flaws in materials inspected in their solid states. Procedures
and a hardware system for detection of flaws in molten aluminum have been
developed. With this system, flaws can be detected and removed before the
metal solidifies, greatly reducing costs of production and significantly
improving product reliability [76].

G. Modeling of Behavior of Materials

The behavior of materials has been characterized using the ALN method.
The following applications are representative.

1. Single-Particle Heat Shield Erosion Analysis

The applicability of ALNs to modeling single-particle heat shield erosion
{ost data has been investigated. The erosion mass loss from carbon-carbon
composites was modeled successfully in terms of material properties,
manufacturing process variables, and test parameters. In addition, crater
core depth and radius were successfully modeled [77].

2. Radiation Embrittlement

RRudlation embrittlement toughness curves and the variability in fracture
propertles of nuclear reactor steels have received research attention in the
nuclonr power Industry. A large data base for unirradiated materials has
hoon agsomblod to pormit analysls of feaclure-toughness characteristics of
prossure vossol alools. A rveducod rrdiatod data base has also been
nequlred. ALNu hiuvo boon usoed to modol guceodsully o moeasuro of toughness—
ol rorponse whinly, T ndditfon 1o bolng 1 function of towmporaturo and neu-
tron Muonca, dopends on Leerdiatlon thae, noulron enorgy denully, radintlon
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16. R. L. Barron, Self-Organizing and Learning Control Systems, AD

temperature, material properties, reflecting the microstructure, and chem—
811 244, in Cybernetic Problems in Bionics (1966 Bionics Symposium),

ical impurity content [78].
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