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Abstract

For a class of artificial neural networks, the
mean integrated squared error between the
estimated network and the target function is
shown to be bounded by

O(1/n)+ O(nd/N)log N,

for target functions satisfying a given smooth-
ness property, where n is the number of nodes,
d is the input dimension of the function, and
N is the number of training observations. The
two contributions to this total risk are ap-
proximation error and estimation error. Ap-
proximation error refers to the distance be-
tween the target function and the closest neu-
ral network function of a given architecture
and estimation error refers to the distance be-
tween this network function and an estimated
network function. With n = (N/(dlog N))'/2
nodes, the order of the bound on the mean
integrated squared error is optimized to be
O((d/N)log N)!/2. The bound demonstrates
surprisingly favorable properties of network
estimation compared to traditional series and
nonparametric curve estimation techniques in
the case that d is moderately large. Simi-
lar bounds are obtained when the number of
nodes n is not preset as a function of N, but
rather it is optimized by the use of a com-
plexity regularization or minimum descrip-
tion length criterion. The analysis involves
Fourier techniques for the approximation er-
ror, metric entropy considerations for the es-
timation error, and a calculation of the index
of resolvability of minimum complexity esti-
mation of the family of networks. .

1 INTRODUCTION

With artificial neural networks or other methods of
parametric estimation of functions, it is desirable to

balance- the objectives of small approximation error
and small estimation error. The approximation error
between the target function and the closest neural net-
work function of a given network family can be made
as small as desired by increasing the number of nodes,
see [1,2,3]. However, a large number of nodes makes it
more difficult to accurately estimate the parameters of
this network for moderate sample sizes. In this paper
we address the combined effect of the approximation
and estimation error on the overall accuracy of a net-
work as an estimate of the target function. The target
function is not assumed to be known or even known to
be a member of a finite dimensional family. Rather it
is only assumed to satisfy a certain smoothness prop-
erty expressed through the Fourier transform.

The theory of learning applied to neural networks, as
in 4], has focussed on the estimation error compo-
nent of the problem: that is, the difference in risks
between an estimated network and the best network.
The same may be said of much of the parametric sta-
tistical theory, as in {5, that could also be applied to
artificial neural networks of a given architecture. In
contrast, the nonparametric statistical theory of curve
estimation and classification, which has been under
development for the last 35 years, has shown that one
can eflectively deal with the total risk of estimation
of functions (at least for functions of moderately small
dimension), for target functions restricted only by gen-
eral smoothness properties (see {6,7]).

In recent years, theory has been developed in which
a parametric family is not restricted to a given size,
but rather the dimension of the family is increased at
a certain rate as a function of the sample size, so as
to get the smallest possible total risk, uniformly over
classes of smooth functions, see [8,9]. A surprising as-
pect of this work is that the same rates of convergence
of the total risk that are achievable by nonparametric
estimators can be achieved by sequences of parametric
families. It is also possible in this context to allow the
dimension of the family to grow, not as a deterministic
function of the sample size, but rather as determined
from data so as to optimize a model selection criterion,
see [10-15]. We mention in particular [14,15], where
a theory is developed that is applicable to classes of




artificial neural networks. Bounds on the total risk of
network estimators are given there in terms of an index
of resolvability. This index of resolvability expresses
the bounds on the risk in terms of the approximation
error, the complexity of the networks, and the sample
size (see Theorem 2 below). However, at the time there
were not yet available bounds on the approximation
error that could be used to complete the application
of that theory to artificial neural networks.

Very recently, a bound on the approximation error for
feedforward networks with one layer of sigmoidal nodes
has been developed. It is shown in [3] that for func-
tions in a fairly general smoothness class, the inte-
grated squared error of approximation is bounded by
O(1/n) where n is the number of nodes (see Theorem 1
below). Armed with this result we are here able to de-
rived bounds on the total risk of network estimators.
The mean squared error between the estimated net-
work and the target function is shown to be bounded
by O(1/n) + O(nd/N)log N where d is the dimension
of the input, N is the sample size, and n is the number
of nodes.

2 TECHNICAL SUMMARY

Functions f(z) on R? are approximated using feed-
forward neural network models with one layer of sig-
moidal nonlinearities, see [1,2,3]. These networks im-
plement functions of the form

n

Fa(@) = fa(2,0) =) _crd(afz+b:) + ¢

k=1

= Eck‘ﬁ(sk(a{ + B)) + cas

k=1

(1)

which is parameterized by the vector 8, consisting of
a, R4 b, c, €R, for k=1,2,...,n,and ¢; € R.
Here s, = |a|, ap = a; /5, and B, = b, /s, are the
scale, direction, and location parameters, respectively,
of the kth node. The function ¢(z) is assumed to be
a given sigmoidal function, that is, it is a bounded
function on the real line satisfying ¢(2) = 1 as 2 — oo
and ¢(z) — 0 as z = —o0.

Given a positive constant c, let I', be the class of real-
valued functions f(z) on R represented in terms of a
Fourier transform f(w) satisfying

©) [ liFeas <

We measure the accuracy of an approximation f,(z)
to the target function f(z) in terms of the L,(y, B,)

@ f-flP= /B 1£(2) — fu(2) 2u(dz)

for an arbitrary probability measure p with support
in B, = {z € R? : |z| < r} for some given r > 0.
In the case of a neural network function f, estimated
from data, the norm ||f — f, || measures the ability of
the network function to generalize to new data drawn
with distribution p. In contrast the empirical risk

(1/N) 2% (F(X;) = f(X:))? only measures the accu-
racy at the observed data points X;, i=1,2,... ,N.

We shall make use of the following special case of a
recent result in [3].

Theorem 1: Given an arbitrary sigmoidal function
¢, and probability measure p on B_, and r > 0, then
for every f in ', and every n > 1, there exisls an
artificial neural network of the form (1) such that

d

where ¢/ = (2rc)?. The parameters in (1) may be re-
stricted to satisfy S p_, lcx| < 2rc, ¢ = f(0), and
18] < r. Ifalso we impose the restriction that the scale
parameter|a,| is not larger that some positive value 7,,,
and if the sigmoidal function ¢ is nondecreasing and
satisfies the symmetry property ¢(—z) = 1—¢(2), then
there ezists an artificial neural network of the form (1)
with

(5) If = £l < f/% + dres,.,
where
(6) b, = Eil)li(')(e + 2¢(—7¢)).

In particular, if ¢(2) = 1/(1+ e~%) is the logistic sig-
motd, if 1, > \/nlnn, and if f €T, then

™ b, <O (%) ,

so there is an artificial neural network of the form (1)
with |a,| < 7, and

®) If = £z <0 (1) .

Now suppose that (X,,Y;), i = 1,2,..., N are inde-
pendently drawn from a distribution P y with con-
ditional mean f(z) = E(Y | X = z) and marginal
distribution Py = u. We assume that the support of




Y is in a known interval ] with length bounded some
b > 0. (Tt is also possible to develop a theory for some
distributions for Y that have unbounded support, such
as the case that the conditional distribution of Y given
z is normal with mean f(z) and variance 0?). Here
are two important cases:

(a) The function f is observed without error at ran-
domly selected sites, that is, ¥; = f(X;), for i
1,2,..., N, and the range of f is in a known inter-
val of length bounded by &.

(b) The response Y; € {0, 1} is a class label for a binary
classification problem with overlappmg class bound-
aries and f(z) = P{Y = 1| X = z} is the optimal
discriminant function based on X. In this case § = 1
and I = [0,1].

Because the function f(z) is known to have range in
a given interval I = [¢;,1,], we improve the fit by re-
placing f,(z,0) with

fn(z’g) = clip(f"(a:, 9)),

where clip(y) = y for y € I, = ¢; for y < i, and = 1,
for y > i,. Note that clip() is a sigmoidal function with
range I. Thus the composition of clip() with functions
of the form (1) forms a two layer sigmoidal network.
By clipping the candidate functions to a range of a
given length b, we satisfy one of the requirements for
the application of a theorem from [15], see Thecrem 2
below.

For each number of nodes n and sample size N, let ©
be a net of parameter vectors 6, and let C,, v(6) be
nonnegative numbers satisfying, C,, y(6) > I for some
constant ! > 0, and

Z e=Cn.n(8) <1.

€O,

(9)

The numbers C, 5(f)In2, rounded up to the near-
est integer, may be interpreted as binary codelengths,
then (9) becomes the Kraft-McMillan condition for the
existence of uniquely decodable codes of these lengths.
Another interpretation is that e‘C" ~(#) is a prior prob-
ability for§ € ©,, .. If C,, 5 () = C,, y is constant and
O, = 0O, is an ¢-net of points such that every 8 is
within ¢ of a point in ©,, ,, then (9) implies that C,
is a bound on the Kolmogorov ¢-entropy (or metric
entropy) of the set of possible 6’s. As in [13], we blend
these complexity, prior probability, and metric entropy
interpretations.

For a given n and N, we define the indez of resolvabil-
ity, as in [13,14,15], to be
(10)

- C,n(@
Ron($) = ip (10 - RGN 425222,

where A is a given positive constant. Equation (10)
gives the resolvability for a neural network family with
a given number of nodes n. Let C(n) be numbers satis-
fying 320 | e=€(") < 1. For the collection of networks
indexed by n = 1,2,..., the index of resolvability is

min (o) +252)

It will be seen that we may restrict the minimization
in (11) to n < N/d, without affecting our bounds on
the resolvability. Indeed, it is advisable to restrict n
such that the number of parameters is of smaller order
than the sample size N. The minimization in (11)
determines the n that yields the best resolvability.

(11)  By(f) =

The minimum complexity estimator (or complexity reg-
ularization estimator) of a neural network of a given
size n is

(12)

where

(13)
énN—argmm( Z(Y fu(X:,0)% +

fn(a"’ én,N)

fn,N (.’L‘) =

cn,Nw))
).

Thus fn,N is the least squares estimator with a com-
plexity penalty. The minimum complexity estimator,
with both n and 6 estimated, is

(14) ~N=Jan
where
1 N
n= arg;mn (-ﬁ Z(Yx fa N(Xi))2
(15) =
3G NJE/(J,,N) +/\CJ(vn)) .

Complexity regularization (as defined in (13) and (15))
is closely related to Vapnik’s method of structural risk
minimization [10] and Rissanen’s minimum description-
length criterion [11].

We make use of a theorem from [14,15], specialized
here to neural network estimators.

Theorem 2: Let a neural network be estimated by
least squares with a complexity penally as in (13), (15),
where the range of Y and each candidate function is
restricled o a known interval of length b, then for A >
5b2/3, foralln>1, and all N > 1,

A

(16)  Elf — funlP S 7R n () + 222




and

A Bl = Al S 9Re () + 2

where v = (3X +2)/(3) — 5b2). Thus

(18) E||f = fnll* < O(RN(£))-

The index of resolvability automatically captures the
effect of the approximation error ||f — f,[|* and the

estimation error, E||f, — fn'NH?.

Theorem 2, as proved in [15], is based on the idea that
by controlling these sources of error, it is possible to
obtain bounds on the total mean squared error. In-
deed, by the triangle inequality,

(19) If = Fanll S IF = Fall + 11 fa = Funll-

Armed with the recent results summarized in Theo-
rems 1 and 2, we are now in position to obtain a spe-
cific rate of convergence for the mean squared error and
the index of resolvability for functions in the smooth-
ness class I',. This leads to Theorems 3 and 4 below,
which are the main results of this paper.

The following assumptions are made of the sigmoidal
function ¢(z) for Theorems 3 and 4. We assume that
it is nondecreasing, satisfies the symmetry property
#(—z) = 1 — ¢(2), and has a bounded derivative ¢'(z)
on R4. Suppose also that ¢ has a tail which con-
verges to its limits at least polynomially fast, that is,
limsup ¢(z)/|z[P < co as z — —oo, for some p > 0.

We restrict attention to scale parameters of the sig-
moids that are bounded by 7,,, where 7, is chosen such
that 6., = O(1/y/n). In particular, if ¢(z) equals zero
and one outside of a finite interval then we may set
7, = +/n, if #(z) approaches its limits exponentially

n

fast we may set 7, = y/nlnn, and if ¢(z) approaches
its limits polynomially fast we may set 7, = n(P+1)/2p,

The sigmoidal networks are now parameterized as

n

folz,0) = E cxd(ra(ad z + Bi)) + cq,

k=1
and
(20) fa(2,6) = clip(£,(2,9)),
where the vector 8 consists of o, € R?, B, ¢, € R, for
k=1,2,...,n,and ¢;. Given n > 1, the parameter

space O, , . C R*(4+2+1 is taken to be the set of all
such 8 for which |a;] < 1, |8,] < 7, 3oplei] < 2rc,

and c, € I, where I is the given range of the target
function.

Next we control the precisions with which the coordi-
nates of the parameter vectors are allowed to be rep-
resented. Let ©, = ©,, . be a net of parameter points

in Rn(4+2+1 that ¢-covers ©,, ,. . in the sense that for
every 6 in ©, . . there is a §* In ©,, , such that

lak "Cl:, S\/Egly

(21) 1By — Bel < €y,
fork=1,2,...,n, and

(22) lex —cil <&y,

for k =0,1,2,...,n. In particular, we may take On,

to be a rectangular grid on R*(4+2)+1 spaced at width
g, for the a; and §; coordinates and spaced at width
€, for the ¢, coordinates.

Note that we use different precisions for the parame-
ters at different layers of the sigmoidal network. This
is because large slopes in the sigmoidal function (scaled
by 7,,) lead to requirements of greater precision for the
a; and (. parameters than for the ¢, parameters in
our analysis.

As we scale the problem, by allowing arbitrarily large
n>1, N>2 andd > 1, subject to n < N, the range
of permitted precisions €; and ¢, are constrained as
follows: The upper bounds are

wso((2) @) v

log N 12
(23) e s0(5Y)

5250(%);

the lower bounds are that ¢; and ¢, be not smaller
than the reciprocal of a polynomial in N,

(24) e > (—11\7)?

and 0
1
>
2= (N)

The constraints in (23) are imposed so that in the anal-
ysis below accurate network approximations, which are

for some p > 1.



know (by Theorem 1) to exist for continuous-valued
parameters, can be shown to be realized by discretized
parameter values. The constraints in (24) are imposed
to prevent excessive complexity penalties that would
result from too fine a precision.

It will be seen in the proof that the choice of ¢; and ¢,
of the following form optimizes the order of the bounds
on the resolvability:

1 rn\1/2
(25) &= Eli,n,N =, (;; (]_\f) )
and
1\ /2
(26) €y =&y, n =C) (m) ,

where C; and C, are positive constants.

First we state the main result in the case of a con-
stant complexity penalty, C, y(6) = C, y, equal to
the logarithm of the number of points in a net O, ,
that e-covers ©, . .. Thus C,, y may be interpreted as
a bound on the metric entropy.

One simple choice for ©,, , is a rectangular grid that
coverstheset {§: -1 <a,; <1,-r< B <r,—-2rc<
¢, <2rc,cq € Ik=1,2,...,n,7=1,2,...,d} that
is somewhat larger than ©, . .. In this case, the num-

ber of pointsin ©,, , is (2/e;)"%(2r/e; )" (4rc/e,)™(b]e,).

Using (24) we have that the logarithm of the number
of points in @, , satisfies C,, y = O(ndlog N).

Note that for a constant complexity penalty, the esti-
mator that acheives the minimum in (13) is the same
as the least squares estimator restricted to ©,, ..

ne

Theorem 3: Let fn’N be a neural network of the form
(20) chosen to achieve the minimum sum of squared
errors, subject to the constraint that 6 € ©,, (where
©, . covers©,, . . in the sense of (21) and (22), ¢, and
€, satisfy (23), and the logarithm of the cardinality
of ©, . satisfies C, y = O(ndlog N)). If the target
function f s in L', then

(1 Bl - funlP <0 (5) +0 (F10sn),

for alld, n, and N with n < N. In particular, if
n = O(N/(dlog N))'/2, so as to optimize the order of
the bound in (21), then

) d 1/2
8 BIf - fnlP<O(Flogh) .

Here the expressions of the form O(nd/N)log N and
O(1/n), refer to quantities bounded by a constant times

(nd/N)log N and a constant times (1/n), respectively,
where the constants are independent of d, n, and N,
subject to the contraints that n < N, d > 1, n > 1,
and N > 2.

Next we relax the requirement that the net of param-
eter points is restricted to a compact set. For the esti-
mation of functions in I';, ©,, , need only satisfy (21)
and (22) for § € ©,,, .. However, since ¢ may not be
known in advance, it is desirable that the net satisfy
the indicated properties for all positive ¢. It is more
than enough that (21) and (22) be satisfied for every
g € R*(4+2+1 In particular, we may take O, , tobe
a rectangular grid on all of R*(4+2+! spaced at width
g, for the coordinates of the a;’s and f,’s, and width
€, for the ¢;’s.

We now allow for complexity penalties C,, y(6) that
depend on 6, subject to the summability requirement
(9), and subject to the requirement that

(29) C, n(8) = O(ndlog N)

no

The complexity term C,, y(f) may be based on the to-
tal number of bits in the binary representation of the
coordinates of §, to the prescribed accuracies. For co-
ordinates that take values outside of [0, 1), the contzi-
bution to the complexity will depend on the logarithm
of the magnitude of the integer part.

Other choices for C,, y(#) may be used that relax the
requirement of prior constraints on the magnitudes of
the parameters, while satisfying the conditions (9) and
(29). One way to do this in the case of a rectangular
grid is to use a continuous and positive prior prab-
ability density function p(f) on R™(d+2+1 We set
C,, n(6) to be equal to minus the logarithm of the prior
probability of the rectangle in the grid that includes
the point §. The prior probability of these small rect-
angles is approximated by the volume of the rectange,
which is (g, )"(4+1(e,)"+1, times the prior density at
. On compact subsets of R*(4+2)+1 this approxima-
tion is uniformly accurate, which permits verification
of the requirement (29). In particular, we have in this
case that

uniformly for 6 in © for every ¢ > 0.

n,r.e nes

1 1
C,n(@) =n(d+1)log —+ (n+1)log —
(30) € €2

+log ;%e) +0(1).

For reasonable choices of the prior density p(f) it ecan
be verified that |log1/p(6)| = O(nd) (that 1s, it is
of order not larger than the number of parameters),
uniformly on ©,, , . for each ¢ > 0. In such cases, the

log 1/p(8) term is of smaller order than the first two




terms on the right side of (30). Then (24) implies that
C, n(8) = O(ndlog N) uniformly in ©, . . for each
¢ > 0 as required by (29).

Theorem 4: Let a neural network of the form (20) be
estimaled by least squares with a complezity penalty as
in (13), (15), with X > 5b%/3, and ©,, , and C,, n(0)
satisfying (21-22), (23), and (29). If the target func-
tion f is in T', then, subject to the constraint that
n<N,

E\f = fanll* S O(Ry ()

@ Lo (N) o (Men).

and if also C(n) < O(n), then

i d 1/2
(32) Bl = Full S Ou(1) < O (108 N)

3 PROOFS

As stated above Theorems 1 and 2 are recently proven
in [3] and [15], respectively. The conclusions of these
results serve as the tools in proving the main results
of this paper which are Theorems 3 and 4. Here we
give the proof of Theorem 4. Theorem 3 follows as a
special case by taking C,, 5 (6) to be a constant equal
to the logarithm of the number of points in ©,, ,

In accordance with the requirements imposed on the
sigmoidal function, suppose ¢(z) and its derivative are
bounded by |¢(z)| < v and |¢'(2)] < v for some v > 1.
Given n, let § be a parameter vectorin theset ©,, . . =

{0 {oyl < 1, |B| < vy k=i lex] < 2re, and ¢ € T},
and let 6* in ©,, be chosen to satisfy (21) and (22).

By first order Taylor expansion, for any z € R9,
(33)
fo(2.0) = fo(2,6%) = (6 - 0")TV £, (2,6)

=Ta Zék(ak - ap)Tzd'(%)

k=1

+Ta Z & (B — Br)e' (%)

k=1
+ D (ex — cp)e(3)
k=1
+ (CO - Ca)’

where § = *+1(§—6*), with 0 < ¢ < 1, is some param-
eter point in between 6§ and 6*, and z, = 7,(&f z+4,).

This leads to the following bound, which holds uni-
formly for z € B,.

(34)
Ifn(z! 0) - fn(zyg*)l

< (d2 + Drvr, gy Z [Ee] + (vn + 1)e,
k=1

< (@Y% + 1)rvr,€,(2rc + ney) + (vn + 1)ey,
where we have used the fact that 3, [6,] < Y, e[+

3 lex — €|, which is not greater than 2rc + ne,. It
follows then that

(35) 11/ ()

Now by Theorem 1, there is a § in ©, . . such that

If = £.(,0)]| = O(1/n)/%. So applying the triangle
inequality, there is a §* in ©,, , such that

— £u(5 01 € O(dY/%1,6,) + O(ne,)*.

(36) [1f=1a (- e-)||2<0( )+0<dr263)+0<nsz)2

Therefore, by (29), (35), (36), and the definition of the

index of resolvability, we have

(37)
B = in (11 o+ 2 Ee2D)
<,min (Hf fula 42 En ) ))

<0 (1) +0ried) + Oney)”

ndlog N
+o (EN).

In particular for C, 5 () of the form (30) the bound
becormnes

Ron(f) <O ( ) 1+ O(dred) + O(ne,)?

n(d+1) n+1 1
e og — log —
* N logsl * N Ogsz

nd
+o (3.
Optimizing this bound yieldse, = C, ((1/7, ) (n/N)L/?)
and ¢, = C2(1/(nN)1/2) as in (25), (26). The corre-

sponding complexity is

(39)
Cn,N (9)

(38)

= O(ndlog 7,(N/n)Y/?) + O(nlog(nN)'/?)
= O(ndlog N),

for n < N and 7, < O(n(Pt1)/2p),




From (23) and (37) we have that the index of resolv-
ability is bounded as follows

40) R, n(f) <O (%) +0 ("ﬁd log N) .

The choice n = O(N/(dlog N))!/? optimizes the order
of the bound in (40), yielding

R, n(f) S O((d/N)log N)/2.
1t follows then from (11) and C(n) < O(n), that

RN(A = min (RH,N(f) + ,\C](\:l)>

d 1/2
SO(-ﬁlogN> .

Applying Theorem 2 shows that the index of resolv-
ability bounds the mean squared error of the neural
network estimator. This completes the proof of Theo-
rem 4.

(41)
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