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Summary

Necessary and sufficient conditions are determined for sequences of poste-
rior probabilities of parameter sets to converge to one at an exponential rate,
assuming that the prior assigns positive probability to the relative entropy rate
neighborhoods of the distribution of the process { X, }. The result is applied to
the case of independent random variables to determine conditions on the prior
such that Bayes estimators p,(x) of the probability density function p(x) con-
verge in the L' sense, i.e., J' | p,—p | tends to zero, with probability one. Also,
some useful bounds are obtained for all N for the expected value of the sum of
relative entropies Y, ,< NI p log (p/p,). The proof uses a frequentist approxi-
mation to the Bayesian’s joint law for the parameter and the data. The results
are applied to a variety of interesting priors.
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1. Introduction

Some convergence results are established for posterior distributions and for Bayes
estimators of probability density functions. Consider the case of (conditionally)
independent and identically distributed random variables X,,X,,...,X,,... which take
values in a measurable space (X,B) and which have a coordinate distribution that is
absolutely continuous with respect to a fixed sigma-finite measure A(dx). It is
assumed that the space (X,B) is separable (countably generated). Bayes procedures
utilize a parameter space (©,Bg), a family of BXBg measurable probability density
functions g(x | 0) = gg(x), and a prior probability distribution v(de) to construct the

posterior distribution which is given by Bayes rule
m*(Xq,..X,  A)
m™*(X,...X,)

V(A1 X, X5,...X,) = for A € Bg (N
where the numerator is m”?(X1,...X,; A) = jAHi’;lq (x;16)v(d6) and the denomina-
tor is m"(xy,...,x,) = m"(xy,....X,;0) (if the denominator is zero, arbitrarily set the
posterior probability to be v(A)). Then for any loss function L (p,p) a Bayes estima-
tor of the density is a function p,(x) = p,(x; X,,...,X,) which minimizes the poste-
rior loss jeL(qe,ﬁ) v, (d01Xy,...X,).

The asymptotics of the posterior distribution and of Bayes estimators are exam-
ined under the assumption that the random variables X; are independent with a proba-
bility density function p. In general this density p need not be a member of the fam-
ily {g(-10)}; however, the density is assumed to be a limit point of this family in a
sense made precise below (condition (A)). Fundamentally, we are adopting the non-
Bayesian point of view, that p is the true but unknown density; nevertheless, the
results should also be of interest to a Bayesian who asks what asymptotics obtain if he
or she conditions on the event that the ergodic mode of the exchangeable process
{ X, ) happens to be the distribution with coordinate density function p.

The principle aim of this paper is to determine reasonable and readily verifiable
conditions such that Bayes density estimators are consistent in the sense that
lim J' 1 p,(x)—p(x) 1 A(dx) = 0, with probability one. The key step in our develop-
ment is the determination of conditions for sequences of posterior probabilities
v, (A 1X,,.X,) to convergence to one, with probability one. Of particular interest to
us is the posterior probability of A = {0 : J' I p—ggl < €} for € > 0. Some bounds are
also obtained for the cumulative expected value of the relative entropy
j p(x) log(p(x)/p,(x)) A(dx). These bounds follow from an interesting large
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deviation approximation to the Bayesian joint distribution of © and X,,....X,,.

Let D(plig) = J'p log (p/q) denote the relative entropy (or Kullback-Leibler
informational divergence) for probability density functions. The following condition is
required.

(A) The prior is information dense at p, in the sense that relative entropy neigh-

borhoods are assigned positive prior probability, that is

vi@:D(pllgg) <e}>0 foralle > 0.

The most useful priors are information dense for a iargc class of density functions. In-
the examples we present in section 8, condition (A) is satisfied for every probability
density function p for which D (p |l go) is finite (where gg is a fixed density function).
This includes all density functions for which the ratio p(x)/go(x) is bounded.

Proposition 1: Assume that the prior is information dense at p. Let A, be any sequence of
measurable  parameter  sets. For the sequence of posterior probabilities
Vo (AS1X1,X4,....X,,) to be exponentially small, with P probability one, it is necessary and
sufficient that there exist a sequence of measurable parameter sets B, and C, which satisfy

three conditions:
() A,UB,UC, =26,
(ii) v(B,) is exponentially small, and
(iii) there is a uniformly consistent test of P versus {Q (-16) : 6 e C, } with
P{(Xy,....,X,) €8, infinitely often}= 0 and

e)sug Qel (X 1,...,.X,) €8F5) exponentially small
€C,

for some sequence of critical sets S, in B”.

Here a sequence of nonnegative numbers a, is said to be exponenrially small if for
some r >0, a, <e™™ for all large n or equivalently limsup (1/n)loga, < 0; a
superscript ¢ denotes the complement of a set in the relevant space; (X",B”) denotes
the product space of n copies of X with the product sigma-field; and P and Qg are
probability measures (on an underlying measurable space (2,Bq)) for which the ran-
dom variables X ,X,,... are independent with coordinate density functions p and gg
respectively. (At the risk of abusing notation we also use P and Qg to denote the dis-
tribution of X; on X: the distinction should be clear from the context.) Note that a
sufficient condition for P{(X,,....X,) €S, infinitely often} = 0 is that the probability
of error P {(X,,...,X,) €S,]) be exponentially small. A sequence of tests for which the
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probabilities of error for both sets of hypotheses are uniformly exponentially small is
said to be uniformly exponentially consistent (UEC).

Proposition 1 is generalized in section 3 (Theorem 5) to permit nearly arbitrary
sequences of dependent random variables X,,...,X,, families {Q"(-10) :6€©,} of
distributions on (X”,B”), and priors v,(d0), under an appropriate generalization of
the notion of information denseness.

The conditions of Proposition 1 are an extension and adaptation of conditions
determined by Schwartz (1965). Her sufficient (but not necessary) condition requires
the existence of a uniform‘ly exponentially consistent test for P versus {Qg:0 €A€),

whereas we show that such a test need only exist against a subset C, of A€ for which

‘the prior probability of the difference between these sets is small. An important use

of Schwartz’s result is to obtain weak convergence of Bayes estimators of the distribu-
tion by showing weak-star convergence of the posterior distribution (induced on the
space of measures) to point mass at the distribution P. (Indeed, it is well known that
for any finite partition T of X and any €> 0, UEC tests exist against
{Q : Y ger | P(B)-Q(B)I2€e) If X is a separable metric space, then there are
countably many T and € > O such that all weak neighborhoods of P contain at least
one of the sets A = {6:3 .71 P(B)-Qqg(B)I<e). Applying Proposition 1 or
Schwartz’s result to each of these sets, demonstrates that with probability one, the
posterior distribution asymptotically concentrates inside every weak neighborhood of
P.) For many finite dimensional parametric families, weak convergence of distribu-
tions in the family implies convergence of the densities; however, the class of densi-
ties for which convergence obtains may be severly restricted by this condition. To
obtain convergence of density estimators without such restrictions, we use Proposition
1 to obtain stronger modes of convergence of the posterior.

First let’s mention the case that the prior is discrete, assigning positive mass to a
countable set of density functions. (For judicious choices of this countable set, the
information limits may be a fairly rich class of densities.) Suppose that for some
0< a< 1 the sum }:e(v(e))" is finite; this condition guarantees that the prior has
light tails (in particular the set B, = {6 : v(8) < e~ "%} has exponentially small prior
probability for each € > 0). For such light tailed priors the convergence of the poste-
rior and of density estimates (using the L' distance) holds for every p for which the
prior is information dense. This result for discrete priors is established in section 6.

Now in general, some recent results on the existence of uniformly exponentially
consistent tests may be applied to obtain Bayes consistency results. Let
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d(p,q) = j Ip(x)—qg(x)1A(dx) be the L' distance between density functions (which
is the same as the total variation distance between the corresponding distributions)
and for measurable partitions T let dp(P,0) = Y 7! P(A)-Q(A)| be the
T —variation distance between probability distributions on X. Unfortunately, there
does not exist a uniformly consistent test of the hypothesis p against all densities ¢
with d(p,q) 2 € (unless the dominating measure is discrete) so we cannot directly
conclude that the posterior asymptotically concentrates on L' distance neighborhoods
of p. Nevertheless, it is shown in Barron (1987b) that for every € > O there exists a
uniformly exponentially consistent sequence of tests of the hypotheses P versus
{Q :dp (P,Q) > ¢e/2}) if and only If the sequence of partitions T, has effective cardinality'
of order n with respect to P. (This means that for every € > 0, limsup k,(€)/n < oo
where k,(€) is the minimum number of sets in T, for which the probability of the
union is at least 1-e. When (X,B) is the real line with the Borel sets and A is the
Lebesgue measure an important example of a sequence of partitions with effective car-
dinality of order n (with respect to any probability measure) is the sequence of uni-
form partitions T, = {((i—-1)/n,i/n] :i=...,,—1,0,1,...}.)

Consequently, we may use Proposition 1 to conclude that the posterior asymptoti-
cally concentrates on the L' distance neighborhood A = {6 :d(p,qq) < €} provided
that the set B, = {6:d(p,qq) 2k, dT_(P,Qe) < &/2} or the larger set
{06:d(p,qe) —dr (P,Q¢) > €/2} has exponentially small prior probability for some
sequence of partitions with effective cardinality of order n. This amounts to requiring
that the d and dr, distances from p be nearly the same for "most" of the Qg distribu-
tions on X.

We shall see that for many priors, the condition is satisfied for any density func-
tion p. For any partition T and density function p define the density p? which takes
the form of a simple function or "theoretical histogram"

p(y) A(dy)
A(4)

Here we take pT to be zero wherever A(A) = 0. Abou-Jaoude (1976) introduced a

L4

pT(x)= forx e A eT.

property of sequences of partitions T, which is equivalent to lim d(p,pT") = 0 for all
probability density functions p with respect to A. We call such a sequence of parti-
tions rich. (In particular the sequence of uniform partitions of the line is rich when A
is Lebesgue measure.) If T, is a rich sequence of partitions then for all large n,

d(p,pT‘)' < €/4 and hence by the triangle inequality the set B, (from the preceding

paragraph) is contained in {© :d(qe,qg') > ¢/4}). Thus we are led to the following
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condition on the prior probability of "wild" densities which ensures that the posterior

. 1 ,. .
asymptotically concentrates on L distance neighborhoods.

(B) For every € > 0, the prior probability v {0 : d(qe,qg') > g} is exponentially
small for some rich sequence of partitions T, with effective cardinality of
order n.

Condition (B) is trivially satisfied if the family of density functions gg(*), 8 €® is
uniformly equicontinuous (since then for every € > 0 there is a countable partition T -
such that d(qa,qg) < € for all 8 and any fixed countable partition has effective cardi-
nality of order 1). By Markov’s inequality, another sufficient condition for (B) is that

for some positive and increasing function f (u),u> 0, the sequence of expected values
j exp{nf(d(qe,qg" )} v(d9) is not exponentially large. In particular, this is true if for

some constants a,y > 0, n(d(qe,q?;"))7 is bounded by a function ¢(8) for which
_[ e®®y(40) is finite. To verify this condition when X is the real line and the densi-
ties g(x | 8) are differentiable with respect to x, suppose there is an & > 0 for which
. ¢(8) = | c(x,8)dx is finite for each 6 (and [ e**®v(46) is finite) where c(x,8) isa .
function which dominates I(d/dy)q(y10)! for | y-x 1< h, and let T, be the uni-
form partition with cells of width 1/n, then for all n > 1/h we have
nd(qe,qg') < ¢(0) as desired. Although these sufficient conditions are useful, the
examples in section 8 show that sometimes it is straightforward to verify condition (B)
directly.

Let p, be any of the following Bayes estimators of the density function: the pos-
terior mean density estimator p,(x;Xy,...,.X,) = f q(x10) v,(d6lX,,....X,); the
Bayes estimator for any bounded loss function which is equivalent to the L' distance
(i.e. L (p,p)—0 iff d(p,p)—0); or in the case of a discrete prior, the posterior mode
density estimator p,(*) = g (-1 é,,) where é,, is any global maximizer of the posterior
likelihood v({6)T]/L9(X;!16).

Proposition 2: If condirions A and B are satisfied then the posterior probability of L' dis-
tance neighborhoods of p tends to one exponentially fast, i.e., for each € > 0,

v, ({0:d(p,qg) 2 €}l Xy,...,X,,) is exponentially small, with P probability one,
and consequently, the density estimator p, converges top in L Ve,

lim d(p,p,) = 0, with P probability one.
n —yo
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Some conclusions can still be made even if condition (B) is not satisfied. In the
next two results only condition (A) is required. For proposition 3, the estimator
13,,(-; X") may either be the posterior mean J Q(C10) v,(d61X") or in the discrete

parameter case, a posterior mode Q(-16,) (where 8, is a global maximizer of the

- . T, . .
posterior likelihood). For sequences of partitions T,, let p," be the density estimator

constructed from P, and T, as described above.

Proposition 3: If condition A is satisfied, then for any sequence of partitions T, with
effective cardinality of order n, the posterior probability of T,—variation neighborhoods of P

tends to one, indeed,

lim v, ({6 : dr (P,Q¢) > €}1 X y,....X,,) s exponentially small, with P probability one
n—oo

and consequently, the estimator P,, converges to P in T, variation, i.e.,

lim dp_(P,P,) = 0, with P probability one.
n—yoo

. . .. . . LT .1
If also, T, is a rich sequence of partitions, then the density estimator p," converges in L,

T
im d(p,p,") = 0, with P probability one.
n—co

The asymptotic concentration on T,~-variation neighborhoods is the strongest
conclusion that can be made without imposing an additional condition (such as ‘(B)).
Indeed, in section 7, we demonstrate that if P is a continuous distribution on the line,
then for any sequence of partitions T, with effective cardinality of order greater than
n with respect to P, there exists a parametric family and a prior which satisfies condi-
tion A, yet the posterior probability of the set {0 : dr (P,Qgq) < €} does not converge

to one, in P probability, for some € > 0.

The classic nonparametric estimators of density functions on the real line, such as
the histogram and the kerne!l estimator, are based on smoothing the empirical distri-
bution function, However, much more smoothing is required in order to obtain con-
sistent density estimates from the empirical distribution than from Bayes estimators.
In particular, the histogram requires that the sequence of partitions have effective car-
dinality of smaller order than n (i.e. bin widths >> 1/n so that observations accumu-
late in the bins), whereas the Bayes estimators only need to be smoothed in bins of
width 8/n (ie. T, = { (8(i-1)/n,8i/n] :i=...,-1,0,1,...} where 8 > 0 is a small con-
stant). Proposition 3 shows that Bayes estimators accurately estimate the probabilities
of most small bins, even though most of these bins will be empty. This ability of
Bayes estimators to learn the shape of the distribution in the areas between the
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observations bodes well for applications in high dimensions where for moderate sam-
ple sizes most of the space appears to be empty.

Although L' consistent density estimates are important for certain applications
(such as constructing discrimination functions which have nearly minimal average pro-
bability of error for a classification problem, see Glick 1972), there are also applica-
tions where Kullback-Leibler convergence is required (such universal data compres-
sion, see Davisson 1973, or stock market portfolio selection, see Barron and Cover
1988). Moreover, in view of condition (A) it would be most natural to obtain conver-
gence results for D(p !l p). Itis well known that D yields a stronger mode of conver-
gence than the L' distance, indeed d(p,g) < (2D (p 11 g))"'?, see Csisz4r (1967).

When the relative entropy is taken as the loss function, it is readily seen that the
Bayes estimator is the posterior mean density p,(x) = J' q(x10)v,(dolX,,...X,)
which by Bayes rule is the conditional (or predictive) density p,(x;Xi,...X,) =
m* (X g, X X ) m ™ (X y,..0X,) (recall that m™(xy,...%,) = [ (TT"qe(x;))v(d6)).

Moreover it is seen that the cumulative risk of the Bayes estimator is simply the rela-

N

tive entropy of the product density p¥ with respect to the Bayesian density m” | i.e.,

N-1
S EDlp)) =D im"). )
n=0
Here the expectation is taken with respect to the distribution P which governs the
random sample. This chain rule may be used to easily obtain the following proposi-
tion (see Barron 1987a).
Proposition 4: If condition A is satisfied then the expected relative entropy E (D (p 1 5,))

converges 1o zero in the Cesaro sense, i.e.
li '—"] 3 ED p {1 pA = 0
m .
Nl—-)oe N ,.21 ( ( n))

Consequently the risk E(D(p 1l p,)) is small for most large sample sizes, in the sense that
given any €,0 > 0 for at least (1-3)N of the sample sizes n < N, E(D(p | p,) < &, for
all sufficiently large N .

Since D(pl1p,) 2 (l/2)(d(p,ﬁ,,))2 a similar Cesaro convergence holds for the

expected square of the L' distance.

It is surprising that condition (A) is sufficient to obtain consistency properties of
the Bayes density estimator while it is not sufficient to obtain consistency of the poste-
rior probability of density neighborhoods. The non-negligible contribution to the pos-
terior distribution from densities which lie outside a small L' distance ball does not
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manage to disrupt the accuracy of the posterior mean, at least for most sample sizes.

As indicated above, the result of proposition 4 is equivalent to the convergence in
information of p” and m”, ie. lim (1/n)D (p” 11 m™) = 0. A proof of this conver-
gence is given in section 5 as a byproduct of a frequentist approximation to the Baye-
sian joint law for 8 and X”. The approximate law is shown to merge in information
with the Bayesian law. A second byproduct is an approximation to the posterior distri-
bution which agrees with the classic normal approximation (for small deviations of the
parameter) 'in the case of smooth finite dimensional parametric families. However,
unlike the normal approximation, the relative entropy based approximation that we
develop is at least crudely accurate for large deviations and no smoothness or dimen-
sionality assumptions are required.

Pérhaps the most useful byproduct of the approximation is a bound on the
Cesaro average of the risk which has the potential of yielding rate of convergence
results as well as useful bounds for every finite sample size. Let
Ry = (/N)YE(D(pllp,) denote this Cesdro risk which by (2) is the same as
(1/N)D (pN 11 m™). It is shown that for all n, |

R, < —% log [ =" y(6). (3)

where D(8) = D(pll gg). Note that this bound depends only on the prior distribu-
tion of D (6) and the sample size. As n—<, the bound decreases to the v—essential
infimum of D (8) which is zero if and only if condition (A) is satisfied. (The other
proof of Proposition 4 in Barron 1987a does not lead to inequality (3)). A useful
bound that follows from this inequality is

R,< eg- —l—-log v(Ag)
_ n

for any € > 0 where A, = {6 :D(8) < e}. This directly relates the Cesiro risk of the
Bayes estimator to the prior probability of relative entropy neighborhoods of the true
density. Although the obtaining of rates of convergence is not the primary focus of
the present paper, we illustrate the types of results which might be obtained. If
v(A) 2 exp{—a(1/g)") for some a, r > 0 (as might be the case for certain priors if
the logarithm of the density p has enough bounded derivatives) then setting
g = n~ 0+ we have the following bound on the Cesaro risk

R, < (a+1)n~VU+r) for all n.

Faster rates of convergence such as O(n~}( log n)®) with b 2 1 are possible if the
prior probabilities v(A ;) are not as small (as might be the case for some priors if the
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logarithm of the density is infinitely differentiable with exponentially decaying Fourier
coefficients.) For smooth finite dimensional parametric families a convergence rate of
O (n~!( log n)) is expected and this is indeed the case if v(A e) > ae?’?, (This bound
holds for some a which depends on p whenever the follows conditions are satisfied: ©
is an open subset of R, the prior has a positive density in a neighborhood of 8,
where p(x) = gq(x18p), and the relative entropy neighborhood A contains a
Euclidean sphere of squared radius proportional to €.) Typically, the rate (logn)/n
cannot be improved, since it corresponds to the rate 1/n for the individual terms
E(D(p!lp,)) in the cumulative risk.

The outline of the remainder of this paper is as follows. A discussion of the his-
tory of Bayes consistency is given in section 2. Then the generalization and proof of
the theorem giving necessary and sufficient conditions for the convergence of poste-
rior probabilities is in section 3 followed by results for the merging of Bayes and fre-
quentist distributions in section 4. Section 5 obtains convergence of Bayes estimators
from convergence of the posterior. Implications for the case of a discrete prior are
examined in section 6. Section 7 develops a counterexample showing inconsistency
when the conditions are not satisfied. Finally, section 8 gives several examples where
the conditions are satisfied and hence consistency obtains for a large class of density

functions p.

2, History and Discussion

Various techniques for examining the asymptotics of Bayes estimators have had
moderate successes in handling either finite dimensional or infinite dimensional (non-
parametric) families of distributions. The important result due to Doob (1949) is that
Bayes estimators are consistent for almost every parameter value with respect to the
prior (technical refinements of Doob’s theorem are in Breiman, LeCam, and Schwartz
1964 and in Diaconis and Freedman 1986, Corollary A.2). However, unless the
parameter space is discrete (in which case almost everywhere becomes everywhere,
see section 6), we are left not knowing for any particular distribution which might be
realized whether or not it would be consistently estimated.

The classic approach to Bayes consistency as in LeCam (1953), Berk (1966,1970),
and Strasser (1981a) is to adapt the Wald (1949) conditions for the consistency of
maximum likelihood estimators ('the key conditions require the integrability of certain
suprema of the log likelihood function). Similarly, LeCam (1958), Bickel and Yahav
(1967), and Johnson (1967,1970) use Wald type conditions as well as natural
differentiability conditions to establish asymptotic normality of the posterior
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distribution. Although successful for smooth finite dimensional families, the Wald
conditions are not easily checked and often not satisfied for infinite dimensional or

nonparametric problems.

Nonclassical approaches to Bayes consistency seek alternative conditions which
are more readily checked (even in finite dimensional families) or more applicable to
nonparametric problems. Both weak and strong convergence results are desired. It was
once thought that to obtain weak-star convergence of the posterior (to point mass at
the distribution P) it would be sufficient that P be in the weak-star support of the
prior (that is, the prior assigns positive probability to the neighborhoods of P in the
topology of weak convergence of measures). Examples of priors for which the weak-
star support is known to include all distributions on the real line are the tailfree priors
of Fabius (1964), the neutral priors of Doksum (1974), the Dirichlet process priors of
Ferguson (1973) (which are a special case of both tailfree and neutral priors), and
mixtures of Dirichlet process priors (Antoniak 1974); for a review of these methods
see Ferguson (1974). Fabius (1964) establishs weak consistency for the particular
case of tailfree priors. However, in general, weak-star support is not enough to prove
weak-star convergence of posteriors as is demonstrated by the counterexamples of
Freedman and Diaconis (1983,1986) (e.g. for mixtures of Dirichlet processes the pos-
terior may be inconsistent). To obtain Bayes consistency in general it is necessary to

impose stronger conditions on the prior.

Two commonly used conditions for the prior are that the relative entropy neigh-
borhoods of the true distribution are assigned positive prior probability (condition
(A)) or that total variation (or Hellinger ) balls of radius &/n have prior probability
which is not exponentially small (this latter condition may be used in place of our
condition (A) with the same effect, see section 4). Under either of these conditions,
weak-star convergence of the posterior is guaranteed and stronger convergence results
often hold. Early work in this direction is by Freedman (1963) and Schwartz (1965).
Freedman (1963) shows that for a discrete (countable) sample space, condition (A)
and an additional finite entropy assumption imply consistency in total variation. !
Schwartz (1965, section 6) shows that either the relative entropy or the total variation
condition implies that the posterior distribution asymptotically concentrates on any set

for which there exists a uniformly consistent test against the complement of the set.

1Proposilion 3 establishs Freedman’s result without the additional finite entropy as-
sumption. The proposition applies to the discrete case, since a fixed countable partition
has effective cardinality of order (1).
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Fortunately, there have been both general technical conditions for the existence
of uniformly consistent tests (Kraft 1955, LeCam and Schwartz 1960, LeCam 1970)
and some specific results on the existence of uniformly consistent tests for P versus
{Q :L(P,Q) 2 ¢} for various popular loss functions L (P,Q). For the Cramer - Von
Mises, Kolmogorov - Smirnoff and Vapnik - Chervonenkis (1971) distances between
distributions, the usual tests are known to be uniformly consistent by applying the
results of Hoeffding and Wolfowitz (1958, p.705-706). On the other hand, if L(P,Q)
is any distance (or loss) function which dominates the total variation distance (such as
the relative entropy, Chi-square, or Hellinger distance) then no uniformly consistent
test exists (see Barron 1987b). (This surprising fact provides a contradiction to the
"Corollary to Theorem 6.1" appended to the end of Schwartz’s (1965) paper: a coun-
terexample is given in section 7 of this paper. In defense of Schwartz, who met her
untimely death in 1965, the incorrect result is not in her dissertation (1960) from

which the rest of her paper is taken.)

There have been a few results which expand on Schwartz’s technique. Strasser
(1981b) generalizes her results to deal with infinite prior measures, recasts the condi-
tion on the existence of a uniformly consistent test as a continuity condition for the
quantity to be estimated, and shows how the conditions. may be checked for finite
dimensional parametric families. LeCam (1973,1982,1986) uses an adaptation of
Schwartz’s technique to prove consistency in Hellinger distance. He covers the
p'aramctcr space with many small Hellinger balls and uses the fact that uniformly con-
sistent tests exist against each such ball; consistency then obtains under a condition
on the Hellinger dimension of the parameter space. LeCam’s approach might be
workable in certain nonparametric cases, but I am not yet aware of specific examples.
For finite dimensional parametric families, Ibragimov and Has’minskii (1973, 1981
Section I.5) obtain consistency for posterior distributions and for Bayes estimators
under conditions similar to those used by LeCam. In particular, the Hellinger balls
are assumed to contain and to be contained in Euclidean balls of appropriate radii.
For many finite dimensional families these conditions are easier to verify than the

classical Wald conditions.

Our generalization of Schwartz’s technique simply involves breaking the comple-
ment of the parameter set of interest into two disjoint sets B, and C,. The set C,
corresponds to a composite set of distributions against which there is a uniformly
exponentially consistent test and the set B, has exponentially small prior probability as
n—. In this way we can use the existence of UEC tests for a sequence of alierna-
tive sets which increases to the complement of the total variation ball. The necessity
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and sufficiency of the existence of such sets B, and C, for the convergence of the

posterior probabilities is demonstrated in section 3.

There is a fundamental distinction between our conditions for Bayes consistency
and most of the other conditions for strong consistency which have been developed.
In each case some sort of smoothness is assumed for the density or likelihood func-
tion g(x 16). On one hand, the classical Wald conditions require it be a smooth func-
tion of the parameter 6 for all X in a set of high probability (similarly, the LeCam or
Ibragimov and Has’minskii type condition requires that Hellinger distances between
densities gg behave smoothly as a function of 6). On the other hand, our condition
(B) requires that the density g(x | 6) be a nearly a smooth function of the variable x
(at least for 6 in a set of high prior probability). One advantage of requiring smooth-
ness in x (instead of in 6) is that this is more akin to the classic conditions for accu-

‘rate nonparametric estimation of densities. Another advantage is that the validity of

the assumptions does not depend on the parameterization. Indeed if the priors associ-
ated with two different parameterizations of the same set of probability measures
induce the same prior distribution on the set of measures, then clearly conditions (A)
and (B) and the Bayes estimators of the probability measures are unchanged. The
practicality of our conditions is demonstrated by some "nonparametric” examples in

section 8.

3. Consistency of Posterior Probabilities

We formalize our technique for proving convergence of posterior probabilities. In
its most general setting the method does not require independent random variables.
Moreover, all aspects of the model (i.e. the prior and the family of densities) may
depend on the sample size. In this section we are nor restricted to the case that X" is
the product space for random samples X" = (X,X,,...,X,); however, remarks may
allude to this most important setting.

To be precise, for each n 21, let (X",B”) be a measurable space, let
{0"(-16) :6€©,} be a family of probability measures on X" with density functions
g" (x" | 8) with respect to a sigma-finite measure 1" (dx"), let Bg_be a sigma-field of
subsets of the parameter space ©,, and let v, be a prior measure with v,(0,) < 1. It
is assumed that for every n, the density functions ¢”(x” | 6) may be chosen to be

B"XBe. measurable and, in particular, versions are chosen which are Be, measurable

for every x".
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For parameter sets A, in 6,, define the (B"” measurable) posterior probability by

jA g™ (x"16) v,(d6)
Vv, (A, I x") = —£=
| [ 4" (x716) v, (d8)

for all x” for which the denominator is positive and finite (for any other x

(4)

" set
Vo (A, 1X7) =v,(4,), say). For the analysis of posterior probabilities, the (mixture)
measures M"(-,A,,) = JA“Q"(-I 8) v,(d6) and M"(-) = M"(-,©,) are useful. These
measures have density functions m"(x",A,) = IA_q"(x" 16) v,(d6) and m"(x")
= m"(x",0,) which are respectively, the numerator and the denominator of the pos-
terior probability.

It is assumed that there is an underlying probability space (£2,Bg,P) and for each
n, there is a B*/Q measurable random variable (sample) X”. It is assumed that the
induced distribution P” on X" is absolutely continuous with respect to A" with proba-
bility density function p™ (x").

If it is clear from the context, we omit some of the superscripts when writing the
density functions g(x" 1 8), m(x"™), p(x"), etc. ’

Definition 1: We say that P" and M " merge in probability if for every € > 0,

lim P{ﬂg—@— > e-”} = 1.
n—e | p(X")

We say that they merge with probability one if for everye> 0

n
P{-m—(}—(———)- > e "t for all large n ¢ = 1.
p(X™)

It turns out that this definition of merging 1is equivalent to
lim(1/n) log (p(X™)/m(X™)) = 0 in probability or with probability one, respectively.
(This follows from the fact that m(X")/p(X™) is not greater than e"% except in a set
of probability less than e~ "% by application of Markov’s inequality.) Conditions which
ensure merging are developed in section 4. In particular, in the stationary indepen-
dent case with a fixed prior v, it is enough that relative entropy neighborhoods of P
have positive prior probability. ’

Definition 2: A sequence of B” measurable functions 0 < ¢,(x") < 1 is a uniformly
consistent test of P" against a set K" of probability measures on X", if both J ¢,dP"

and Suppsc ks J (1-¢,)dQO" tend to zero as n —eo. The test is umfonnlyéxponenlially
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consistent (UEC) if these probabilities of error are uniformly less than e for all
large n, for some r > 0.

We remark that for any critical function ¢, there is a critical region
S, = {x" :¢,(x*) > 1/2} for which the probabilities of error P"(S,) and Q"(Sf) are
no more than twice f¢,,dP" and I(l—q),,)dQ", respectively. (This follows from
Markov’s inequality.) Thus if attention is restricted to nonrandomized tests, the pro-
perty of existence or nonexistence of uniformly consistent tests remains the same.

The following Theorem is our principle tool for establishing Bayes consistency.
Assuming merging properties we obtain necessary and sufficient conditions for the
posterior probability v, (A, | X™) to converge to one, at an exponential rate, in proba-

bility or with probability one.

Theorem 5: Consistency of posterior probabilities.
(1) If P* and M™ merge in probability, then for any sequence of sets A, € Bg , there

exists r > 0 such that

ImP{v,(Af1X")<e™™}=1 (5)
n oo

if and only if there exist measurable parameter sets B, and C, and constants ry, ro > 0

such that
H A,UB,LUC, =06,
(ii) B, has negligible prior probability, i.e., v,(B,) < e~™*, and
(iii) there is a uniformly consistent test of P" versus { Q" (-186) : 0eC, ) with

lim P*(S,) = 0 and P Q"(S£16) < e " for some S, € B".
n —oo | n

su
0 e
(2) If P" and M" merge with probability one, then there exists r > 0 such that
P{v,(ASIX™) 2 e~™ infinitely often) = 0

if and only if there exist parameter sets B, and C, such that (i), (ii), and (iii) are satisfied
with P{ X" e S, infinitely often} = 0.

Remarks: When checking for consistency it is sufficient that the exponential
bounds v,(B,) < e " and sup 0"(S,16) < e " hold for all large n. Nevertheless,

the necessity proof shows that it can be arranged that the exponential bounds hold for
all n.
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Clearly, Theorem 5 is a generalization of Proposition 1 in the introduction. As

‘discussed there, the first conclusions of Propositions 2 and 3 readily follow from

Theorem 5 by using the fact (from Barron 1987b) that in the stationary independent
case there exists a uniformly exponentially consistent test against all @ with
dr (Q.,P) > e if and only if T,, has effective cardinality of order n with respect to P.

We note that in some contexts the existence of a uniformly consistent test is
equivalent to the existence of a uniformly exponentially consistent test. This surprising
fact is shown in Schwartz (1965, Lemma 6.1) or LeCam (1973, Lemma 4) for the
problem of testing a distribution P against a fixed set K of alternative distributions on
(X,B) using independent random variables.

These facts about uniformly exponentially consistent tests help motivate the
insistence on exponential bounds in this theorem. Another motivation is the compara-
tive ease of establishing the merging property lim P{m (X")/p(X"*)2a,)=1 for
a, = e "F than for sequences a, which tend more slowly to zero. Nevertheless, the
theorem may be modified to allow other rates of convergence.

- We remark that whenever consistency holds as in equation (5), the merging pro-
perty is equivalent to the condition that im P{m (X",A,)/p(X") 2 e" "%} = 1 for all
€ > 0. In this case merging is seen to be a local property, depending only on the mix-
ture of the distributions Q" (-16) for 0in A,.

The proof of Theorem 5 follows readily from the next two lemmas. These lem-
mas utilize the following conditions for sequences of parameter sets 4,, B,, C, and

constants a,, b,, ¢,.
(a) Merging of P” and M":
lim P {m(X")/p(X") 2 a,)= 1.
n —o

(b) Prior negligibility of B,,: v,(8,) < b,.
(c¢) Existence of a uniformly consistent test against C,;:

lim P"(S,) = 0 and sug Q"(S510) < ¢, for some S, € B”.
n—o 6eC, -

(d) Totality: A,\UB,\UC, = 0,.

Let conditions (a)’ and (c¢)’ be the same as conditions (a) and (c¢) except that
P{mX"™)p(X") < a, infinitely often}= 0 and P{ X" € S, infinitely oftenV] = 0.

Lemma 6: Suppose conditions (a), (b), (c), and (d), are satisfied with
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lim b, = lim ¢, = 0 and let r, = (b, +c,)/a,, then for all 3 > 0,

Iimsup P{v,(ASI1X")>r,/8) < & (6)
n—yeo

If also (a)’ and (¢)’ are satisfied, then for any summable sequence &, > 0,

P{v,(AS1X") > r,18, infinitely often}= 0. )

Remarks: From (6) it is seen that if r,— 0, then v, (Af1X") converges to zero in
probability with rate arbitrarily close to r,. Indeed, for any r’, with r, = o(r’)),
equation (6) shows that limsup P (v, (AS1X") > r’ } < d, so letting 8— 0 we have
lim P{v,(AS1X") > r’,}= 0. Equation (7) is only useful to us if r, tends tends to
zero sufficiently fast that when divided by a summable sequence §,, the result still
tends to zero.

To prove the sufficiency of the conditions in Theorem 5 we use Lemma 6 with

nA

b,=e ", ¢, =¢e"% a,=e™ and 3§, =¢e with € A>0 and

€ +A < min{r,,r;}. Then r, and r’, = r,/d, tend to zero exponentially fast.
Proof of Lemma 6: With P™ probability one, the densities p(X") are greater than
zero for all n and the posterior probability satisfies
mX",A;)  mX"ADIp(X™)
m(X")  m@X")/pX")

v (AS1X™) =

Consider the numerator: Let E, be the event that m (X" ,A5)/p(X") is greater
than (b, +c¢,)/d. For any sequence of measurable sets S, in B"” we have
P*(E,) S P"(E,MN S;)+ P"(S,) and P{X"e€E,io. }<P{X"e(E,MNS5) io.}+
P{(X"eS, i.o.) where i.o. is the abbreviation for infinitely often. In particular, take
S, to be critical sets which satisfy condition (¢) and B, € Bg_to be parameter sets
which satisfy condition (b). Then by Markov’s inequality, the Fubini theorem for
nonnegative integrands, and the inclusion of Af in B, \J C,, we have

2 J'S‘(m(X",A,f)/p"(x")) P™(dx™)

n C.< .
PPELNSn) 2 b, +c, ’S:

72

—2—[,.0"(5510) v,(d0)

IA

([ 5. ¥a(d) + [ Q™(S£16) %,(d6))

A

———(b, + ¢,) = 0.

n +Cn

_%

b, +c¢,
o

b, +c,
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Consequently P*(E,) £ 8+ P"(S,) and limsup P"(E,) < 8. If 3, is chosen to be
summable, then by the Borel-Cantelli Lemma P{X"e(E,M S5) i.o.}= 0; if also
P{X"eS, io.}=0then P{X"€E, io.}=0.

Finally consider the denominator: By condition (a) (respectively (a)’), the event
that m(X")/p(X"™) is less than a, (infinitely often) has probability which tends to
zero (equals. zero). The results for the numerator and denominator are combined

using the union of events bound. This completes the proof of Lemma 6.

Lemma 7: If lim P{v,(AS1X") < r,}= 1 for some sequence of constants r,, then for
any b, and c, with b,c, 2 r,, there exist sets B, and C, such that conditions (b), (c),
and (d) are satisfied. Moreover, if P{ v,(AZ|1X"™) > r, infinitely often} = 0, then condi-
tions (b), (¢)’, and (d) are satisfied.

Remark: This lemma demonstrates the necessity of the conditions in Theorem 5.

"1 and

Given r, = e as in the statement of the Theorem, simply set b, = ¢
c, = e "> for any r}, r,> 0 with r; +r, < r, then Lemma 7 guarantees the existence
of sets B, and C, which satisfy the properties required to complete the proof of

Theorem 5.

Proof of Lemma 7: Set S, = {x" : v, (AS1x") > r,}. The assumption of the Lemma
is that lim P"(S,) = 0, or moreover, that P{X" € S, i.o.}= 0. We will use the fact
that for all x” in S5, m(x”,Af) < r,m(x”). (This inequality is trivially true when-
ever m(x") is zero, otherwise it is the same as v, (A1 x") < r,.)

Let C, = {6:0"(S516) <c,} and B, = {6e A :Q"(5516) > ¢,). Then con-
ditions (c¢) and (d) are clearly satisfied. Moreover, by Markov’s inequality and

Fubini’s Theorem

v, (B,) < "cl,,—jA: Q" (SE16) v, (d8)

1

[ o m (7 AS) AR (dx™)
Cp S8

IA

iy m (x") A" (dx")
Cp?Sa

IN
|
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< b,.
Thus condition (b) is also satisfied. This completes the proof of Lemma 7.

4. Merging of Bayes and Frequentist Distributions

Continuing in the general framework adopted in the preceding section, we deter-
mine conditions on the sequence of priors for the merging of the distributions P" and
M" in probability. Recall that the definition of merging given in section 3 is
equivalent to the convergence of (1/n) log (p(X")/m(X™)) to zero in P probability.
The conditions we use in fact ensure that (1/n) log (p(X"™*)/m (X"™)) converges to
zero in L'(P). It is seen that this convergence is equivalent to convergence in infor-
mation, i.e. lim (1/n) D(p"11m") = 0. This convergence is established as a bypro-
duct of an approximation to the Bayesian joint distribution of 6 and X". After
developing this approximation, we will also discuss some other conditions for the
merging of P” and M" in probability and with probability one. In the stationary
independent case these conditions are given implicitly in Schwartz (1965).

Let v, be the distribution on the parameter space given by

e "y, (d6)

v3(de) =

C’l
where D,(8) = (1/n)D(p"11¢"(-18)) and ¢, = | e "*® v (46) and let L be the
joint product distribution for 8 and X” defined by
L}(d6,dx") = v (d6)P™(dx"™).

We consider this distribution as an approximation to the Bayesian joint law for 6 and
X". The Bayesian law is

LBeres(d0,dx™) = v,(dOI x*)M " (dx").

For the next result we use the following generalization of condition (A) from

section 1.

(A ") The sequence of relative entropy neighborhoods of P” has prior probability
which is not exponentially small, i.e. for every €, r > O there is an N such
that for al n> N

v, (0:D,(8) <e}>e ™.



- 20 -

Note that this reduces to condition (A) in the stationary independent case with a fixed
parametric family and prior v, = v, because in that case D,(8) = D(8) is the same

foralln.

Lemma 8: If condition (A’) is satisfied then the Bayesian law LE® and the frequentist
approximation L,: , merge in information, in the sense that

lim - D (L1 LBayesy = ¢,

n—yeo N

Consequently, P" and M " merge in information (and hence in probability), i.e.
lim -~ D(p" 11 m") = 0.
n— N

Also

lim - E(D (v 11v,(-1X"))) = O.

n—y N

Here the expectation E is with respect to the distribution P” for X",

Remarks: The distribution v, is an interesting approximation to the posterior distribu-
tion v, (-1X,). The convergence of v,: and v, (-1 X,) in information demonstrates the

necessity of the exponential factor e "2(9),

With any other exponent, the conver-
gence would not hold. (However, because of the division by n, the nonexponential
factors could be changed arbitrarily.) It is worthwhile to note that this large deviation
approximation v, also matches the usual (small deviation) Gaussian approximation.
Indeed, consider the stationary independent case and suppose that {g(-16) : 6e®}is a
smooth finite dimensional parametric family (8c R™) with continuous Fisher infor-
mation matrix /g and that the prior measure v(d0) has a continuous density function
v’(8) with respect to Lebesgue measure. Suppose also that the true density function is
p(x) = q(x186g) for some 8y with v'(6y) > 0 and det(/g) > 0. Our approximation to
the posterior density function is
e 28 /(@)
Cn

It is well known that under regularity conditions the relative entropy
D (6) = D(qe,) !l q¢)) is approximated by its second order Taylor expansion

D(8) = -;-(e—eo)'zeo(e—eo) + 0(116-65112) as 118-6,411 — 0.
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Note that this reduces to condition (A) in the stationary independent case with a fixed
parametric family and prior v, = v, because in that case D,(6) = D,;(6) is the same

for al n.

Lemma 8: If condition (A’) is satisfied then the Bayesian law LE®¢ and the frequentist
approximation L,: , merge in information, in the sense that

lim & D (L 211 LBavesy = 0,

n-3c0 11

Consequently, P" and M " merge in information (and hence in probability), i.e.

lim & D (p" 1l m™) = 0.

n-—yeo 1N

Also

lim - ED @ 11v,(-1X"))) = 0.

n-—co N

Here the expectation E is with respect to the distribution P” for X”.

Remarks: The distribution v, is an interesting approximation to the posterior distribu-
tion v,(-1X,). The convergence of v, and v,(-1X,) in information demonstrates the

necessity of the exponential factor e~ (),

With any other exponent, the conver-
gence would not hold. (However, because of the division by n, the nonexponential
factors could be changed arbitrarily.) It is worthwhile to note that this large deviation
approximation v, also matches the usual (small deviation) Gaussian approximation.
Indeed, consider the stationary independent case and suppose that {g(-16) : 6 ®}is a
smooth finite dimensional parametric family (Bc R™) with continuous Fisher infor-
mation matrix /g and that the prior measure v(d0) has a continuous density function
v’(8) with respect to Lebesgue measure. Suppose also that the true density function is
p(x) = q(x18y) for some 6; with v’'(8y) > 0 and det(/g) > 0. Our approximation to

the posterior density function is

e~ 20 4, (g)
o '

It is well known that under regularity conditions the relative entropy
D (6) = D(qg,) |l gg)) is approximated by its second order Taylor expansion

D () = -%-(9—90)'190(9-90) + o0(118-6p112) as 118-6,!1 — 0.




- 21 -

Thus for 6 near 6, our approximation to the posterior density function is nearly the
same as the joint Gaussian density function with mean 63 and covariance matrix
(nIg)~1. (Indeed the approximate posterior density for £ = (6—65)Vn converges to
the Normal (O,(Ie)‘l) density as n-%>°° .) The point of these remarks is the that the
relative entropy based approximation e~"P(® v(dO)/c, to the posterior di’stribution
may be preferable to the Gaussian approximation in that while they are equally accu-
rate for small deviations only the relative entropy based approximation is at least

crudely accurate for large deviations.

Proof of Lemma 8: The B'ciycsian law Lf“’“(a'x",de) = Q" (dx" 10)v,(d06) has a joint
density function g (x" | 8) with respect to v, X A", whereas the approximation L, has a

density function p(x")e_"'D"(e)/c,l with respect to v, X A". Therefore,
p(x™e "¢,
qg(xX"16)

where E denotes expectation with respect to L,,. Taking an iterated expectation first

DL LBy = E 10g

with respect to P* and then with respect to v,, it is seen that the result of the inner

expectation does not depend on 6. In this manner the expression easily simplifies to
DL ILE™) = log /¢, = — log [ ¢ ™y (d6) (8)
Now for any € > 0 we obtain

Ipwmrrosy < e~ Liogv, (6:D,(6) <)
n n

Condition (A ) implies that as n-—e the second term tends to zero for any € > 0.
Thus imsup(1/n)D (L,:II Lf"y“) < € and the limit is zero since € may be chosen arbi-
trarily small. Now the relative entropy satisfies the chain rule

%D(L;IIL,?"Y“) = %D(p" Hm") + %E(D(v,:llv,,(-lX"))) (9

so both of these terms must tend to zero. By a known inequality for the Kullback-
Leibler number: E llogp(X")/\m(X") I < D(p"lIm”™) + 2/e. (This follows from
observing that the negative part of (p/m) log (p/m) is less than 1/e, then taking the
expectation with respect to M.) Consequently E | (1/n) log p(X™)/m(X") | tends to
zero. It follows that P” and M " merge in probability. This completes the proof of

Lemma 8.

Remark: Note that the identities (8) and (9) yield the bound
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product sigma-field B® and assume that the random samples are defined by
X*(w) = (xy,...,x,) for @= (x,x,,...) in X*. Suppose that P is a stationary and
ergodic probability measure on X* and for each n, the distribution P" for X" is dom-
inated by A" (which is here assumed to be the n~—fold product of a sigma-finite meas-
ure A on X). The parameter space O is fixed. For each 6 and for n > k(6), the pro-
bability measures Q" ( -10) are assumed to be Markov with a stationary transition
measure Q (-1xy,...,x;,0) having a conditional density function g(xg;;!xy,...,X;,6)
with respect to A. The Markov order k = k(6) 2 0 may depend on 6 and may be
arbitrarily large.

Lemma 10: In this stationary and ergodic case, if condition (A ) is satisfied, then P™ and

M?"™ merge with probability one, that is

n
lim -+ log 2X°) = 0, with P probability one.
n—es N mX")

Proof: Given anye > 0,let A, = {0:D(6) < &/2). For each 8in A, and each n, P"
is absolutely continuous with respect to Q" (-1 8) with density ratio p(X")/q(X" 1 6).
Set D, (X",0) = (1/n) log (p(X™)/q(X"18)). By the ergodic theorem for densities

(Barron 1985a),
lim D,(X",0) = D(6) (10)
n —yoo

with P probability one, for each 8 in A,. It follows by Fubini’s Theorem that there is
a set G in B™ such that for each sequence in G, the limit (10) holds for almost every
0in A Let p,(0) = e"¥2(dv,/dv)(0). Now

e’lE m(X'l) 2 en£/2 Q(ane) (e) ~(de
p(X™) Ja T (@70

= J’A en(£/2—D,(X",6)) pn(e) V(de).

The integrand in this expression is positive and tends infinity for v almost every 6 in
A, for sequences in a set of probability one. Also v(4,) > 0 by condition (A), so by
Fatou’s Lemma '

liminf e”® m(X7)

Ry p(X")
Hence e"®m (X")/p(X") 2 1 for all large n, with probability one. Thus P* and M"
merge with probability one according to the definition in section 3. As indicated

= o with P probability one. (11)

there, Markov’s inequality and the Borel-Cantelli lemma show that
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e "tm (X™")/p(X™) £ 1 for all large n, with probability one, and together these facts

" yield lim (1/n) log m(X")/p(X™) = 0. This completes the proof of Lemma 10.

Remarks: It is shown in Barron (1985a) that if P is stationary and Qg4 is Markov with
stationary transitions, then when the relative entropy rate D (8) is finite, it may be
expressed as

P(Xk+l | Xl"“'Xk)
2201 X 10 X2,)

D(0) = E log + I (P) (12)

for any k 2 k(8). The first term in (12) is simply the expected relative entropy
between the k™ order conditional densities, i.e. E(D(p(-1 X*) I q(~le,6))), where
E denotes expectation with respect to P. The term I, (P) does not depend on 6 and
decreases to zero as k —eo, (This J; is the Shannon mutual information between X,
and the infinite past given X ,,...,X;, see Barron 1985a). Consequently, condition (A)

is satisfied in this context if for every e > 0
v{e tEMD@CIXHq1Xk,0)) < % k(8) sk}> 0.

where k is sufficiently large that I, (P) < €/2. It should be possible to devise families
of Markov processes {Q (-1 0)} for which this condition is satisfied for a large class of
stationary ergodic distributions P.

For completeness we give anothér condition which implies merging in probability
which is used in the work of Schwartz (1965) and LeCam (1973,1982,1986). This
condition uses the total variation distance instead of the relative entropy. As in condi-
tion (A ") it is required that a sequence of parameter sets have prior probability that is
not exponentially small. Unfortunately, with the total variation condition the sequence
of parameter sets must shrink rapidly to zero, (whereas the relative entropy condition
involves sets which do not change with n). The examples given in section 8 suggest
that the relative entropy condition is usually easier to verify.

Define M*(‘1A) = M"(-,A)/v,(A) = fAQ"(-le)v,,(de)/v,,(A) for parameter

sets A in Bg . This is the Bayesian conditional distribution for X" given that 8 is in
A. We are not restricted to the stationary case and the family and prior may change
with n.
Lemma 11: For P" and M" 1t merge in probabiliy it is sufficient that
lim d(P",M" (-1 A,)) = O for some sequence of parameter sets A, for which the prior pro-
bability is not exponentially small (i.e. lim 1/n logv,(A,) = 0). In particular it is
sufficient that for every € > O the following prior probability is not exponentially small
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vo {0 :d(P",08) <€} (13)

Remark: In the stationary independent case, d(P",0") < n d(P!,01) whence it is
sufficient that the probability v, {0 : d(Pl,Qel) < €/n} is not exponentially small. If
v, = v does not depend on n, then using an argument similar to Strasser (1981b,
Lemma 3.10) it is seen that an interesting sufficient condition for this property is
diametric regularity: v(Bo,) <c v(B,) for all a>0 fo.r some ¢ > 1, where
B, = {0:d(P,Q0d) < a) Diametric regularity implies that (with o = logyc) the
probabilities satisfy v(B¢/,) 2 (1/¢)(e/n)® v(B;) which is clearly not exponentially
small. '
Proof of Lemma 11: Given A, in Bg, set r, = —(1/n) logv,(A,). If A, satisfies
the conditions of the lemma then lim r, = 0. To show that P” and M " merge in pro-
bability it is enough that the set {x" : m(x") < p(x")e”"*/2} has P" probability
which tends to zero. This set is the same as { x" : m(x")/v,(A,) < p(x")/2} which is
contained in S, = {x" :m(x"1A4,) < p(x")/2}. (Here m(x"1A,) is the density
function for M"(-1A,) with respect to A".) Clearly, M"(S,1A,) < P"(S,)/2. Now
the variation distance satisfies d(P",M"(-1A,)) 2 2(P"(S,) -M"(S,1A,)) which is
not less than P”(S,). Thus lim P”(S,) = O and so P” and M" merge in probability.
This completes the proof of the first claim.

Now consider the total variation neighborhoods as in expression (13). If
lim (1/n) logv, {0 :d(P",0"(-10)) <e}= 0 for every € > 0, then there exists a
sequence £, which tends to zero sufficiently slowly that when g, is substituted for €
the limit is still zero. Let A, = {8 :d(P",Q"(-10)) <g,}. Now M"(-1A4,) is the
average of Q" (-10) for 6in A, so by the convexity of the total variation distance we

have

n nye. 1_ n ne.
d(P", M"(-14,)) < v,,(A,,)jA.d(P , 0"(:18)) v,(d0) < &,.

So it is verified that lim d(P*, M" (-1 A,)) = 0 and lim (1/n) logv,(A,) = 0, conse-
quently P" and M " merge in probability. This completes the proof of Lemma 11.

5. Consistency of Estimators

For a non-Bayesian such as the author, perhaps the most important reason to
examine posterior probabilities is to obtain results on the accuracy of estimators.
Convergence results for Bayes estimators can be obtained from convergence results
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for posterior probabilities. In this section we explore methods which show how the
loss of an estimate is bounded in terms of posterior probabilities. One method
assumes that the loss function satisfies the triangle inequality or that it is topologically
equivalent to a loss function which satisfies the triangle inequality. Another method
does not require the triangle inequality but does assume that the loss is a convex
function and that the estimator is the posterior mean density. Finally, a separate argu-
ment is used to handle the maximizer of the posterior probability in the case of

discrete prior.

The results are presented in a somewhat general decision-theoretic setting which
suits our needs. Let (2,Bn) be a measurable space, let = be a set of probability
measures on this space, and let P be a fixed probability measure in this set. For each
n 2 1, let X" be a random sample taking values in a measurable space (X",B"), with
induced distribution P”. Let ® be a set and suppose that to each Q in = there is
assigned a ¢ € @. Here ¢ is usually an attribute of the distribution (such as the
probability density function for the X;) which is to be estimated from observations x”

and @ is the set of possible decisions.

Let L,,(q:,q“:) and d,,(q:,qS) denote sequences of non-negative loss functions on
OX P, We assume that d, is a pseudo-metric on @X O (i.e. dn(¢,$) is non-negative,
equal to zero if ¢>=$, symmetric d,,(q),é) = dn($,¢), and satisfies the triangle ine-
quality d,(¢,0) < d,(6.¢) +d,($,4) for all ¢, &, and ¢ in D).

For each n 2 1, let {Qq:6€©,) be a family of probability measures in E for
which the induced distributions of the random variable X" are Qg and let v,(d6) be

prior distributions on the parameter space (8,,Bg ). Assume that there exists a regu-

lar posterior distribution v, (d61x") given that X” = x". (This means that v, (-1 x") is

"a probability measure for each x”, and v,(A | x*) is an B” measurable function for

each A in Bg ; these properties are guaranteed if the family of distributions Q" (-186)
is dominated by a sigma-finite measure A" and the density g(x” | 8) may be chosen to
be a B"XBg measurable function as was assumed in the previous sections.) Let ¢4
be an abbreviated notation for ¢ .. We require that d,(¢6,6) and L,($¢e,9) be Bg,
measurable functions for each ¢e®. (For the loss functions we work with, this
measurability follows from the joint measurability of the densities g(x” 1 6).)

A decision 43,, = 43(' ; x™) in @ is a Bayes estimate of ¢ (for the loss function L,,,

prior v,, and data x") if it achieves

min [ L,(¢e.6) v,(d81x").
$ed
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In some cases a minimum does not exist. To handle such cases we say that (- ; x™)
is an approximate Bayes estimate if it achieves within 8, of the infimum, where

~lim 3, = 0. Of course, approximate Bayes estimators are also useful when Bayes esti-

mators cannot be computed exactly.

For the next result we require that the loss function L, be topologically
equivalence to the pseudo-metric d,. Specifically assume that there exist strictly
increasing functions f(u) and g(u), u 2 0, continuous at 0, with f(0) = g(0) = 0,
such that L, £ f(d,) and d, £ g(L,) for every pair of decisions in ®, and all n.
This means that im L,(¢,,$,) = 0 if and only if lim d,(¢,,$,) = 0.

Set & = ¢p in @ and assume that there exists a bound L < e such that
L,(0g0) <L forall 0in ©, and all n. For € > 0 let

Ae.n = {e : dn(¢’¢6) < E}-

Lemma 12: For any x", let 6(- ; X*) be a Bayes estimate (or an approximate Bayes esti-
mate) for a bounded loss function L, which is equivalent to a pseudo-metric d,, with
f.g,L,8, as above, then for every e > 0

[a +L v, (AS,1x") +8,

15
| 1-w@i.ix (1)

d,(0,6,)< e+ g

where €' = f~1(€). Consequently, for any sequence X" for which lim V,(AE,1x")=0

for all € > 0 we have

lim d,(¢,9,) = 0.

Consequently, if lim v(Af,1X") = 0 in probability or with probability one for
every € > 0, then lim 4, (¢,6,) =0 in probability or with probability one, respec-
tively. (Observe that the measurability of d,,(¢,q3(-; x")) need is not be required
since (15) provides a measurable upper bound for establishing the convergence. Thus
setting S, = {x" :L,,(¢,(§) 2 €}, for convergence in probability it is meant that the
outer P" probability of S, tends to zero and for almost sure convergence it is meant
that the outer P probability of {X,e€ S, i.o.} is zero for every € > 0.)

Proof of Lemma 12: If (- ; x*) is an approximate Bayes estimate for the loss func-

tion L,, then

[ La(,.00) va(dBIx™) < [ L,(0,04) v,(dBIx™) + §,
< ev(BIx")+ L v(B Ix")+ §,
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< e+ L v(AL,Ix")+ 3,

where B = {6 :L,(6,0¢) <€) contains {0 :(d,(d,0p)) S €)= Ag,.
On the other hand, by the triangle inequality we have for 6 in A, that
d,,(¢,¢f),,) <& +dn(¢9,$n) which is not greater than € +g(L,,((§,,,¢9)). Consequently

[ Li(@a:00) v (d081x™) 2 [, L.(§,.00) va(dOIx")
2 [, 87 (dn(8,6,) —8) v,(dBIx")
=g Nd, (0,0,) —€) Vu(Ag, 1 X™).
Combining these bounds yields

6.8y % e [e+fv,,(A§:',,lx")+8,,
n 'Yn L j
g[ 1-v, (A, | x")

which is the desired inequality. This completes the proof of Lemma 12.

Remarks: Consider the estimation of probability density functions using independent
random variables as discussed in section 1. (In this case (X”,B”) is the n-fold pro-
duct of the space (X,B) and Z is the set of probability measures on the underlying
space (Q2,Bg) for which the distribution of X{,X,,...,X,, is independent with a coor-
dinate density function which is absolutely continuous with respect to A(dx).) Let
d(p,q) = J' | p(x)—g(x) ! A(dx) be the L' distance between density functions. Con-
ditions have been given which imply that lim v,(AS1X") = 0 with probability one.
Consequently, if p, is a Bayes estimator with bounded loss function L which is
equivalent to d, then the same conditions imply that lim d(p,p,) = 0 with probability
one. This shows how Proposition 2 is obtained for such estimators.

For example, if L is the squared Hellinger distance I (¥p -V ¢q)2, the Bayes esti-
mator p,(x) is the square of the mean of the posterior distribution of Vq(x I6),
assuming that @ consists of all non-negative measurable functions p for which
I Pp(x)A(dx) < 1. Itis known that the squared Hellinger distance is equivalent to the
L’ distance on ®X® with [ (Vp-Vg)2< [ Ip-gl<s 2(f (Vp-Vg)HV2 As
another example, if L =d is the L' distance, the Bayes estimator is a median of the
posterior distribution of g(x | 8) (assuming that a version may be chosen which is a
measurable function of x). In this latter case we must take ® to be all non-negative
functions which are integrable with respect to A. Proposition 2 clearly applies to either
of these estimators.
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For the particular case of the posterior mean estimator of a probability distribu-
tion, we use a specialized argument to relate the asymptotics of posterior probabilities
to the consistency of the estimator. Let Y be a random variable: a measurable map-
ping from (£2,Bq) into a measurable space (Y,By). Let @ be the set of probability
measures on (Y,By) and let ¢ be the probability distribution for ¥ induced by any
Q in E. Although we risk abusing notation, we write P and Qg respectively for ¢,
and ¢, in what follows. The posterior mean estimator based on a prior v, and data
x" is Pn(B; x?) = J' Qe(B) v,(d61x™) for all B in By. The accuracy of the estimate
is measured by a sequence of loss functions L, (P ,13,,) on ®X &. Although both P
and 13,, are proper probability measures we consider loss functions L, for which the
domain of definition extends in a useful way to ®X @& where @ is the set of sub-
probability measures on (Y,By). We assume that L, (P,Qg) is Be, measurable func-

tion for each 0 < a < 1 and each P in @,.
The properties that we require of loss functions L on ®X & are the following.
(i) Monotonicity: Q5,2 @, implies L (P,Q,) < L(P,Q,)
(ii) Convexity: L (P,04Q; + 0,05) S oyL (P,Q,) + oL (P,Q35)
(iii) Scaling: L (P,aQ) < L(P,Q) + p(a) where iiinlp(a) = 0.

Here Q, Q,, Q, are arbitrary subprobabilities in o, o,,0, are nonnegative with
o+ ;=1 0<a <1 and the function p does not depend on n. To handle a
degenerate case we set p(0) = .. For subprobabilities, Q0,2 Q; means that
Q,(B) 2 0(B) for all B in By.

Examples of loss functions L (P,Q) which satisfy these properties include
J’p log p/q (which is the relative entropy), 2J' (p—-g)* (which reduces to the L' dis-
tance when restricted to proper probabilities) and 2( 1—-J' VpV4q) (which reduces to
the squared Hellinger distance when restricted to probabilities). Here p and g are the
density functions with respect to any measure which dominates both P and Q. In
these examples p(a) for 0<a <1 is given by - loga, 2(1-a)* and 2(1—-\/?1-),
respectively.

Lemma 13: Let L, be a sequence of non-negative loss functions with extensions to ®X o
which satisfy the three properties (i),(ii), and (iii). Then for any x" and any P in @, the
posterior mean estimator 15,,( -3 x™) satisfies

L,(P.P)< e+ p(v,(Ag, | x™)) forall e> 0
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where Ag,, = {0: L,(P,Qg) < €). Thus for any sequence x™ ,n=1,2,...
Va(Agn | x") = Oforall € >0 implies L,(P,P,) — 0.

Remarks: In particular for the density estimation problem in the context of section
1, take Y to be an independent copy of X, and let d be the L' distance between pro-

bability densities (which may be extended to a loss L on ®X & as indicated above),
then conditions (A) and (B) imply that lim v,(A;1X")=0 and hence
lim d(p,p,) = 0 with probability one. This show how Proposition 2 is obtained for

the posterior mean estimator of the density function.

To establish Proposition 3 use the same reasoning  with
dr (P,Q) = aer, | P(A)-Q(A)1 (for proper probabilities) which extends to
L,(P,0)=23(P(A)-Q(A Nt on ®X &. Condition (A) alone implies that for this
sequence of loss functions lim v,(A.,1X") = 0 and hence lim dT_(P,IS,,) = 0 with
probability one.

Proof of Lemma 13: Given £> 0 and x", set @ = v,(A. , | x"). If a = O the ine-
quality is trivially satisfied. Suppose @ > 0 and let v,(d81x",A, ) be the distribution
obtained by conditioning on 6 €A ,. Successive application of monotonicity, convex-
ity, scaling and the definition of A yields

L*(P.B) < L,.(P,J'AMQG v, (dO1x"))
= Ln(P,J'A‘.;(a Q¢) v, (dBIx",A¢ )
< [, La(P.a Qg) va(dBIx"A,,)
< j'Au(L,,(P,Qe) + p(a)) v, (d6Ix",A. )
< e+ p(a).

Which is the desired result. This completes the proof of Lemma 14.

6. Discrete Priors

Next we demonstrate the consistency of maximum posterior likelihood estimators
in the case of a countable parameter space ©.

Let v,(6). be a sequence of priors (discrete mass functions) on © with
Y eV, (8) < 1. It is assumed that the sequence of prior probabilities of each 6 is not
exponentially small (i.e. liminf,e"v,(8) 2 1 for every r > 0, for every 6 € ©). In

which case, the information denseness condition (/f) reduces to an assumption on the
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countable family: namely, that inf {(D(6) :0e®)= 0. (The measure ¥ required by
definition 4 in section 4 may be taken to be any strictly positive probability mass func-
tion on ©. Here D (6) reduces to D (p 11 ) in the stationary independent case.) Thus
the set of densities p for which the sequence of priors is information dense consists of
all information limits of the countable family {gq : 6 € ®}.

The posterior likelihood function for 6 given data x” is proportional to the joint
likelihood v, (6)g(x™ | 6). Recall that an estimator é,, = é,, (x") taking values in @ is
- said to be an approximate maximum posterior likelihood estimator if

va(8,)g(x"18,) > sup v, (8)g(x"16) ™"
for all x”, where lim 8, = 0. We require that é,,(x") be a measurable function of x”.
The corresponding density estimator is p,(:) = ¢(-l é,,). For Lemma 14 and
Theorem 15 we assume a  stationary independent model, whence
g(x"10) = TIL,9(x;186).

The following Lemma is basic to examining asymptotics for maximum posterior
likelihood estimators.

Lemma 14: Let é,, be an approximate maximum posterior likelihood estimator and let A,
be a sequence of measurable parameter sets. If the sequence of priors is information dense
at p, and if v,(AS1X") is exponentially small with probability one, then é,, € A, for all
large n, with probability one. '

Remark: The lemma applies to the fixed parameter set A, = {6 :d(p.qq) < €} (for
each € > 0), under the assumption that conditions (A) and (B) are satisfied, to obtain
that for any approximate maximum posterior likelihood estimator lim d(p,p,) = 0
with probability one. Similarly, using A, = {6 : dr (P,Q4) < €} one obtains that if
only condition (A) is satisfied then lim dT_(P,ﬁ,,) = 0. This shows how the second

conclusions of Propositions 2 and 3 are obtained in this context.

Proof: It is enough to show that with P probability one

SUP % (B9 (X" 16) < sup v, (g (X" 16) e "5 (16)

for all large n, for then v('é,,)q(X" I é,,) is strictly larger than the posterior likelihood
for all ® eAF and hence 8, €4,,.

Now when P” and M" mcfgc with probability one, the exponential convergence
of v,(A51X"™) is equivalent to 3 g, 4V, (6)g(X"18) < p(X")e™™ for all large n,
with probability one, for some r > 0. Choose 8° in © for which D (p !l gg) < rl/4.
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Then by the strong law of large numbers (and the fact that v,,(e') is not exponentially
small) it is seen that p(X") < v,(8")g(X"10") e™'2 for all large n with P probability
one. Combining these bounds yields

sup v, (8)9 (X" 18) < Y v, (8)g(X"18)
8eA BeAf

< p(Xn) e-—nr

< v, (8")g(X"10") e~™/2
< sup v, ()g(X"16) e "o
for all large n, with P probability one. So (16) is satisfied and this completes the
proof of Lemma 14.

The following result gives perhaps the simplest conditions which guarantee Bayes
consistency in the case of a countable prior.
Theorem 15: Suppose that for each ©, the sequence of prior probabilities v, (0) is not
exponentially small. Also suppose that for some 0 < a < 1, the sum ¢, = Y o(v,(0))® is
not exponentially large, i.e. lim (1/n)log c, = 0. Then for any density function p which is
an information limit of the family {qq), we have for every ¢ > 0

v, ({0 :d(p.,qg) 2 €)1 Xy,....X,,) is exponentially small, with P probability one,

and consequently, any approximate maximum posterior likelihood density estimator p,, con-

. 1 .
vergestop inL ', i.e.,

lim d(p,p,) = 0, with P probability one.
n—oo

Remark: For a fixed prior v(6) the summability condition is simply that
c = Y o(v(0))® is finite for a in a neighborhood of 1. This is equivalent to asserting
that log 1/v(6) has a finite moment generating function in a neighborhood of zero.
Similar moment generating function assumptions are necessary in other large devia-
tion contexts to obtain exponential bounds. It is an interesting open question whether
the condition ¥ (v(6))® < e is necessary as well as sufficient for the conclusions of
Theorem 15 to hold for all p for which the prior is information dense.

Proof of Theorem 15: Let B, = {8:v,(6) < exp{—ne/4})}, then
v, (B,) < c,exp{~n(1-a)e/4). Thus v,(B,) is exponentially small. Now let
A = {0:dy(p.qe) <€) where dy(p,g) = [ (N\p-Vgq)? is the squared Hellinger dis-
tance. Let C, = {8 e Af :v,(08) 2 e~ "¢4} and note that since Seec, Va(B) < 1, the

number of points in C, is less than e"¥4. We show that there exists a uniformly
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defined by v,(6) = w(C(6,2_b‘)), where C(G,Z’b) is the cube which has lower corner
at 0 and sides of length 272, It is seen that if lim b, = e and lim b,/n = 0, then for
each 6 in 8, v,(0) is not exponentially small and ¢, = Y 4(v,(6))® is not exponen-
tially large. Since © is dense in R?, the condition that the relative entropy is continu-
ous implies that the information denseness condition is satisfied for all
pe {gg:0€ R?). Theorem 15 applies to show that the sequence of maximum pos-

terior likelihood estimators of the density is consistent in the L' sense for all such p.

Selecting a family: Suppose a statistician has a countable list of favorite parametric
families (each of which is discretized as above), then a maximum posterior likelihood
estimator amounts to an automatic selection of a model as well as an estimator of the
parameter values within the chosen family. Although it is not known in advance
which of the families contains the true density, nevertheless the density is consistently
estimated.

The following method may be regarded as an idealization of the procedure by
which a family for the density is chosen. It is also an extension of the nonparametric
example given above. Note that an essential but often unmentioned requirement of
practical estimators that the probabilities be computable.

The most likely simple density (Cover 1972): Let {g;,k=1,2,...} be an enumeration
of the density functions on the real line for which the corresponding distribution func-
tions are computable. (A cumulative distribution function Q is said to be computable
if the set {Qb(x) : be {1,2,...}, x rational} is recursively enumerable, where 0°%(x)
has a b bit binary representation and IQ (x)-0%(x)1<27%) Cover’s density estima-
tor sets p, to be the density g; which maximizes the likelihood for k < 1, where 1,
tends to infinity, but not exponentially fast. This is the maximum posterior likelihood
estimator with uniform prior v,(k) on 1<k < 1,. The conditions of Theorem 15 are
satisfied for this sequence v,. Moreover, it follows from Lemma 17 that the informa-
tion limits consist of all densities p for which D (p 1! ¢;) is finite for some k (see Bar-
ron 1985b). Therefore, Cover’s density estimator is consistent for every such density
p. Note that the only densities for which convergence is not obtained are those which
are infinitely far away from every computable density.

Complexity minimization: A refinement of Cover’s estimator is examined in some
detail in Barron (1985b). Estimating the density is related to finding short descrip-
tions for finely discretized data X”. A natural prior is v(k) = 2-L*) where L (k) is
the length of the shortest binary program for O, on a fixed universal computer with a
domain which satisfies the prefix condition, (which implies that ¥ ,2-2(*) < 1);
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because for this prior the maximum posterior likelihood estimator corresponds to
finding the shortest length program for X" among the programs with length
Lk)+ [log1/Q0,(X™)]. (Here [ log 1/Q,(X™)] is the length of Shannon’s code for
X" based on Q;, which must be prefaced by a description of Q;, whence the L (k)
term.) The set of distributions P for which the family of probability measures is
information dense not only determines distributions which can be consistently
estimated but also determines distributions for which the length of the shortest pro-
gram has asymptotically negligible redundancy. Again, the computable measures are
information-—-dense for every P for which D(P 11 Q;) < e for some @;. Unfor-
tunately, this complexity based prior does not satisfy the root summability condition
of Theorem 15; nevertheless, Proposition 3 épplics to obtain a useful convergence
result (convergence in T, variation). To force convergence in total variation, the prior
v(k) = 272L (%) js preferred when selecting the maximum posterior likelihood esti-
mate £,. (Although this maximization no longer corresponds exactly to the minimiza-
tion of the description length, it may be shown that the resulting description length
L(IE,,) + [ log I/Qk-_(X")] is still nearly minimal). Similar convergence results also

obtain if v, (k) = 27 L)

which runs in time not exceeding T, where lim 1, = oo,

where L, (k) is the length of the shortest program for @,

Perhaps the most surprising result for countable priors concerns the case that the
true distribution P happens to equal one of the distributions Qg for which v(6) > 0.
Let 15,, = 0 be the maximum posterior likelihood estimator based on Xy,....X,.

Assume that with respect to each Qg, the process is stationary and ergodic. We require
that for each 6e © the sequence of priors v,(8) increases to v(6) and that ¥ gv(6) < 1.

Theorem 16: If P is a member of the countable family {Qg :v(0) > 0, 8 € 8), then the
maximum posterior likelihood estimator satisfies

P =P for all large n with P probability one.

n

Remark: Thus if a random process is governed by a computable law, then eventually
this law will be discovered and thereafter never refuted.

Proof: This result is essentially a specialization of Doob’s (1949) result to the count-
able parameter case. Another simple proof is this: Let P and Q¢ be the induced
distributions for X ,X,,... on (X*,B”). Distinct stationary and ergodic distributions
must be mutually singular on X™ (by applications of the ergodic theorem to the rela-
tive frequences of any event for which the distributions differ). Thus the measures
P” and Y g.cVv(8)Qg are mutually singular, where C is the set of all 8 for which
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Q¢ is not equal to P™. It follows that the density ratio } - v(8)gg(X")/p(X") must
converge to zero, with P probability one. But then maxe v,(8)ge(X") <
(1/2)v(8%)qg-(X™), for all large n, with probability one, for any fixed 8" in the set
A =1{0:0g = P=). Now for all large n, v,(8°) 2 (1/2)v(8") and hence the (joint)
likelihood vn(e')qe-(X") is greater than the likelihoods for all 6in A€ = C. Whence
8
16.

is in A for all large n, with probability one. This completes the proof of Theorem

7. Counterexample

In this section we show that the posterior probability of total variation or relative
entropy neighborhoods of P do not necessarily converge to one, even if the prior is
information dense at P. What is more, we show that posterior probabilities of T,
variation neighborhoods (A, = {6 :dr (P,Q¢) < 6}) do not necessarily converge to
one, if T, is any sequence of partitions for which the effective cardinality is of order
greater than n. By Theorem 5 this amounts to showing that there are priors for which
there do not exist decompositions of the parameter space into sets A,,, B,,, C, satisfy-
ing the indicated properties.

Let P be a probability measure on (X,B), let A be any sigma-finite measure
which dominates P, and let T, be a sequence of partitions. The proof of Barron
(1987b, Theorem 2) shows that if the effective cardinality of T, with respect to P is
not of order n, then there exists a constant 8 > 0 and a sequence of constants r, > 0,
parameter spaces ©}, probability measures Qg for 8 €®], and proper priors v,}, such
that liminf r, = 0, dr (P,Qg) 2 9, and Qg<< P for all 6 with

[, a"(x"16)v,](d6)
n 2
p"(x)

for all x”, where ¢"(-10) and p"(-) are the product density functions with respect to

e” " a7

the A". (In fact Barron 1987 takes v, to be a discrete uniform on large finite sets 8},
and Qg to have density ratio g(x!16)/p(x) which typically oscillates irregularly
between values near 0 and 2.)

The above prior is not yet information dense at P. To give the desired coun-
terexample we modify it by mixing with another prior v? (for another family
g(-18), 6 €®?) which is information dense at P and yet satisfies

[ gm(x™16)v%(d6)
ph(X™)

< ¢~ "™ infinitely often with P probability one. (18)
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Take the overall prior v, to be a (1/2,1/2) mix of v, and v2 on the parameter space
©, which is a disjoint union of 8} and 2. Then taking the ratio of (17) and (18)
shows that m(X",A5)/im(X",A,) > 1 and hence v,(4,1X") < 1/2 infinitely often
with P= probability one. In which case, the posterior probability of the neighborhoods
A, ={06:dr (P,Q e)Z}Jdoes not converge to one. '

It remains to show that an information dense prior can be chosen for which (18)
is satisfied. Suppose we take P to be the standard Normal distribution, % = (0,1) to
be the unit interval, and Qg to be the Normal(\’ﬁ,l) family of distributions for
0< 8< 1. Note that g(x 18)/p(x) = exp{-08+ xV20) and D (P 1 Qg) = 84 So if we
chose the prior to have a strictly positive density function (with respect to Lebesgue
measure) in an interval adjoining 6 = 0, then the prior is information dense at P.
Now since liminf r, = 0 there is a strictly decreasing function f (u) for u2 0 such that
f(n) = r, infinitely often, limf(n) = 0, and f has an inverse function g(6),6 > 0.
Then infinitely often, g(8) + n6=2 nr, for all 0< 91< 1. Set the prior to be
v2(d8) = (1/¢c)exp{~g(0))d6 for 0 < 8 < 1 where ¢ = -[o exp{-g(0))do. In this case

[ q*x"10)v¥ae) !

S X" [ exp{~g(8) ~n6 + 5,¥28)d0
0

IA

exp{-nr, + (S,)*V2) infinitely often

< exp{-nr,}infinitely often, with P probability one

where §, = ¥} L ,X; which is negative infinitely often, P almost surely, by the law of
the iterated logarithm. Thus (18) is satisfied. Consequently, for this example the
posterior probability of A, = {0 :dr (P,Qg) < 8} does not converge to one. By using
the probability inverse transformation this example could be modified to allow P to be
any continuous distribution on the line.

8. Examples

The following four classes of models provide a glimpse of the range of applicabil-
ity of the results. Some other examples involving discrete priors were given in section

6. Here the priors are typically not discrete.

Example 1: The prior makes a random density function on the line by using the
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exponential of a Gaussian process. We start with a family of probability density func-
tions on the unit interval
eZ )
glZ)= —7—,0<: <1 (18)
j RS
0

Here the parameter space consists of bounded continuous functions Z (¢),0 < < 1.
The prior v is chosen such that Z is a mean zero Gaussian process. In particular we
assume that it is either a Wiener process (with covariance E,Z (s)Z (1) = o?min{s,?))
or a stationary Gaussian Markov process (with covariance c2e~B!s=th where ¢ and B
are fixed positive constants. A smoother model for the density function is to take Z
to be a Gaussian process with k th derivative equal to either a Wiener process or a sta-

tionary Gaussian Markov process.

To parameterize density functions on the real line we use the model

8(x)
q(x16) ==
c(6)

where ¢(0) = jee(‘)qo(x)k(dx) and 6 is a bounded continuous function. Here the

qo(x) (19)

function go(x) is an "initial guess" of the probability density. The prior is chosen to
make O(x) = Z(Qo(x)) where Qo(x) is the cumulative distribution function
corresponding to the density go and Z is one of the above mentioned Gaussian
processes. (Thus © is a mean zero Gaussian process with covariance
E,0(x)0(y) = R (Qo(x),Q0(y)) where R (s,t) is the covariance of Z.) The models
(18) and (19) are simply related by the transformation T = Q¢(X).

These Gaussian exponent priors are information dense, i.e. condition (A) is

satisfied, for every probability density function p for which the relative entropy
D (pllqo) is finite. Also it is shown that the smoothness condition (B) is satisfied.
Therefore the Bayes density estimates corresponding to these priors converge in L'to
any such p with probability one.
Verification of condition (A): The relative entropy is invariant under monotone
transformation of the random variables, so it is enough to check the condition for the
first model. Indeed, the prior probability of {D (p Il gg) < €} is the same as the prior
probability of {D(f 11 g(-1Z)) < &) where f (¢) is the true probability density function
for the transformed random variable T. The assumption that D (pll gy) < e
becomes D (f |l u) < o« where u(t) is the uniform density function on [0,1].

If D(fIlu) is finite, then for every € > 0 there is a density f such that
\y(i) = logf(t) is bounded function with a bounded continuous derivative and
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D(fIlf) <e/2 (see Lemma 17, Appendix). Now for any density g the relative
entropy D (f Il g) satisfies

D(f“g)=J'f10g‘§

=J'flog-§+ff]og£

8
< €l2+ 1 I—(—’)—
& 0533121 °8 g(1)

Forg(t1Z) = ez(’)/(f e%2G)ds) we have

sup log L— = sup(y(t) = Z (1)) + log [ %Wt

0str<1

sup(y(1) = Z (1)) + log [ €2V f(r)ar
2suplZ(r) — y@)!

Thus D(fllg(-1Z) < &/2+ suplZ (t) — y(z)|. Consequently, for condition (A) it
is enough that the following probability is positive '

v{ OSSLII}; 1IZ(t) - (1)1 < e/4}) 20)

IA

Now a Gaussian process Z which has mean zero and covariance function R is
equivalent (mutually absolutely continuous) to the Gaussian process with non-zero
mean function Y(r) (and the same covariance) if and only if Il yllz < o, where
Il yllp is the RKHS norm of y corresponding to the covariance R of the Gaussian
process (scc Parzen 1970). In particular, for the Wiener process
Hyll3 —f (\y’(t))zdt for the stationary Gaussian Markov process |l yllZ =
(1/2)[ ((\y(t))2+ (W) Ddr + (1/2)((w(0))? + (w(1))?). These norms are finite
by the choice of y. Consequently, the probability in (20) is positive if and only if

v{ sup 1Z())l< €/4)> 0. (21)
0<st<1

This probability is known to be positive for all € >0 when Z = W is the standard
Weiner process (see Siegmund 1985, p.56). Now any mean zero Gauss Markov pro-
cess Z 1is equal in distribution to a scaled and time shifted Wiener process, i.e.
Z(t) = a(t)W (G (1)) where G is non-decreasing (in particular the stationary Markov
case obtains with G(@) = e and a@) = e'ﬁ’). In  which case
supl!lZ (2)1< asup{I|W(x)1:G(0) £x £G(1)}) where a= supl a(t)l). Conse-
quently if @ and G (1)~G (0) are finite, then the positivity of the probability in (21)
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for all € > 0 follows from the positivity for the Weiner process case.

The case that the kth derivative of Z is either a Weiner process or a stationary
Gaussian Markov process is handled in the same way except that y should be chosen
to have k + 1 bounded continuous derivatives.

Verification of condition (B): As before, it is enough to check the condition for the
first model (g(#1Z)). Indeed, let ™, be a partition of the line into n quantiles of the
distribution Qg and let T, be a uniform partition of [0,1] into cells of width 1/n, then

the sets (d(qe,qg') > €e)and {d(g(-| Z),gT"(- | Z) > €) have the same prior probabil-
ity. The aim is to show that this prior probability is exponentially small. Take the
case that Z(r),0<r <1 is a Wiener process (with respect to the prior). Set
5= (1/2)e% Since d < V2D, it is enough to show that the following probability is

exponentially small
v{D(C1Z)1g™(-12)) > 8). (22)

Now the relative entropy in this expression is an average logarithm of the density ratio
which is less than the maximum for 1 £ i £ n of the following terms

su log T(Hz) < su lo (12)
te[(i-1)/n,i/n] g (12) se(i-1)/n,iln) g(st2)

(Z(1) = Z(s))

i

SU?
spel(i-1)/n,i/n)

i—1
<2 s 1Z @) - Z (=)
re[(i—;l)?n.i/n] () ( n )

where the first inequality is by the mean value theorem. These terms have identical
distributions with respect to the prior. Consequently, by the union of events bound,
the probability in (22) is less than or equal to

nv{ su 1 Z (2)!> 8/2} ' (23)

0<t<1/n

The supremum of | Z (¢) | in this expression is less than or equal to the maximum of
the two random variables supjgi/,) Z(¢) and suppg,i/,] (—Z (t)) each of which is
known to have the same distribution as | Z (1/n) 1. Thus we may bound (23) by

2n v{1Z(1/n)1> 8/2} < 4n e~n¥48c* (24)

since Z (1/n) is a Normal random variable with mean zero and variance 62/n. Since
this probability is exponentially small, condition (B) is verified. Other Gauss-Markov
priors for Z are handled in a similar way using the representation as time scaled
Wiener processes (The partition 7, may be chosen as the "quantiles" of the increasing
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Example 2: The density function is modeled using an infinite dimensional exponen-
tial family. Let ¢o(x)=1, ¢;(x), ¢2(x),... be linearly independent measurable func-
tions on the real line. We assume that these functions are bounded 1¢,(x) I < b for
all k and that linear combinations of the functions ¢, are dense in L%(Q¢), where Q,
is a fixed distribution function with density go(x). It is convenient to assume that
0 (x) = rp,(Qo(x)) where the r, are functions on [0,1]. In particular we may use

k or trigonometric polynomials r,, (t) = cos(2mkr),

algebraic polynomials r, () = ¢
‘r2k+1(1) = sin(2nkr). Consider probability density functions which may be
represented as

ez:..,e.m(x)_

ZioBdalx) _ £ __
c(9) -

q(x10) = go(x)e = qo(x)

where e—60= C(e) = J ez:-lel¢l(x)Qo(dx).

If the prior is chosen such that the 6, are independent Gaussian random vari-
ables with mean zero and variance A, for k¥ 2 1, then the exponent in the second
expression for the density is a mean zero Gaussian process with covariance function
R(x,y)= Y =120 (x)¢;(y). (Indeed, the models in example 1 may represented

in this way for appropriate choices of ¢,.)

We assume that the prior is such that E16, | £ a; for some summable sequence
a;, then (by Fubini’s Theorem) ), 16, | has a finite expectation with respect to the
prior. Consequently, ¥ ;2 16, ,(x) is absolutely convergent for every x and bounded
(as a function of x) with prior probability one. In which case ¢(0) is finite and the
‘densities g(x | 8) are well defined with prior probability one.

Suppose each r, (r) is differentiable with derivative bounded by b, (for algebraic

polynomials by = k for trigonometric polynomials b, = 2nk). If T O h g
- finite expectation with respect to the prior for some o> 0, then condition (B) is
satisfied. In particular if 6,,0,,... are independent with respect to the prior it is enough
to check that E(e®*'®%Y < ¢ for some summable sequence a;.

If the prior distribution of 64,6,,...,6,, has support equal to all of R™ for every
m 2 1, then condition (A) is satisfied for every density p(x) for which D (p Il qo) is

finite. In which case Bayes estimates of the density function are consistent.

In the next example the model may also be put into the form of an infinite
dimensional exponential family. However, the functions ¢, are indicator functions
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(which are not differentable) and the parameters have simplex constraints (which do
not correspond to all of R™). Nevertheless, conditions (A) and (B) are directly
verifiable.

Example 3: The random density function is defined using a refining sequence (tree)
of partitions T, which generates the measurable space. The family of probability
measures is represented as
0(A10) = T84,
k=1

for any A in T, where A, denotes to the set in T, which contains A. Each parameter
Oy 4, is interpreted as the conditional probability that X is in A, given that X is in
Ay_i. Thus these parameters are required to satisfy 6y 4 2 0 and 3 4er1,,8 4 = 1
for each B in T,_,, where T p is the collection of sets in T}, which are subsets of B.
Let Qo be a fixed probability measure with density function go(x). The probability
measures which are absolutely continuous with respect to Qo have probability density

functions

- B
g(x16) = go(x) [T —=

k=1 aklAl

(2)

where o 4, = Qo(Ag 1 A;_;) denotes the conditional probabilities for Qo and
Ay = Ap(x) is the set in T, which contains x. (The limit in this expression for the
density exists for almost every x, by application of the Lebesgue density theorem.)

A reasonable choice for the prior is to make {6; 4 : A€T; p) have independent
Dirichlet distributions with parameters {$;, 4 : AeT, p} for each B in T,_, and each
k21, If By 4 = bQo(A) for some constant b, then this is the Dirichlet process prior

~ with parameter measure bQ, (see Fergeson 1973,1974). However, the resulting ran-

dom measures Q (-1 0) are discrete with probability one. On the other hand, Kraft
(1964) and Mcdtevier (1971) give conditions on the choice of the prior such that the
measures are absolutely continuous with probability one. We recommend setting
By.a = byoy 4 with a sequence by which tends to infinity as k — e (so that the mul-
tiplicands in equation (2) concentrate near one for large k with high probability).

If the sequence by tends to infinity sufficiently rapidly and if the partitions T, are
chosen such that the o, , stay bounded away from zero, then the measures Q(-16)
are absolutely continuous with probability one and these measures are sufficiently
smooth that condition (B) is satisfied. Moreover, condition (A) is satisfied for every
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density p for which D (p Il go) is finite. Therefore, Bayes estimators are consistent in
L' for any such density.

An advantage of this prior is that the posterior distribution is readily characterized

in terms of the same tree of partitions (see Fabius 1964, Freedman 1974). Conse-
quently, it is possible to readily compute the posterior mean estimate of the probabil-
ity of any set A in T.
Example 4: Some regressipn problems may also be addressed using the results of this
paper. Let response variables Y; be conditionally independent given inputs X; for
i=1,2,...,n. The conditional density function p(y | x) is assumed to be Normal with
unknown mean 6*(x) and known variance 62. By specifying a prior distribution for
the regression function 6(x), we obtain Bayes estimators for this conditional density.
To assess the convergence of the estimators using the techniques of this paper, it is
necessary to assume a distribution Py for the input variables.

Suppose a prior distribution is chosen which makes {6(x) : xeX} a mean zero
Gaussian process with covariance function R (x,y) = E(8(x)6(y)). It is a standard
fact that for each x, the posterior distribution for 6(x) given X",Y " is Gaussian with
conditional mean én (x) = X, Lw;(x)Y; and conditional variance a,(x). (We avoid
all the details, but do remark that the vector of weights w;(x) may be expressed as
w(x) = (R + 6X)"!r(x) where R is the nXn matrix with entries R (X;,X;) and
r(x) is the vector with entries R (X;,x) fori,j=1,2,...,n).

It is conjectured that for reasonable choices of the Gaussian process prior, condi-
tion (A) will be satisfied for all conditionally Normal distributions for which the
regression function 8*(x) is in L2(Py).

For each x, the Bayes estimate of the conditional density function p(y | x) (with
relative entropy loss) based on X",Y” is seen to be Normal with mean é,,(x) and
variance 6 2(x) = 62 + a,(x). Consequently the relative entropy loss of this estima-
tor is

(0°(x)=-8,x)N? 1, o2 1 o2

1
= = S D
2 oy 2lerm P72 %5

D(pCix)lp,(-1x)) =

Note that in essence this is the sum of a squared error loss function for the regression
function and a separate loss function L (62,6'2) = 1/2((52/62 -1 - log 02/62) for the
variance. Integrating this loss with respect to the distribution of X, we obtain the
relative entropy between the distributions Py y and ﬁx'y. (Here ﬁx.)’ has conditional
density p,(y!x) and marginal distribution Py). Taking the expected value with
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respect to the joint distribution of Y” and X" yields

(6" (X)-8,(x))*
E(D(15,)) = 5E - + ~E L(0%03(X))

Proposition 4 shows that whenever condition (A) is satisfied the risk E(D (p Il p,))
converges to zero in the Cesaro sense as n~—o. In which case, if 03(1) is bounded,

the mean squared error £ (6'(X)—é,, (X))2 converges to zero in the Cesaro sense.

Appendix

In this appendix we give an approximation Lemma for the relative entropy. It is
used to show that for reasonable priors condition (A) holds for all distributions P
which have finite relative entropy (with respect to a fixed reference measure). Let
(X,B,0Q) be a probability space and let L (Q,b) be the set of all measurable functions
f : X — R for which the Q—essential supremum of | f(x) | is less than or equal to b.
(Here we will use the topology of convergence in L 1(Q); of course for such uniformly
bounded functions, Ll(Q) convergence is equivalent to L?(Q) for all p > 0). Simi-
larly, let C be a class of measurable functions and let C (Q,b) be the set of functions
in C with essential supremum of the absolute value less than or equal to 4. In many
cases C(Q,b) is dense in L (Q,b). When X is the unit interval with the Borel set and
Q is Lebesgue measure (the uniform distribution), familiar examples include the class
of bounded continuous functions, the class of functions with bounded k th derivative,
the class of linear combinations of trigonometric functions, the class of polynomial
functions, etc. From any such class C with the uniform distribution, a class with arbi-
trary distribution function Q on the real line can be obtained by composition

C={f(Q&)):feC).
Fix Q and C and suppose that for some r 2 1, C(Q,rb) is dense in L (Q,b) for
all large b.

Lemma 17: If D (P 11 Q) is finite, then for any € > 0 there is a bounded function y in C
such thar

D(PIIP,) <&

where P, is a probability measure equivalent 10 Q with
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Thus the class of such tilted measures Py, for y in C is dense in the set of all proba-
bility measures for which D (P |1 Q) is finite.

Proof: The relative entropy is D(P 11 Q) = E log dP/dQ where E denotes expecta-
tion with respect to P. Define the bounded function p to equal log dP/dQ on the set
where llogdP/dQ |< b and to equal b times the sign of log dP/dQ elsewhere.
Given an arbitrarily small € in (0,1), choose b large enough that

dP
Ellogzll(“ogdmdg,z“<ke.
This choice of b ensures that
dP
Ellog— - pl<
og 0 p £
and
dP £
Plllog— 1> b)< —.
{Ilog a0 ) p

Let yin C(Q,rb) be such that '[ I p-yldQ < eze"br. (For the moment we just need
that this is less than ee~?). It follows that '[ | p—yldP is also small. Indeed,

[1p-yidp = [ 1p-y1 Z 4o

aQ
dp
< aflp-yldo + (b+rb)P{E> a}
- dP
< g+ (r+1)b P{logz> b)

< g+ (r+De

where a = e?. Now let dP = (e¥dQ)/c where ¢ = '[ eVdQ. The relative entropy of
P with respect to P, is

dapP

D(PIP,) = E log —=—
( v °F (e¥dQ)/c

E(log-%g—— y) + log ¢

< Ellog%‘- pl+ Elp—-wyl+logec

< (r+3)e+ loge.

It remains to bound log c. We show that ¢ = '[ e¥dQ is near one by using the fact
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that eV¥, eP, and dP/dQ are close to each other with high probability:

[evdo < [eP*ed0 + ™ Q(y-p > e}

rb
< “byet 4 E—[ |y-pl
(1 + e ®)ef + ej y—pldQ
< (1+eDef+e

< 1+ e 0-D 4 eg.

Thus log ¢ is less than e~ (-1 4 ¢e which is less than 3e if we require that b be
chosen sufficiently large. Consequently,

D(PIIPy < (r+6)e.

Thus there exist essentially bounded functions y in C for which D (P [l P\v) is arbi-

trarily small. This completes the proof of Lemma 17.
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