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ABSTRACT

Fault detection, isolation, and estimation (FDIE)
functions and reconfiguration strategies for flight
control systems present major technical challenges,
primarily because of uncertainties resulting from
limited observability and an almost unlimited
variety of malfunction and damage scenarios. This
paper deals primarily with a portion of the problem,
i.e., global FDIE for single impairments of control
effectors. Reference is also made to reconfiguration
strategies.

Polynomial neural networks are synthesized
using a constrained error criterion to obtain pairwise
discrimination between impaired and no-fail
conditions and isolation between impairment classes.
The pairwise discriminators are then combined in a
form of voting logic. Polynomial networks are also
synthesized to obtain estimates of the amount of
effector impairment. The Algorithm for Synthesis of
Polynomial Networks (ASPN) and related methods
are used to create the networks, which are high-
order, linear or nonlinear, analytic, multivariate
functions of the in-flight observables. This paper
outlines the design procedure, including database
preparation, extraction of waveform features,
network synthesis techniques, and the architecture of
the FDIE system that has been studied for the Control
Reconfigurable Combat Aircraft. Representative
performance results are provided.

1. BACKGROUND
1.1 FDIE

Fault detection, isolation, and estimation (FDIE)
design for flight control effectors and airframes
presents a major technical challenge. Traditional
design methods involve specification of all critical
design conditions and/or extensive overdesign for
unpredicted or uncertain conditions. Only a fraction of

the operational fault conditions that might be
encountered can be enumerated, and only a small
portion of those that may be enumerated can be used
explicitly for design, because the number of possible
fault conditions is very large. The controlled
processes to be dealt with via FDIE models are
inherently nonlinear, involve interactions between
multiple variables, are high order and time varying,
are partially driven by unknown gusts and turbulence,
are incompletely observable, and depend upon
uncertain aero-inertial parameters and uncertain
aeroservoelastic characteristics (particularly for
damaged airframes). In advanced systems, over—
design will be replaced by real-time adaptation and
learning, needed to cope with conditions that cannot
be treated explicitly during design.

The control effector, single-failure, global (i.e.,
based upon airframe responses) FDIE objectives (from
Ref. 1):

» FDIE response time of 0.2 sec. or less so as sub-
stantially to eliminate acceleration transients
and flight-path departures resulting from
impairments,

¢ no false alarms and minimum false dismissals,
¢ minimum isolation error rate,

¢ surface impairment estimation within 10
percent for fractional impairments between 0.2
and 1.0,

¢ minimum sensitivity to model errors, external
disturbances, and measurement noise,

¢ minimum computational complexity, and
* automated design and evaluation procedures.

Part of the foundation for single-failure, global
FDIE design is a suitable statistical terminology. The
following conditional probabilities are of particular
interest: -
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p (det | ;> Ty,

The probability of correct detection given that surface
j is impaired by an amount greater than threshold Tj

pEDI>Tp=1-pdet [ ;>T)
The probability of false dismissal given that surface j
is impaired by an amount greater than threshold Tj

p (FA)
The probability of false alarm given that no surface
is impaired

p (isoj) »
The probability of isolating an impairment to surface
j whether or not any impairment exists

p (isoj | j> Ty

The probability of correct isolation to surface j given
that a correct detection has occurred and that surface j
is impaired by an amount greater than threshold Tj.

' p (isoj | [>T and p(soj IG<Ty

The probabilities of false isolation to a surface i
other than j given that a correct detection has
occurred and that surface j is impaired by an amount
greater than (>) or less than or equal (<) threshold Tj

In a successful FDIE design:

p (FA) < 10”7 per flight hour

p(detI']j > Tj) ~ 1.0forallj

plsoj ! Jj > T) ~ 1.0forall]

p (isoj I Ij < Ty is not important provided

Tj is small (< 0.2)

p(soj I Ij >Tj) ~ Oforalli=j

plsoj I Ij £ Tj) ~ Oforalli=j

oj < 0.1 (10 percent)
where 0j is the standard deviation of estimation
errors for surface j given that a correct isolation to

surface j has occurred and that surface j is impaired by
an amount greater than threshold Tj.

The false-alarm probability is a function of
threshold levels, as are the other probabilities. It is
appropriate to describe the behavior of detection and
isolation processes in terms of their “"operating char-
acteristic” curves, which are graphs of p(det), p(iso),
and p(FA) presented as functions of the threshold
levels. In communications systems, these are known as
"receiver operating characteristic" (ROC) curves. An
example of operating characteristic curves for the
simulated Control Reconfigurable Combat Aircraft
(CRCA) is shown in Figure 1. For greater clarity of

p(FA) presentations at large threshold levels, the
p(FA) curve is often plotted as log p(FA) vs. a
threshold value.

1.0
0.8 wff
0.6
« p(DET) = probability of detection
0.4 — R

H H H i l
N p(FA) = probability of false alarm

02 4=
0.0 k"?::— A
0.0 0.1 - 0.2 0.3

Threshold

Figure 1: Operating Characteristic Curves for
Left Canard Detector/Isolator

Over-all system performance is best summarized
by an accuracy ("confusion”) matrix of the form shown
in Table 1 for the CRCA. The notation ILW means
that an effector impairment is isolated to the left
wing, IRW the right wing, and so forth.
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Table 1: Performance Matrix (CRCA)

A practical problem arises in determining the
operating characteristic curve for p(FA) for rela-
tively large threshold settings: the number of simu-
lation runs required to determine accurately this
almost-zero probability can become prohibitively
large. The usual compromise solution in communica-
tions is to determine p(FA) for several relatively
small values of the threshold(s), then extrapolate
the p(FA) curve to the region of interest. The system
user must be advised that this p(FA) is an estimate
until further confirmation becomes available.



Terminology for describing surface impairment
estimator performance is presented in Figure 2.
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Figure 2: Detector/Estimator Performance Definitions
(Based upon Estimator Scatter Plot)

1.2 Reconfiguration

Several fundamental forms of control law
reconfiguration are:

(1) Use of estimated effector sensitivities to
adjust control law gains via an explicit
pseudo-inverse calculation.

(2) Use of estimated effector sensitivities to ad-
just control law gains via an implicit (neural
network) calculation ---The pseudo-inverse
solution may not incorporate fully the
designer's wishes for tailoring the gain vector
as a more general function of the estimated
effector sensitivities. If the designer stipu-
lates the desired gains vs. estimated sensitiv-
ities in the form of a numerical database, a
polynomial neural network can be synthe-
sized to model these gains.

(3) Use of fixed, implicit (polynomial network)
calculations to infer control law gains inde-
pendently of estimated effector sensitivities -
- Fixed polynomial neural networks may be
used to estimate optimum values of control
law gains (independently of estimated
effector sensitivities) and/or to predict
control system (including aircraft) responses.
To design these fixed networks, the designer
tabulates, as functions of flight system
observables, the optimum gain values and/or

correct predictions. In general, these vary
with flight, fault, maneuver, and disturbance
conditions. Systems using a polynomial
network or networks to estimate optimum
gains and adjust these in the control law have
been called supervisory controllers or super-
controllers.

(4) Use of implicit on-line adaptive (polynomial
network) calculations to command the control
effectors -- For severe, multiple effector dam-
age or severe airframe damage, polynomial
networks can use unsupervised, recursive on-
line adaptation. Thus networks can ac-
complish implicit identifications of gradu-
ally or rapidly varying system dynamics.

2. THEPOLYNOMIAL NEURAL
NETWORK APPROACH

2.1 Condensed History

Serious study of artificial neural networks began
with the work of McCulloch and Pitts (1943), Ref. 2,
who put forward a mathematical representation,
based upon Boolean algebra, for the gross behavior of
neural networks. Hebb (1949), Ref. 3, introduced
neural network models in which the cells included
delays and a refractory period, and the networks of
these cells incorporated feedback connections produc-
ing reverberating chains. Lee (1952), Refs. 4, 5, 6, pro-
posed generalized logic-learning elements for
automata with selective reinforcement of randomly
active parameters in networks of these elements.
Farley and Clark (1954), Ref. 7, suggested use of
linear elements with thresholds on their outputs.
Gabor (1954), Ref. 8, proposed a filter that could learn
with supervision. Kolmogorov (1957), proved an
important theorem (discussed in Ref. 9) on network

~ representation of continuous functions. Rosenblatt

(1957), Ref. 10, drew a vital connection between stud-
ies of neural networks and of statistical inference; he
showed that a network of the Farley and Clark ele-
ments can find a data-separating hyperplane if one
exists. (Also see Minsky and Papert, Ref. 11.)
Rosenblatt (1958) assembled hardware for a trans-
formation ("Perceptron”) network of these elements,
using it to recognize patterns. Gabor et al. (1959), Ref.
12, described results obtained with the "universal
non-linear filter" which optimized itself by a learn-
ing process. The Gabor filter, implemented in hard-
ware, could compute "...94 terms of a polynomial,
each term containing products and powers of the input
quantities, with adjustable coefficients, and...form
their sum”. He showed that "...the most general func-




tional of the past of a band-limited time function can
be put in the form...of a polynomial of the samples”.
Widrow (1962), Refs. 13, 14, used a form of stochastic
approximation to estimate sequentially the weights
in a network of the Farley and Clark elements.

Independently of Gabor, (R. L.) Barron, Gilstrap,
et al. (1963; see Refs. 15 - 23) introduced analytic
nonlinear neural networks that used polynomial
nodal elements suggested by the earlier work of Lee.
It was demonstrated that these elements and
networks thereof could perform Boolean logic
calculations, estimate values of unknown variables,
perform high-order predictions, and discriminate
between patterns. Pre-structured networks were used;
the coefficients simultaneously using a statistical
measure of performance on the training data base.
The first application was to prediction of re-entry
trajectories (1964), Ref. 15. Later in the 1960's,
Ivakhnenko, Refs. 24, 25, showed that polynomial
networks could be evolved adaptively from a single
nodal element to networks of requisite form and com-
plexity. He fitted the network element by element,
using a cross-validation procedure (multiple data
sets) to select the most promising elements and to
detect and avoid overfitting of the data. In 1967,
Specht, Ref. 26, examined the generation of
polynomial discriminant functions.

Beginning in 1981, (A.R.) Barron systematically
developed the connection between neural network
synthesis and the tools of statistical inference. First,
drawing on the work of Akaike (Ref. 27), Mallows
(Ref. 28), and Rissanen (Ref. 29), he derived the
predicted squared error (PSE) modeling criterion,
Refs. 23, 30-32. PSE is particularly suited to synthesis
of estimation networks such as those used in FDIE to
estimate effector impairments. In Ref. 32 (A.R)
Barron and (R.L.) Barron compare (1) algorithms for
creating neural networks with adaptively synthe-
sized structures; (2) the projection pursuit algorithm
of Friedman et al. (1974, 1981, 1984), Refs. 33-35,
which is widely used in statistical inference; (3) al-
gorithms for additive models and transformations;
and (4) generalizations of these. In Ref. 36, (A.R.)
Barron (1989) examines the convergence properties of
statistically synthesized neural networks.

In 1982, a paper by Hopfield (Ref. 37) enjoyed
wide readership and re-energized worldwide interest
in neural networks. Many publications have since
appeared (see, for example, Rumelhart et al., Ref. 38,
p- 321) that give the impression that multilayer
search strategies for synthesis of networks are novel
to the 1980s. However, such strategies date to the
early 1960s. Recent publications by Giles and

Maxwell, Ref. 39, have re-addressed polynomial
network principles, referring to "high-order neural
networks".

Work began in 1984 to synthesize super-
controllers using neural network synthesis algorithms.
(See R. L. Barron, Ref. 40; Goldschmidt, R. L. Barron,
and Elder, Ref. 41; Elder and R. L. Barron, Refs. 42, 43;
and Gross and Migyanko, Ref. 44.) Current work is
establishing FDIE neural network design tools and
demonstrating their application using the CRCA six-
degree-of-freedom nonlinear simulation as a test bed.

The Algorithm for Synthesis of Polynomial
Networks (ASPN), Ref. 46, is a culmination of the
work of Gabor, (R. L.) Barron, Gilstrap, Ivakhnenko,
(A. R.) Barren, Elder, Cellucci, and others toward
polynomial neural network synthesis.

2.2 Xey Principles

The following important principles have been
learned over the past 47 years about the syntheses
and applications of neural networks:

(1) Nodal elements should be analytic, and incorpo-
rate cross-products as well as sums of their inputs.

(2) Network structures should evolve from simplest
forms to levels of just-sufficient complexity as
syntheses proceed.

(3) Excessive complexity of neural networks must be
avoided to prevent overfitting and consequent un-
reliability when processing new data.

(4) Global searches are indispensable in assuring
network optimality.

(5) Information theoretic (statistical inference)
criteria, including overfit penalties, should be
used to govern network syntheses. Different
performance criteria apply to estimation-network
and discrimination-network syntheses.

2.3 Nodal Elements

A large number of candidate nodal elements for
neural networks have been used. Some of the most
successful are (Ref. 45):

(a) algebraic combining element
y = 0p+ B81x] + 82x2 + 03%x3 + 64 x1X2
+ O5x1x3 + O x9x5 + 65 xl2 + 6gxp2
+ 6y x32 + 859 x13 + 6y, x23 + 6, x33

+ 013 x0%3



(b) linear summ'ing element
N
y = 85+ Y 8.x

(c) exponential element
y = 65 +exp(®;x + 8y

(d) moving-window weighted-absolute

element

average

N
yi = X 8 lyt-jal
ji=o0

In the above, y is the element output, the §’s are con-
stant parameters determined during synthesis, and
the x’s are element inputs. During network synthesis,
some coefficients (6’s) may be set to zero. (This is

called carving, Ref. 46.)

2.4 Algorithms for Fitting

Numerous algorithms for data fitting in neural
network synthesis have been used. The most
important of these are summarized in Table 2:

Off-Line On-Line
Static Dynamic Static Dynamic
Least Squares (LS) U U O

Recursive Least D
Squares (RLS)

[

Recursive Prediction
Error (RPE)
Levenberg-
Marquardt (LM)
Recursive Levenberg-
Marquardt (RLM)
Discrete Levenberg-
Marquardt (DLM)

Guided Random
Search (GRS)

O 8

O

1 Not Suitable
id Suitable Using PSE
Criteria for Estimators
Also Suitable Using Logistic-
Loss Criterion for Classifiers

v~ , Require Special Pre- and
. Post-Processing Operations

Legend:

Table 2: Algorithms for Data Fitting in Neural
Network Syntheses

Syntheses of networks involve preparation of
databases, nodal element fitting and tuning, elimina-
tion of unneeded terms, selection of fitted nodal ele-
ments that provide the best data fit vs. element com-

plexity, stopping of network growth at optimum net-
work depth, and network pruning, tuning, implemen-
tation, and evaluation. To avoid overfitting, neural
network accuracy must be assessed in terms of both
goodness of fit and network complexity. This assess-
ment is best made during synthesis by using a statisti-
cal fitting criterion. After synthesis, a systematic
evaluation of network performance should be made
throughout its operating region.

2.5 Criteria for Composition and Selection

A generic statistical criterion for composition
and selection of functions in neural network syntheses
takes the form (Ref. 36)

]:

1

NN )]

A k
d (yi, f(x;, 8)) + =
1 n

=

where ] is the criterion value (to be minimized) for a
given output variable, n is the number of input-output
pairs (data vectors) in the synthesis data base, y; is
the ith value of the output variable as represented in
the data base, xj is the ith value of the input vector

A
in the data base, § is the estimate of the optimum pa-
rameter vector for the network, and k is the dimen-

A
sionality of 8. The loss or distortion function, d(y;, z;)
can take many forms. Of particular interest are:

(a) for squared-error loss (estimation networks)
1
dlyi, 2) = 53 (yi-2)%

o2 = network error variance (constant)

(b) for logistic loss (classification networks)

d(yi, zi) = - yizi + loge (€% + e74);
yi € (-1,+41), —w<zj<oo

With the squared-error loss function, J becomes
proportional to the predicted squared error (PSE), an
unbiased estimator of future network performance,
defined as (Refs. 30-32)

PSE = FSE + 202k/n

in which FSE is the average fitting squared error of
the network and the term 2 2 k/n is the complexity
penalty used to constrain the fit. Nearest-neighbor
tests can be used prior to network syntheses to
determine conservative values of o2. The PSE
criterion is recommended for syntheses of estimation
networks and for preliminary syntheses of
classification networks.




A

It can be shown that the values of the § com-
ponents after PSE minimization for an element are the
same as those obtained after the first step of a
Newton or Gauss-Newton coefficient adjustment for
this element in the logistic-loss case. However, after
the search has converged (typically after about five
steps), the element adjusted to minimize constrained
logistic loss (maximize the constrained log likeli-
hood) provides a much different transformation than
one adjusted to minimize PSE.

The logistic-loss function provides the neural
network extension of classical logistic regression. For
classification (discrimination), the constrained
logistic-loss criterion should be used to optimize
neural networks that are first synthesized using PSE.
When a classification network is pre-trained using
the PSE criterion, the output of this network must
first be re-scaled so as to be interpreted properly in
terms of the logistic-loss criterion.

A
After a network f (x) is trained using the logistic-
A

loss criterion with y € { -1, + 1}, then f (x) is a
sufficient statistic that estimates the log-odds

A

A
f®=10gep_<y_:i_1_'_x__>
ply=-11x

The probability that y = 1 given x is estimated to be
A
f )

A
ply=11x=—% x
£, @

PSE syntheses for estimation functions have been
very successful in prior work with feedforward
networks. Experiments using the logistic-loss crite-
rion indicate that it provides a major improvement
for syntheses of classification functions.

e

2.6 Database Design

Databases used for neural network syntheses
must must take into account (1) the conditions under
which the system must operate, (2) the means of ob-
serving the physical process, and (3) the nature of the
physical system itself. Each of these has a strong
bearing on database design.

The conditions under which the system must
eventually operate should determine the conditions
for which data are obtained and the quantity of data.
The properties of the data space should determine
how the data in the database are distributed.
Consider a physical system that is definable in terms

of the equivalent of D descriptors. The "space" of
these D descriptors has, at its fringes

2D corners,

D2D-1 edges, and

2D spatial boundaries.

The corners (vertices), the points at which all
independent variables have limiting values, are of
particular concern, because when D is large, most of
the volume of the space is crowded near the corners.
For the neural network to provide a good model, in
most applications it should perform acceptably in the
corner regions as well as in the interior of the space.
Thus, when D is large, considerably more samples are
needed remote from the center of the space, near the
edges and particularly near the corners, than are
required near the center of the space. To achieve
model quality with a nonlinear network at the corners
of the data space comparable to the quality at the
center, each corner region ideally should be
represented by 2D times the density of samples used to
represent the interior of the data space. In practice,
this may not be practicable and the user should be
cautioned that the neural network is less reliable in
the corner (and other fringe) regions than in the
middle of the data space.

If single-failure FDIE is assumed, only one ef-
fector (if any) has non-zero impairment at a time. For
the CRCA, the levels of impairment of nine effectors
plus the "no-fail” condition define ten descriptors of
the simulation space, and because of symmetry within
the aircraft, as few as six important descriptors may
suffice, ignoring the time of impairment. If the
possible commanded maneuvers comprise pitch, roll,
and yaw, these contribute another three descriptors.
Thus, there may be a total of nine descriptors in the
space of data-generation conditions when flight is
always in one mode (such as TF/TA). These nine
descriptors correspond to 512 corners, and the data
density in the vicinity of each of the corners would
ideally be 512 times the density in the interior. It is
infeasible to provide this, as it would require 512 x
512 data vectors concentrated in corner regions for
every vector in the center of the space. Accordingly,
one should take several measures to ensure adequate
performance of neural networks in spaces involving
many descriptors:

(1) Use as many data vectors in the corner regions
as are reasonably possible.

(2) Fit the networks to an artificially enlarged
data space, so that the fitting quality is




improved within the space of actual
variation.

(3) Use nonlinear terms in the networks
sparingly.

(4) Carefully test the networks in the corner
regions before judging their performance to be
acceptable.

(5) When interrogating the networks
operationally, verify that each unknown
data vector.is within the region of accurate
representation by the networks.

In sizing the data base, allowance should also be
made for generating a significant further data frac-
tion (at least 20 percent) for design evaluation, which
must be performed on an independent (and statisti-
cally representative) subset of the data.

Concerning data-vector dimensionality, an
aircraft has six second-order translational and rota-
tional freedoms. Of the three position components,
only altitude is important. The velocity vector az-
imuthal heading is unimportant. Thus only six dy-
namical states are required. Nine control-effector
states are required for the CRCA. To detect and iden-
tify effector impairments, some of the airframe states
should be characterized at more than one time, or ona
state rate-of-change basis; in this respect, the trans-
lational accelerations are particularly useful.
Additional "dimensionality” is added by structural
bending, thrust level, fuel and payload status, atmo-
sphere conditions, flaps, spoilers, landing gear, uncer-
tainties in aerodynamic properties, and sensor char-
acteristics. All things considered, the CRCA appears
to have a minimum intrinsic dimensionality, N, of
about 21, and requires, perhaps, as many as 30
observables in the data vector.

2.7 Status of Network Synthesis Algorithms

The key principles presented in Section 2.2 are
violated by most neural network synthesis algorithms
in present-day use. The Algorithm for Synthesis of
Polynomial Networks (ASPN-II) has been developed
to remedy this situation. ASPN-II is a supervised
feedforward off-line neural network synthesis
algorithm. A database of input-output pairs is
provided by the analyst, and the algorithm creates a
network that models the relationships implicit in
the data. The synthesized network evolves from the
simplest possible form to a nonlinear series-parallel
network having just-sufficient complexity for the
specific application. ASPN-II can synthesize
multiple outputs and accepts up to 200 candidate

inputs and outputs. The ASPN-II Facility does the
following:
* Assists the analyst with database preparation.

¢ Determines the best network structure .

* Determines the best algebraic function to use at
each node and optimizes the coefficients.

» Writes source code to implement the network (in
Fortran or C, and potentially in Ada).

e Computes statistics of network performance on
the synthesis data and predicted performance on
unseen data from the same statistical population.

» Expresses the network design in block-diagram
form and as a multinomial.

3. DESIGN STEPS FOR POLYNOMIAL
NETWORK FDIE SYSTEMS

3.1 Off-Line Syntheses

The off-line syntheses of neural network global
FDIE functions involve the following steps:

(1) Prepare closed-loop flight control simulation.

(2) Define candidate observables and dependent
variables for neural network modeling.

(3) Prepare databases with a variety of flight
conditions, maneuvers, impairments, etc.

(4) Synthesize prediction networks from observ-
ables. Merge predictor outputs with database.

(5) Using the data for each pair of classes to be
discriminated, assess univariate distinguishabil-
ity value of each observable for each class pair,
and select the best 30 observables.

(6) Use Singular Value Decomposition (SVD) to
transform observables from Step 5 into their prin-
cipal-component vectors, which become the
candidate inputs for network syntheses.

(7) Using data subsets from Step 6, synthesize
(using the logistic-loss criterion) discrimination
polynomial neural networks for voting between
each pair of effectors.

8) Using data subsets from Step 6, synthesize
(using the PSE criterion) an impairment
estimator for each effector. Establish thresholds
on the outputs of these networks.

(9) Establish production rules for vote tallying
based upon outputs of voting networks from Step 7
with veto provisions using the outputs of
estimation networks from Step 8. Fractional
voting, summation thresholds, and multi-look
temporal averaging should be used. The objective




is to establish optimur'n performance as described
by the accuracy matrix (Table 1) and ROC curves.

(10) Evaluate performance of the FDIE subsystem
on the training data, independent evaluation
data, closed-loop simulations, and closed-loop
experiments on a piloted moving-base flight
simulator.

The FDIE subsystem uses multiple polynomial
networks that run concurrently. The detection process
is viewed as a gate-opener for isolation decisions, and
isolation as a gate-opener for estimation.

3.2 On-Line Syntheses

On-line syntheses of neural networks for FDIE
are similar to the off-line design of these networks,
but at least part of the data for design and evaluation
come from real-time sensors rather than from simula-
tions. As the on-line data are received, they may be
used to re-train the networks on-line. One approach
to fast on-line re-training is to use the network
structure established during prior (off-line) syntheses
and recursively adjust the coefficients on-line. This
keeps computational throughput to a minimum on-
line. Section 2.4 mentions several recursive
algorithms that allow incoming feature vectors to be
processed one at a time, as is appropriate for on-line
up-dating.

3.3 Simulations

To obtain simulation data, short "flights" of a
few seconds each are made. During each flight, it is
appropriate to record several data vectors. The times
of sampling should be varied randomly from one
flight to the next so as to avoid spurious correlations.
Points from the first half-second of flight are not used
because the history up to one-half second imme-
diately prior to a sample is part of the candidate
input for that sample. From each flight, two samples
may be taken at random after 0.5 s. and before an
impairment occurs, and two samples at random after
the impairment occurs. To characterize transients
peculiar to some impairments, a fifth sample is taken
at random from 0.0 to 0.1 s. after introducing
impairment.

The maneuver, command time, and command
amplitude are chosen at random in each flight. Each
command lasts for 2.0 s. The commands (and the
ranges of their amplitudes) are single pitch step
(- 05 g, + 5.0 g), double pitch step (-0.5 g, +1.5 g),
single roll-rate step (+240 deg./s), double roll-rate
step (£ 210 deg./s.), single yaw-rate step (£3.0
deg./s.), double yaw-rate step (£3.0 deg./s.), and

simultaneous pitch and roll-rate steps (5.0 g/ +240
deg./s.). In each flight the effector that is to be
impaired, the magnitude of impairment (0 < Ij < 100
percent), and the time of impairment (within the
"failures can occur" window) are selected randomly.

To model aerodynamic uncertainties, each
simulated flight uses different aerodynamic charac-
teristics. This is done by randomly choosing aero-
dynamic force and moment coefficient multipliers at
the beginning of each flight. The resultant aerody-
namic forces and moments usually are within £ 10
percent (three sigma) of nominal.

3.4 Candidate Inputs

Candidate inputs for neural network syntheses
are computed during database preparation. The
synthesis algorithm selects the most relevant of these
candidate inputs, usually making a different selection
for each network. The candidate inputs may include
the current observables (M, h, v, o, B, 9, P, Q, R, ay,
ay, az, surface deflections), predicted “time-now”
states based on past states, previous values of
observables, and time-averaged observables.

Predicted variables are highly useful because an
impairment may be detected by noting that the
aircraft is not responding normally. The predictions
of expected (no-fail) motion are compared to the
measured aircraft motion to calculate time-varying
residuals (the unexpected motion). The predictions
may be performed by a neural network, as indicated
by Figure 3, where “APN” signifies an adaptively-
synthesized polynomial network (neural network).
Predictions of a, B, ay, ay, and a; have proven
particularly useful for FDIE.

Database
of Normal
Flight F?ghts
Data {} Expected Unexpected
Flight Motion  Motion
Delay :> Prediction AFIIDDIEI
APN -
+
Measured
Motion

Figure 3: Prediction Network Usage

3.5 Feature Extraction

Once the data vectors are augmented with
candidate predicted variables and with previous and
back-averaged values of the observables, numerical
parameters called features are extracted. Feature
extraction compresses the information in the data



vectors. This reduces network size and can improve
performance.

Statistical tools have been prepared that aid
feature extraction. Univariate distinguishability
testing is used to obtain a preliminary measure of the
utility of each of the candidate input variables so
that a downselection may be made from a large origi-
nal list of candidates (typically hundreds) to a
shorter list of about 30 promising candidates. In per-
forming this distinguishability testing, the first pro-
cedure is to define the pairwise discriminations that
the FDIE subsystem may be required to make.
Usually this definition involves, as a minimum, the
set of pairwise discriminations between M + 1 classes
of impairment, where M is the number of individual
control effectors (nine for the CRCA) and the M + 1st
class is the no-impairment (no-fail) class. (Other
classes might be defined, such as the group of effectors
on the left wing, the group of effectors on the right
wing, all effectors, etc., in which case the set of
pairwise discriminations would be enlarged,
presumably to enhance the decision reliability by
means of redundant pairwise discriminations.)

Next, the one-sigma ranges of variation of each
of the candidate inputs is computed for each of the
classes of impairment (including “no-fail”). One thus
obtains a matrix of cjj values, where i and j represent
the candidate input and the impairment class. Now,
using a third index, k, to represent any impairment
class, the object is to compute a matrix of distin-
guishability measures for each candidate input (x;):

dix = 1-fix
wherein

fijx = fraction of oj; range of x; values belonging to
class j that overlaps the ojx range of xj
values belonging to class k

Note that fjjx = 1and djx = Owhenj = k.

These distinguishability measures indicate how
much overlap is present along axis i between the data
clusters for classes j and k. The overlap is greatest
when d;jx = 0 and least when djjk = 1. Thus, a value of
dijx close to unity indicates a high degree of
separation between the j and k classes if their data
clusters are compared along axis i, and a value close to
0 indicates inseparability along axis i.

Generally, the djjx matrix isn’t symmetric,

because fjkj doesn’t necessarily equal fjjk. So, for
M + 1 classes, M (M + 1) distinguishability measures
should be examined for each factor xi, and the
candidate inputs for each pairwise discrimination

ranked according to their indicated utilities for
purposes of discrimination.

Univariate distinguishability testing does not
reveal the discrimination utilities of the candidate
inputs when these are used nonlinearly and/or
combined in multivariate forms. But for each network
to be synthesized it is reasonable to work further
with the approximately 30 candidates that rank at
the top of the univariate utility scale for pairwise
discriminations. Likewise, distinguishability tests
do not necessarily reveal the most suitable features
for nonlinear impairment estimation. It is believed,
however, that the best features from the standpoint
of distinguishability are also very appropriate for
estimation.

Singular value decomposition (SVD) can assist in
feature extraction. Applied to the multiple groups of
approximately 30 candidate variables (one group for
each pairwise discrimination), SVD establishes sets
of linear transformations of all the variables in these
groups. The top-ranked transformations are usually
the most valuable for network syntheses. One may
retain as many of the top-ranked transformations for
each group as there are intrinsic dimensions in the
data. These groups of transformations, along with
other variables or features included by the designer,
are the candidate inputs for neural network
syntheses. The number of candidate inputs should be
about the same as the number of intrinsic dimensions
of the data space.

3.6 Architecture of the FDIE System

One detection/isolation architecture comprises
MM + 1)/2 pairwise-discrimination (voting) neural
networks. These networks should be synthesized
using the logistic-loss criterion. Outputs of the voting
networks feed into decision logic to determine if a “no-
fail” or impaired condition exists and to accomplish
impairment isolation. Other networks, synthesized
using the PSE criterion, are used to estimate impair-
ments. These estimates are one of the FDIE outputs
and may also be incorporated into the decision process
as veto provisions.

Using ASPN-II with the PSE criterion (which is
intended for estimator syntheses) for syntheses of
networks for discrimination between two classes of
impairment, it is appropriate to create an estimation
task, as shown in Figure 4. This is superior to fitting
the network output to -1 for one class and +1 for the
other, but still inferior to syntheses with the logistic-
loss criterion.




Zone of y ;Cerss
Acceptable
Dismissals Y,

y estimate

-
y true = CLmiss - TE1Lmiss

y = ~TE1Lmiss

Figure 4: Example Estimation Task for a Class-
Discrimination Network

From networks synthesized using PSE, the
decision logic may receive tertiary information
(below lower threshold, between thresholds, above
upper threshold). From networks synthesized using
the logistic-loss criterion the information is always
the log-odds, and if a threshold is used it must be a
single threshold (at zero) used to create a binary vote.
The decision logic tallies the votes for all classes.
Using integer voting for M + 1 classes (including “no-
fail”) and M(M+1)/2 pairwise discriminations, M
would be the maximum number of votes that can be
received for a class, leaving M [(M + 1)/2 - 1] votes
scattered among other classes. Often, no class receives
M votes. Moreover, it is not unusual to encounter tie
votes when using integer voting, and the strategies
devised for tie breaking are important determinants
of the detection and isolation performance.

Production rules used for vote tallying by the
decision logic can have a significant effect on FDIE
performance. The primary goals for such rules are to
prevent false alarms and minimize incorrect isola-
tions and false dismissals. Fractional voting may be
employed, with the more accurate networks given
larger vote magnitudes. The estimator networks may
be used to veto decisions by the vote-tallying logic in
cases of estimated small impairment severity, i.e.,
within the “acceptable-dismissal” zone.

Some deductive production rules that can used for
the CRCA (M = 9) using single-look integer voting
include:

(1) If seven, eight, or nine votes are received for
"no-fail", then the decision is "dismissal".
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"(2) If the decision is not “dismissal”, and if seven
or more votes are received for at least one
impairment class, the decision is “detection”.

(3) If the decision is “detection”, and eight or
nine votes are received for only one impairment
class, the decision is “isolation (to that class)”.

In practice, more sophisticated rules are
employed, as discussed in Section 4.

The FDIE system issues a “detection” alarm
when it reaches a high level of confidence that an
impairment exists. Concurrently, or later, an “isola-
tion” decision is announced once confidence in the same
is achieved. When isolation is made to a specific
effector, a simultaneous estimate of impairment
severity is issued. On the CRCA, it can be difficult to
isolate between the three trailing-edge effectors on
each wing. If a confident isolation cannot be made to
one of these three effectors within a prescribed inter-
val of time, the system announces a “left-wing effec-
tor impairment” or a “right-wing effector impair-
ment”. If later the specific effector on the wing is iso-
lated, its identity and the estimated severity of its
impairment are announced.

The recommended architecture for the global
FDIE single-impairment system may thus comprise,
for an M-effector aircraft:

(1) M(M + 1)/2 polynomial neural networks used

to discriminate between all pairs of hypothe-
sized impairment classes, including “no-fails”.

(2) M polynomial neural networks, synthesized
using PSE to estimate impairment severity.

(3) Multi-look temporal accumulation of votes.
(4) Vote-tallying logic and production rules.

The designer should seriously consider using one
network with M outputs to estimate the multinomial
distribution rather than M(M +1)/2 networks to
estimate a Bernoulli (binomial) distribution. The
logistic-loss distortion function (Section 2.5) becomes
in this case, for data vector x i

efijj

where the components of y are 0, 1 valued, all but one
component of y being zero (y, = 1 denotes class k); and

fi; (x;, @) is the jth component (j = 1, 2..., M) of a vector-
valued function f;. The objective function (] in section
2) now involves all M + 1 classes (all impairments and

M

] =




“no-fail”), and the synthesis of the M networks
involves a Gauss-Newton or other search performed
simultaneously on all coefficients of all networks.

Multiple-decision accumulation over time can
improve the false-alarm, false-dismissal, and esti-
mation accuracy of the FDIE subsystem. If the sequen-
tial decisions and estimates (at, say, a 40 Hz rate) are
reasonably uncorrelated, performance is improved
(with some reduction in decision speed) by performing
temporal confirmation of decisions and temporal
averaging of estimates.

4, FDIE ARCHITECTURE FOR CRCA

A convenient first step toward realization of
polynomial neural network FDIE systems is to estab-
lish the underlying architecture for single-look deci-
sions using infeger voting. This architecture can be re-
fined before proceeding to implementation of a multi-
ple-look (temporal averaging) strategy. Moreover, to
facilitate rapid preliminary design, one may wish to
begin by using linear polynomial classifier networks
(and nonlinear impairment estimation networks).
The linear classifiers will fall short of the
performance of more general classifier networks, but
can be synthesized quickly and will establish a
baseline performance projection.

The rudder FDIE requires special attention,
because this effector remains close to neutral much of
the time during simulated maneuvers. It is believed
that relatively low rudder activity is typical for
many aircraft. When the rudder remains close to
neutral, existence of rudder impairment is not readily
identifiable from measurements of aircraft response,
and estimates of rudder impairment sensitivity are
inaccurate.

Ruling out the use of test disturbances, it is wise
not to reach a single-look decision or estimate about
the rudder unless its measured level of activity is
above a reasonable threshold. Moreover, multiple-
look decisions and estimates are greatly benefitted
from use of only bona fide single-look information. A
suitable measure of rudder activity is a moving
window of averaged absolute values of the rudder
displacement; i.e., one may ask if

T8 (t—iat)] > Threshold.
i

If this activity level, and/or if commanded yaw rates
are below threshold, inferences should not be made
about the rudder: it is not appropriate under such
conditions to take the votes of the M pairwise net-
works that involve the rudder (M = 9 for CRCA), and
it is also not appropriate to interrogate the rudder
impairment estimation network. By excluding the

11

votes and estimates of all of the networks that in-
volve the rudder, the detection and isolation deci-
sions will not be corrupted by M inputs that tend to
“tilt" toward their respective non-rudder classes.

It is also found that high roll rates can be con-
fusing to the FDIE system because of aerodynamic and
inertial cross-coupling. Some extra data vectors
should be devoted to these cases, and, to be
conservative, it is best to incorporate special voting
rules when the commanded roll rate is large.

Using 36 linear pairwise voting networks syn-
thesized using the logistic-loss criterion, with simple
vote-tallying rules employed in single-look decisions,
the detection performance is as shown in Table 3. The
nine networks involving the rudder were not allowed
to vote, and rudder impairments were not considered
in arriving at these results. Using a 40 Hz sampling
rate, these single-look decisions are obtained in 25
milliseconds elapsed time of flight.

Minimum VProbability of Detection, Percent
I;gfi::fg‘: Canard | TEl | TE2 EL | Total
0 90.9 | 72.2 |64.2 70.3 | 74.2
25 100.0 | 92.9 |83.7 86.3 | 90.7
50 99.6 | 97.6 197.6 96.3 | 97.7
75 99.1 | 97.5 [100.0 | 96.8 | 98.1

Table 3: Single-Look Probabilities of Detection
Computed on Evaluation Database Using
36 Linear Pairwise Voting Networks

If the sequential single-look detections are
statistically independent, the probability of n false
alarms in n looks would be

Pnin (FA) = [pm (FAI ™
where p;y; (FA) is the probability of a false alarm in

a single look. From this equation, again assuming
statistically independent decisions,

log [p;; (FA) = (1/n) log [p, (FA)]

For Pnin (FA) =69 x 10°13 (equivalent to one false
alarm per 107 flight hours), and using n = 7,
pq; (FA) =0.0183 (1.83 percent). Because the
sequential decisions are, in fact, highly correlated,
1.83 percent is the allowable upper limit on this
probability for a false-alarm rate of 1077 per flight
hour. For the design existing at the time of this
writing, p;;; is approximately 1.0 percent. It is
expected that p;; < 1.0 percent will be achieved
with planned refinements.



The 36 linear pairwise voting networks
provide canard and wing effector single-look
probabilities of detection and isolation to the correct
canard or correct wing as shown in Table 4.

Probability of Detection and Isolation to

Minimum Correct Canard or Correct Wing, Percent
Impairment Total

Percentage | Canard| TE1 | TE2 H. | RUDJ (exc. of

RUD)
0 79.71 68.6 1 60.71 66.1 | N/A 68.6
25 94.84.89.31 81.0} 82.1 | N/A 86.7
50 98.8} 92.4) 95.3 1 92.2 | N/A 94.5
75 98.21 93.81 97.31 91.0 | N/A 94.6

Table 4: Single-Look Probabilities of Detection
and Isolation to Correct Canard or Correct
Wing, Computed on Evaluation Database
Using 36 Linear Pairwise Voting Networks

The nonlinear single-class estimation networks
exhibit the following single-look error standard
deviations for impairments in the range 0 - 100
percent missing;:

Canards, 5.7 percent
TE2 Surfaces, 14.8 percent
TE1 Surfaces, 11.4 percent
Elevators, 17.5 percent
Rudder, 24.5 percent

Rudder estimation accuracy for impairments greater
than 45 percent is approximately 20 percent (one
sigma).

A scatter plot for the left canard impairment-
estimation nonlinear polynomial network (APN) is
presented in Figure 8. This plot applies when correct
isolation to the respective surface has been made.
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Figure 8: Scatter Plot for Canard Impairment-
Estimation Nonlinear Polynomial Network
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5. CONCLUDING REMARKS

Polynomial neural networks provide a viable
design alternative for FDIE subsystems in
reconfigurable flight control architectures. This
paper summarizes design principles for these
networks. Single-look (25 millisecond response time)
simulation results are presented that show 86.7
percent probability of detection and correct isolation
(to canard or wing) for CRCA effector impairments
exceeding 25 percent and 94.4 percent probability of
detection and correct isolation for effector impair-
ments exceeding 50 percent. The single-look one-sigma
impairment estimation accuracy ranges from 5.7
percent for the canards to approximately 20 percent
for the rudder. These results are close to the design
objectives and will be improved with a multi-look
strategy. It is expected that the required false-alarm
statistics will be achieved using a seven-look
strategy requiring 0.175 second. Detection probabil-
ity, false-alarm probability, probability of isolation
to the correct effector, and estimation accuracy are
expected to equal or exceed design requirements when
the seven-look strategy is used. The 0.175 second FDIE
response time will also be acceptable and compares
very favorably with results from other design
approaches.
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