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Asymptotic Minimax Regret for Data Compression,
Gambling, and Prediction

Qun Xie and Andrew R. Barron, Member, IEEE

Abstract—For problems of data compression, gambling, and
prediction of individual sequences 1, - - - , Z,, the following ques-
tions arise. Given a target family of probability mass functions
p(z1,-- -, 2n|0), how do we choose a probability mass function
qg(z1,- -+, xn) so that it approximately minimizes the maximum
regret -

:H]f-;:n(l‘)g 1/‘1(“’1? MRS ] m‘n) - log 1/}7(171, ct m‘nle))
and so that it achieves the best constant C in the asymptotics of the
minimax regret, which is of the form (d/2) log(n/27) + C +
o(1), where d is the parameter dimension? Are there easily im-
plementable strategies g that achieve those asymptotics? And how
does the solution to the worst case sequence problem relate to the
solution to the corresponding expectation version

min max Ee(log1/q(1,- -, @) —log1/p(21,: -+, Ta6))7
q

In the discrete memoryless case, with a given alphabet of size m,
the Bayes procedure with the Dirichlet(1/2,---,1/2) prior is
asymptotically maximin. Simple modifications of it are shown to
be asymptotically minimax. The best constant is

Cem = log(r(1/2)™/(T(m/2))

which agrees with the logarithm of the integral of the square
root of the determinant of the Fisher information. Moreover, our
asymptotically optimal strategies for the worst case problem are
also asymptotically optimal for the expectation version.

Analogous conclusions are given for the case of prediction, gam-
bling, and compression when, for each observation, one has access
to side information from an alphabet of size k. In this setting the
minimax regret is shown to be

k(m—1) )

n
5 og ﬁ—i—kC’m-l—O(l).

Index Terms—Jeffreys’ prior, minimax redundancy, minimax
regret, universal coding, universal prediction.

I. INTRODUCTION

E are interested in problems of data compression, gambling,
and prediction of arbitrary sequences z1,z2,---, %, Of Sym-
bols from a finite alphabet X'. No probability distribution is as-
sumed to govern the sequence. Nevertheless, probability mass
functions arise operationally in the choice of data compression,
gambling, or prediction strategies. Instead of a stochastic anal-
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ysis of performance, our focus is the worst case behavior of the
difference between the loss incurred and a target level of loss.
The following game-theoretic problem arises in the ap-
plications we discuss. We are to choose a probability mass
function ¢{z;,---,z,) on AX™ such that its conditionals
g(zilz1,-- -, z;—1) provide a strategy for coding, gambling,
and prediction of a sequence z;, ¢ = 1,2,---,n. We desire
large values of g(1, - - - , &) Or equivalently small values of

log1/g(z1,--+,2n) = Z log1/g(zsles, - -, zi-1)
=1

relative to the target value achieved by a family of strategies.
Specifically, let {p(z1,---,z,|0).0 € O} be a family of prob-
ability mass functions on A™. One may think of it as a family
of players, where the strategy used by player § achieves value
log1/p(z1,---,zn|0) for a sequence zi,---,x,. Though we
are not constrained to use any one of these strategies, we do
wish to achieve for every z;,---,z, a value nearly as good as
is achieved by the best of these players with hindsight. Thus the
target level is log 1/p(z1, - -, 2, |0) where § = 4 (zy,---, z5,)
achieves the maximum of p{(x1, - - -, £, |0). The game-theoretic
problem is this: choose ¢ to minimize the maximum regret

xgl?-_’}in(log 1/q(z1;- -+, %n) — log 1/p(z1, - -, 2nld)),
evaluate the minimax value of the regret, identify the minimax
and maximin solutions, and determine computationally feasible
approximate solutions. Building on past work by Shtarkov [30]
and others, we accomplish these goals in an asymptotic frame-
work including exact constants, in the case of the target family of
all memoryless probability mass functions on a finite alphabet
of size m.

The asymptotic minimax value takes the form 2% log 2= +
Cm + o(1), where C,, is a known constant. The choice of
g(z1,- -, z,) that is a mixture with respect to Jeffreys™ prior
(the Dirichlet(1/2, - - -, 1/2) in this case) is shown to be asymp-
totically maximin. A modification in which lower dimensional
Dirichlet components are added near the faces of the probability
simplex is shown to be asymptotically minimax. This strategy is
relatively easy to implement using variants of Laplace’s rule of
succession. Moreover, unlike the exact minimax strategy, our
strategies are also optimal for the corresponding expectation
version of the problem studied in Xie and Barron [39].

The above game has interpretations in data compression,
gambling, and prediction as we discuss in later sections. The
choice of ¢(z1, - - -, z,,} determines the code length

Wzy, -+, 3n) = logy 1/g(z1,- -+ s Tn)
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(rounded up to an integer) of a uniquely decodable binary code;
it leads to a cumulative wealth

Sn(a;lv e 7:1"17.) = Q(-’L'la e 7$n)0($17 e a:L“n.)

after sequentially gambling according to proportions
q(Tk+1!T1,-+,Tk) on outcome Tpii; with odds
O(zg+1|21,- -, zk) for k = 0,---,n — 1; and, for prediction,

a strategy based on ¢(z1,---,z,) incurs a cumulative
logarithmic loss of
n-1
1Og (I/Q(‘Th e ,.’L'n)) = Z log I/Q($k+1|ziv e ?:L‘k)‘
k=0

Likewise for each p(z1,---,z,|6) there is a code length
10g2 l/p(.’L'l, Tt 7znlg)’ wealth p(-’L'l, to 7zn|9)0(zla ’az‘n)’
and cumulative log loss 3"~ log 1/p(z:|0).The target value
corresponds to the maximum likelihood. The regret measures
the difference in code lengths, the log wealth ratio, and the
difference in total prediction loss between g(z1,- -, 2,) and
the target level in the parametric family.

Recent literature has examined the regret for individual se-
quences in the context of coding, prediction, and gambling, in
some cases building on past work on expected regret. Shtarkov
[30] introduced and studied the minimax regret problem for uni-
versal data compression and gave asymptotic bounds of the form
(d/2)log n+0O(1) for discrete memoryless and Markov sources
where d is the number of parameters. Extensions of that work
to tree sources are in Willems, Shtarkov, and Tjalkens [38], see
also [35] and [36]. Shtarkov et al. [31] identified the asymptotic
constant in the regret for memoryless sources and addressed the
issue of adaptation to an unknown alphabet. Rissanen [28] and
Barron, Rissanen, and Yu [4] relate the stochastic complex cri-
terion for model selection to Shtarkov’s regret and show that the
minimax regret takes the form % log n plus a constant identified
under certain conditions (shown to be related to the constant
that arises in the expectation version in Clarke and Barron [6]).
Feder, Merhav, and Guttman [12], Haussler and Barron [17],
Foster [14], Haussler, Kivinen, and Warmuth [18], Vovk [34],
and Freund [15] studied prediction problems for individual se-
quences. Cover and Ordentlich ([7], [24]) presented a sequential
investment algorithm and related it to universal data compres-
sion. Opper and Haussler [25] examine minimax regret for non-
parametric problems.

Other related work considered expected regret. Davisson
[9] systematically studied universal noiseless coding and the
problem of minimax expected regret (redundancy). Davisson,
McEliece, Pursley, and Wallace [11] as well as Krichevsky
and Trofimov [22] identified the minimax redundancy to the
first order. Other work giving bounds on expected redundancy
includes Davisson and Leon-Garcia [10], Rissanen [26], [27],
Clarke and Barron [5], [6], Suzuki [32], and Haussler and
Opper [19].

Typically, the minimax expected regret with smooth target
families with d parameters is of order & logn + C + o(1). The
constant C' and asymptotically minimax and maximin strategies
for expected regret are identified in Clarke and Barron [6] (for
the minimax value over any compact region internal to the pa-
rameter space) and in Xie and Barron [39] (for the minimax
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value over the whole finite-alphabet probability simplex). In
these settings, [6] and [39] showed that the mixture with re-
spect to the prior density proportional to [1(6)[}/2 (Jeffreys’
prior [20]) is asymptotically maximim.

In general, Bayes strategies for expected regret take the form
of a mixture g, (z") = [ p(z1,--,z]|0)W(dF), where W
denotes a distribution on the parameter . In the expected re-
gret setting (asymptotically) maximin procedures are based on
a choice of prior W (or sequences of priors W) for which the
average regret is (asymptotically) maximized [6]. Here we will
seek choices of prior that yield asymptotically minimax values
not just for the expected regret but also for the worst case point-
wise regret. In addition to providing possibly natural probability
assignment to the parameters the advantages of such a program
are threefold. First, they afford ease of interpretation and com-
putation (of predictions, gambles, and arithmetic codes) via the
predictive distribution g, (z;|z;, -+, Z:;—1), not readily avail-
able for the exact minimax strategy of [30]. Secondly, the mix-
tures admit analysis of performance using information theory
inequalities ([2], [3], [9]), and approximation by Laplace inte-
gration ([5], [6]).

Finally, achievement of an asymptotic regret not smaller than
a specified value % log n + C + o(1) by a mixture strategy with
a fixed prior W permits the conclusion that this is a pointwise
lower bound for most sequences ([1], [4], [23], [35]). In par-
ticular, we find that for the class of memoryless sources, the
Dirichlet (1/2,---,1/2) prior yields a procedure with regret
possessing such a lower bound (Lemma 1), with what will be
seen to be the minimax optimal value of C. Consequently, no
sequence of strategies can produce regret much smaller than this
for almost every data sequence (in a sense made precise in Sec-
tion III below). These pointwise conclusions complement the
result given below that the Dirichlet (1/2, ---,1/2) mixture is
asymptotically maximin.

One is tempted then to hope that the Dirichlet (1/2,---,1/2)
mixture would also be asymptotically minimax for the simplex
of memoryless sources. However, it is known that this mixture
yields regret larger than the minimax level (by an asymptot-
ically nonvanishing amount) for sequences that have relative
frequencies near the boundary of the simplex (Lemma 3, in
agreement with Suzuki [32] and Shtarkov [29]). Furthermore,
Laplace approximation as in [6] suggests that this difficulty
cannot be rectified by any fixed continuous prior. To overcome
these boundary difficulties and to provide asymptotically min-
imax mixtures we use sequences of priors that give slightly
greater attention near the boundaries to pull the regret down
to the asymptotic minimax level. In doing so, the priors in-
volve slight dependence on the target size » (or time horizon)
of the class {p(z1,--,z.|6),6 € ©}. Before specializing to
a particular target family we state some general definitions and
results in Section II. Among these are characterization of the
minimax and maximin solution for each n and the conclusion
that asymptotically maximin and asymptotically minimax pro-
cedures merge in relative entropy as n — 00. In Section III
we examine the target class of memoryless sources over the
whole probability simplex and identify an asymptotically min-
imax and maximin strategy based on a sequence of priors. Mod-
ifications to the Dirichlet (1/2, - - -, 1/2) prior achieve these ob-
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jectives and possess simple Laplace-type update rules. Proof of
the asymptotic properties are given in Sections IV and V. Appli-
cations in gambling, prediction, and data compressmn are given
in Sections VI, VII, and VIIL

Finally, in Section IX, we treat the problem of prediction (or
gambling or coding) based on the class of more general models
in which the observations may be predicted using a state variable
(or side information) from an alphabet of size %. The asymptotic
minimax regret is shown to equal

ktm—-1). n/k
e

An asymptotically minimax procedure is to use a modified
Dirichlet (1/2, - - -, 1/2) mixture separately for each state.

+ kChr + o(1).

1. PRELIMINARIES

Now we introduce some notation and preliminary results. Let
a target family {p(z1,---,z.|0), 8 € ©} be given. We occa-
sionally abbreviate (1, -+, %) to £ and omit the subscript n
from probability functions such as p,,, ¢,, and m, ». Let the
regret for using strategy g, (z™) be défined by

To(Gn, 1, -, Tp) = log Pz, S znlf)
qn(zh 7-Tn)
The minimax regret is
T = II;lIl max Tn(@n, T1, "+, Tn)-
A strategy ¢y, is said to be minimax if
max 7Tp(gn,T1," ", Tn) =Tn

L1, Tn

and it is said to be an equalizer (constant regret) strategy if
Tn(Gn, %1, *+,%n) = Tp forall z1,---,r, € A™. The max-

- imin value of the regret is defined to be

— 3 142

Tn = max n;in; (@ )ra(gn, T1,- -, Tn)

where the maximum is over all distributions on X'™. A strategy
gn 1s average case optimal with respect to a distribution p,, if
it minimizes Y . Pn(2™)7n(gn,z™) over choices of g,. It
is known from Shannon that the unique average case optimal
strategy is gn(z™) = pn(z™). A choice ¢, = p}; is said tobe a
maximin (or least favorable) strategy if

S r(ph, e = Lo
The following is basically due to Shtarkov [30] in the coding
context.

Theorem 0: Lete, = Y _.. p(z™|6) where § = 8(z™) is the
maximum-likelihood estimator. The minimax regret equals the
maximin regret and equals

Tn = I'n = lOgcp.

Moreover, ¢ (z™) = p(z™|8)/cn is the unique minimax
strategy, it is an equalizer rule achieving regret

log p(z"16) /s (¢™) = log c,

for all 2™, and it is the unique least favorable (maximin) distri-
bution. The average regret for any other p,(z") equals

zpn n|é)/pn($n)) - D(PnllfJZ)

We let r,, =7, = r, = log ¢, denote the minimax = maximin
value.
Proof of Theorem 0: Note that 3, ¢:(z™) = 1 and that

log = log Cn

rn(gs,x"™) = log ¢, for all £, thus ¢}, is an equalizer rule. For
any other ¢(z™) with Iz~ ¢(z™) = 1, we must have ¢(z") <
i (z™) for some z™ and hence

To(n,3") > To(gh, ™) =logen

for that ™. Thus ¢}, is minimax and 7, = logc,. Now the
last statement in the theorem holds by the definition of relative
entropy and hence the maximin value

e D)

o p(z"19)
— ZP" ( ")

log

where D(p,||g};) is the relative entropy (Kullback-Leibler di-
vergence). It is uniquely optimized at p,, = ¢}, and therefore,
T, = logcy,. O

Thus the normalized maximum-likelihood g (z") =
p(z™]0)/c, is minimax. However, it is not easily imple-
mentable for online prediction or gambling which requires the
conditionals, nor for arithmetic coding which also requires
the marginals for z;,---,zx, ¥ = 1,---,n. The marginals
obtained by summing out Zy41,---,%n is not the same as
p(z*|0(z*))/c. See Shtarkov [30] for his comment on the
difficulty of implementing ¢, in the universal coding context.

In an asymptotic framework we can identify strategies that
are nearly minimax and nearly maximin which overcome some
of the deficiencies of normalized maximum likelihood. We say
that a procedure ¢, (z") is asymptotically minimax if

max Tn(Q’!L7xl7"'a$n) =?’n+0(1)

Z1,sTn
It is an asymptotically constant regret strategy if

rn(q'ﬂ:l‘l)' o 7~Zn) =Tnt 0(1)

for all z™. A sequence p,,(z™) is asymptotically maximin if

mmzpn "V, z™) =1n +0(1).

It turns out that in general there is an information—theoretic
merging of asymptotically maximin and minimax procedures
in the sense stated in the following theorem.

Theorem I: The Kullback-Leibler distance D(prl|¢;;) tends
to zero as n — oo for any asymptotically maximin p, where g
is the normalized maximum likelihood. Indeed, more generally

D(pn”q'rz) —0

for any asymptotically maximin p,, and asymptotically minimax
Gn-
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Proof: From the last line of Theorem 0, D(p,||¢};) mea-
sures how much below r,, is the average regret using p,,. Hence
if p,, is asymptotically maximin then D(p,||¢%) — 0. For any
asymptotically maximin p,, and asymptotically minimax q,, we

have
D(palg) + > pa(a™)log(gh(z™) /an(s™))

and max,~ log(gk(z™)/gn(z™)) tends to zero by asymptotic
minimaxity of g,,. So both terms in the above representation of
D(pn|lgn) tend to zero as n — oco. O

D(anQTL) =

III. MAIN RESULT FOR REGRET ON THE SIMPLEX

Here we focus on the case that the target family is the class
of all discrete memoryless sources on a given finite alphabet. In
this case

3

p(z1,-- mn|0 =H (zx|6)

where p(x = ¢0) = 6;,4 = 1,2,---,
ditionally independent outcomes with § = (61, - - -
probability simplex

=1

m, is the model of con-
,0m) on the

The alphabet is taken to be X = {1,2,---,m}. Jeffreys’ prior
in this case is the Dirichlet (1/2, - - -, 1/2) distribution. Earlier,
Shtarkov [30] showed that the mixture with this prior achieves
maximal regret that differs from the minimax regret asymptoti-
cally by not more than a constant.

Theorem 2: The minimax regret satisfies
d n
n = — log — - 1
r 0g o +C +0(1)

2
where d = m ~ 1 and C,, = log((T'(1/2))™/I'(m/2)). The
choice g(z") = m,(z") = [p(z"|6)w,(6) dfwith w;(f)
being the Dirichlet,, (1/2,---,1/2) prior is asymptotically
maximin. It has asymptotically constant regret for sequences
with relative frequency composition internal to the simplex.
But it is not asymptotically minimax. The maximum regret
on the boundary of the simplex is 7, + (d/2)log2 + o(1),
which is higher than the asymptotic minimax value. Finally, we
give a modification of the Dirichlet (1 /2,--+,1/2) pnor that
provides a strategy of the form G, (z f p(z™|0) W, (db)
that is both asymptotically rmmmax and maximin. Here
W, = (1 - e,)W, + &,V is a mixture of Jeffreys’ prior
Wy on (81, --,0,,) and a small contribution from a prior
= (1/m) X7, J; with J; on the lower dimension spaces

(01,---,02-_1,1/n,0i+1,-'-,9m)¢z‘92" =1_1/n
| i
where J; = J; ,, makes
(017"' 79i—170i+17'“70m)/(1 - _1—)

have the Dirichlet,,_1(1/2,---,1 / 2) distribution and makes 6;
be fixed at 1/n. Here e, = n -1/8]
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Remark 1: The above strategies m,(z") and ¢, (z™) based
on Jeffreys’ prior and its modification, here shown to be asymp-
totically maximin and minimax for regret, are the same as shown
to be asymptotically maximin and minimax for the expected re-
gret in Xie and Barron [39] formulated there using expected re-
gret defined by Ej log p(z™|6)/q(z™). Other satisfactory mod-
ifications of Jeffreys’ prior are given in Section V.

In contrast, concerning the normalized maximum-likelihood
strategy, though it is minimax for pointwise regret, it is not
asymptotically minimax for expected regret as pointed out to us
by Shtarkov. Indeed, the value maxy Ejglogp(z™|0)/qk(z™)
studied in Shtarkov [29] is asymptotically larger than the min-
imax expected regret identified in [39].

Remark 2: By asymptotic minimaxity the difference be-
tween the worst case regret of the strategy and the asymptotic
value (d/2)log(n/2x) + C,, converges to zero with n (i.e.,
this difference is 0(1)). We do not seek here to determine
the optimal rate at which this difference converges to zero.
Nevertheless, some bounds for it are given in Section V.

Remark 3: Jeffrey’s mixture
ma(a™) = [ pla"16)ws (6)db

can be expressed directly in terms of Gamma functions as

n 1 1 1 1
m.l(m )-Dm (Tl,n+§7"'7Tm,n+§)/Dm ((357"'75)

where T;, = Ti(z
symbol ¢ in (z1,---,

") is the number of occurrences of the
Tn), and

is the Dirichlet function. It can be more easily computed by
the usual variant of Laplace’s rule for conditionals. The con-
ditionals m, (zx41|z1, - -, zx ) are computed by

Tir+3

T3

where T; ;, is the number of occurrences of the symbol 4 in the
sequence (z1,-- -, k), and then

H m,(Te41ler, -, Tk)-
k=0 )
Similarly, the asymptotically minimax (and maximin) strategy

uses
+ — Z m; n(z")
™) is the Dirichlet mixture and

minlz®) = [ p(a"16)7:(d6)

is the mixture with the prior component J; », in which §; = 1/n
is fixed. Here m, ,(z™) can be expressed directly as

Dpm-1(Ti+ 3, Timit 3, v+ 3, T + 3)

Dm—l(%a"'y%) .
T; n—T;
I\ 1 '
' (—) (1 B _) .
n n

m,(Trt1 = 2|1, -, Tk) =

m_]_(xla"'axn) =

Gn(z") = (1 —en)m

where m , (x

gy
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This strategy §, can be computed by updating marginals ac-
cording to

G (k!

Gn( ) = Gn(Ths1]2")dn(2F)

where the conditional probability is

Grn(Trt1]|z")

(1= ey, (£*41) + en Some n(a+)
= T )
(1= en)im, (a%) + ek 3 my(a*)

and m, (z*), m; (z*) are updated according to

m, (z"*1) = m (2 a|e®)m, (2¥)

and
Min(85T) = My (Tg1 |27 o (2)
where
Min(Tht1 = J|21, -+, Tk)
T, 5 +1/2 .
— k—Ti;i(m—l)/z 1-2), for j # i @)
%, forj =1.

Therefore, simple recursive computations suffice. The total
computation time is not more than the order of nm?. Note,
however, that our strategy requires knowledge of the time
horizon n when evaluating the conditionals for x4, given
z1,--,xx fork =0,1,---,n — 1 (also see Remark 9). -

Remark 4: The answer % log 5= + Cpy is in agreement with
the answer

g1ogi+1og/ T d6
2 27'(' S

that we would expect to hold more generally for smooth d-di-
mensjonal families with Fisher information 7 (8), and parameter
@ restricted to a set S, in accordance with Rissanen [28]. It also
corresponds to the answer for expected regret from Clarke and
Barron [6]. However, the present case of the family of all distri-
butions on the simplex does not satisfy the conditions of [6] or
[28).

Remark 5: Comparing r,, with the minimax value using ex-
pected lossin [39] and [6], 25+ log 52 +log % +o0(1), we
see that there is a difference of mT‘l log e. The difference is due
to the use in the expected loss formulation of a target value of

'Eglog1/p(X™|0) rathér than Ejy log 1/p(X™|§), which differ

by Eq log(p(X™|0)/p(X™|6), which, for 6 internal to the sim-
plex, is approximately one-half the expectation of a chi-square
random variable with m — 1 degrees of freedom. It may be sur-
prising that in the present setting there is no difference asymp-
totically between the answers for minimax regret for individual
sequences

Tn, = min max lng(l'n'é)/Q(mn)
g "

and a minimax expected regret formulated here as

R, = min max Eglogp(z™6)/q(z™).
q
In general, the minimax expected value E,, is less than the min-
imax pointwise regret r,,. To uncover situations when E,, and
75, agree asymptotically consider the maximin formulations of

R, = mx min | W(d8) 3 p(a"[6) logpla” ) /a(a")

zn

and
Tp = max mian(a:") log p(z"|6)/ (™).
P g

The difference is that in the former case the maximum is
restricted to distributions of mixture type [ W (df)p(z™|6).
Asymptotically, R,, and r,, will agree if a sequence of mixture
distribution is asymptotically least favorable (maximin) for the
pointwise regret, as is the case in Theorem 2. Combining this
conclusion with Remark 1 we see that the modified Jeffreys
procedure is asymptotically minimax and maximin for both
formulations of expected regret Eglogp(z™|f)/q(z™) and
Eylogp(z™|0)/q(z™) as well as for the pointwise regret.

Remark 6: The constant in the asymptotic minimax regret
Crm = log((T'(1/2))™ /T'(m/2)) is also identified in Ordentlich
and Cover [24] in a stock market setup and by Freund [15] (for
m = 2) and Xie [40] (for m > 2) using Riemann integra-
tion to analyze the Shtarkov value. Szpankowski [33] (see also
Klgve [21]) gives expansions of ¢, accurate to arbitray order
(for m = 2). This constant log((I'(1/2))™/T'(m/2)) can also
be determined from examination of an inequality in Shtarkov
[30, eq. (15)] and it is given in Shtarkov ez al. [31]. Here the de-
termination of the constant is a by-product of our principal aim
of identifying natural and easily implementable asymptotically
maximin and minimax procedures.

Remark 7: Since I'(1/2) = /7 and
log I'(m/2) = log(v/2m (m/2)™ Y2~ (™/2)) + rem,y,

by Stirling’s approximation to the Gamma function (see [37,
p- 253]), an alternative expression for the asymptotic minimax
regret from Theorem 1 is
-1 1
Tr = m2 log % + %loge - 510g2 —rem,, + o(1)

where of1) — 0 as n — oo and the remainder rem,, in Stir-
ling’s approximation is between 0 and 515 log e. Thus with the
remainder terms ignored, the minimax regret equals

m—l1 ne
0_
2 gm

plus a universal constant 1 log(e/2).

Remark 8: Theorem 2 has implications stochastic lower
bounds on regret, that is, lower bounds that hold for most
sequences. We use the fact that the Jeffreys’ mixture

my(z") = / wy (B)p(z™|9) dB



436

using the fixed prior w; achieves regret never smaller than
% log 5= + Cr, (which we have shown to be the asymptotically
minimax value).

Note that the sequence of mixtures m;(z™) is compatible
with a distribution My on infinite sequences. It follows from
[1, Theorem 3.1] (see also [4], [23], and [35] for related
conclusions) that for every Kolmogorov-compatible sequence
of strategies ¢n(z1,---,T,) the regret is at least the regret
achieved by my(z1,---,z,) minus a random variable v
depending on (z1,z2,---) which for all ¢ > 0 has the upper
probability bound M;(v > ¢) < 27* and, consequently,
Ps(v > 2t) < 27 for all § except those in a set of w-proba-
bility less than 27¢. (In particular, these conclusions hold with
v = sup,, log g(z™)/m (™). Thus the regret is never smaller
than £ 5 logon + Cr ~ v, where v is stochastically dominated
by an exponential random variable with mean 2log, e, for
sequences (1, T2, - - ) distributed according to Pp for most 6.
The implication is that the constant C,,, cannot be improved by
much in the pointwise sense for most sequences.

Remark 9: As we mentioned in Section I, our priors W, that
provide asymptotically minimax strategies have slight depen-
dence on the sample size n, through the value 6* = b,,/n that
J; » sets for the ith cordinate of § and also through the choice of
€». Fortunately, the behavior of the regret is relatively insensi-
tive to the values of b,, and &,,. In the theorem statement, we set
b, = lande, = (1/n)Y/®. Arange of choices provide the same
conclusions. In particular, the proof will show that if ¢,, tends to
zero but not too fast, in the sense thate,, > n~° with s < 1/2,
if b,, is any sequence not greater than 3 (3 — s)logn and, to
prevent b,, from being too small, if (log 1/b,,)/logn — 0, then
the conclusion of the theorem holds.

An implication is robustness of the procedure to misspeci-
fication of the time horizon. Indeed, suppose we set the prior
in accordance with an anticipated time horizon NN, say with
0* = 1/N and ¢ = (1/N)Y/8, but for whatever reason com-
pression or prediction stops at time n, with 1/¢ < n/N < ¢ for
some constant c. Then the resulting procedure still satisfies the
conditions for the conclusion of the theorem to hold.

IV. PROOF OF THE MAIN THEOREM

The statements of the theorem and the corollary are based on
the following inequalities which we will prove.

m- log— +Cn < Z ™ log p(@ 25)) 3)
< max Z ™ log (J 25))
< mqin max log pé?:l?
< maxlog —(—n@
g(z")
< log—+C’ + o(1) 4)
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whete C, = log(T(1/2)™/T'(m/2)). Since both ends.in the
above are asymptotically equal, it follows that

3 )

and, therefore, C,,, = log(I’(1/2)™ /T'(m/2)) is the asymptotic
constant in the minimax regret, Jeffreys’ mixture m s is asymp-
totically maximin (least favorable), and the modified Jeffreys’
mixture g, is asymptotically minimax.

We consider the regret using Jeffreys’ mixture mj(z™).
From Lemma 1 of the Appendix, this regret is asymptotically
constant (independent of z™) for sequences with relative
frequency composition intemal to the simplex, that is, when
min(T}, - - -, Trn ) — 0o. However, Lemma 3 exhibits a constant
higher regret on vertex points when using Jeffreys’ mixture.
Thus Jeffreys’ mixture is not asymptotically minimax on the
whole simplex of relative frequencies.

Now we verify inequalities (3) and (4). The three inequalities
between them follow from the definitions and from maximin <
minimax.

The proof for line (3) follows directly from Lemma 2, where

it is shown that Iog =18 )) is greater than 251 log 7 + Cp, for
all sequences z™

To prove inequality (4) we proceed as follows. We denote the
count of symbol i in a sequence z” by T; = T; . Let 7, > 1 be
a sequence with 7, — occ. Observe that for z™ in the region of
X" where T; > 7, forallz = 1, - .-, m, using the upper bound
from Lemma 1 in the Appendix, we have

p(z"19) p(z"1)
gn(z™) (1 =en)m,

(3"

1 n
log - + Cp, +0(1)

log < log

(x”)

< (logP - + log n>
m2
+<4Tn+2 4—->loge+log1_ -
F(l)m -1 n
= log log o T o(l) (6)
F(?) 2

where the remainder term in (6) tends to zero uniformly (for
sequences with 7; > 7,)asn — oco.In accordance with Re-
mark 9, let the sequence €, be chosen such that ¢, — 0 with
n~% < e, <1/2, with exponent s < 1/2, moreover, let b, be
in the range of values indicated there. Then for our analysis we
choose the sequence 7,, — co in such a way that

T 10g Tn/bn < £(3 — s)logn

and 7,, > b,. (For instance, if b, = 1 a choice of 7, ~
3(3 ~ 5)log n/ log log n suffices.) Now we consider the region
of X where T; < T, for some i. This region is the union of

the subregions where T; < 7, for: = 1,.--, m. For the 7th
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such subregion we use £, m;(z™) to lower-bound g, (z™). For
notational simplicity take ¢ = 1 and denote b = b,,. Then

b\
: B2t F8m=1—(b/n)\ T

. 93“2—(1/2) e 9D g, o dh,, g

/ ;Y2 . 6=/ 46, ... df,,_,
83446, =1—(b/n)

Dros (T3, Tnt3) - (B)™ (1-2)""
D1 (3:-+3)

Tt follows that

p("l)
e )_

p(z"1f)

enmy(z™)

lo

(M

where if T7 = 0 we follow the convention that TlT ' = 1. When
b < T1 £ 7, this middle term is bounded by 7, log(,,/b),
whereas, when 0 < 7) < b, it is bounded by

nlogn/(n —b) = nlog(l +b/(n — b))

which is not more than 26. The third term of (7) can be bounded
using the conclusion of Lemma 1 of the Appendix for the Jef-
freys’ mixture (here for the n — 73 observations that do not in-
volve symbol 1). Thus we have

p(z"]6) 1
log =————~ < log — + max{2b,,, 7, log(1. /bn
D g { &(Tn/br)}

m— 2 n m2  m

+Tlog%+(4 + )loge
m—1

e

I (=)

+ log

By our choices of ¢,,, b,, and 7,, we have that the first term is
bounded s log 7 and the second term by 3 (1 — s) log 7, so that
the sum of these contributions represents a cost quantifiably less
than the % log n saved from the other terms (for sequences with
at least one count less than 7, ). We have that for n > m/2

2(z"16) m-2 1+ n
OB = ( 7t )bgz;
rE)™

I (=5)

1
+ mloge + log + 3 log27. (8)

‘We see that the contribution from the boundary regions produces
regret not more than

(m - 1/2)log(n/27) + Cp

for all sufficiently large 7, in particular for n such that

1 r(3)

1
“(=- ——>
5 <2 s) log mloge+ log27r+logr( 1)1“( )
&)

Then, putting this near boundary analysis together with the in-
terior analysis from (6), we have that overall our regret exceeds
2=l log 5= + Cp, by not more than

m m2
Rem, = <4 py + in +2£n> loge.
Typically, this tends to zero at rate loglogn/logn in accor-
dance with the behavior of 1/7,. (A negligibly faster rate of
1/logn is available if 7, and b, are set to both be of order
logn.)

As we have seen, the asymptotic value is the same for the
upper and lower bounds in inequalities (3) through (4). Thus
these collapse into asymptotic equalities and the conclusions
follow.

Finally, we show that the modification to produce an asymp-
totically minimax procedure §,, retains the asymptotic least fa-
vorable (maximin) property of Jeffreys’ mixture. That is,

S (G, 7™)da(a") = log e — D{dullg) =

T

log ¢, + 0(1)

or, equivalently, D(gy,||g}) — 0. Indeed, we have
D(@llgy) =

which by convexity is not greater than
(1= en)D(m,lign) + enD(my nlq)-

We already showed the first term goes to zero. The second term
also converges to zero since D(m,, »l|¢}) <logc, and e, —0
faster than logarithmically. Thus D(gr[lg}) —0asn—oco. O

D((1 - en)m, + &amy nllgr)

V. OTHER MODIFICATIONS OF JEFFREYS’ PRIOR

In this section we briefly mention another possible modifi-
cation of Jeffreys’ mixture that can achieve a somewhat faster
rate of convergence to the asymptotic minimax value. In Sec-
tion IV we added some point mass to the Jeffreys’ prior near
the boundary of the simplex to pull down the regret incurred by
sequences with relative frequencies close to or on the boundary.
Here instead we add a Dirichlet prior with parameters less that
1/2.

Consider the modified Jeffreys’ prior w® = (1—¢n)
Dirichlet,, (3, - - , 5 Hen Dirichletm, (a, - - -, ), where 0< a <
1/2. As before we let £, tend to zero with e,, > n~°. This
prior W( ) ylelds a rmxture probability mass function

(2)(10") Jo(z ”IH)Wn df that is also asymptotically
minimax. To see why, note first for ™ in the region where
T, > Ty, foralli = 1,---, m, we have by the same reasoning

as before, that
-1 n
log —
(C + 7 % 277)

tog 2571) _
m?2  m
4+ —+—+2¢ loge. (10)

(2) (xn )
4n 47,
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Here we set 7,, = h? for some p > 0. For z" in the region of
X™ where T; < 7, = nP for some i, we use Lemma 4 of the
Appendix to get that

p(z"™|9)

log
o (zm)

< (25 -a/2-a)a-p) g

1 1
+ <Km log — + log —)
@ En.
where K, is a constant depending only on m. Then as long as
(1/2—a)(1 ~p) > s, for large enough n, we have the bound

-1
(%— (l—a) (1—p)+s)logn+Kmlogé

2

L))"
r(%)
Examining (10) and (11), we conclude that for certain choice
of p, s, and «, the regret r(qn-2 ,Z™) is asymptotically upper-
bounded by 25 log £ + Cr, + (1), uniformly for all z*. It is
wise to choose p = s (to balance the remainder terms of order
1/7, and &, in (10)). For example, a choice of p = s = 1/4
and o« = 1/8 satisfies (11). Consequently, a? is asymptoti-
cally minimax. Moreover, the maximal regret converges to the

asymptotic minimax value at rate n~1/%. A more delicate choice
of

- m-—1
<
<3 1n

n
log — +log
27

Pn = sn = 1/3 — O(loglogn/(logn)?)

and o = K, /(log n)? provides for the largest p and s satisfying
condition (11) and yields a procedure with maximal regret that
converges to the asymptotic minimax value atrate n=1/3, These
rates may be compared to what is achieved by the exact minimax
value log ¢,, which for m = 2 is shown in [33] to approach the
asymptotic value at rate n= /2.

The procedure q,(lz) (z™) is readily computed using the predic-
tive density

(1 — en)my 2(z* ) + enma(zF+t)
(1 ~ en)my 2(z®) + enma(z*)

¢ (zhy1 = jlz*) =
with
ma(IkH) = Mo (¢ )Mo (T 41]2")
where
Mo (Trt1 = 7125) = (Tr j + @) /(k + ma).
The total computation time of this iterative algorithm is of order

nm.

V1. APPLICATION IN GAMBLING

We now study some applications of the main result in this
current and the following sections.

Suppose in a horse race we index the horses by 1,---,m,
and we are going to bet on n races. For race k, let the odds be
O (z|z1,--,2k-1) to 1 for horse z to win. We bet our fortune
according to some proportion ¢, (zg|z1, -, Tx-1) at game k.
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Let X™ = (Xy,---,X,) be the indices of the winning horses.
Then the asset at time . would be

n

H (qn(Xk]XI& o 'an—l)

k=1

cOp (Xl X1, -+, Xi—1))
:Qn(le s aXn)O(le Tt 7Xn)

5(X"™, )

where

O(X1,--+, Xn) = [] Ok(Xi|X1,- -+, Xe—1)-

k=1
If the horse races were random, with outcomes X, ---, X, if
the win probabilities for each race were (61, - - -, 6., ), and if we

knew the parameter 8, we would bet with proportion g, (¢) = 6;
on horse 7 (see Cover and Thomas [8, Ch. 6]). Whether or not
the races are random, the wealth at time n with such a constant
betting strategy € is

S(X™,05) = [] (p(Xk18)Ok(XelX1, -+, X))

k=1

=p(X17"'7Xn|0)O(X17“'iXTl)
where p(z1,- -+, T,|0) = 671 - ... - 8T~ and T is the number

of wins for horse ¢. With hindsight, the best of these values is
at the maximum likelihood. Hence the ratio of current wealth to
the ideal wealth is
S(Xn: Qn)
S(X™,p3)
_ ¢(X1, -, Xn)O(Xy, -+, X,)
p(le T ang)O(Xla Ty Xn)
gn (X ")
p(X™(6)
We want to choose a g, (™) to optimize this ratio, in the worst
case. That is, we pick a g, to achieve

p(X"6) _
. (X™)
This is the quantity our paper has analyzed, and we have pro-
vided an asymptotic minimax g,,. We achieve
p(X™9)
uniformly for all horse race outcomes X, where
c! = 2m=V/20(m/2) /7

is the best such constant. Here n~(™~1/2) expresses the cost
(as a factor of wealth) of the lack of foreknowledge of 6. A
gambling procedure that achieves (12) is to bet proportion
§(zxk+1]|2*) of our wealth on the possible outcomes of succes-
sive races using the modified Jeffreys’ mixture as in (1).

There is an extension of this gambling problem to the stock
market with m stocks. In this case

R(X",qn) =

min max log
gn B,X7

P14 o(1)) (12)

m

S(X™ ) =[] (Z qnalxl,---,xk_nxki)
k=1

=1
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where X7 isthe wealth factor (price ratio) for stock ¢ during in-
vestment period (day) k and ¢(%|z1, - - -, Zx—1) is the proportion
of wealth invested in stock ¢ at the beginning of day k. Recent
work of Cover and Ordentlich [7], [24] shows that for all se-
quences Ty, - -+, Z,, the minimax log wealth ratio for stocks is
the same as the minimax log wealth ratio for horse racing with
m horses

p(z"|6)

gn(z™)

where on the left side the maximum is over all zy, - - - , ,, With
each stock vector z; in Ri and on the right side the maximum
is over all z1,---,%, with each z; in {1,---,m}. Thus from
our analysis of the latter problem we have for the stock market
that the asymptotic minimax wealth ratio is

min max S(z",pg)/S(z",qn) = nm=Y2 /Cl (14 0(1))

gn O,z

S xn ‘(3
min max —(——’—‘?—)—9-2 = min max
gn 6,z™ S(.’L‘", qn) gn z™

in agreement with Cover and Ordentlich [24]. However, it re-
mains an open problem whether there is an asymptotically min-
imax strategy that can be evaluated in polynomial time in n and
m for the stock market. The best available algorithms in Cover
and Ordentlich [24] runs in time of order n™ ! compared to
time nm? obtained here for the horse race case.

VII. APPLICATION IN PREDICTION

Suppose we have observed a sequence =% = (z1,---,Tk).

We want to give a predictive probability function for the
next rr+i based on the past ¢+ observations, and we denote
it by pr(z|z*) = q(z|z1,---,2¢) for all z € X. When Ty
occurs we measure the loss by log 1/px(k+1/2*). Thus the
loss is greater than or equal to zero (and equals zero iff* the
symbol ;. that occurs is the one that was predicted with
Pe(Zr+1]2*) = 1). We initiate with a choice po(z) = ¢(z) of
an arbitrary probability. We denote by

n—1
q(z1,-++,Tn) = H q(Tr1lT1,- - TE)
k=0

the probability mass function obtained as the product of the pre-
dictive probabilities. The total cumulative log-loss is

n-—1

Z log 1/q(zx+1|2") = log 1/g(z1, -, @)
k=0

13)

A class

p(-’lfl, ot )1:71]9) = Hp(xkle)a 9'6 S)

k=1
of memoryless predictors incurs cumulative log-loss of

n—1
: Zlog 1/p(zk|0) = logl/p(z1, -+, 2n]0)

k=0
for each 6 and with hindsight the best such predictor corre-
sponds to the maximum likelihood. (Using this target class
the aim of prediction is not to capture dependence between
the z1,---,z, but rather to overcome the lack of advance
knowledge of 6). The log-loss for prediction is chosen for

the mathematical convenience of the chain rule (13). Direct
evaluation of regret bounds is easier for such a loss than for
other loss function. Moreover, log-loss regret provides bounds
for minimax regret for certain other natural cumulative loss
functions including 0 — 1 loss and squared error loss, see [18],
[34], and [17]. The minimax cumulative regret is

=, plaril6)

min = max E log——kﬂ——k—

@ 6wz S (@ |7)
= min max p(ay, -, Znlf)

g zirme q(T1,000,Tn)

for which we have identified the asymptotics.

The Laplace-Jefireys update rule is asymptotically maximin
and its modification (as given in Theorem 1) is asymptotically
minimax for online prediction.

VIII. APPLICATION IN DATA COMPRESSION

Shannon’s noiseless source coding theory states that for each
source distribution p(z™|4), the optimal code length of z" is
log 1/p(z™|6), ignoring the integer rounding problem (if we do
round it up to integer, the extra code length is within one bit
of optimum), where in Shannon’s theory optimality is defined
by minimum expected code length. Kraft’s inequality requires
that the code-length function {(z™) of a uniquely decodable
code must satisfy [(z™) = log 1/¢(z™) for some subprobability
g(z™). When 4 is unknown, we use a probability mass func-
tion ¢(z™) such that for all 4 and all 2™, the code length using
q is (to the extent possible) close to the smallest of the values
log 1/p(z™|6) over § € ©. That is, we want to ¢ to achieve

min  max (logl/g(z™) —logl/p(z™h))
q )Ily"'az'n. .
=min max plz |9)
g zima g(z™)
The choice ¢(z™) = p(z"|f(z™)) is not available because

Kraft’s inequality is violated. Shtarkov showed that the min-
imax optimal choice is the normalized maximum-likelihood

a(e™) = p(a"16)/ 3 p(a"(6).

Implementation of such codes for long block length n would
require computation of the marginals and conditionals associ-
ated with such a g(z1, - - -, z,). For the normalized maximum
likelihood, these conditionals (as required for arithmetic coding)
are not easily computed. Instead, we recommend the use of
g(z™) = my(z™) equal to Jeffreys’ mixture or its modifica-
tion, for which the conditionals are more easily calculated (see
Remark 3). The arithmetic code for 2™ is

T AT n 1 n

F(a )—aZjﬂqm )+ za(=")
expressed in binary to an accuracy of [log(1/g(z™))] + 1.
bits. We can recursively update both F(z*) and ¢, (z*) using
the conditionals ¢, (zk|z1,---,Zx—1) in the course of the
algorithm. For details see [8, pp. 104-107]. We remark here
that the distribution constructed in Section V also provides a
straightforward algorithm for this arithmetic coding.
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IX. PREDICTION WITH SIDE INFORMATION

So far we have looked at prediction (as well as gambling and
coding) based on a sequence of y;’s with a memoryless target
class. In practice, one often has observed some side information
z; to help in the prediction of y;. In this section, we give the
minimax regret for the prediction problem with side informa-
tion.

Suppose a sequence of data (z;,y;)7~; is to be observed,
where y; € {1,---,m}, and z; € {1, --,k}. We call y; the
response variable and z; the explanatory variable. We wish to
provide a choice of conditional distribution

n

gy, a(y;ly" ™, 2%)

for prediction, gambling, and data compression that perform
well compared to a target family of competitors, uniformly over
all sequences. The target family of procedures act according

to an assumption that y1, - - -, y,, are conditionally independent

givenzy, - - -, T, with the following conditional probability dis-
tribution:

ply; =ylz; = 7) = bay
fork =1,---,n,y = 1,---,mandz = 1,---,s. These

6z,y’s are called parameters of the model. Denote the collection
of these parameters by 6, that is, § = (6y,---,0;) with 6, =
(fs1,--+,0sm), for s = 1,--- m. (These parameters may be
organized into a matrix.) Then the joint conditional probability
under the competitor’s model can be written as

n
p(yl,"'7yn|$1:"'7$n7 H y]la;]7
N
I 11
k
=lrw

i

p(yjls, bs)

Jiz;=s

where y™ is subsequence for which z; = s (with the under-
standing that when there are no observations with z; = s, the
factor p(y™ |0;) is set to one so that it has no effect on the

product). Here
= [ »plyls.0.)

jixi=s

n5|9

treats the observations in this subsequence as if they were inde-
pendent ‘and identically distributed. The maximum-likelihood
estimator is

é _ Ts,1 s, m
s = ™ I
D, M, D, M
i=1 =1
fors = 1,---,k, where

.
n

N, = Z 1{21':5,?41‘:1.}

=1

- the explanatory variable is s. We define the regret r(z
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is the number of observations for which the response is ¢ when
™Y q)
for using a conditional probability function g(y™|z™) as the log
ratio between the best of the competitors probability p(y™|z™, §)

to our choice ¢(y™|z™) at data points (™, y™), that is,
non p(y"|z",6)
r(z",y",q) = log = ——=.
( PRED)

We are interested to know the asymptotic minimax value

T, = min max r(z",y",q)

() =™y™
and a probability ¢(y™|z™) that asymptotically achieves this
minimax value. Moreover, we desire a “causal” ¢ in which the
distribution assigned to each y; depends on past y’s and past
and present z’s but not on future z’s.
‘We will prove that the asymptotic minimax value for the pre-
diction problem with side information is given by

Trn = k(m = 1) log n/k + kC, + 0(1).
2 27

Note that the solution can be interpreted as k times the value we
had before, but with n/k in place of n.

The asymptotic upper bound for the minimax value is derived
from the following argument. Obgserve that

p(y"]z™, 6)
g(yn|z™)

For each z™, let ny(z™) = {j: x; = s} be the set of indices
corresponding to the subsample of observations for which the

Tn = min max log
q(-l-) =™ y”

. explanatory variable takes value s (the subsample with context

s). With slight abuse of notation we also use n to denote the size
of this subsample, i.e., the cardinality of n,(z™). By choosing
g to have the property that

9(y"|z") =

where y™* = (y;:j € ns), we obtain an upper bound on the
minimax regret

Tn < max max Z log——(—-‘q’js—nls’g—s)
~ q(y™ls)
< max Z maxlog Isl 9) :) (14)
ns|g

- The terms in this bound for each subsample is of the type
we have studied in this paper. Thus we are motivated to take
g{y™¢|s) to be a modified Dirichlet mixture of p(y™|6,) for ob-
servations in the subsample n,{z™). Now the subsample size 7
is not known in advance (though the total sample size n is pre-
sumed known). To produce a causal strategy we set values of €
and b (or o) in our modified mixture as if the anticipated sub-
sample sizes were n/ k, in a manner that, for realized subsample
sizes different from this by not more than a constant factor, tight
bounds of the type we have presented still hold. For example, we
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may set e = (n/k) /% and either §* = k/n (for the first mod-
ification) or o = 1/4 (for the second modification). The regret
bound in (14) may be written

— . . p(y™s 37é3>
n < max max log —=———""=
N 2 8 T gly)s)
{sin;>n/kc}
p(y™]s,8s)
+ max log ———= (15)
2 W T ynels)

{s:mm.<n/kc}

Suppose n is large enough that (9) (or its counterpart-(11)) is
satisfied with n/(kc) in place of n. Then from the result of Sec-
tion IV (or V) we bound

T, és
v q(yns|s)

< + Cpy + remy, ke for ns > n/kc, where the

=L log =
remalnder 1s

m?

TeMy, /b = <—4n/kc +

which, as we have seen, tends to zero as n — 0. For the cases
where n; < n/kc it is sufficient to use the coarser bound from
Lemma 1 of ((m — 1)/2)log(ns/27) + Cm + (m?/2)loge.
Thus we obtain a bound on the regret of -

m—l1 s
2 g27r

2

+ 28) loge
4Tn/kc

) + kC'm + k remn/(kc)

+ Z m loge (16)
{sins<n/kc}
The maximum in (16) is over choices of nonnegative ni,- - -, ng

that add to n. We shall argue that (with sufficiently large c) the
maximum in this bound occurs at n, = n/k. Toward this end
we reexpress the bound as

k(m—1)

5 L8 %:3 +kCp + kremn ey (17)

m-1 . k 1 1k 1 s |
T T2 pout <Og—q— ~ Has<1/ke} oge)
(18)

where the minimum is over nonnegative g1, - - - , ¢ that sum to
one. Here (17) reveals the desired bound once we show that the
minimum in (18) is indeed positive. We recognize the sum in
(18) as a multiple of the Kullback divergence between the uni-
form distribution 1/%,---,1/k and g1, - - -, gx. Now since these
distributions both sum to one, the sum in (17) is unchanged if
we add k(g5 — 1/k) log e to each summand. The new summands

are then
log e)

19)
We see that this is nonnegative for each s, whether kg, > 1/c
(such that the indicator term does not appear) or.whether kg, <
1/c, provided c is chosen large enough that log c/e > (m? /(m~—

1 2
(log " + (kgs — 1)1loge — 1{kq5<1/c}

1)) log e.The terms in (19) are zero only when g5 = 1/k. Thus
we have the upper bound on the minimax regret of
k(m=1),  n/k
—_— kCr,
7 log — 5 + +0(1)
as desired.
For a lower bound on 7,, we use minimax > maximin (in fact
Trn = I'y, @ Theorem O shows). The maximin value is

p(y"|z",6)
T, = Max mmax _ min z™)lo
T p(ynlen) o |zn>zpyI o8 ey q(y™{z")
g
= max max p(y |z™ )log—y]——2 (20)
= p(ymlem) & p(y™lz")

We obtain a lower bound in (20) by choosing for each z™

k
p*(y"]z") H

where p*(y™+|s) is the mixture of p(y™*|;) with respect to the
Dirichlet (1/2, - --,1/2) prior. Then from Lemma 2 of the Ap-
pendix, we have that

189)

Zl pns o (™)
23 (Bt
s=1

Hence continuing from (20), we have

p(y"|z", )
p*(y"|zm)

0n ).

1 .
log Rs + Cm>
2T

k
m_
Tn 2 Iax
s
s=1

— 2
" k(m—1) n
=" log — + kCh,.
5 8ok T
Thus we have shown that the asymptotic minimax regret is

k(m—-1) n

= log — ' +o(1).

T 5 log Cy + kCr + o(1)

Note that in the upper bound we found a causal g(y"|z™) that
is asymptotically minimax. By causality we mean that ¢ satisfies

q(y"|=™) H y] l-’EJ

Here it is not necessary to condition on future = values as in the
general decomposition

(yglw .

.::1:

q(y"e") =

<
Il
i

Moreover, the conditional distribution of y; given z7 and 37 ~!
depends only on the subsample of past y; of which z; = s when
z; = s. The advantage of using such a q is that we can give an
“online” prediction as data are revealed to us.

APPENDIX

Lemma 1: (Uniform bound for the log-ratio of maximum
likelihood and Jeffreys’ mixture). Suppose p(z™|01,- -, 0m) =
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0{1 - ...+ 8%~ where T; is the count for the ith symbol in the

alphabet, and m y(z™) is Jeffreys’ mixture, that is,
mj(xn)=/p(z‘"|91, e O) 07 622 A0, dBs
s

where

m—1

S: {(917"'79m—1):9i207Zeigl}‘

=1

Then for all 2™, we have

p(z™d) m-1 n
= — '+ Resy, 2
log ™ () 5 log o= + Cy, + Res 2D
where :
INEN
Cp = log (272
r(g)
and

2

m m
0 < Res, < | — - loge. (22
< Res ‘_<4n +4m1n(T1,---,Tm)+2> oge. (22)

In particular
p(z™f)  m-1 n m? m
1 < log — 'm — + — ) log
Ogmj(x") - 2 og2W+C T\ Ty )eee

(23)

which, to state a somewhat cruder bound, is not greater than
(m—1/2)log(n/2n)+ Cyp+(m?/2)log n, valid forall m > 2
andn > 1.

Note: Expression (22) shows that we have an accurate char-
acterization of regret in the interior of the relative frequency
simplex. On the full simplex, the bound in (23) is somewhat
larger (as it must be since the regret at each vertex of the rela-
tive frequency simplex, corresponding to a constant sequence,
is higher than in the interior, see Lemma 3). Similar bounds for
Jeffreys’ mixture in the m = 2 case are in Freund [15]. We use
inequality (23) with a modification of Jeffreys’ prior on a re-
duced dimension simplex in the proof of the main theorem.

Proof: We leave the lower bound proof to Lemma 2 and
only prove the upper bound here. By Stirling’s formula for real-

valued z > 0 (see [37, p. 253])
[(z) = 2" Y2e=\/2me® (24)

where the remainder s = s(z) satisfies 0 < s < 1/(12z).
Thus Jeffreys’ mixture m y(z™) can be approximated as the fol-
lowing:

. 1 1 1 1

. P(Ti+%)/r(%)m

9

3

’IL

—3 —

. s Si m
) I (ver (T+5)7) Tl )
m(n+ %)n+(m-—l/2) esn 1‘\
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where the remainders s; = s(T; + 1/2) and s,, = s(n + 1/2)
are bounded by 1/(12T; + 6) and 1/(12n + 6), respectively.
Hence

m—1 m
tn (1+5)
2 n +2n

+nln (1+%)—§ T; In <1+2;i> 25)

where, collectively, the remainder term from the Stirling’s ap-
proximation satisfies

i 1
3”_2 5% < Tont6

1=

(26)

Other remainder terms in (25) are analyzed in the following. We
use the following inequality, valid for positive z:

1 1 1 1
e~ <zhn(l+—)<= 27
2 4(x+1/2)_xn<+2x)—2 7
to get that
m_lln(1+m)+ ln(l-l—m)
2 o) " o
i 1
ST n (1
; n<+2Ti>
mm—1) m <« 1
< T N 1 \
S 13 ;m“ln<+2Tmm>
m2 m
DT — 2
T S (28)

where Trin = min (73, - - -, T, ). Summation of (26) and (28)
yields the upper bound in (22). Thus continuing from (25) we
obtain that

m—1 n
— + Res,
F(%) + 5 log o + Res

with Res,, satisfying the upper bound in (22) (the lower bound
Res,, > 0is shown in Lernma 2). Inequality (23) follows using
Tmin Z 0. .

Lemma 2: (A uniform lower bound for the log-ratio of max-
imum likelihood and Jeffreys’s mixture). Using the same nota-
tion as in Lemma 1, we have Res,, > 0. Moreover,

logp(z"|6)/m, (z™) — (m ~ 1/2)log(n/2n)

is a decreasing function of the counts 77, - - -, Tpy,.

Proof: Define

p(z"]h)

f( 1> ’Tm) m, (xn)n(m—l)/Z
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where n =y | T;. Once we show that f is decreasing in each
variable, it will then follow that

f(Tla"' )>f( max» "’Tma.X)

2 Ji f(L,---,L)
F(%) / m—1/2

= —27 2 29
T () (27) (29

where Ty, = max (11, -+ -, T ), from which it follows that

R, > 0. Now we show that

f(Tl+ 17T2""7Tm) < f(Tl7T27"'7Tm)-
We have
f(Tl7T27'”7Tm)

r @) w2y (1 7)o
{(H L (T:i+ )) /T (n+ %)}.nm—l/z

(T +3) TP

(1 + T1)1+T1
(n+ 1)n+1+(‘m—1/2)

) (n + %) .prH(m=1/2)"

=f(h+1,T%---,Tw)

(30)

The factor (Ty + )T /(1 + T1)'*T: is decreasing in T, as
seen by examining its logarithm. Indeed,

g(t) =log(t + %) + tlogt — (t+ 1) log(t + 1)
haé derivative
g'(t) = (t+ )7 +log(t/(t + 1))

which (upon setting ¢ + 1 = (1/2u)) equals 2u + log((1 —
u)/(1 + u)), which is negative by examination of the Taylor
expansion of log(1 + u). Consequently, replacing 77 with n in
this factor, we obtain

(Tl + %) T1T1 (7L+ 1)n+l+(m—1/2)
(1+T)H0 (n + %) . prt(m—1/2)
(n+3)n" (n4 1)nti+m-1/2)
= (1 +,n)1+n (TL+ %) .,nn+(m—1/2)

=TL+% 1+l m—1/2
n+’—g- n

> 1, (31)

where (31) is equivalent to
(n+ 3?21+ 1/n)™"t > (n+(m/2))®

which is verified using the binomial expansion of
(1 + (1/n))™ 1. Recalling (30), we have shown that

f(T13T27"'7Tm) > f(T1+17T27"'7Tm)

so it is decreasing in 77. The same arguments show that f is
decreasing in each of the counts.
Finally, the limit of f(L,---,L) as L — oo is obtained from

f(L7 e ’L)
_ l/m)mL
{T(L+3) /T (mL+3)HT (3) /T (3)" HmL)m=/>
and then using Stirling’s approximation. O

Note: A similar monotonicity argument is given in [38] for
the m = 2 case.

Lemma 3: (Asymptotic regret on vertex points). At the ver-
tices of the frequency composition simplex (such as T3 = =,
and T; = O fori = 2,---,m), the regret of the Jeffreys’ mix-
ture is higher than the asymptotic regret in the interior.

Proof: On the vertex (n,0,---,0) we have
(«"]61) 1
lo, ” log
R T N ) Y )
r)" _  Le+)TE™"
log —22— —log Z 2
r(%) T(n+%)
0", n
log T (= ) 2 log — + o(1)

see also Suzuki [32] and Freund [15]. The asymptotic regret for
interior point is

r(3)" m-1 =
log — 1
logr(%) + 3 og27r+o()
(in agreement with 7, = logc,). Thus the regret on the vertex
is Jarger by the amount m—;—l log 2, asymptotically. O

Lemma 4: (Regret incurred by other Dirichlet mixtures).
Suppose that @ < 1/2 and let

ma(z™) = Tm+a)/Dm(a,-~-,a).

Suppose n > n. If T; < n? for some ¢ < m and some p < 1,
then

p(z™|f) m—-1 (1 1
IOgma(x")S 5|3 (1-p) logn+Kmlogz

where K, is a constant depending only on m.
Proof: Without loss of generality we assume that 77 <
nP. Stirling’s formula gives the following expansion:

H( /—271_(1-% +a)T,~+o<—1/2)
n =1 R
m = .
)= Tan+ may i Doa e ¢

Dm(Tl+a7"'7

where
R=Z s(T; + ) — s(n + ma)
i=1

is the residual from the Stirling approximation and thus satisfies

1
> R
Rz 12(n + ma)
1
> - —. (32
2~ Tom (32)




Take the logarithm to get

p(z"9) m—1
< —
log me(z?) ~ 2

= mog(1+—%)

k2

+ (% - a) i log(T; + o)

=1

+ nlog (1 + m7a> — Rloge

log(27)

+ (ma - %) log(n + ma)

~ +log D(a, -, ). (33)
To further bound (33) we use
Zlog(Ti + a) = log(Ty + a)
+> log(T: + o)
i=2 .
n— T]_
<lg(lhi+a)+(m—1Nlog| ——+a
m-1
(m—1)?

<plogn+a+ (m—1)logn + 7
n

Meanwhile, we use Y T; log(1+«/T;) > Oandlog(l+z) <
z to simplify some other terms in (33). Collectively these yield
an upper bound for log p(z™|6) /mq(z™)

i(:gi)) < (mQ— 1 G —a> (1 —-p)) logn+(l;4)

log

where the constant b satisfies

(m=1)?% 1 m(m+1)
<~ — =7 cee
< ( n + on 7 log e+log Dy (e, - - -, ).
By Stirling’s approximation,
[(e)™
Do, . )= —te
(50 I'(ma)

< (27r)(m—1)/2al/2—m/2m_ma+1/2
hence there exists some K, such that
1
b< Kp,log—.
o

This completes the proof. O
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