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Bayes' rule provides a method for constructing estimators of probabil-
ity density functions in both parametric and nonparametric cases. Let
X, X5, ..., X, be a random sample from an unknown probability meas-
ure Py with density function pe(x) with respect to a dominating measure
AMdx). Let u be a prior probability measure on the space of all probability
measures P which have densities p(x) = dP/d\. Then the mean of the pos-
terior yields the following estimator of the density function

) = PO Py
[T P pdn

b.(x)=plx Xy, Xy, ..., X,

To obtain a consistency result, it is natural to require that the prior
assigns positive probability to neighborhoods of the true distribution. In
particular, we suppose

W P:DPs|Py<e}>0 forall e>0. ¢))
Here D(Py || P) = J' polx) log (po(x)/p(x)) Mdx) is the informational diver-

gence (also called relative entropy or Kullback-Leibler number).

1. The Problem. -

Determine whether the sequence of Bayes estimators p, converges to
the true density po in the sense that '

lim ED(Po || P,y = 0.

n—yo0

Here the expectation is with respect to Po. It is also of interest to know
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whether
lim D(Py || P,)=0, P, almost surely.

n—eo
Either result would imply that the sequence of random variables
D(Py || f;n) converges to zero in probability.

Remark: An inequality between the information and the L' distance
(D(Py lf‘f;n) 2> (1/2)( _[ | po—p, | )2; see [1]) shows that convergence in
information implies convergence of the density estimator in the L' sense

lim E [ 1po(x) - B,) | Mdx) = 0.

n—oe

2. Evidence for Consistency.
Does £ D(Pq || f’n) tend to zero? We argue that the answer is yes

along a subsequence, yes in the Cesaro sense, and yes if the posterior
mean is replaced by a sample average of posterior means.

Lemma 1: If condition (1) is satisfied then

lim inf £ D(Pe || P,) = 0 ;
n—yeo
also

lim inf D(Po | P,) =0, P, almost surely.

n—ooe
Moreover,

n A
lim 1 > EDPoll Py =0.

n—ee N =1

Lemma 2: Let 5, be an average of posterior means, that is,

- n 1 2 . X
Dy XM == 3 prlx;s X)
o=t

where X* = (X,, . . ., X}). If condition (1) is satisfied then
lim ED(Py || P,) = 0.
n—ee

Thus the average p, = (1/n) Z}_; p, smooths out any humps of large D
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that might lead to inconsistency. It is interesting to note that convergence
still holds if the kth term in the definition of p, is replaced by
Dl : X™K) | where X™* is any subset of the n observations of size k.

We note that the posterior mean density is the best possible estimator
from the point of view of the Bayes risk (with loss function given by the
informational divergence). Thus if any estimator exists which is Bayes risk
consistent, then the posterior mean is Bayes risk consistent.

-Lemma 3: Among all probability density estimators based on the data

X", the posterior mean density estimator p,(x; X") minimizes the Bayes
risk

R,=[Ep D(P | P,) dy.
Moreover, the Bayes risk R, is a decreasing sequence. Thus

lim R, exists.
n—yos

It is not known if this limit is zero. Although the average risk is decreas-
ing, the risk Ep D(P || ﬁn) might increase for some P and some n. If we
could ensure that Ep D(Py || ﬁ,,) were decreasing, then by Lemma 1 we
would have lim Ep, D(Po || P,) = 0.

Doob [2] used martingale arguments to establish Bayes consistency
results. The drawback is that the results only show convergence for distri-
butions in a set of prior measure one, and there is no known method for
determining whether a given distribution is in this set. Nevertheless, the
following result is readily obtained.

Lemma 4:  Except for a set of distributions P which has | measure
zero, if condition (1) is satisfied for P then

lim D ||P)=0, P almost surely.
n1—y00
The following result is proved in Barron [3] using the technique of
Schwartz [4]. It was first obtained by Freedman [5] in the discrete case

(under the extra condition of finite entropy H(Py)).
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Lemma 5:  If condition (1) is satisfied then the posterior distribution
w,Cl X™) asymptotically concentrates on open neighborhoods of the true

distribution Py, that is,

limp ({Pe N} 1X")=1, Py almost surely.
n

This result assumes that the neighborhoods N are open with respect to the
topology of setwise convergence of probability measures. (For instance, N
could !
partition of the sample space.)

Finally, we mention that for parametric problems, Strasser [6] has
shown under condition (1) and other mild assumptions that if the max-
imum likelihood estimator is consistent, then Bayes rules are also con-
sistent. Although consistency in the information sense is not usually
addressed in the parametric setting, the usual conditions for the con-
sistency of the MLE are sufficiently restrictive that convergence of the
parameter estimators 6—0 implies D(Pg || Pg) — O.

3. Evidence Against Consistency.
In Barron [7] it will be shown that there exist priors which satisfy (1),
w{P: D(Py || Py <e} >0 foralle >0,
yet the posterior distribution given X" asymptotically concentrates outside

D neighborhoods of the true Py, that is, for some € > 0,

lim W, ({P: D(Py || P) <€) | X") =0, Py almost surely.
n

Proof of Lemma 1 and Lemma 2. Let P" denote the product measure
with joint probability density function p(x") = TJL; p(x) and let M"
denote the mixture of these distributions obtained using the prior y. This
mixture has joint density function

m@") = [ p(") du.

We first show that condition (1) implies that the informational divergence
between P§ and M" has a rate tending to zero; that is,
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lim - D(P} | M) =0,

n—ree

Givene > 0,let N={ P : D(Po || P) < € }. Now the divergence rate is

n n
L pegmmy =L prog LEL (L pg PXD
& " [ p(XMdu 7 .
J PN
N
n
=-1—Elog PoX7) +-1—Iog 1 .
n n u@)
J PN @)
N

Here all the expectations are with respect to P§. By the convexity of the
informational divergence this is

1
L))

S |—=

< [+ DPE Il PP dw() + = log
N

1
vy |

= [ D(Py | P) dwiu) + = log
N n

By the definition of N this is

< € +llog1

n By

Letting n—> oo then € — 0 shows that indeed

lim - D(PE || M™) = 0.

n—eco N
Now we need to relate this to the convergence of density estimators.
Let p,(x,.) be our density estimate at the point x,,; based on the
data X" = x*. We can write this as
_[P(xn+1’ x")dp _ mx,,p, X
[ p("du m(x")

The last expression is sometimes called the predictive density. It is the

ﬁn(xn+l) = = m(xn+1 lxn).
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conditional density function for X, ; given X". Note that with respect to
M" the data X, X,,...,X, are no longer independent (but they are
exchangeable).

Now by the chain rule
n o(X})
Lp@pimm =Ly Elog —k—.
n n m(X; ) Xk
The terms in the sum are just £ D(Pq || B,). Thus
1 n n 12 5
— DPG IM™Y) = =3 ED(Py || P).
n M =1
But we have shown that condition (1) implies that this tends to zero.
Thus the E D(Po | f;n) tends to zero in the Cesaro sense. Since the terms
are positive this implies that we have convergence to zero along a subse-
quence. This implies convergence in probability along a subsequence and
hence almost sure convergence along a further subsequence. This com-
pletes the proof of Lemma 1.
For Lemma 2, use the convexity of divergence once more to obtain
= 1 A 1 2 5
ED@Py | P,) =EDP |l - Y Py< > > EDPoll Py)
_ k=1

which tends to zero. This completes the proof.
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