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ABSTRACT. Concepts of universal data compression lead to minimum description-length cri-
teria for parsimonious statistical model selection for the estimation of functions. In this paper
we define general complexity regularization criteria and establish bounds on the statistical risk
of the estimated functions. These bounds establish consistency, yield rates of convergence,
and demonstrate the near asymptotic optimality of the model selection criterion in both
parametric and nonparametric cases. A fundamental role is played by an index of resolvability
that quantifies the tradeoff between complexity and accuracy of candidate models. Applica-

tions are given to polynomial rcgression and artificial neural networks.

1. Introduction

In the context of statistical estimation of functions, a list of parametric models is pro-
vided from which one is to be automatically selected from the data. These lists of
parametric models have the property that for essentially any target funcrion Lhere
exist a convergent sequence of approximating functions on the list. In the absence of
knowledge of the true function, the problem is to estimate an appropriate size model
that provides a good tradeoff between the approximation error, which is best for
larger models, and the parameter estimation error, which is best for smaller models.

In this paper we present an index of resolvability that defines the best tradeoff
between approximation error and the complexity of models. A complexity regulariza-
tion criterion is defined which adds an information-theoretic complexity penalty to the
empirical loss, and the estimator is taken which achieves the optimum value of this
criterion. 1t is shown that the statistical risk of the estimated function is bounded by
the index of resolvability.

The methods and theory we present here are closely related to minimum com-
plexity density estimation as developed in Barron and Cover (1990). The difference
is that herc we do not necessarily stick to the minimum description-length paradigm
from Rissanen (1983,1984) and Barron (1985). In that paradigm the model selection
criterion is required to correspond to a total description length for the sample. That
paradigm works quite well for density estimation, using the fact that the best codes
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for a given distribution have length equal to minus the logarithm of the density. The
complexity penalty then serves as the length of a preample that describes what
estimated distribution is used in the description of that sample. However, for gother
curve fitting problems we may be interested in estimating, say, a regression function
using a penalized squared-error criterion. If the distribution of the errors is unknown
(and in particular not Gaussian), then the squared error term in the criterion does not
correspond to the length of an accurate code for the data. Nevertheless, regulariza-
tion of the estimator by the addition of a complexity penalty is still fruitful in this
context, despite the lack of a complete justification on grounds of optimal data
compression.

A Bayesian formulation of the model selection problem as in Schwarz (1978)
yields test statistics that are similar to criteria motivated by the minimum description-
length principle. Although closely related, the complexity regularization criterion for
the estimation of functions does not necessarily correspond to a Bayesian solution.
Again, the reason is that the choice of an empirical loss function is not constrained to
correspond to the log-likelihood for a model of the error distribution.

Other statistical performance criteria have been analyzed for their asym ptotic sta-
tistical properties. In particular, Shibata (1981) has demonstrated asymptotic optimal-
ity properties of the Akaike’s final prediction error and Akaike’s AIC criterion in the
case of Gaussian errors. For more general error distributions, Li (1987) demon-
strates asymptotic optimality properties of Mallows’ C,, criterion, cross-validation, and
generalized cross-validation. Li’s analysis applies only to linear models and he
requires a condition that indirectly restrict the number of candidate models that may
be considered. The analysis that we give here is similar in spirit to the work of Shi-
bata and Li.

An advantage of the complexity regularization criterion is that it is amenable to
statistical analysis for essentially any list of candidate functions. In particular, linearity
of the param etric models need not be assumed. Also, no restriction need be placed
on the number of candidate models that is considered for each sample size. In
essence the effect of the number of candidate models is automatically accounted for
in the complexity penalty. To permit this increased generality, our bounds do not
yield asymptotic optimality in the sense of Shibata for the nonparametric case.
Nevertheless, the bounds do show that the statistical risk is within a logarithmic fac-
tor of the optimum. Moreover, our results are seen to be applicable both for
parametrically represented functions and for nonparametric functions, without prior
knowledge of whether the true function is in the list of parametric models.

Below we give two examples to which the convergence theory applies. The
theory is not restricted to these cases. These examples provide lists of parametric
families of functions fy, (x,0) for xeR 4 and @R ™, where the dimension m depends
on the model M. As a concession to computational feasibility, the size of the list of
models may be restricted to depend on the sample size n, as long as the restrictions
are relaxed as n—eo. Statistical and information-theoretical considerations show that
there is no essential loss to restrict the coordinates of 0 to a grid of points spaced at
width equal to a small multiple of 1/¥'n, where n is the sample size. Because of the
discretization of the parameters, the list of models leads to a countable list ', of can-
didate functions.
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For each candidate function f, a complexity C,(f) is assigned. In general,
these numbers C,(f) are arbitrary subject to a summability restriction on 270,
This restriction means that C,(f) may be interpreted as a codelength for the descrip-
tion of f, or, what turns out to be operationally equivalent but motivationally quite
distinct, 2~ ) may be interpreted as a prior probability of f. For the examples we
give, the complexities may be chosen to take on the following form

Calfu C0) = 2 logn + co+ cy, (1

where the logarithm is taken with base 2. Here (m/2) log n + ¢4 may be interpreted
as a codelength for the parameter 0, or 2° °° as a prior density function for the param -
eter. Likewise ¢y may be interpreted as a codelength for the model M, or 27 as a
prior probability, where Y, 27 < 1. The term ¢y indirectly accounts for the effect
of the number of candidate models. When there are many competing models, this
term help to avoid overfit problems due to selection bias.

The examples we study have the property that essentially every function f* is
well approximated by functions in the list T,. In particular, for every L2 function
with compact domain in R ¢, there is a sequence of functions f, in I',, such that the
L2 approximation error converges to zero as n—ee. A consequence is that the index
of resolvability R,(f") = minscp (W f~f" 1%+ C,(f)/n), which quantifies the tra-
deoff between the accuracy and complexity of the best approximations, is seen to con-
verge to zero. The speed at which it converges depends on how well tailored the list
T, is to the function f*. If f' is a member of one of the candidate families then
R,(f™) = O(log n)/n. In other smooth cases, R,(f") converges at rate given by a
fractional power of (log n)/n. The theory we develop here gives conditions such that
the statistical risk of estimated functions converges at rate bounded by R, (f").

EXAMPLE 1.1: MULTIVARIATE BASIS FUNCTION SELECTION

Let By(x), x € R k e {0,1,2....]d denote a collection of basis functions for mul-
tivariate functional expansion. In particular, we may take basis functions for polyno-
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mials, splines, or trigonometric series. For example, B,(x) = x’;‘ -« x4* is the tra-

ditional basis for polynomials. Finite sets M of multi-indices k& yield candidate models
‘ Fu(x,8) = By 0 Bi(x). (2)

The lists of candidate models consist of collections of such fj;. In theory one may
take the collection of all finite subsets M, and use the complexity regularization cri-
terion to choose a statistically suitable subset. However, in practice it is more feasible
to impose sequences of bounds on the maximal degree and the interaction order of
the basis functions, and perhaps to restrict to hierarchical sets of terms, thereby yield-
ing a sequence of lists I', of candidate functions. Theoretically, the sequence of
bounds should be fairly large (and tend to infinity as n—- ), so that-we do not inter-
fere with the desired approximation properties. The complexity regularization cri-
terion makes the final choice of model within the possibly restricted class.

There are various statistical contexts in which such basis function expansions
may be used, including least squares regression (see Cox (1988), Friedman (1990)),
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maximum likelihood estimation of the log-density (see Stone (1990), Barron and
Sheu (1988)), and logistic regression for nonparametric discrimination. As we shall

see, complexity regularization and indices of resolvability are defined for each of
these contexts.

Suppose the target function f* is in the Sobolev space of functions on [0,1]¢ for
which all partial derivatives up to order r are square integrable. In the contexts of
regression and log-density estimation using polynomials, splines, or trigonometric
series, the index of resolvability converges at rate

R"(f') = O(E)_%_”_)Zr/(ZHd)' (3)

This is shown for d=1 in Barron and Cover (1990) and extends by the same method
to d> 1 using multivariate approximation results in Sheu (1989).

These bounds on the index of resolvability then apply, using the main results
from Section 4, to show that the statistical risk of the estimated function converges L0
zero at rate O (log n)/n in the case that the true function is in one of the candidate
families and at rate O (log n/n)*'**4) when the function is in the Sobolev space.
Again these rates are obtained without apriori knowledge of the family or of the
smoothness class.

EXAMPLE 1.2: ARTIFICIAL NEURAL NETWORKS

Feedforward artificial neural networks are a relatively flexible parametric family of
functions f(x,0) on R?¢, which are expressed as the mathematical composition of
fixed non-linear functions of one variable and parameterized linear functions of
several variables. The most popular non-linear function in this context is the logistic
h(u) = 1/(1+e‘“) for —oo< u< oo, although polynomial nonlinearities have also had
some practical success. The references Farlow (1984), Rumelhart, et. al. (1986),
Anderson and Rosenfeld (1988), Barron and Barron (1988), Lippmann (1987), and
Lee and Lippmann (1990) provide a starting point on network methods of cmpirical
modeling. Despite the name "neural,” these networks are intended for general pur-
pose approximation and estimation of functions; they are connected to biological net-
works only through a loose analogy. Artificial neural networks are intended as com-
petitors to other methods of nonparametric function estimation, particularly in high-
dimensional contexts in which the networks have an advantage of dimensionality
reduction by composition. That is, if the true response is a function of many vari-
ables, that depends on these variables through the composition of lower-dimensional
smooth functions, then network methods may be better suited than traditional series

expansions which suffer from an exponentially large the number of candidate terms
as a function of the dimension.

The architecture of an artificial neural network is the specification of the
mathematical composition scheme. The layers of the network refer to the depth of
composition. A basic network architecture is the multiple layer networks in which the

output of the functions on one layer are inputs to every function on the next layer.
Thus

M
Fx,0) = Y 0,8,(x,Bp), i 4
m=1
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where each parameterized function g(x,B) takes the form
gx.B) = h(p72), ()

with z = (1,z,,...,2¢) for some K, and BERK”. These elemental functions (5) are
called units, nodes, or artificial neurons. In the case of one layer of non-linear nodes,
the z; = x, are original input variables. In the case of two-layer networks, each inter-
mediate input z; is itself the output of a another parameterized function of the form
(5). This process is repeated for any additional layers of the network. The parameter
vector © consists of the linear parameters o and the parameters B from all of the
nodes in the network.

Cybenko (1989) demonstrated an essential approximation-theoretic property of
families of networks with the logistic non-linearity (or other bounded non-linearities
with distinct left and right limits), Namely, the set of such networks with one layer
of non-linear nodes is dense in the space of all bounded continuous functions with
compact domain in R,. It follows that classes of multiple layer networks are also
dense. Similar results show the density of networks in the space of L2 functions with
compact domain and show that the density of networks holds for unboundcd non-
linearities such as polynomials, see Barron (1989). Very little is known about the rates
of approximation of networks. One result in this direction, based on the work of
Jones (1990), is that if a sequences of of network functions exist for which i f=r u
tends to zero and if the sum of the absolute values of the o« parameters is bounded,
then there exists network functions f,; of the form (4) with integrated squared error
bounded by 1 foy — fT 12 < O(1/M).

Without appropriate statistical control on the size of an artificial neural network
and a control on the number of estimated parameters, artificial neural networks are
subject to the same overfit problems (inadequacy of the generalization of the predic-
tions to new observation) that are associated with other parameter intensive models,
such as the models in Example 1.1 above. To realize the potential benefits of neural
network approximations, it is important to have a statistically accurate model selection
criterion. Moreover, the criterion should be demonstrably applicable to network
models that can be highly nonlinear functions of the parameters. These considera-
tions were motivating factors in the development and analysis of the complexity regu-
larization criterion.

The statistical convergence theory we present shows that artificial neural network
estimated from data achieve the best rates of approximation, as measured by the
index of resolvability for the given class of networks. This convergence theory does
not necessarily hold for arbitrary neural network training algorithms; it applies to net-
work estimators that optimize the complexity regularization criterion.

Results on consistency of statistically estimated networks were announced in
Barron and Barron (1988). See also, White (1990) for consistency results for net-
works based on the method of sieves. The bounds on the statistical risk of functions
estimated by complexity regularization that are proved in the present paper were
announced in the neural network context in Barron (1989).
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2. Loss Functions for Functional Estimation

Before giving our convergence result for functions estimated by complexity regulari-
zation, we address the issue of the choice of the loss function and the measure of sta-
tistical risk.

Let (X;,Y;){L; be independent observations drawn from the unknown joint dis-
tribution of random variables X,Y, where the support of X is in R?. Here X is the
vector of explanatory variables and Y is the response variable. Functions f (X ) are
used in predicting the response, The error incurred by a prediction is measured by a
distortion function d(Y ,.f (X)). (Informally d is sometimes referred to as a loss func-
tion, although in a strict decision-theoretic sense it is not, since it depends on the ran-
dom variables X,Y). The empirical loss is (1/n)3,/L,d(Y;.f (X;)). Functions f, are
typically estimated by minimizing the empirical loss over a class of candidate func-
tions, or by minimizing the empirical loss with a penalty added for the complexity of
the functions.

We let f° be a function which minimizes E(d(Y ,f (X))) over all measurable
functions on R?. For the distortion functions we investigate, such a optimum func-
tion f'(x) exists and is related explicitly to the conditional distribution of ¥ given
X = x. When a function f is used in place of the optimum function f* the regret is
measured by the difference between the expected distortions

r(f.f") = E(@Y.f(X)) — EMY.f (X)), (6)

In our formulation, the quantity r(f ") is the theoretical loss incurred by the func-
tion f when the true best function is f*. This loss function r(f,f") depends on the
function f over its whole domain (the support of the distribution of X) and not just
on its values at one or several points. It quantifies the ability of an estimate to gen-
cralize, on the average, to new data from the distribution of X,Y. The statistical risk
is the expected value of the loss for a given estimator f,,

risk = E(r(f,.f")). @)

More generally, we define d* = inf E(d(Y,f(X))), r(f) = E(d(Y .f(X))) - a*,
and risk = E(r(f,)), all of which are defined even if there does not exist an optimal
function f°. This r(f) is the same as the loss function r(f,f ") in the casc that an
optimal function f*(x) exists.

The most common choice for the distortion function d(Y ,f (X)) is the squared
error (Y—f(X))z, although other choices can also be handled in the theory, including
the absolute error | Y—f(X))I. In the case of a dichotomous random variable Y,
assumed to take values of either +1 or — 1, reasonable choices include, in addition to
the squared error, the zero-one distortion function 1y . sen(/ (X NP and the logistic
distortion function —Yf(X) + log(ef(x) + e f(x)) which is the same, except for a
linear rescaling as the distortion function used in traditional logistic regression.

A gencral class of distortion functions a-e those which take the form
d(Y,.f(X))= - logp(Y | f(X)) where p(y | f(x)) models the conditional density of
Y given X. In particular, the squared error distortion corresponds to a Gaussian con-
ditional density and the logistic distortion corresponds to thie Bernoulli model written
in exponential form p(y!lx) = ¥ @ (/") 4+ ¢/ )y y = £ 1, where f(x) models
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one-half the log-odds ratio in favor of class +1 versus class —1. For the estimation of
the density function for the random vector X, we-use d(¥,f (X)) = — log f(X) and
require that f(x) is non-negative and integrates to one with respect to a specilied
dominating measure.

For the squared error distortion, the loss function reduces to an integrated
squared error

r(ff1) = EQFX)= (XN (8)

and f *(x) = E{Y | X=x] is the conditional mean of Y given X = x. In particular, for
the dichotomous case with squared error loss, f (x) is the difference between the
conditional probabilities of class +1 and class ~1. For the zero-one loss, r(f.f ") is
the difference between the probability of error based on f and the Bayes optimal pro-
bability of error.

For distortion functions based on a family of conditional densities, 7 s the
choice which makes the conditional density p(y | f"(x)) closest to the true condi-
tional density in the relative entropy sense. If the family of conditional densmes is
correctly specified, i.e. if it includes the true condmonal density, then r(f ) is the
average relative entropy distance between p(-| f “(x)) and p(-1 £ (x)).

Y= E K E—(———L—-—D-(X . 9
r(f.f) 0g (Y 1F(X)) &)

In this context, a role will also be played by the squared Hellinger distance,
R EL@) = [ GpOTFEN-VpG 1 £7(x))) 1), (10)

where | is the measure assumed to dominate the family of conditional distributions
for Y given X.

3. Complexity Regularization and the Index of Resolvability

We have already indicated that the complexity regularization criterion is motivated in
certain cases by the minimum description-length principle. Indeed, these criteria are
seen to coincide when the distortion function 4 is taken to be equal to minus the log-
arithm of likelihood and when the parameter A in the definition of the criterion is sct
to equal one. Here we motivate the criterion in the context of uniform bounds on the
statistical risk of estimators.

There are two contributions to the risk E(r(f,.f ")) of estimators bascd on the
optimization of an empirical loss: namely, the approximation error r(f 5 at,thVCd
by functions f in the given class as an approximation to the desired function £, and
the estimation error, which is due to the discrepancy between the empirical and
theoretical loss. By techniques in Vapnik (1982), Devroye (1988), or Haussler (1989),
this discrepancy between empirical and theoretical averages can be shown to be uni-
formly bounded by O (v C,/n), in probability, for families of functions of complexity
bounded by C,. (Essentially, C, is taken there as the logarithm of the number of
functions required to approximate functions in the class to within a prescribed accu-
racy.) By generalizations of these techniques, it is shown that the estimation crror
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can be bounded in probability by a multiple of  C,(f)/n for arbitrary bounded dis-
lortion functions and by r(f,f*)+ C,(f)/n for the squared error and for the
likelihood-based distortion functions, uniformly for ail candidate functions f. Here,
instead of requiring a uniform complexity bound, we permit unbounded com plexitics
C.(f) that may depend on the candidate functions. (These "complexities” C,(f) are
arbitrary numbers satisfying a summability requirement, as given in equation (15)
below, in accordance with an information-theoretic interpretation.) In the absence of
constraints on the form or number of candidate functions, the empirical loss is not
necessarily uniformly accurate for all candidate functions. The complexity penalties
used here is the smallest penalty we are able to impose o force the criterion to be
accurate at least for the functions which achieve the minimum criterion value.

Thus we are led to complexity regularization criteria and to corresponding
indices of approximation. Depending on whether bounds of order NC,(F)in or
C,(f)/n arise in controlling the estimation error, we add the appropriate complexity
penalty to the em pirical loss to define the criterion for function estimation, for in this
way it seen that the minimizer of the empirical criterion has a performance essentially
as good as that achievable by the theoretical analog of the criterion.

Definition: Given a collection T', of functions, numbers C.(f), f e T',, satisfying
the summability condition (15), and a positive constant A, the method of complexity
regularization selects the function to minimize one of the following two criteria,

F ZAUf () + MEC, ()2 (1
or

Ly acrirxn + ate, o). (12)
n,'=1 n

The theoretical analog of these criteria leads to the following indices of resolva-
bility, which quantify the tradeoff between the complexity and accuracy of approxima-
tions to f‘,

RS = min(r(F.f") + M=C,(F )2, (13)
fel, n
and '
RAUYY = min(r(f.£1) + MC,(f)). (14)
fel, n

The latter quantity is the index of resolvability introduced in an inform ation-theoretic
context in Barron and Cover (1990).

The requirement that is imposed on the numbers C,(f) is the following sum-
mability condition:
> 274D <y, (15)
fel,

for some finite constant s. There is an information-theoretic interpretation of the
summability condition with s = 1: this is the Kraft-McMillan inequality which is
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necessary and sufficient for the existence of uniquely decodable binary codes, with
codelengths C,(f), for f € I',. We shall also require that C,(f) = [ for all f and all
n, for some positive constant /. This also is automatically satisfied, with / = 1 in the
case of binary codes for a set I', with more than one function. A trivial consequence
of the latter requirement is that R " is not of order smaller than 1/Vnr and R (? is
not of order smaller than 1/n.

4. Bounds on the Statistical Risk:

Now we present the main results on statistical convergence properties of functions
using a complexity regularization criterion. Let

W = gremin (L3 d(¥:.f (X)) + AL vz, 16
740 = argmin (- 3, d(Yinf (X)) + A U DY (16)
and
. < 1
17 = argmin(- S d(if (X) + Aoy Co0). %)

The first estimator is used for distortion functions such as the zero-one distortion and
the absolute error for which the ideal rate of convergence of the risk would be close
to 1/¥ n . The second estimator is used for squared error and log-likelihood based dis-
tortions for which close to 1/n would be the ideal rate.

Our main result, which we now give, shows that the statistical rate of conver-
gence of functions estimated by com plexity regularization is bounded by the index of
resolvability. :

The result requires in some cases that d(Y,f (X)) be almost surely bounded.
This is forced by a constraint on the support of Y and by clipping the functions f (X),
or by explicit choice of a bounded distortion function. For distortions based on the
log-likelihood, with a correctly specified family of conditional densities, no bounded-
ness of the distortion is required.

Convergence Theorem for Complexity Regularization: Assume that the indices of
approximation R,,(l)(f‘) and R\P (") tend 1o zero as n—see . If the range of d(Y ,f (X))
for every f in T, is in a fixed interval of length b, and if . > b/N 2 log e in the definition
of the complexity regularized estimator f .V, then the statistical risk of the estimator con-
verges to zero at rate bounded by R,,(l)(f‘), ie.,

E(r(f ") < OROU™. (18)
Indeed, for alln 2 1,
EGUD ) < ROG) + j—z_ (19)

where cq= (s+1)bV /2.

For the squared error distortion function, if the support of Y and the range of each
function f(X) is in a known interval of length b, then with A »5b%3 loge in the
definition of the estimator f,,(z), the mean squared error converges to zero at rate bounded




570
by RA(fT), ie.,
EW(fL20) - FFxndH < oRP(). (20)

If the distortion function is d(Y .f (X)) = — log p(Y | £ (X)) where the true condi-
tional density is p(Y I £(X)), then for all A > 1 in the definition of the estimator F2 the
expected squared Hellinger distance between the conditional densities converges at rate
bounded by the index of resolvability R D"y, e,

EW@FUO&X).f X)) < 0RP(M). (21)

The L! distance, which takes the form j lpy | F(x)) = pGy V£ () | p(dy), is
known to not be greater than twice the Hellinger distance. Therefore, a consequence
of (21) is that the expected square of the L distance also converges at rate bounded
by R ).

For the Gaussian error case, the Hellinger distance can be evaluated and lower
bounded as in Barron and Cover (1990). It is seen that for any ¢ > 0, the risk
E(min((f,(X)—f " (X)?2c)) converges to zero at rate bounded by R, (f*).

5. Proof of the Convergence Theorem for Complexity Regularization

For simplicity in the proof we assume, without loss of generality, that the complexi-
ties are converted to base e. This means that the summability condition becomes
Zfer"e_c"(f) < 5. Accordingly, for the purpose of the proof, the logarithms in the
theorem are now interpreted as base e instead of base 2.

For the first two conclusions of the theorem, the proof uses a bound on the pro-
bability of the event that r(f,,.f") > t in terms of a sum of probabilitics of related
cvents for each f e I',, to which inequalities of Hoeffding and Bernstein can be
applied. The bounds on the probabilities are then integrated for ¢+ > 0 to obtain the
indicated bounds on the risk. The proof of the third conclusion is based in part on
results in Barron and Cover (1990) which uses inequalities of Chernoff.

The inequality of Hoeffding (1963, Theorem 2) states that il (U;)/., are
independent random variables taking values in intervals of length b, then the distri-
bution of the sample average U = (1/n)Y, L ,U; has the following exponential bound
for all € > 0,

P{U-EU 2 e} < e &%’ (22)

The Bernstein-type inequalities make direct use of the variance as well as the
expected values of the random variables. Tostate the Bernstein inequality, let U; be
independent random variables that satisfy the moment condition that for some 2 > 0,
var(U;)

E\U-EU; Ik £ ———=

for £ 22, i=1,..,n. This is satisfied in particular if W,—EU;1< M with h = M /3.
Bernstein's inequality states that for ¢ > 0,

P{U-EU 2 tog) < exp{—t¥(2+ 2htincy)} (24)

kY hk-? (23) -
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see Craig (1933), Bennett (1962).
5.1. PROOF OF THE THEOREM: BOUNDED LOSS FUNCTION CASE
We examine the theoretical and empirical loss,
r(f) = Ed(Y.f (X)) - d* (25)
and
n
P(f) = T AYif (X) = v, (26)
i=1

where we have subtracted the constant d* = infEd(Y .f(X)). By Hoeffding’s ine-
quality and the union of events bound, for any €,(f) > 0,

r(f) = B(f) < e, (f) forall f e Iy, 27

except in an event of probability not greater than Zferne_h(e"m/b)h. Given 8 > 0,

we choose €,(f) such that 2n(e, (Hiv)t=C 2{(f) + In 1/, to obtain that

C(f) + 1n1/8

r(f) = f(f) < ——( — )2 forallf e T, (28)

except in a set of probability not greater & ¥, e_C"(f)
feT,
the complexities C, (f) is not greater than s38.

, which by the assumption on

For the estimator f, defined to achieve the minimum value of
P.(f) + MC,(f)/n)Y? and for A > b/V 2, we have that the following bounds hold on
the loss r(f,), except in a set of probability not greater than 53,

rU) < U+ MLy b 1B
(fn)"' a(=2dn) n(fn) 1/2+ ‘I_b_(ln 1/5)1/2. (29)
2 n

Taking f,: to be a function that achieves the best resolvability, that is, a function
minimizing r(f) + X(C,,(f)/n)“z, and applying Hoeffding’s inequality once more, to
get that F,,(f:) < r(f:) + AM(In U8)/n)V? except in a set of probability not greater
than 8, we obtain that

b In 1/5)1/2

. Ca(fn
r(fn) < r(fy) + M———(n’f—)—)“z ( (30)

except in a set of probability not greater than (s+ 1)8. This shows that the loss of the
estimator is bounded in terms of the index of resolvability,

r(fa) <R, + 0(l)“2, 1)

in probability, where the index of resolvability is
R, = min(r(f) + MC, (f)/n)”z) (32)
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. . - 212
In particular, setting § = ¢~ (V2n7b

P{r(fs) 2 Ry+t} <
Integrating for 0 < t < oo, yields,

Er(f) - RS [ PUGa-Ry 2 1)

for t > 0, we have

(s+1)e~VDmYb?, (33)

S (s+1)f, eIy
- (s +1)b~l n/2
Co
= —. 34
7o (34)
Thus for all # 2 1, the risk of the estimator is bounded by
* Co
E r(f,) SR+ —=. (35)
Nn

This completes the proof of the bounds on the statistical risk of the complexity regu-
larization estimator for bounded loss functions.

5.2. PROOF OF THE THEOREM: SQUARED ERROR CASE

For the squaha_d error loss function, the ideal rate of convergence is close to 1/n
instead of 1/¥n. For this case we use the criterion and the index of resolvability
with penalty AC,(f)/n instead of A(C,(f)/n)Y? and instead of Hoeffding’s incquality
we use a variant of Bernstein’s inequality.

Direct use of Bernstein’s inequality for our purposes is workable but cumber-
some. We find it easier to use the following inequality, that Craig (1933) develops in
liis proof of Bernstein's inequality. If U; are independcnt random variables satisfying
Bernstein’s moment condition, then

T nevar(0) )

P{U-EU 2 rr T < exp(-tlh (36)

forO<eh <c<landt>0.

Now to treat the complexity regularization estimator with the squared error dis-
. . . . .0 *
tortion function, denote the difference in empirical loss at f and f by

Pa(f o f ")

i

L (Ve f (X)) = L3 (VimF (X2
ni ni-1

M=

--Llyy, (37)
n;

1

i

where
Ui = =(Xi=f X))+ (Fi-f (X))

Under the assumption that f(X;) and Y; take values in a fixed interval of length b,
we have that Bernstein’s condition is satisfied with # = 26%3. Next we bound the
variance of U;. To this end, we expand the square in the definition of U; to get

. type inequality once more, but now with T =1n 1/5, to get that
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Ui = 2Y:=F (XD XD-F X)) - (FXD—-F XA (38)

The covariance between these two terms. is zero. The expected square of the first
term is 4E((6,x)(f (X)—f"(X))%) which is not greater than b2%E(f (X)-f"(X))?
(since the variance of a distribution concentrated on an interval of length 4 is not
greater than the variance b%4 achieved by the distribution that places mass 1/2 at
each endpoint). The expected square of the second term is also bounded by
b2%E (f (X)—f (X))~ Together these bounds yield

var(U;) < 26%(f.f"). (39)
It follows that n var(T) < 2b%r(f.f*). Now apply the union of events bound and
the Bernstein-type inequality with T = C,(f) + In 1/8 and € = 1/A, to obtain that
G b2 In 1/5
+ A——
ST G

for all f in T,, except in an event of probability not greater than s3&. Set
c=¢eh = 2b%(3N). The  assumption that A > 5b%3  implies that
o= b%(A(1-c)) < 1. We collect the terms involving r(f,f*) on the left side, and
evaluate at the complexity regularization estimator f, to obtain

,.(f,. In 1/8
n

r(f ) = BT < A (40)

(1= (fuf ) € P(furf )+ A + A

Ch (f,. +ln 18
P
where f,,‘ is a function that achieves the best resolvability.  Applying the Bernstein-

Fa(fanf ™) <
r(faf") + ar(fo.f°) + A(1/n)In 1/ except in an event of probability not greater
that §, we obtain that

IA

P(faf )+ A

(41)

(1+0L)r(f,,,f )+ A "(f") + #2 xlni’{’ (42)

(1-o)r(fo.f") <
except in an event of probability not greater than (s+1)8. Dividing through by
(1- o), and using the definition of the index of resolvability, we have that

r(faf) s TEER (f)+2x‘“”5,-—’—, (43)

-

1+(x

except in an event of probability not greater than (s+1)8. Setting § = ¢~"/(®) and

integrating the probability for 0 < ¢t < o as in the previous case, we conciude that for

aln 21,

1+(l ELEEE e
—

ECr(faf™) <

(44)

This completes the proof of the bound on the mean squared error of the complexity
regularization estimator.

5.3. PROOF OF THE THEOREM: LIKELIHOOD CASE

The third conclusion of the Theorem is essentially given in Barron and Cover (1990).
There it is shown that the squared Hellinger distance converges in probability at rate
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given by the index of resolvability. Here we complete the reasoning to show that the
expected squared Hellinger distance also converges at the same rate.

Let P = Py pxyPx be the true distribution of X,Y, let P, = Py (x)Px be the
joint dlstrlbutlon obtained by plugging in the minimum com plexity estimator f,, and
let P, = P“f (x)Px be the joint distribution obtained by plugging in a function fn
that achieves the best resolvability. Using inequalities of Chernoff, exponential
bounds are derived in Barron and Cover (1990) for the P, probability that the ratio
of the squared Hellinger distance (between f, and fx) and the index of resolvability
is greater than an arbitrary positive constant. In particular,

. df (fnofn ~enR (f*) AC (f)
P,,{(l—(x)—————-—H(f" {") >c)< se”’ e "U"),
R,.(f)
where o= 1/A. Applying the Lemma with U = (1-0)dg(f,.f)/R,(f"), with
ri= nR,(f")/2and ry = AC,(f), it follows that

E(dF(fa.f)) sf ® ek, N2 nr(faf") + ACn(fn) s e !

(45)

Q) — R < d " >
o= T TR GO "R (f )12
< s+ e !
T nR,(f7)2
<qpstel L, (46)

where we have used the fact that, in the present context, r(f,.f") is the rclative
entropy distance between P and P,. Also, in the last line we used
nR,,(f') > C,,(f:) > 1. We conclude that the expected squared Hellinger distance
between f, and f,: is bounded by a constant times the index of resolvability, for all
n=1,

EWZ(farf ) S iR (f), (47)

where the constant is ¢y = 2(1+(s+e'1)/l)/(1 ). Using the triangle inequality to
get dH(f,, S < 2(dH(f,, ,f,,) + d,,(f f,,)) and then using the fact that lhe squared
Hellinger distance dH(f f2) is bounded by the relative entropy r(fa.f") which in
turn is less than R, (f *), we obtain

E3(faf7)) < 2(ci+ DRL(F7). (48)
This completes the proof of the Theorem.

Lemma: For any nonnegative random variable U, any pair of distributions P and Q,
and constants ry; > 0, and r, 2 0,
rp , DPUNQ)+ry+ e}
EW)< e QU >cle™de + 2 : (49)

r

where the expectation is with respect to P, and D(P |1 Q) is the relative entropy dis-
tance between P and Q.
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Proof of the Lemma: The inequality is trivial if the relative entropy distance is
infinite. Now suppose D(P Il Q) is finite, so there is a density ratio dP/dQ. By a
simple calculation as in Barron and Cover (1990, Lemma 2),

PW >cl< QU >cle™ ™+ P{—l—(r2+log%)> c). (50)
n
Integrating for ¢ > 0 then gives

-ry cry 1 dP .+
E(U)< 277 QU > cle dc+r—lE(r2+1n—dE) . (51)

Using the fact that E( In dP/dQ)* < D(PIIQ) + ¢! completes the proof of the
Lemma. :
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DESIGNING PREDICTION BANDS

RUDOLF BERAN
University of California
Berkeley, California 94720 USA

ABSTRACT. This article develops four principles for the design of
good prediction bands for a random process., The issues addressed
include: appropriate asymptotic convergence of conditional and
unconditional coverage probabilities; probability centering of
prediction bands; controlling dispersion of conditional coverage
probabilities; and increasing the rate of convergence of
unconditional coverage probabilities. Examples illustrate the
design issues and a proposed bootstrap construction for good
prediction bands.

1. Introduction

Prediction bands for a random process will be discussed in the
following setting. An observed learning sample Y, and a potentially
observable variable X have a joint distribution Py n. The unknown
parameter § lies in a parameter space 8. To be prédicted is the
potentially observable random process Z = {Z(u,X): u € U}, where the
index set U may be infinite and the function Z(-,-) is specified. In
this article, both 8 and U are metric spaces.

The treatment will emphasize the case where the process Z is real-
valued, the index set U is infinite, and the aim is to devise a good
one-sided prediction band for Z. By careful extension of the index
set U and of the function Z(-,:'), the analysis for this one-sided
case also applies to two-sided prediction bands and to multivariate

prediction regions. These possibilities will be illustrated through
examples. :

Let z = {z(u): u € U} denote a generic possible value of the random
process Z. Define the one-sided prediction band for Z

D = {z: z(u) < c,(u) for every u € U}, (1.1)

where the critical values cp(u) depend on the learning sample Y.
Clearly, Dy is equivalent to simultaneously asserting the one-sided
prediction intervals
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