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1 Introduction

We study the problem of data compression, gambling and prediction of a sequence 2" = z;z5...2,
from a certain alphabet X, in terms of regret and redundancy with respect to a general exponential
family, a related curved exponential family and also a general smooth family. In particular, we
evaluate the regret of the Bayes mixture density and show that it asymptotically achieves their
minimax values when variants of Jeffreys prior are used. These results are generalizatibns of the
work by Xie and Barron [14, 15] in the general smooth families. In particular for one-dimensional
exponential families, they also extend the works of Clarke and Barron [5, 6] to deal with the full
natural parameter space rather than compact sets interior to it.

This paper’s main concern is the regret of a coding or prediction strategy. This regret is defined
as the difference of the loss incurred and the loss of an ideal coding or prediction strategy for
each sequence. A coding scheme for the sequence of length n is equivalent to a probabilistic mass
function ¢(z™) on A™. We can also use ¢ for prediction and gambling, that is, its conditionals
q(z;41|2*) provide a distribution for the coding or prediction of the next symbol given the past.
The minimax regret with respect to a family of probability mass function S = {p(-|¢#): 8 € ©} and
a set of the sequences W, C X" (denoted by #(W,,)) is defined as
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where § is the maximum likelihood estimate given z". Here, the regret log(1/q(z™))—log(1/p(z"|6))
in the data compression context is also called the (pointwise) redundancy: the difference between the
code length based on ¢ and the minimum of the codelength log(1/p(z"|8)) achieved by distributions
in the family. Also, log(1/¢(z"))—1log(1/p(z"|#)) is the sum of the incremental regrets of prediction
log(1/q(ziy1]2%)) — log(1/p(zis1]7t,0)). The maximin regret for set W, (denoted by r(W,)) is
defined as

p(z"|0)
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where P(W,,) is the set of all probability mass function over W, and E, denotes the expectation
with respect to q. It is known that #(W,) = r(W,) holds [13, 15]. In this paper, we consider

minimax problems for sets of sequences such that
W, =X™G) = {z":0€g),

where G is a certain nice subset (satisfies G = G°) of ©.

When S is the class of discrete memoryless sources, Xie and Barron [15] proved that the minimax
regret asymptotically equals (d/2)log(n/27)+log C;(G)+ o(1), where d equals the size of alphabet
minus 1 and Cj7(G) is the integral of the square root of the determinant of Fisher information
matrix over §. An important point in the above is that G is taken there to be © itself, i.e. we do
not have to have any restriction for the sequence 2. For obtaining this asymptotically minimax
regret, they use sequences of Bayes mixtures with prior distributions that weakly converge to the
Jeffreys prior (the prior proportional to the square root of the determinant of Fisher information
matrix):

mn(a") = [ pla"16)uwn(d8),
where {wy,(d8)} is a sequence of prior measures over ©. The reason why one needs such variants of
the Jeffreys prior is as follows: If we use the Jeffreys prior, the risk is asymptotically higher than
the minimax value, for 2 such that @ is near the boundary of ©. We use priors which have higher
density near the boundaries than the Jeffreys prior, to give more prior attention to these boundary
regions and thereby pull the risk down to the asymptotically minimax level.

In this paper, we generalize the results of [15] to the case where S is an exponential family or
the related curved exponential family.

For the multi-dimensional exponential family, variants of Jeffreys mixture are minimax, when G
is a compact subset included in the interior of ®. For the curved exponential family, the ordinary
Jeffreys mixture for the subjective curved family is not minimax, even if G is a compact subset
included in the interior of ®. However, we can obtain the minimax result by using a sequence of
prior measures whose supports are the exponential family to which the curved family is embedded,
rather than the subjective curved family. It is remarkable that this procedure is applicable to
general smooth families. For the one-dimensional exponential family, we succeed to obtain variants
of Jeffreys mixture which are minimax for any subset G under certain conditions.

We also consider the problem of minimax expected regret (redundancy). The minimax expected
regret for the subset G of © (denoted by R,(G)) is defined as
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Also, the maximin expected regret for the parameter set G (denoted by R,(G)) is defined as
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where supremum is taken for any prior measure w. It is known that R, (G) = R,(G) holds [8, 11, 9].
For asymptotics of this minimax expected regret, the results by Clarke and Barron [6] are
known. They considered fairly general classes of i.i.d. processes and showed that the minimax

expected regret asymptotically equals

(d/2))og(n/2ne) + log C7(G) + o(1),




where G must be a compact subset of ®°. In work preceding [15], Xie and Barron [14] evaluated the
minimax expected regret for the class of discrete memoryless sources and showed that sequences
of slightly varied Jeffreys mixtures achieve the minimax value asymptotically for the probability
simplex ©®. The answer for the minimax regret and the minimax expected regret are similar. We
give analogous conclusions for both measures of regret for one-dimensional exponential families.

For obtaining the above minimax results, we employ the Laplace integration method, which was
used by Clarke and Barron [5, 6] in order to evaluate the expected regret of the Bayes procedures.
Especially in [6], they succeeded to uniformly evaluate the expected regret by the Laplace integra-
tion for a compact subset G of ©°. However in our task for the one-dimensional case, a subset G
can be arbitrary. This requires very careful application of the Laplace integration.

For determining the minimax value for curved exponential families, we use Rissanen’s recipe
[12] for evaluating the regret of the maximum likelihood code [13]. His recipe requires that the
central limit theorem about MLE 6 uniformly holds for the parameter space G. We show that it
does hold for curved exponential families, when G is compact.

The maximum likelihood code is an alternative way to obtain the minimax regret, which is
defined as X

ra(a™) = —2E1O)
an p(z™|0)dzn
This is known to be strictly minimax, but it is difficult to calculate its conditionals (important
for prediction problem and data compression algorithm) mn(z,|z" 1) = mn(z™) /N (2" ) (as-
suming n < N). On the other hand, we can obtain the conditionals of Bayes mixture by the
integration

mn(zale™ ) = / (2nl8)wn (d8]z" 1),

where we let wn(d6|z™~!) denote the posterior measure of  given 21

2 Definitions

The exponential family is defined as follows. [4, 1]

Definition 1 (Exponential Family) Let v be a o-finite measure on the Borel subsets of R and
X be the support of v. Define ® = {6 : § € R, [, exp(6 - z)v(dz) < co}. Define a function 1
and a probability density p on X with respect to v by ¢(8) = log [, exp(d - 2)v(dz) and p(z|0) =
exp(8 -z — (0)). We refer to the set S(©) = {p(z]6)|6 € O} as an exponential family of densities.

We let p(2™|0) denote [[iv, p(;]6). Also, we let v(dz™) denote [[7, v(dz;). Here, we are treating
models for independently identically distributed (i.i.d.) random variables.

Under this definition, the regret should be log(1/¢(z™)v(dz™)) — log(1/p(z™|8)v(dz™)), where ¢
is a probability density with respect to the measure v, but that equals log(1/g(z™))—log(1/p(z"™|8)).
Hence, we can use the same definitions of regret given in the previous section.

When © is an open set, S(©) is said to be a regular exponential family. Many popular expo-
nential families are regular, but we assume that S(©) is steep. This is a weaker condition than
“regular”. (When for all § € © — 0°, Eg(|z]) = oo holds, then 5(©) is said to be steep.) We

let J(8) denote Fisher information matrix of 8. For exponential families, the components of J are




given by

(0
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For steep exponential families, define expectation parameter 5 as 7(0) = Eg(z). It is known that
the map : 8 — 7 is one-to-one and analytic on ©°. Also, 7; = 9¢(6)/96" holds. We also use the
terminology #(n) as inverse function of 7(6). Note that p(z"|0) = exp(n(8-Z — (8))) holds, where
T =5 pqz¢/n. (z; denotes the t-th element of sequence ™ = z,5...¢,). It is known that the
maximum likelihood estimate of 1 given 2™ equals Z.

Exponential families include many common statistical models such as Gaussian distributions,

Poisson distributions, Bernoulli sources and etc. We explain some examples of exponential family.

Example 1 (Bernoulli sources) Let X = {0,1} and v({z}) = 1 for x = 0,1. Then, we have
¥(8) = log(1 + €%), which is finite for all § € R. Hence, @ = R. We have p(1|6) = exp(8 — ¢(4)) =
e? /(1 + €%) and p(0]8) = exp(—+(8)) = 1/(1 + €%). Also we have

of
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Example 2 (Poisson distributions) Let X = {0,1,...}, and v({z}) = 1/z!. We have
691: s
P(8) = 1ng_xT =e’.
Hence, ©® = R and J(8) = ¢°.

Example 3 (Inverse Gaussian distributions) The density of inverse Gaussian distribution with

respect to Lebesgue measure is

c z 1
p(zle,u) = (27rx3)1/2 exp(c - —sS =+ =),

where p > 0, ¢ > 0, and © > 0. Hereafter, we fiz c. It may be arbitrary, but we let ¢ = 1 for
simplicity. Let § = —1/2u%. We have
1
(2ﬂx3
(-1—)1/2 exp(fz + V-6 — 2 Elog T)
2 2 2 '

p(zlo) /2 exp(0s + V=0 - =)

Hence, we can see ©® = (—00,0], v(dz) = exp(—1/2z — (3/2) -logz)dz and (0) = v/—0. Also, we
have

10 = =57

Note that the inverse Gaussian family is an example of not regular but steep exponential families.

Welet C;(G) = [ +/det(J(6))db. The Jeffreys prior ([10]) over G (denoted by wg(8)) is defined

det(J(8))

wg(0) =
We define the Jeffreys mixture for G (denoted by mg) as [; p(«™|0)wg(8)d6.

as




Finally, we introduce the curved exponential family. Let S = {p(z"|6) : 6 € ©} be the d-
dimensional steep exponential family. Using a smooth function ¢ : R — %J, we define a subfamily
of S as follow:

M = {pc(z"|v) = p(z™[(u)) : v € U},
where U is a certain open set of R? and d > d. This M is referred to as a curved exponential family

embedded in S. We let 4 denote the maximum likelihood estimate of u given z™:

S n
U= argrgeazi(pc(z l%).

3 Lower Bounds

3.1 Exponential Families
The following holds for d-dimensional steep exponential families.

lim inf(r(X™(G)) — glog 2%) > log C5(G). (2)

Note that this holds for any nice G.
The inequality (2) is shown by using the following which we can show by Laplace integration.

T p(z"|d) d
liminf inf (lo S
n—00 xn:éegl( & mg(z™) 2

n
log 5-) > log C(0),

where G’ is any compact set interior to G.

3.2 Curved Exponential Families

Though we obtained the lower bound for exponential families via the direct evaluation of the lower
bound for the Bayes mixture, it is difficult for the curved exponential family. Hence, we utilize the
theorem about the maximum likelihood code by Rissanen [12], for determining the minimax value

for this case. According to that theorem, the minimax and maximin regret equals

glog =+ log / Jaet(7(8))db + of1).

under certain conditions. The main condition here is that the central limit theorem about the
maximum likelihood estimate uniformly holds for the concerned class of probability distributions
and is not trivial for curved exponential families (other conditions are also required, but they
clearly hold for curved exponential family). We can confirm that this condition holds for the case
of curved exponential family with compact parameter space interior to the whole parameter space
of the family. For that proof, we use the theorem by Bhattacharya [2] (see also [3]).

We can prove that any natural Bayes mixture with prior on the curved family M does not
achieve the above upper bound. Hence we need a certain different idea, which we describe in
Subsection 4.2.

4 Upper Bounds

In all cases studied in this paper the minimax value of (pointwise) regret equals

ii—ir—][;(i)loggF +1log Cy(G) + o(1). (3)

Below we describe the asymptotically minimax Bayes procedures for each case we considered.




4.1 Multi-dimensional Exponential Families

Let G be a nice compact subset of ©°. Let {G,} be a sequence of subsets of ® such that G, O G.
Suppose that G, reduces to G as n — oo, where Cj(G,) reduces to C;(G). If the rate of that

reduction is sufficiently slow, then

"g) d
limsup( sup 1og—1—)-(-:-v-—]l

n
~ Liog ) < log Cy(0) (1)
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holds. Since the upper bound here matches the lower bound, our strategy is minimax and we have

determined the minimax value.

4.2 Curved Exponential Families

Let U, be a certain nice set of ®? (U;° = U,). Assume that Us is a compact set interior to U. We
consider the minimax problem for the set W, = {2" : 4 € U,}
Here, we use a prior that lives not just on the subfamily M but also has a small component on

the larger family §. The resultant procedure is based on the mixture
M) (™) = (1 - ¢,) / pe(a" [y, (w)du + €, / p(2"|8)wg(8)d6. (5)

The first component is Jefrreys prior wy,, on an open set U, shrinking to U (this is absolutely
continuous with respect to Lebesugue measure du on U). The second component of the prior is
absolutely continuous with respect to Lebesugue measure on @, with a positive density on a set G
that contains a neighborhood of the image of U, in ® by map ¢. The weight ¢, tends to zero at a
polynomial rate.

The conclusion in this case is that this modified Jeffreys mixture is asymptotically minimax and
maximin and that it achieves the value (3) asymptotically in agfeement with the value achieved by

normalized maximum likelihood as shown by Rissanen for stochastic complexity.

4.3 One-dimensional Exponential Families

For one-dimensional exponential families with natural parameter space ©® with integrable \/J(f),
we identify two main types of boundary or tail behavior. The natural parameter space © forms
an interval with right end point b either finite (b < o) or infinite (b = o0). Here we focus on the
behavior on the right side of the interval. (The behavior on the left side is analogous.)

Let A be an element of ©°. Welet G = [A,00) N © and consider the minimax problem for the
set X"(G).

In the case that b = oo and that root of J(6) slightly smaller than 1/2 is integrable, we use
priors w, (@) defined on G, and proportional to (J(8))(1~2)/2 where y, is any choice that tends
to zero slower than 1/logn and {G,} is analogously defined as in the multi dimensional case.
Then, this procedure is asymptotically minimax. This case includes Bernoulli sources and Poisson
distributions. This method provides an alternative to the technique in Xie and Barron [14, 15].

In the case that the right endpoint of © is a finite b, we identify two situations for steep
exponential families. In one case the right endpoint b is in © (non regular exponential family) and

we use

wp(dl) = (1 — €,)wg, (0)dl + €,6,(dh), (6)




where G, = [An,b) with A, < X and wg,, is Jeffreys prior on G, (absolutely continuous with respect
to Lebesgue measure df), the component 6 is point mass at b and €, is any sequence converge to
zero slower at rate n~° for some § < 1/2. If A, approaches A sufficiently slowly, then the above
strategy is asymptotically minimax. This case includes Inverse Gaussian family. It is remarkable
that if we use prior w(df) which is absolutely continuous at point b (e.g. the prior (6) with €, = 0),

we have

im lo __p_(:yﬂ -
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for any n. Hence, the second component of (6) is necessary.

Finally for regular exponential families with finite endpoint, © is open and hence does not
contain b. In this case, under a certain weak condition we confirm that Fisher information J(#)
diverges rapidly to infinity as # approaches b yielding [ +/J(6)df = co.

5 Ideas for the Proofs

5.1 Laplace integration

The main tool we use in this work is the Laplace integration. Using Taylor’s theorem we have

mg(z™) _ [ p"f)wg()
p(z"|0) p(znl6) - A
~ /exp(_n(e - 0) ’]2(0)(0 _ 0) )wg(e)de

wg(9)  (2m)*/?
det(F(6)) ™
4et(J@0)  (2m)?

Cr (G0 det(J(B)) ™

where J(8) is empirical Fisher information matrix (Hessian of —log p(z™|6)/n). For exponential

families, J(6) equals Fisher information J(). This can be confirmed by noting (1) and

log p(2™|0) = n(6 - 2 — 3(0)),

where Z is the average of z in z™.

i

Therefore, we have
det(J(0)) 1
Cr@nfaen(f(8) IO

which implies

mg(”) _(2m)'"
panld) " WPCHG) ™

This asymptotics hold when § stays interior to G. For the sequence for which 6§ is near boundary

of ®, we use different techniques.




5.2 For curved families

For curved exponential families the above asymptotics do not hold for almost all z”, since the
difference between J(§) and J(8) is not zero for almost all z”. However, if [§ — ()| < a,, = o(1)
(recall that § = arg maxg p(z"|8)) as n — oo, then we can derive det(J(8))/ det(J(8)) = 1+0(ay) =
1+ o(1), hence we have (7) for such sequences z™. Hence, recalling €, = o(1), we have
m @) (1= ) [pelatwu, (Wdu (2m)"”
pe(znd) pe(z"|2) nd2CU)

For 2™ with |Z — n(¢(@))| > a,, we have
p(z"18) _ p(z"16)
pe(zla) — plan|d(@))

where D(8]¢') is Kullback-Leibler divergence of p(z|6’) with respect to p(z|f) and C is a certain
positive real number. Also, we have the following from (7).
[ p(a" Byug0)db  C*
p(enlf) T nd2

(8)

= exp(nD(f|4(1))) > exp(Cnal),

Therefore, we have

[ p(2™6)wg(8)do S C'exngna%)
pe(2m|%) - nd/2 )
Now we let a2 = n~1/2 then we have
[ p(™0)wg(8)db S C" exp(Cnl/?)
pe(z™| ) - nd/2 '
Recalling €, is converging to zero at a certain polynomial rate, we see that
mq(fwue)(:z:”) S &n [ p(a"™|0)wg(8)do S C'e, exp(Cntl?) S |4
pez™la) pe(z™|d) - nd/? = nd/2

holds for sufficiently large n, where V' is an arbitrary large constant. Together with (8), we have

obtained the minimax answer.

6 Extension to General Smooth families

Here we address the the extension of the idea for curved exponential family to general smooth
family M = {p(z|u) : v € U C R4}.

Let J(u) be a Fisher information matrix of u and J(z"|u) be an emprical Fisher informa-
tion matrix of u. Define d?-dimensional vector valued randum variable g(z"|u) as gjqu;(z"|u) =
Jij(z™|u) = Jij(w).

We define the enlarged family S :

S = {pe(z|u,v) = p(z|u) exp(g(z|u) - v — P(u,v)) 1 u €U, |v| < b},
where
¥(u,v) =log. [ plafu)exp(g(alu) - v)u(da)
and b is a certain positive number. Here we are assuming that ¥(u,v) < oo for v € U; C U and
|vf < b. We let § = (u,v). Here, M is a smooth subfamily of $§. Under this setting the Bayes

procedure (5) is asymptotically minimax for the set {z™ : 4 € Us}. The proof is similar to the case

of curved exponential families.




7 Minimax Expected Regret

For the lower bound on maximin expected regret, The result by Clarke and Barron [6] is known,

holds. This can be applied to d-dimensional steep exponential families. We note that in [6] corre-
sponding upper bounds were only obtained for G compact and in the interior of ©. Here, we give
tools to handle the boundary behavior. For lower bound, the work of [6] is sufficient to handle
arbitrary G.

Recall that the minimax expected regret is

p(z"16)
q(z™)

Rn(G) = inf sup Fy(log ).
! geg

We can transform it as

2(z"18), _ g o, 2(2"16) o PLE16)
Eg(log e ) = Eg(log D) ) + Bl gp(a:n]é))'

Since we can evaluate an upper bound on Ey(log(p(2"|d)/q(z™))) by using the upper bound on

minimax pointwise regret, if we obtain an upper bound on Eg(log(p(z"|6)/p(z"|4))), then we can
evaluate the upper bound on R,(G).

In fact for one-dimensional exponential families, we can show that the minimax strategies for
pointwise regret are minimax for expected regret as well. The tool we use for this proof is one of

large deviation inequalities [7, 4].

8 Conclusions

To summarize the answer,

d n
log o +log / \Jdet(7(6))d6

given for the stochastic complexity in Rissanen [12] and given in Clarke and Barron [6] for related
minimax redundancy (expected regret) remains valid for minimax regret when dealing with expo-
nential families of various boundary behavior and with curved exponential families and in each case
is achieved by modifications of Jeffreys prior in some cases analogous to those suggested by Xie
and Barron (14, 15].
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