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SUMMARY

The risk of Bayes procedures (predictive densities) with Kullback-Leibler loss and the asymptotics of
the posterior distribution are examined for densities with Kullback neighborhoods assigned positive
prior probability. Necessary and sufficient conditions for consistency of the posterior distribution are
proved. Examples reveal that the posterior distribution can behave quite peculiarly, while, in contrast,
the cumulative risk of predictive densities has nice properties that can be used in advance of observing
the data to help choose the prior. The underlying reason is that, through the chain rule of information
theory, the cumulative risk equals the total Kullback divergence between a joint distribution in the family
and the Bayes mixture, which is controlled by local properties of the prior, chiefly, how much prior mass
is given to Kullback neighborhoods. In smooth parametric problems of dimension &, sample size N
and Fisher information I(#), a cumulative risk function of (k/2) log N + a{@#)+ constant is achieved
asymptotically by a prior which is proportional to |7(8)|/2¢~), an exponential tilting of Jeffreys’ prior
using a target risk function a(#). This prior gives mass proportional to e~ to small Kullback balls
around 8. A simple upper bound on cumulative risk is given by an index of resolvability which holds in
finite samples, and it is applied to problems in model mixing, nonparametric estimation, and neural nets.

Kevwords: PREDICTIVE DENSITY ESTIMATION; CUMULATIVE KULLBACK-LEIBLER RISK; INDEX OF
RESOLVABILITY; CHOICE OF PRIOR; ASYMPTOTICS OF POSTERIOR.

1. INTRODUCTION

In this paper we review connections between the choice of prior and the behavior of the posterior
and predictive distributions. Consistency of the posterior distribution is characterized. We focus
on the cumulative Kullback risk of predictive distributions and use it to motivate choices of
models and priors for parametric and nonparametric problems.

Concerning predictive distributions for a sequence of observations, the size ofthe cumulative
Kullback risk is shown to be controlled principally by the prior probability assigned locally to
small Kullback balls and is only secondarily affected by the nature of the likelihood process
outside of such balls. To achieve cumulative risk approximately equal to and not greater than
a(8) with a discrete parameter set one uses prior probabilities w(#) = ¢?), and to achieve
cumulative risk (k/2)log N + a{f)+constant for smooth models of parameter dimension %,
sample size N, and Fisher Information (#), one uses a prior proportional to |I(#)]}/2e~%®),
which gives mass proportional to e =% to small Kullback balls around 6. This cumulative risk
corresponds to an efficient individual risk sequence of k£/2n plus a summable remainder. The
cumulative risk bounds are shown to hold in general for each /V through an index of resolvability.

In contrast asymptotic concentration of the posterior distribution is a more delicate matter,
necessitating non-local conditions. An implication for Hellinger or L; neighborhoods of a
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density is that for the posterior distribution to asymptotically concentrate on such neighborhoods,
the prior probability of the set of densities with large variation must be exponentially small.

An example is giveni where positive prior mass is given to Kullback neighborhoods, such
that the time average Kullback risk of predictive distributions must tend to zero, however the
posterior distribution does not concentrate on Kullback balls. Recognizing that the predictive
density is the mean of the density function with respect to the posterior distribution, this example
implies that the predictive density is obtaining its accuracy by averaging across many bad models
rather than by posterior concentration. '

A related example shows that the Kullback risk can increase for some sample sizes, even at
parameter values given very high prior probability. It is the time average of Kullback risk that
is assured good behavior, through monotonicity of the index of resolvability.

Implications of the information-theoretic analysis for gambling, prediction, data compres-
sion, reference priors and model selection are discussed. Application is given to classification
and regression by neural networks.

Several main perspectives form the backdrop to our study of Bayes procedures, espe-
cially the work of Schwartz (1965) who revealed the role of unifermly consistent tests and the
Kullback-Leibler support of the prior in analysis of Bayes consistency, the work of Ibragimov
and Hasminskii (1973) on the information in a sample about a parameter, the work of Bernardo
(1979) introducing the reference prior, the work of Dawid (1984,1992) on prequential analysis,
the work of Rissanen (1984,1996) on predictive and mixture implementations of the minimum
description length principle, the work of Davisson (1973) and Shtarkov (1988) on expected and
worst case regret in data compression, the work of Haussler and his colleagues (1997,1998) on
cumulative risk in prediction, and the work of Cover et al. (1990,1996) on gambling and invest-
ment interpretations. My colleague Bertrand Clarke (1989) has shaped much of the thinking
about the asymptotics of the total Kullback risk of Bayes procedures, the asymptotic minimax
value, and the sequences of procedures that achieve it.

2. INFORMATION THEORY PRELIMINARIES

The Kullback-Leibler divergence between two probability density functions p{z) and ¢(z) with
respect to a reference measure (e.g. counting or Lebesgue) on the space of a variable X is equal
to the non-negative quantity D(p,q) = Eplogp(X)/q(X), where F, denotes expectation
with respect to the distribution for X with density p. When P and @) are the corresponding
distributions, we also denote the relative entropy by D(P, Q). It is equal to zero only if P = Q.

2.1. Average Regret
The interpretation of the Kullback divergence is the following. Suppose in advance of observing
a random variable X one.is to assign a probability density function ¢. The aim is to produce a
large value of g{ X ), at least in terms of expected logarithm. If X is known to follow the density
p, then the assignment g equal to p produces the largest expected logarithm as can be seen by
noting that the expected value of the regret (difference in logarithms) log p(X)/¢(X) is equal
to D(p, q).

If X follows some member of a family p(z|#), § € © of densities but the particular 8 is
unknown, then the expected regret using gx is D(pxg, ¢x ). [Here subscripts on the density
Px| or distribution Py 4 denote that it is for the variable named X and that it is indexed by ¢/; the
value of density at arandom X is denoted p{ X |¢#) and the subscripts are dropped when clear from
the context.] If we assign some distribution W on 8, then the choice of marginal distribution (or
mixture) p(x) = [ p(x|6)W (d8) minimizes the average value of D(pyx 4. ¢x ) as is evident from

the chain rule representation of | D(px|g,qX)W'(d6) as [ D(pxg.px )W (dd) + D(px.4x).
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The mixed density p(x) is also denoted by m(z), or p*)(z) when we want to make clear the
dependence on the choice of the prior. The minimized average value is equal to the divergence
D(Fy x, Py x Px) between the joint distribution for § and X and the product of the marginals
when Py = W and this average divergence is known as the Shannon mutual information. '

2.2. Chain Rule
Suppose a sequence of ranclgm variables X1, Xy, ..., X is assigned joint probability densities
p(X1,...,Xn) and g(X3,...,Xy), which are written as products of conditional densities
nN:1 p(Xp) X" 1) and H,]:’:l g(X,| X" 1). The chain rule yields

N
p(XhXZa'-'aXN) p(X’n|Xn_1)
E log—0—F~"—"——"—< = Ep,,, log —orer—ro
PxN %8 4(X1, X, -, Xw) 2 PPy OB g XX
where X" = (X1,...,Xy) and for the first term in the sum there is no conditioning. Thus
the total Kullback divergence between the joint distributions is a sum of expected divergences
between the conditional distributions

N
D(PXN:QXN) = ZEPXn—lD(PXMX"—l’Qanxn_l)'
n=1

In particular comparing the expected cumulative divergence between distributions for a
sequence with and without use of a parameter § we have the total divergence

N-1
D(Plegv PxN) = Z EPangD(PXn+1|X”,0u PXn+1|X"')
n=0

expressed as a sum of the Kullback risks of the predictive densities p(Xp41|X™). As above,
suppose a prior W is assigned to f. Then the mixture p(X V) = [ p(X™V|8)W (df) minimizes
the average value of D(Py N Py ) and this choice coincides, for each X™ with the choice
of predictive density p(Xn41|X™) = [ p(Xpt1|X™, 6)W (d6) X™) minimizing the average of
D(Px, alxne Px | xn) with respect to the corresponding posterior distributions W (6| X™)
forn=0,1,...N - 1.

It is interesting to note that many other loss functions, such as Hellinger or L1, lead to
different estimators of the distribution that would not be the Bayesian’s conditional distribution
for X, 11 given X™.

2.3. Operational Interpretations

Before continuing further with the analysis we hasten to give operational meanings to the
predictive densities p(-[X™, 8) and p(-|X™) for Xp+1. We do not require physical meaning of
the parameter, in particular, it is not something to be learned. These operational meanings are
perhaps most clear in gambling and data compression contexts, but I will first abstract a general
predictive interpretation.

We can think of 8 as labeling a family of individuals that predict in certain ways. For
each time 7, once we have observed X" = (X1, X3, ... Xy), the strategy 4 assigns a function
p(-| X1, X3, . .. Xn,, 0) that sums (or integrates) to 1 across possible values for the next variable.
For each strategy the aim is to realize large values for p(Xp11/X™, 8) and we will keep track of
performance through the cumulative logarithm, summing over n less than V. As we have seen,
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given a value of 8, the chaice p(X,,+1|X™, 8) optimizes the expected logarithm if X, ;1 has that
distribution. We think of these predictive densities merely as prediction strategies — we do not
necessarily believe any one of these predictive distributions generates the data - nevertheless, we
can admit that the individual predictors are behaving sensibly should they possess such beliefs
as to the conditional distribution. The collection of prediction strategies for § € © provides a
target class of performance logp(Xy,..., Xn|0) = 25;01 log p(Xn41|X™, 6) on sequences
X1,...,Xn. Weallow ourselves to do prediction by means of predictive densities p(-| X™) that
are outside the target class, but our aim is to have one procedure (without dependence on ) that
does well in comparison with every member of the target class.

Each strategy corresponds to a distribution on X1, Xs, ..., Xy with joint density p(X1, X+,
... X~) (summing or integrating to 1 over all X V) which is given as a product of the predictive
densities p(X,,11/X"™). The cumulative regret of our strategy compared to that achieved by
strategy € is thus

N-1
p(Xl?XQN"vXNla) _ Zl p(XTH—l[Xnaa)
= 0

lo —_—
& p(X15X27"'aXN) 8 p(XTH'l{Xn)

n=0

We are particularly interested in the regret achieved by Bayes predictive densities. The justifica-
tion of this interest arises in part by the Bayes optimality for average expected regret (Kullback
risk) discussed above. Though, as I have occasion to briefly report, there are recent justifi-
cations based on examination of the worst case value of the regret maximized over choices
of X1, Xq,..., Xn (see e.g., Shtarkov 1988, Barron, Rissanen, and Yu 1998, Xie and Barron
1998, Cover ef al. 1990, 1996), here I will be content to given a more classical story based on
expected regret.

The problem arises as to the basis for choice of the prior distribution on #. Here 8 indexes
individuals who predict according to certain strategies and it is not clear that there is sense in
this setting to the idea of a subjective choice of prior probability for 6. Indeed, one can call into
question what would be meant by statements concerning the probability of sets of individuals
or strategies. The point here is that, like other objects, the prior W arises operationally in
constructing strategies for prediction. It is advocated that the prior be chosen to shape the
relative performance of the resulting predictions as measured by the expected regret or total
Kullback risk. We return to this point in Section 3.

2.4. Data Compression

Suppose for each X, there is a discrete set of possible values. From information theory (see’
e.g. Cover and Thomas 1991), there is a uniquely decodable binary code for Xi,..., Xn
for each choice of distribution ¢(X7,..., X)) that sums to not more than 1 for which the
length of the codeword for (X1,..., Xy) is equal to log1/q(X1,..., Xy) rounded up to
an integer. Ignoring the integer constraint (which is merely a small numerical nuisance for
large N) we see that in accordance with the principles in Section 2.1 the minimal expected
codelength with # given is achieved by the code based on the distribution p( X1, ..., Xx|0) and
the minimal average expected regret (code redundancy) is achieved by using the Bayes mixture
p(X1,...,Xn) = [p(X1,..., Xn|)W (dF) (Davisson 1973). So we have the same problem
as discussed above. In particular the redundancy of the Bayes mixture is the same as the total
Kullback divergence between p(Xi, ..., Xn|6) and p(X1, ..., X ). Here the chain rule has
an interpretation in terms of conditional description lengths for X,,+1 given X1,... X,.
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2.5. Gambling

Suppose that starting initially with one unit of wealth, a gambler is asked at each time n to
distribute fractions ¢(z[X1,. .., X,) of the current compounded wealth on the various possi-
bilities z for the winning outcome X, (e.g. horse race) at time n + 1. Again the meaning
of (x| X1,..., Xn) is operational, it is revealed by the gambler’s actions, and its choice is
entirely up to the gambler, subject to the condition that it is non-negative and sums to one. Ifthe
winning outcome provides O(X,,11|X1, - . -, Xp,) dollars for each dollar wagered, then the total
wealth at the end of N races equals Sy = Hln\:ol G(Xn11|X™)O(Xp41/X™) which simplifies
to Sy = q(X1,...,Xn)O(X1,... Xn), where q(X1,..., Xn) = [12 ¢(Xns1|X") and
the overall odds O(X, .. ., X ) is the corresponding product of odds for individual plays. See
Cover and Thomas (1991). The desire of the individual gambler is to have produced a large
value of (X1, ..., Xy) on the sequence that occurs.

Given a family of gambling strategies p(X,+1/X™,6) indexed by gamblers ¢, each re-
ceives wealth Sy(0) = p(X1,...,Xn|0)O(X1,... Xy) where again p(X;,..., Xn|0) is
non-negative, sums to 1, and has operational meaning as the product of fractions of wealth
gambled on the winning sequence of outcomes. We let these strategies form a target class for
our gambling strategy. We gamble according to a sequence of predictive densities p(Xn 1/ X™)
and achieve wealth S;“\?t“al =p(X1,...,XN)O(X1, ..., Xy). Wewantto chose a strategy that
has control over the wealth ratio A‘S'N(G)/L‘S'Ja\,cmal = p(X1,...,Xn|0)/p(X1,..., XnN), either
for all sequences or in the sense of the expected value of the log wealth ratio (regret). Once
again the Bayes strategy for the log ratio distributes wealth according to p(Xy,..., Xy) =
[p(X1,..., Xn|0)W(d9). This can be realized actively by gambling fractions of wealth ac-
cording to the Bayes predictive distributions p( X, 1/ X™).

There is a passive implementation of the Bayes gambling strategy that gives the most direct
operational meaning to the prior W. Before the first race we distribute our wealth among
the family of gamblers, allocating W (df) to each gambler 6 to act as an agent on our behalf,
Each gambler ¢ compounds this initial wealth to yield W (d#)p(X1, ..., Xn|0)O(Xy, ... Xn)
and summing across the agents the total wealth returned to us at the end of the N plays is
Jp(X1. ..., Xn|0)YW(dO)O(Xq,. .., X ). This passively achieved wealth coincides exactly
with the wealth achieved by gambling sequentially using the Bayes predictive distribution. The
meaning of the prior probability W (A) for each set A is the fraction of initial wealth entrusted
to the gamblers with strategies 6 in A. Following Cover et al. (1990, 1996) one may chose W
so as to achieve certain wealth objectives, e.g., uniformly valid wealth ratio bounds (or regret
bounds) uniformly over all outcome sequences and strategies 6.

3. INFORMATION ASYMPTOTICS AND IMPLICATIONS FOR PRIOR CHOICE
In advance of observing the data, we know the expected regret for each possible value for 6,
which we have noted to be the total Kullback divergence

p(X1,Xo,..., Xnlb)
D(Py - P =Fp . 1 .
(Px;..xylos Pxp,xy) PN '8 L X X

The joint density assigned by the Bayes mixture with prior density w(f) is equal to

p(_Xl.XQ. PN ,XN) = /p(Xl,XQ, .. XNIH)w(H)dH

For smooth parametric families, such as under conditions given in Clarke and Barron (1990)
in which the X; are conditionally i.i.d. given 6, Laplace approximation of this integral reveals
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that asymptotically the expected total divergence satisfies

N HORE
D(Px,,. xnio Pxi,xny) = g log 5—— +log %()0")‘— +o(1)
for parameter values internal to the parameter space in R*. Note that such a cumulative risk
corresponds to an individual risk ED(Px|g, Px|xn) of k/2n plus a summable remainder. De-
tailed second order properties of the individual Kullback risk are in Hartigan (1998). The level
k/2n is shown to be asymptotically efficient in Barron and Hengartner (1998).

Let’s express a desired form of the Kullback risk through a function a(#). To achieve total
Kullback risk of the form a(#) + Cy plus an asymptotically vanishing term, where Cy is a
constant (depending on the sample size N and the dimension & but not on ), we see that we
are compelled to choose a prior of the form

w(t) = 1)V /e

where ¢ = [ |1(8)|}/2e=20)dg. This is the Jeftreys prior |1(8)]'/? exponentially tilted by the
desired risk behavior a(#). The interpretation, that will be illuminated further below, is that the
prior assigns mass to small Kullback balls that is proportional to e~4(6).

The moral is that it is not the Fisher information, per se, that controls the total risk but rather
how the mass is distributed to the Kullback balls.

With a(6) constant, we have the locally invariant (Jeffreys) prior that gives equal mass to
small Kullback balls and total risk that (except at boundary points) is in agreement with the
asymptotically minimax value (k/2) log % +log [ [1(8)}"/2 + o(1) established in Clarke and
Barron (1994), in concert with Bernardo’s reference prior interpretation. To build in greater
accuracy for certain parameter points we assign a smaller value of a(4) for such points and
tolerate a larger cumulative risk elsewhere.

We see that the desired aim of total risk of the form a(#) + Cny + o(1) is possible only for
a(#) for which the normalizing constant ¢ = | |1(6)|/2e~%®)d4 is finite. This requirement is
made because, unless the prior is proper, so that p(X ™) sums to not more than 1, we violate the
requirements of the data compression, gambling, and prediction interpretations.

For discrete mixtures p(XV) = S, p(XN|6)W(6), in the case of distributions Pleg

which for distinct pairs of  # 6 extend to mutually singular distributions PXM@ and Py~
on infinite sequences (e.g. through assumption of ergodicity), the asymptotics of the regret is

p(X1,...,XN|6) 1.
log ——"——"——* =lo + o(1).

Here o(1) tends to zero Pxoo|g almost surely by a standard martingale argument (demonstrating
that 35 40 p(XN|0)YW (8)/p(X™N|0) tends to zero). Obtaining convergence of the expected
logarithm is somewhat trickier (see e.g., Clarke and Barron 1994, Thm. 2, which assumes that
a Kullback ball of small positive radius reduces to the singleton 6).

Nevertheless, for every N, uniformly over all X1,..., Xy, one has, by throwing away the
terms in the mixture not equal to 6,
X100, Xn|6
Io P( 1: s AN I )

< lo
& p(Xn, . Xy) — CW(e)

and hence the total Kullback risk is bounded by
1
W)

D(PxN‘gvpr) < IOg
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Thus in the discrete parameter case we also have a direct connection between a desired
bound a (@) on the total risk and the choice of the prior W (#) = e~%9), where unlike the smooth
continuous parameter case there is no Fisher information term. If # is an isolated point in the
Kullback sense, then ¢~(?) is the prior probability of a Kullback neighborhood.

The common answer in both the continuous and discrete frameworks is that a prior is
assigned to Kullback balls that is proportional to e~%9) to achieve total Kullback risk of shape
a(0).

4. RESOLVABILITY

Not only is the total Kullback risk more directly suited, to the applications discussed above,
than is the individual Kullback risk, but also we have the good fortune that it is easier to develop
suitableupper bounds forit by taking lower bounds on the mixture m(X ™) = [ p(XV|0)W (d6)
in which we restrict the integral to convenient sets in the vicinity of hypothetical parameter
values. This leads to a bound we call the index of resolvability.
‘We discuss the resolvability bounds first in the context that the random variables X3, X, . . .,
Xn given 6 are conditionally i.i.d. Suppose we have a family of densities p(z|6),0 € ©. If we
use a prior probability distribution W, the Bayes estimators are the Bayes predictive densities
Pu(z) = p(xlX™) = [ p(x]|0)Wyxn(d). If hypothetically we consider the possibility that
"Xi, X, ..., X are independently distributed according to some P with density p(z) (which
may or may not be in the family), the chain rule gives Cesaro or time average risk

N-1
= 1 . 1
Fn(P) = ~ _;_ ED(p,p,) = ND(PXN’MX ).

n=0

As we shall see from a simple bound this time average risk is made small for any P in the
information support of the prior.

The information closure of the family { Px s} consists of those distributions P for which
the information neighborhoods Bsp = {6 : D(P, Pxpp) < (1/2)6%} are non-empty for all
0 > 0 and the information support of the prior consists of those P for which the information
neighborhoods are assigned positive prior probability W (B;s p) > 0. The Bayes estimator is
said to be information consistent at P if 7 (P) tends to zero as N — co.

The size of the risk for each /N depends on how much prior probability is given to the
information balls. Indeed, the following bound holds,

, . 6F 1
mv(P) S min{> + - log1/W(Bsp)}-

The right side of this inequality is here called the index of resolvability of the distribution P by
the mixture of distributions with prior W. An alternative expression for the index of resolvability
is
1
i D(F,P —logl/W(B)}.
min{mmax D(P, Pxip) + 1 log 1/W (B)}

This definition is an extension of the resolvability definition given in Barron and Cover (1991)
in which W was discrete and the minimization was restricted to singleton sets {6} (there
L(6) = log 1/W {6} was interpreted as an arbitrary codelength for the parameter in a two-stage
rather than mixture code for the resolution of X %),

We note immediately from the resolvability bound that information consistency holds for
any distribution in the information support of the prior. Note also that the index of resolvability
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is non-increasing in N. The rate at which the index of resolvability tends to zero depends solely
on how much prior mass is given to Kullback balls around P for various radii §.

The proof of the resolvability bound on cumulative risk follows from noting that for any set
B the mixture is lower bounded by m(X ™) > W(B) [ p(X"|9)W (d6|B) so that

p(X") p(X")
Eplog ) < Eplog [ p(XN|)W (d6] B)

+1 !
OgW(B)'

Then use convexity to obtain the further bound

1
/BD(PXN,PXN!Q)W(dﬂB) +10g s

which is not greater that the resolvability using the set B, that is,

1
max D(Pyn, PXN|9) +log WB)
Dividing by N and optimizing over B produces the claimed bound. Steps in this proof are
from Barron (1987) where the point was information consistency for all P in the information
support of the prior. Use of the bound to express rates of convergence is in the technical report
of Barron (1988). The name resolvability is more recent.

Thus the cumulative accuracy of Bayes estimators depends only on the local behavior of the
prior for sets of @ with P9 near the distribution Py followed by the data. This simple conclusion
is to be contrasted with the behavior of the posterior distribution which to asymptotically
concentrate on a neighborhood of Px requires also global conditions as in Section 8 below.

Allowing dependence in the models, the same bound holds for the Kullback rate 7y (P) =
(1/N)D(Py N, M, n) (the time average Kullback risk of prediction), provided the information
neighborhoods are defined more generally by

Bs(Pyn) = {8 : (1/N)D(Pyn, Pynyp) < (1/2)6%}.

An alternative information-theoretic development of a similar bound on the total Kull-
back risk D(Pyn, M) is obtained via chain rule expansion of the total divergence be-

tween the joint distributions Pyx X Wg(N) and P ngWg where the approximate posterior

—D(P_ P .
WB(N) is defined to have density e (Pxv Py /Cn with respect to the prior Wy. The
chain rule yields D(Pyn, Myn) + Ep,  DIWS"), Wy n) = log1/Cy where Cy =

—D(P P
Je Fxv Fxv) W (df). Thus as shown in Barron (1988) and Haussler and Opper (1997) the

—D(P NP
total relative entropy risk D(Py n, My, ) is bounded by the quantitylog 1/ [ e Py -Pavyg)

W (d9) (interpreted as a “Razor” in Balasubramanian 1997). Restricting the integral to a neigh-
borhood, it is seen that the bound improves somewhat on the previous bound ming{(N/2)4? +
log1/W (Bs,p)}-

5. PARAMETRIC RESOLVABILITY BOUNDS

Suppose we have a finite-dimensional parametric family of densities p(z|6), 8 € © C Rk
and that Xy,..., Xy are i.i.d. according to p(z|6*) where 6* is in the interior of © and
suppose the divergence D(6",8) = D(Px g+, Px}p) is twice continuously differentiable in 6
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at 8* with positive definite Hessian Jp g. Let Jg« locally dominate the Hessian for 6 with
(Px]e* wa) (1/2)(52 so that for such 6,

D(Pxg+, Px|p) < (<9 )7 Jge (6 — 67).
Then the information ball Bsg« = {6 : D(Px g+, Pxje) < (1 /2)82} contains the ellipse

Ssgr = {0: (60— 6T Tpe(6 - 6%) < 6%},

Suppose also that the prior- W satisfies a near-absolute continuity property near 8%, namely
that there exists a positive wy+ such that the prior probability of the ellipse Sj g« is at least wg«
times its volume (as in the case of a prior with a density w(8) locally bounded below by wy+).

Now the prior probability of the information neighborhood satisfies

W (Bsgr) > W(S5gv) > wee|Jpel ™ ug6*

where v denotes the volume of the unit ball in R, Consequently, we have a bound for
(N/2)6% + log 1/W (Bjs g+) which is optimized at §% = k/N, yielding

k.. N &k -
D(Pwa*!MxN) < 3 log? + 5 + log (|J9*|1/2/Q€*) +log 1/vg.

Thus, solely under a local quadratic behavior of the Kullback divergence, we have an upper
bound that holds for all N with the desired form of dependence on 6, although with a somewhat
larger constant than achieved asymptotically (under more stringent conditions). As before, the
shape a () + constanty for the cumulative risk bound is arranged approximately by the choice of
prior density w(6) proportional to | Jy|}/2e~%(6), where the Hessian of the Kullback divergence
plays the role of Fisher information.

Similar bounds for dependent data models are possible as long as there is a local quadratic
behavior for (I/N)D(PXN[‘Q*, PXN|9)'

‘6. NONPARAMETRIC RESOLVABILITY BOUNDS

There are general information closure properties for some priors on infinite dimensional families
of densities given in Barron, Schervish and Wasserman (1998) building on the developments
in the technical report Barron (1988). The typical result involves some reference density py
and shows that all densities p with finite D(p, pg) are in the information support of the prior,
yielding resolvability tending to zero, and hence the Bayes procedure is consistent for such
target densities, where consistency is taken in the sense of time average Kullback risk tending
to zero.
One may also use resolvability to examine rates of convergence.

6.1. Minimax Rates
The resolvability can be used to identify minimax optimal rates for density estimators as in Yang
and Barron (1998b) in terms of metric entropies. Briefly, suppose a class of density functions F
can be covered by a net of not more than NV = Nj densities, say q1, . . . , g, such that for every
pin F there is a ¢; with D(p, ¢;) < 6%. The smallest such net yields the Kullback §-entropy of
the class F as H; = log Ns. Put a uniform prior on the net. Then using singleton sets for B
we get an upper bound on the resolvability of

1
_ < mi 9 2H
v(p) < min{8? + 1 H}
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uniformly over all densities pin F. In particular we have the bound 7 (p) < 26% when &y
is chosen such that 6% and (1/N )Hs,, are the same. As shown in Yang and Barron (1998b)
this bound is tight. There resolvability is also used in the lower bound to control the mutual
information that arises from application of Fano’s inequality.

Barron and Hengartner (1998) use a resolvability calculation to show that the subset of
densities in a given class that converge at faster than the minimax rate have a sparse cover
(smaller order metric entropy).

6.2. Model Mixing

A practical use of the resolvability in nonparametric settings is to address the efficacy of model
mixing. Theideaisto take advantage ofa sequence of parametric families p(z |0, m), O € O
for asequence of model indexes m € M. Rather than performing model selection (for which the
constants in general risk bounds can be quite horrendous and the empirical process conditions
quite stringent, see Barron, Birgé, Massart (1998) or Yang and Barron (1998a)), we instead use
a Bayes mixture strategy.
For each family we have prior probabilities p(m), prior distributions W, (dfp,) condition-
ally for each m, and resulting mixtures p(X"|m) = [ pm(X™|0m, m)Wn(dby). The overall
‘mixture is p(X") = 3> p(m)p(X™|m). To relate the risk of the overall mixture to the risks
of the individual mixtures, simply lower bound the sum by individual terms within it. We find
that for every P)*( - the Kullback rate satisfies the oracle inequality

(I/N)YD(P} w, Pyn) < win{(1/N)D(Py n, Pyn ,,) + (1/N)log1/p(m)}.

Thus model mixing has the adaptation property of performing nearly as well as if the best
resolving model m,, were known in advance.

Though this oracle inequality for model mixing is useful, I give two qualifying remarks.
One is that it is for the Cesaro average of Kullback risks that we have defended here, not for
the individual risk. Secondly, bounding the sum by individual terms in it does not reveal what
additional advantages there may be to mixing a number of models which may have roughly
equal contributions p(m)p(X"|m).

7. SOME SURPRISES

As we have seen the Cesaro time average Kullback risk of Bayes procedures is tracked by
the non-increasing index of resolvability. Moreover, the Bayes prior average of the Kull-
back risk must also be non-increasing. Perhaps surprisingly, the individual Kullback risk
ED(PXn 4l Py, 4l xn) can increase for some 7, even at a 6 given a large prior probabil-

ity.
7.1. Increasing Kullback Risk

We give a simple example with n = 1, which also serve as a precursor to an example of
inconsistency given below. Let X and X5 be independent with a density of height 1 uniformly
distributed on the interval [0, 1) conditionally given & = 0. For § = 1 and § = 2 let the density
be of height 2 on the subintervals [0,1/2) or [1/2,1), respectively. Let the prior assign equal
positive weight to @ = 1 and = 2 and let it assign weight W to § = 0. Now with no data, the
predictive distribution for X7 is the mixture, which is seen to be uniform on [0, 1). Thusaté = 0,
the Kullback risk is D(PX1 i6: Pxq ) = 0. Butthe joint mixture density for X1 and X is of course

not uniform (it gives height W + 22(1 — W)/2 when X; and X are in the same subinterval
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and height W when they are in distinct subintervals) and thus ED(Px, g, Px,x,) > 0. Ina
set of prior probability W arbltranly close to one we attain smaller Kull?)ack risk w1th no data!

7.2. Inconsistent Posterior Distribution

In a similar manner, mixtures of densities concentrated on m,/2 out of m. intervals can closely
mimic the uniform density for sample sizes n sufficiently less than mm, in which case the predictive
density is accurate but the posterior distribution gives collectively large weight to densities far
from the uniform. Distributing a prior on such collections of densities for a sequence of values
of m leads to a proof of posterior inconsistency, even though, since positive mass will be given
to Kullback neighborhoods, the predictive density is consistent in Cesaro average of Kullback
risk.

Consider the densities that put height 2 on subsets of size m/2 of the cells [0, 1/m),
[1/m,2/m),..., [(m —1)/m,1). Given m let the prior put equal mass on each of these (m"/lz)
densities, and let prior mass p(m) be put on the even integers m = 2,4, . .. for any decreasing
sequence p(m) for which p(m} is not exponentially small in m and 3, p(m) = 1/2. Every
one of these densities has L; distance from the uniform equal to 1 (and hence not a small distance
from the uniform in several other measures of divergence). We call this set of densities Fp, .
The remaining mass 1/2 will be put on some densities close to the uniform that we specify later.
Given a density our model makes X, X», ... conditionally i.i.d.

Given m, let the random variable Y be the number of the cells of width 1/m that are
occupied by the sample X1, X»,..., X,. For each choice U that is a union of m/2 of the
m cells, the corresponding density for X1, X5, ... X, has height 2" if the sample is in U and
height 0 otherwise. There are (mr72—_Yy) choices for I which cover the sample. Consequently,

for a given m, the equally weighted mixture of these densities is 2" (m"/l;_yy) / (nj2)- The ratio
of binomial coefficients simplifies to a product of Y < n fractions each of which exceeds
(m/2=Y)/m > 1/2 — n/m, so given m the mixture density is at least

2"(1/2 ~n/m)" = (1 — 2n/m)".

This bound holds uniformly for all X7, Xy,... X, for m > 2n. The mixture over m takes
the sum of these weighted by p(mm) which will be at least as large as at a particular m,,. Now
since limp,(1/m)logp(m) = 0, there exists an m, > 2n with m,/n tending to infinity
sufficiently slowly that lim,(1/n) log p(m») = 0, i.e., p(mn) is not exponentially small in n,
and ¢, = (1/n)log p(my) + log(1 — 2n/my,) tends to zero. Consequently, the mixture over
all of the above densities is at least

Plimn) (1= 20 /mp)" = &0
which is not exponentially small. To ease the subsequent analysis let J, be a positive and
strictly decreasing sequence not smaller than €, arranged such that §, -— 0 and the difference
Ty = 8, — €y satisfies 7,,1/n/ loglogn — oc.

The remaining step to devise an example of inconsistency of the posterior is to distribute
the remaining 1/2 of the prior over some densities close to the uniform in the Kullback sense,
so that the mixture over these is also not exponentially small, but arrange that this part of the
mixture is eventually below e~"" with high probability. This we accomplish by considering
the family of tilted densities (8 + 1)z on (0, 1) with 8 > 0, which we write in the exponential
family form e~fePi+1og =) where the quantity in the exponent 1 + log = has mean zero when z
is uniformly distributed. Here 6 = § — log(1 + /) is a one-to-one correspondence for positive
¢ and 3. The joint density for X7, X, ..., X, for given 6 takes the form exp{—n# + 4(#)S, }
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where S, = Y7 (1 +dog X;). This family includes the uniform density when 6 = 0 and
densities with # near zero are close to the uniform density in the Kullback sense.

We assign part of the prior (of total mass 1/2) to live on the parameter # > 0. Here is
one device to achieve our aim of positive mass in neighborhoods of # = 0 while maintaining
a relatively small value of the mixture. Let &, for 7 > 0 be a continuous strictly decreasing
function with d at least 1 such that 6, matches the sequence &, given above on the integers and
let g(#) be its decreasing inverse for an interval of values of § including (0, 1). Set the prior
density to be proportional to e=9() on (0,1) with normalizing constant ¢ = fol e=90), Now
by monotonicity g(6)(8 — 8) is not less than g(6)(9 — ), so setting 6 = &, and choosing n
large enough that &, is less than 1 we deduce that g(6) + nf > nd, forall 0 < § < 1. The
contribution to the Bayes mixture from these densities is (1/c) fol exp{—g(6) —nb+3(6)S,}db
which for all large 7 is less than (1/c) exp{—nd, + (S,)" 51}, where (1 is the constant for
which 8 — log(1 + 8) = 1 and (-)* denotes the positive part.

Now the ratio of the mixture on Fp,g divided by the mixture of the rest is at least

c exp{nra — (S,)" 61},

which tends to infinity almost surely for X7, X3, ... X,, independent uniform random variables
by the law of the iterated logarithm applied to S,,. Consequently, the posterior probability of
the set of densities F,4 satisfies

P(}-bad|X1,X2, . Xn) —1 a.s.

This failure of the posterior to concentrate asymptotically on neighborhoods of the density
does not preclude the ability of the predictive density (the posterior mean density) to be accurate.
It also does not preclude the asymptotic concentration on weak neighborhoods of the distribution.

From the analysis above we can say somewhat more. Given 0 < € < 1 let Fr,, = {Q :
2 Aenm |1P(A) — Q(A)| > €} be the set of distributions that have 7,,,-variation distance from
the uniform distribution P of at least €, where 7, is the partition into m equal cells. Then
for mn/n — oo the posterior asymptotically concentrates on complements of 7, -variation
neighbothoods in the sense that P(Fr,,, | X1, X2,... X,) — 1 as. As we shall see, that is
as far as we can push it, for when m,/n is bounded the posterior will live asymptotically on
g -variation neighborhoods.

The above analysis improves on the counterexample in Barron (1988) in that here the prior
is fixed and does not change with n. It improves on the analysis in Barron, Schervish, and
Wasserman (1998) in that they obtained the indicated failure of the posterior only for m,, of
order at least n2. Also here we get that the posterior probabilities of the bad sets tend to one,”
not just that they fail to converge to zero.

8. CONSISTENCY OF THE POSTERIOR DISTRIBUTION

In this section we illuminate general aspects of the asymptotics of posterior distributions. Sup-
pose we assign a model Pyns for the distribution of data that is to be observed, indexed by
a parameter § in a parameter space to which we are to assign a prior distribution W. To
assess the anticipated effect of a choice of a model and prior, we ask for each 6* what sets
A to expect the posterior distribution P{€© € A|X™} to concentrate on asymptotically if the
data should happen to follow Pxnjg+. We will assume that the model distributions have joint
densities p( X ™|#) with respect to some reference measure. We shall consider only sets A and
priors W for which a good local property of the mixture is assured, namely that in probability
f4p(X™|0)W (db) is not exponentially smaller than p(X™|6*). That is, for every € > 0, the
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probability that [, p(X™|6)W (df) is greater than e "“p(X™|6*) converges to one, or what
turns out to be equivalent, the sequence (1/n)log p(X™|6*)/ [, p(X™|0)W (d9) tends to zero
in probability. For this local property to hold it is sufficient that A include Kullback balls around
6* to which W assigns positive prior probability for each » > 0. We characterize for which of
these sets satisfying the local property does the posterior probability P{© € A[X1, X9, ... X}
converges to one, exponentially fast, in probability. Let A® denote the complement of A.

Theorem: Suppose A satisfies the indicated local property for the mixture with prior W.
Then there exists rg > 0 such that P{© € A°| X"} < e~ ™0 with probability tending to one,
ifand only if A® can be split into two sequences of sets, say By, and Cy,, such that there exists
r1,72 > 0 with an exponentially small W{© € B} < e~ ™1 and there exists a critical set
Sp with P{(X"™) € 8p|0%} converging to zero and having uniformly exponentially small
probabilities of error in a test against Cy, that is, supgcc, P{(X™) € 5|6} < e7™2.

We remark that the above result also holds if A = A, is allowed to depend on n (while
retaining the local property). It also holds if we ask for asymptotics when the data follow a
density p*(X™) that is close to the family in the sense of satisfaction of the local property that
f4p(X™|0)W (d6) /p*(X™) is not exponentially small in probability, in which case one writes
p*(X™) in place of p(X™|6*) above.

Thus consistency of the posterior distribution requires global conditions on model and prior.
The prior probability of a set of “bad” models, outside which there is a uniformly consistent
test, must be very small.

The above Theorem, proved in the next section, is an extension of an result of Schwartz
(1965), who showed that existence of a uniformly consistent test against A€ is a sufficient
condition for consistency of the posterior in the case that the local property holds. The result
given here is alluded to in Barron (1986, 1989) and Barron, Schervish, and Wasserman (1998),
but the proof was unpublished.

The necessary and sufficient conditions are developed to deal with the phenomenon that
there does not exist a uniformly consistent test against the complement of a ball in any of
the usual “metrics” for densities such as Ly, Hellinger, or Kullback-Leibler (Barron 1989).
In smooth parametric cases one can be rescued by a local equivalence of Kullback-Leibler,
Euclidean, and weak convergence topologies (the so-called “soundness” condition in Clarke and
Barron 1990). However, to deal with nonparametric settings one needs for posterior consistency
to carefully build in prior negligibility of the set of distributions that have a high degree of
non-regularity. Relevant to these considerations is the result in Barron (1989) in an i.i.d.
setting that for any sequence of partitions 7, there exists a uniformly consistent test (with
uniformly exponentially small probabilities of error) in a test between a distribution P and the
set {Q : ) ser, [P(A) — Q(A)} > €} of distributions in the complement of a 7,,-variation if
and only if an effective cardinality of 7, is not of order larger than O(n), where 7 is the sample
size. Armed with this characterization, one can for instance take the case of densities on the unit
interval and 7, the partition into n equal width intervals, and for each density ¢ let ¢r,, be the
corresponding density that is piecewise constant on the cells in the partition. If for each € there is
exponentially small prior probability of the set of irregular densities g with ||¢g — gr,,||1 > €, then
the posterior distribution asymptotically concentrates on the L; neighborhood of any density p*
for which the prior assigns positive mass to Kullback neighborhoods.

Examples of models and priors that satisfy these consistency conditions include infinite
order exponential family models with certain decay rates on the distribution of the parameters,
priors that make the density function the normalization of the exponential of a Brownian motion
or certain other Gaussian processes, and certain prior tree models for recursive assignment of
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probabilities to cells in a refining sequence of partitions (Barron 1988, Barron, Schervish, and
Wasserman 1998). In each of these cases one obtains consistency for all p* that have finite
Kullback divergence from a reference (e.g. iniform) measure.

9. PROOF OF THE CONSISTENCY THEOREM

The proof of the consistency theorem in the previous section is based on the following two
lemmas that we extract from the technical report Barron (1988). In accordance with the nota-
tion there, we let m(X") = [ p(X™|0)W (d9) denote the mixture density and m(X", A) =
J4p(X™|0)W (d6) the restriction of the mixture to sets of parameters A. The posterior distri-
bution is W (A|X™) = m(X", A)/m(X") defined for X™ with positive m({X"). The Theorem
does allow the models, the parameter set ©, and the prior to all change with n, though such
freedom is outside standard Bayes practice and not permitted in our examples, so we will not
add a subscript n to W and ©.

To prove that W(A4°|X") = m(X™, A°)/m(X™) is exponentially small with high prob-
ability when X" follows a density p*(X™), we follow the usual tactic as in Schwartz or
Berk (1966,1970) to demonstrate that m(X™, A°)/p*(X™) is exponentially small and that
m(X™)/p*(X"™) is not. The latter is a condition called merging of M™ and P" in Barron
(1986, 1988) and since m(X™) = m(X™ A) + m(X", A°). it is akin to (and in particular
implied by) the local condition that m(X™, 4) /p*(X™) not exponentially small with high prob-
ability. We use P* to denote the hypothetical distribution on X" at which we ask whether the
posterior concentrates on sets A, (usually taken to be a sequence of neighborhoods of P*).

The lemmas use the following conditions for sequences of parameter sets 4,, By, Cp, with
Ap U B, UCy = © and constants ay, by, cp.

(a) Merging: lim,, oo P*{m(X™)/p(X™) > an} = 1.
(b) Prior negligibility of By: W (B,) < by,.
(c) Existence of a uniformly consistent test against C,: that is, for some measurable set S, of

X,

lim P*{X" € S,}=0 and sup P{X" € S;|0} < ¢,.
n—oo 9cCn

Lemma 6: Sufficiency. Suppose conditions (a), (b) and (c) are satisfied with limb, =
limep, = 0 and let vy, = (b, + ¢p)/an, then forall 6 > 0,

limsup P*{W(A4AS|X™) > rp/6} < 4.

Thus W (AS|X™) is of order p, in probability.

To prove the sufficiency of the conditions in the Theorem, use Lemma 6 with b, = e™™1,
en=e""2, a, = e ™ and d = e~ for positive ¢, A withe+ A < min{r1,ro}. Thenry, /4y,
tends to zero exponentially fast.

Proof of Lemma 6: The posterior probability satisfies

som (XA m(X", A% /pH(X™)
WA = =@ = m(n) Jp (X7)

Consider the numerator. Let E,, be the event that m(X™, AS)/p(X™) is greater than (b, +¢»,) /0
and use the bound P*(E,) < P*(E, N SS) + P*(Sy). Then successively applying Markov’s
inequality, the Fubini theorem for nonnegative integrands, the inclusion of A, in B, U Cy, and
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(b) and (c), we have

P (E,NS%) <

é

< P(S;|0)W(do

< 5rrar J,, PO @)
é

b+ cn

m(X", A7) /p(X™)P*(dX™)

<

( [ wide) + /C ] P(sgw)W(do))

< b =4.
= bt C‘n,( n + Cn)
Using P*(Sp,) — O this implies that limsup P*(E,) < 4.

Finally consider the denominator. By condition (a) the event that m(X™)/p*(X™) is less
than a,, has probability which tends to zero. The results for the numerator and denominator are
combined using the union of events bound. This completes the proof of Lemma 6.

Lemma 7: Necessity. If lim P*{W(AS|X") > rp} = 0 for some sequence of constants
Tn, then for any by, ¢, with product bpc, > 1y, there are sets By, Cy, partitioning AS, such
that conditions (b) and (c) are satisfied.

To prove the necessity of the conditions in the Theorem, use Lemma 7 with r, = ¢~ 70 and
by, = ¢ = €~"70/2, Then Lemma 7 provides the sets B, and C,, with the desired properties.
Thus together these Lemmas complete the proof of the Theorem.

Proofof Lemma 7: Set Sp, = {X™ : W(A$|X™) > r,} which by the assumption of the Lemma
satisfies P*(Sy,) — 0. We note that, in S5, the mixtures satisfy m(X™, A%) < r,m(X™).

Let Cp, = {6 € A§ : P(S5|0) < ¢cn} and B, = {0 € AS : P(S|9) < cn}. Then C,
clearly satisfies condition (c). Moreover, by Markov’s inequality and Fubini’s Theorem, the set
Bj, has prior probability satisfying

1 C
mmm;ﬁf@mww

L[ mxra9)a@x)
cn Jag

Tn
< — m(XMA(dX"
Sentie (X™MA(dX™)
Tn
S - S bn7
Cn
where A(dX™) is the measure dominating the family of distributions Pxn|y. So condition (b)
is satisfied. This completes the proof of Lemma 7.

10. NEURAL NET BOUNDS

In this section we use single hidden layer sigmoidal network models as an example setting for
presentation of resolvability bounds on cumulative risk of Bayes predictive estimators.

We will consider both dichotomous response models and Gaussian error models in which
the conditional distribution for the response Y given input X = z has mean function f(z)
which we model using a neural net. In both cases there will be observations of (X;, V;)¥ ;.
The inputs X; will be i.i.d. with an arbitrary and possibly unknown distribution Px on a given
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bounded convex set B (such as the cube [—1, 1]%). The risk bounds. we give will hold uniformly
over all such Py.

For the dichotomous response case we have ¥; € {—1, 1}, with probability of getting a 1
equalto1/2+ f(X;)/2. Here f(z) represents the difference of the probability of getting a 1 and
getting a —1, when X = z. For the sake of symmetry we are putting the Bernoulli distribution
on {—1,1}. We will assume in this dichotomous response case that | f(z)| < 1 — o is strictly
less than 1. If necessary this can be arranged by mixing with a coin flip with probability c.

For the Gaussian error model we have Y; = f(X;)+e; where the ¢; are i.i.d. Normal(0, o2).

Consider the neural net model

m
) = ZCj'd)(aj z

parameterized by 6 = (a;, ¢;)]L, with 1nterna1 weight vectors a; in R4*! and external weights
c;, where 1(u) is an odd-symmetric sigmoid such as the hyperbolic tangent or 2¢(u) — 1 where
d(u) = e*/(1 + e®) is the logistic sigmoid. From the odd-symmetry of ¢, we restrict the c;
to be positive, without loss of generality. For simplicity an auxiliary coordinate of x is et to 1
so that the internal weights parameterize the location as well as the orientation and gain of the
sigmoids: In the dichotomous response case we will clip the magnitude of f,(z, 8) to be not
greater than 1 — a.

For the function f it is assumed to have a spectral norm C'y, g which for now is-assumed to
be not greater than some given v. Here Cfp = [ |w|pF(dw) is a first moment of the Fourier
magnitude distribution £ and |w|p = sup,cp|w - 7] is the norm of the frequency vector that
is dual to the domain B for the variable X. The consequence of this assumption (established
in Barron 1993) that we use is that there exists an approximation f7,(z) = 3°7%, ¢j¥(aj - z),
with 3771 [c}| < v and |a}|p < 7y, where 7y, is of order v/m log m, achieving

17 - fge < @8

where the norm of the approximation error is taken in LQ(PX). Here the exterior weights may
be fixed at ¢; = v/m. This approximation bound holds more generally assuming that f /v is
in the closure of the convex hull of signum functions. We make the narrower assumption of
bounded spectral norm in order to have control on the magnitudes of the internal weights a; in
the model.

Let Pyy YN|s denote the distribution of the sample (X;, Y; ) A w1th the (unknown) true

target function f,andlet P,y REUTIp denote the corresponding d1stnbut10n with f(z) replaced‘
by members of the approximating family fm, () = fm(z,6). Let W be a prior distribution
that we assign to # and let P(W) VN denote the resulting mixture.

Our 1nfonnat1on-theoret1c analys1s involves examination of the total relative entropy D
(Pyn YNip P)((WJQ v ) which is the cumulative relative entropy risk of the Bayesian predictive

distributions. The yresolvability bound gives for any subset A of the parameter space

L () 1 1
N POPxn yn ) Pyn on) < Iglea}D(Px,w, Pxxifarg) + 77108 W4y

Forthe Gaussian errormodel D (PX,y| 71 Pxy fm 9) = i? | f— fmgl |2, and for the dichotomous
response model (using the L2 and Chi-square bounds on D)

—]]f Fmgll? < D(Pxyifs Pxylf, ) < ||f Fmoll®.
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Thus our Ly approximation’bounds are ready made to bound the resolvability. The resolvability
bounds for the cumulative risk of the Bayes estimators are comparable to that which was given
for constrained least squares estimators in Barron (1994).

At a suitable §* = (a})7L; depending on f, with norms bounded by laj|p < Tim, the
approximation error |)f — f,, g+]| is bounded by 2v/+/m. Now take A to be the neighborhood
of * defined by A = {0 : |a; —a}|p < 1/y/m,j = 1,2,...,m}, and use the triangle inequality
and the fact that the sigmoid t is Lipshitz with [1(u) — ¥(u')| < 2|u — /| to obtain, for 8 in
A, that the approximation error || f — fi o]| is bounded by {{f — £, g*|| + 2v/+/m which is not
greater than 4v/,/m. As a consequence of these bounds we have that

1 w) 1602 1 1
- < —+ <log 57—+
N D Exv i Py yn) S - T e peay

where ¢ = 202 in the Gaussian regression case, and ¢ = « in the dichotomous regression case.

It remains to lower bound P{6# € A} for a specific choice of the prior. Taking for instance

a prior that makes the a; independently uniformly distributed on {[a;|g < 7 + 1/4/m} in
R wehave P(A) = 1/(y/m7m + 1)™@1), Consequently,
1 w 1602 m(d+1)

w) Akl a7
ND(PXN,YNU’PXN,YN) < om + N log(\/ETm-l-l)

o))
for m ~ v(N/(dlog N))/2.

Note that the second term in the bound involves the ratio of the parameter dimension
km = m(d + 1) and the sample size N. Thus the bound is similar to the familiar squared
approximation error plus parameter dimension divided by the sample size as in section 6.

The neural net model has a particularly nice flexibility of approximation to achieve the
indicated accuracy using only order m times d parameters. In contrast, linear approximation
requires exponentially many terms in d to achieve comparable accuracy for functions of bounded
spectral norm (Barron 1993).

Recall that the relative entropy distance between the joint distributions is related to an aver-
age relative entropy distance between f(z) and the Bayes estimates fn Bayes(7) = [ fm(z,0)
p(81X™,Y™)d6, averaging over samples of sizen = 0,1, ..., N — 1. Indeed, by the chain rule
%D(PXN’YNU, P)((VYV),YN) = % jnV:_Ol ED(Pxyis PX’Ylfn,Bayes)' Let the Cesaro average

of the Bayes estimates be f (z) = + 2[:_01 }n Bayes(%). Then by the convexity of the relative
entropy and its relationship to the squared Lo norm, we conclude with the following bound on
the mean squared error,

1 o2
EEllf - Inll" < ED(Pxyis: Pxyipy)
1 N-1
< N Z ED(PX,YU’ PX7Yifn,Bayes)
n=0

1/2
~o(:(*%%) )

where ¢ is 202 in the Gaussian regression case and 2 in the dichotomous regression case.
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If, as is usually the cdsée, a bound on the spectral norm is not known in advance, one can
incorporate in the prior distribution the parameter v for the sum of the external coefficients c;.
Moreover, one can mix with a prior various size models m. By such strategies, one can achieve
accuracy given by the resolvability bound Cy g(dlog N/N )2, without prior knowledge of
what size network is best. See also the discussion on model selection and mixing in Section 6.

This completes the information-theoretic proof of the accuracy of neural net estimators
based on the Bayesian predictors. As a consequence of these bounds, it is sufficient to have
a polynomially bounded sample size to obtain an accurate estimate of a target function with a
polynomially bounded spectral norm.

The analysis of Bayes posterior mean estimates rather than optimization of penalized em-
pirical risk is very much motivated by interest in computational issues of estimation. The idea
is that while the multimodality of the empirical risk surfaces creates a major obstacle to reliable
optimization, there remains the possibility to obtain Monte Carlo computations of posterior
means by sampling from the posterior distribution and averaging f;,(z, ). Various Markov
chains are designed for this purpose in which the posterior distribution plays the role of the target
stationary distribution, but it remains to be seen whether there is a satisfactory form of rapid
convergence to stationarity suitable for accurate Monte Carlo averages for these multimodal
models.
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DISCUSSION

JAYANTA K. GHOSH (Indian Statistical Institute, India, and Purdue University, USA)

The paper provides interesting connections between Bayesian inference via entropy loss and
minimum length coding and gambling. Indeed it shows asymptotically the last two problems
are equivalent to the minimax entropy risk problem.

The entropy loss in Bayesian inference has been used by Lindley to define information in
an experiment for a fixed prior. Bernardo has used it to define the information in a prior for a
given experiment and shown how it leads to the Jeffreys and reference priors. Barron touches on
these aspects and indicates how the Jeffreys prior emerges asymptotically in a minimax context.

The major new contribution of the paper is in relation to asymptotics of the entropy risk
for Bayes procedures in non-parametric problems. The paper provides a lovely upper bound
and shows how it can be made to converge to zero at a true density Py provided Schwartz’s
condition is satisfied, i.e, Py is in the Kullback-Leibler support of the prior. Of course this is
only a local condition in the sense that it restricts the behavior of the prior in Kullback-Leibler
neighborhoods of Py. Using lower bounds also it can apparently be shown how a prior can be
constructed to obtain optimal rates of convergence to zero for the entropy risk at Fy.

In contrast Barron points out the problems of consistency of the posterior or optimal rate
of convergence of Bayes estimate of a density require global conditions on the prior. Barron
provides a theorem that gives a necessary and sufficient condition for posterior consistency for
various topologies on the class of densities. He also gives a counter example where Schwartz’s
condition holds for a particular chosen P but the posterior probability of the complement of
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an L; or Hellinger neigliborhood of Py does not converge to zero. Since the Schwartz condition
holds the entropy risk at Py tends to zero.

A couple of questions and comments are in order. The entropy loss needs a careful ex-
amination since typically the only prediction risk that seems relevant is that associated with
prediction of X, given X1, Xo, ..., Xy, not the cumulative predictive risk. In particular if
the former misbehaves would or should one feel happy with the convergence of the latter to
zero?

Here are two related technical questions. In Barron’s counter example how does the entropy
risk associated with X, ;1 behave? Secondly, suppose one takes an arithmetic mean of the
posteriors given X3, X, ..., X, form = 1,2, ..., n. How does this random measure behave?

Incidently, the necessary and sufficient condition for posterior consistency has been used
by Ghosal et al. (1997) a) to prove the Li-norm posterior consistency at various Fy’s for the
most popular Bayesian method of density estimation, namely, Dirichlet mixture of normals.
Also, Barron’s construction of minimax priors in the non-parametric case is reminiscent of
methods proposed recently in Ghosal et al. (1996). Also relevant is a paper on optimal rate of
convergence for posterior by these authors and van der Vaart, which is under preparation.

TREVOR J. SWEETING (University of Surrey, UK)

This will be a relatively non-technical discussion of Barron’s paper, principally because
I only received it shortly before my flight to Spain! As I see it, the paper makes three main
contributions: it provides an analysis of the cumulative risk of Bayes prediction; it makes a pro-
posal for the choice of prior distribution (weight function) based on the Kullback risk function;
and it presents an analysis of the consistency of posterior distributions. In the information-
theoretic formulation, risk is measured by Kullback divergence, and the author carries out both
asymptotic and finite sample analyses of this quantity. This is an impressive piece of work,
especially the bounds obtained in Section 4. The proposal relating to the choice of prior I find
somewhat less convincing however, and I will return to that in the next paragraph. Finally, the

* result on the consistency of posterior distributions is also impressive, especially as it succeeds
in characterising posterior consistency (under the given local property). The counterexample in
Section 7.2 is particularly strong, since the posterior probability of the ‘bad sets’ actually tends
to one. A connection with the work in the previous sections of the paper is that it is possible to
have reasonable predictive performance {as measured by Kullback divergence) even when the
posterior distribution behaves very badly.

The author nicely motivates the information-theoretic approach, including useful review
sections on data compression and gambling. For purposes of statistical analysis, I think that the
information-theoretic formulation does make Bayesian sense, at least from an operational point
of view. Firstly, regret is defined as log{p(X)/q(X)}, which clearly behaves in a sensible way
as an operational loss function L(g, X). Secondly, although I do not believe that estimating
the predictive density p(: | 6) really makes much sense from a Bayesian point of view, the
information-theoretic approach does at least give rise to the Bayesian predictive density, since
estimation is based on a proper scoring rule.

I take it to be a major proposal in the paper that the asymptotic form of the cumulative risk
given in Section 3 is a useful way of choosing the prior density w. Specifically, the cumulative
risk asymptotically satisfies

k N
D(PXN |9 PXN) = 5 logﬁ_—; + a(G) + 0(1)

where a(6) = log{|I(8)|'/2/w(6)}. Initially take an M-closed view (¢f Bernardo and Smith,
1994). Being accustomed to more mainstream Bayesian thinking, I find it more natural to think
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about the specification of ' directly and then to study the associated predictive performance,
rather than vice versa. However, even if I do this, how do I really think about my ‘desired
form’ for a(#)? This might make sense if a(f) were related to a realistic loss function for the
problem in hand, but of course it is purely operational. Furthermore, if I am comfortable with
my subjective assessment of w(6), then [ cannot see why I would be unhappy with the implied
form of a(#). It clearly behaves in the right way for me, since it implies small risk where I judge
w(6) to be high, and vice versa. My conclusion is that I need to see a real worked example,
which might just help my understanding! Finally, note that even if one takes an M-open view,
it still makes sense to subjectively assess prior beliefs about 6 as conditional probabilities on
the given parametric subfamily.

It is instructive to compare the results in this paper with performance analysis via coverage
properties. The rationale is that such results can provide additional assurance in a Bayesian
analysis, at least in a long-run frequency sense. This is especially important when the prior is
poorly specified or understood. Moreover, such an analysis can help identify those frequen-
tist procedures that have some reasonable Bayesian interpretation (and those that do not!). I
shall take the simplest setting of a sequence of independent and identically distributed random
variables X1, Xo, ..., areal parameter 8, and suitably regular likelihood and prior.

Consider first posterior analysis. Let T" = t,, o(X") be the upper a-quantile of the posterior
distribution under the prior w, so that

P,(0<T|X")=c.
‘We ask to what extent is it true that
PO<T|0)=a (1

It is well-known that, to O(n~'/2), equation (1) holds for all smooth w. That is, to a first
order of approximation, the prior has no effect on the posterior distribution, and Bayesian and
frequentist probability intervals are formally identical. To O(n '), however, (1) holds if and
only if w is Jeffreys’ prior (Welch and Peers, 1963), which provides a justification for using
Jeffreys’ prior as a sampling-based noninformative prior. (The situation is more complex when
6 € R*.) A more complete analysis is given in Sweeting (1995).

Consider now the situation for predictive analysis. Let U = uy o(X™) be the upper -
quantile of the predictive distribution under the prior w, so that

Py X" <U|X™) =0.
Again, we would like to know the extent to which it is true that
P(X™ <U|9) =a. 2)

It turns out that, to O{n '), equation (2) holds for all smooth w. Note the superior coverage
performance of the predictive distribution compared to the posterior distribution. This is a point
of contact with the present paper, in which the analysis is in terms of predictive risk. It is also
of some interest to investigate the next term in the expansion of (2) in order to see if it gives rise
to a natural choice of prior based on higher-order predictive coverage. It turns out that there
does indeed exist a unique prior w for which (2) holds to O(n~2). However, in general the
optimal prior depends on the level ! This fact also helps us to understand the difficulties from
a frequentist perspective in constructing ‘predictive distributions’. (Note added following the
discussion: coincidentally, the above result was also reported at the present conference by M.
Ghosh in his discussion of Smith (1999).)
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Let me finish by making a practical comment on the need to consider frequency-based
Bayesian performance. In my own contacts with end-users of statistical methods, especially
engineers, I have found that there is often real interest in using Bayesian methods in order to
formally. incorporate, for example, engineering knowledge and experience into the statistical
analysis. It is also clear, however, that many potential users seek assurance that the methods
actually ‘work’. I do not believe that this assurance can be provided entirely by a subjective
Bayesian response. The research into performance analysis in the present paper and elsewhere
can provide the necessary additional assurance sought, and can ultimately help us to encourage
scientists and engineers to fully embrace Bayesian statistical thinking.

A. P. DAWID (University College London, UK)

As this paper elegantly demonstrates, there is a particularly neat fit between the Kullback-
Leibler risk and the process of sequential probability forecasting. This in turn follows from
the interpretation of K-L risk as the natural discrepancy function associated with the negative-
log-density loss function, and the sequential factorization properties of the joint density. While
Barron emphasizes overall expected loss in this paper, he does remark that much of the analysis
can be performed at a more fundamental level, by developing bounds for the actual loss, over all
possible outcome sequences. This “worst case analysis” is currently the subject of much atten-
tion by computer science/artificial intelligence workers, in the area of computational learning
theory (“COLT”), and promises to provide a new and powerful approach to many problems of
statistical interest. Links between the two communities are currently being built, and it is very
much to be hoped that much traffic will cross them, in both directions.

There is an intermediate position between the overall expectation and worst case analyses,
namely the “prequential approach” (Dawid, 1984, 1992) in which at any point in time we fix the
data already gathered, and take a (conditional) expectation of the loss over the next observation
only. The appropriate optimality property in this setting is “prequential efficiency”, namely
almost sure asymptotic optimality under cumulative prequential risk. It would be good to
explore further the relationships between these three approaches. .

The prequential approach makes it easier to handle loss functions other than logarithmic.
For example, Skouras and Dawid (1998) show how we can extend the concept and properties
of prequential efficiency to sequential point estimation under quadratic loss.

STEVEN N. MACEACHERN and L. MARK BERLINER (The Ohio State University, U.S.A.)

Barron’s fine paper outlines conditions which guarantee various forms of consistency, and
it implicitly suggests conditions which would result in inconsistency. One condition which
rarely receives explicit attention is that on the likelihood: In order for estimative consistency to
obtain, there must be emough “information” contained in the sampling distributions to enable
us to distinguish between competing models, or between competing parameter values within
amodel. This condition is called identifiability when the data are independent and identically
distributed from some sampling model. In more complex models, the assumption can appear
in a more subtle form.

Berliner and MacEachern (1993) investigate estimation of the initial condition of a de-
terministic, dynamical system. They provide an example of a system based on the so-called
baker’s transformation, a 1-1 map which takes the unit square onto itself. The system consists
of a sequence of points, observed with normal measurement error, through time. For this sys-
tem, in spite of an explosion of Fisher information for one coordinate of the initial condition,
the initial condition cannot be estimated consistently. Such results hold over a broad range of
deterministic systems and measurement error distributions. MacEachern and Berliner (1995)
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provide easily checkable conditions under which two deterministic systems can or cannot be
distinguished.

In the context of modelling physical processes, a more sophisticated model considers the
system to be a Markov chain, observed with measurement error. We can view the deterministic
dynamical system as a limiting case where the amount of noise in the evolution of the system
tends to 0. Inconsistency results for the deterministic system tell us that perfect reconstruction
of the history of the system is often impossible not only because of measurement error, but also
becayse of how the system evolves.

REPLY TO THE DISCUSSION

I thank the discussants for their insightful comments on the results of the paper and for bringing
attention to related issues in their work. The discussants and I are in general agreement. My
reply focusses on answering their questions and expands on a few of the points that they raise.

To recap the main conclusions of the paper: The local condiiion of positive prior mass
on information neighborhoods (what Ghosh refers to as Schwartz’s condition) implies that the
Kullback risk of predictive densities, taking a time average across sample sizes, tends to zero
according to the index of resolvability bound which nicely reveals the rate of convergence and
the dependence of the risk on the choice of prior. Convergence of the posterior distribution
on the parameter is more problematic, even if the local condition is assumed to be satisfied.
Necessary and sufficient conditions for posterior consistency reveal that a particular global
condition (related to identifiability, but in some ways stronger) is required, namely, except for
a prior negligible set, a uniformly consistent test must exist against the complement of the set
on which one desires the posterior to asymptotically concentrate.

Jayanta Ghosh asks whether we should be content with the favorable asymptotics of the
cumulative (or time average) prediction risk if the individual prediction risk associated with
prediction of Xp41 given X1, Xy, ..., X, misbehaves. I would say, yes, we should be prepared
to incur prediction loss for a few n in favor of better cumulative performance.

Nevertheless, it remains an interesting open question to resolve whether the individual
prediction risk must converge to zero under conditions favorable for the cumulative risk. Namely,
if the data follow a density p in the information support of the prior, does it follow that £ D(p, $y,)
where Dy, is the Bayes (predictive) density estimator?

In the example where the prior is based on a large number of erratic densities (of height 2
placed on each choice of half of an even number of equal-spaced cells in [0, 1]), we indeed found
that when the data follow the uniform distribution the posterior probability of L; or Hellinger
neighborhoods of the uniform converges to zero rather than one. Nevertheless, the predictive
density (which is an average of these erratic densities with respect to the posterior distribution)
does converge in information to the uniform, in the time averge sense, since the uniform is in
the information support. Moreover, in response to Jayanta’s question concerning this example,
calculations show that the predictive density pr(z) converges to p(z) in probability for each
z, and this without taking the time average. Briefly, the analysis is as follows. For each even
number of intervals m one evaluates the associated predictive density. This predictive density
equals 0 when the number of occupied cells Y is greater than m /2. Otherwise, whenY < m/2,
the predictive density is 2 if z is in an occupied cell and it is (m — 2Y)/(m — Y) if z is in an
unoccupied cell. This value is near 1 if z is in an unoccupied cell and m /2 is large compared to
n. Thus one finds that with high probability, uniformly over all m greater than a large multiple
of n, the predictive density is close to 1. For the models with m less than a multiple of 7 one
uses the existence of a uniformly consistent test to ensure that the contribution to the posterior

mixture is negligible.
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Finally, Jayanta suggests the estimator py(z) = (1/N) Eivz»_ol Pn(z), which is the tithe
average of the Bayes predictive densities for a given prior W, and asks about its behavior. I am
delighted to reply that it has an individual risk sequence ED(p, pn) which is bounded by the
index of resolvability. Indeed, by convexity of the Kullback-Leibler divergence, ED(p, ) is
not greater than (1/NV) ESI:—OI ED(p, pn) which by the chain rule equals the total Kullback rate
(1/N)D(Pyn, P}(gv)), so the suggested estimator has individual risk that mirrors the favorable
time average risk of the Bayes predictive density. This was noted in Barron (1987) and it is
used in Yang and Barron (1998) to achieve the minimax rates. In conversation, John Hartigan
has suggested the geometric mean of the Bayes predictive densities, (HSI:—[)I Pn(2))V/¥, which
exactly achievies risk (1/N) Eﬁtol ED(p,pn) (by Jensen’s inequality the geometric mean
integrates to less than one, so normalization to produce a probability density estimate yields some
reduction in this risk). Though they have delightful frequentist properties I am not sure what to
make of the arithmetic and geometric means of the predictive densities from a Bayes standpoint.
Decision-theoretically, there must exist a prior Wy for which the individual Kullback risk of
the resulting predictive density is not larger than the bound attained by these estimators, though
at present I do not see how to exhibit it. Despite these intriguing risk properties of averaged
estimators, use of the predictive density associated with a fixed prior with suitable average
properties seems preferable.

Trevor Sweeting questions the proposal to use the asymptotic shape a(6) of the total Kullback
risk (which in the parametric case equals log{|7(#)|/2 /w(6)} plus a constant depending on N),
to help assess the choice of prior. My point is that one is not necessarily automatically equipped
with a prior as a subjective distribution on . Priors as well as the parameters on which they live
sometimes arise only to provide procedures for certain actions concerning possible data, such
as compression, gambling or prediction. In such a setting, there is nothing to base the choice of
prior other than what we understand about the behavior of these procedures. Here I add to this
understanding by providing the relationship between the choice of prior and the total Kullback
risk. Trevor writes, “this might make sense if a(6) were related to a realistic loss function for
the problem in hand.” Conveniently, the loss function is clearly realistic for compression, it is
suitable for gambling when the aim is to achieve growth rate optimality, and Trevor admits it is
realistic for prediction. Trevor notes that a(#) behaves in a sensible way, it implies risk is small
where w(6f) is set to be high, and vice versa.

If 6 exists as an object about which we can and do haveprobabilistic beliefs, then, yes, it
is natural to specify w directly. Then, if we are comfortable with our subjective assessment, I
agree that we should be happy with the consequent form a(#) of the total risk of the predictive
density. Moreover, in this case we may be led to go beyond estimating the predictive density
to estimate ¢ and to inquire (as we have done) about the behaviour of the posterior distribution
for various possibilities for the true 6. On the other hand, if the parameter is merely an index
we concoct for distributions we may use on data, the f-centric perspective is misplaced and it is
then better to center attention on distributions assigned to = (for which we have advocated the
use of Bayes predictive densities) and to choose w to give the behaviour we desire.

The form w(@) = |I(8)|'/2e~9) /c suggests consideration of priors that are in between the
extremes of providing “default” asymptotic minimax procedures (when |I(6)]'/2 is integrable)
and “subjective” priors that ignore the behavior of the model. For example, for k-dimensional
multivariate normal means (in which |7(8)|!/2 is constant and not integrable), we might choose
w(#) to be any of several choices (e.g. multivariate ¢ or Cauchy) in which a(#) is approximately
k(1+€)log||0|| for large |||, for some € > 0. Here a choice of k log ||#|| or smaller (for large
[|16]]) would not provide integrability. This magnitude is best possible in the sense that for any
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integrable prior density and for each large radius r, the risk term a(f) must be at least & log ||6]|
for most 6 of radius not exceeding r. If a subjective prior is available one might still desire a
(1/2,1/2) mix of the subjective prior with such a just barely integrable prior to avoid larger
than necessary regret for large magnitude 6 while incurring not more than one additional bit of
regret than would be achieved with exclusive use of the subjective prior.

In the oral discussion José Bernardo pointed out that priors of the same form |1(6)[1/2e~%(?)
arise in his reference prior formulation subject to constraints.

Philip Dawid draws further attention to the worst case analysis of regret that parallels the
expected log story surprisingly closely. An advantage of this framework is that one can take a
completely operational view. No distribution need exist governing data. Here I summarize the
setting and results that most closely correspond to results of the paper. One simply has a family
of strategies p(XV|8) = ]nV:_Ol p(Xnt+1|X™, 6) for gambling, compression or prediction. With
hindsight the ideal strategy that makes the most money, yields the shortest codelength, and yields
the least cumulative “log-loss” of prediction corresponds to the parameter value 0 = 9(X M
maximizing the total likelihood. Now at each step n < N this choice depends on future
Xn+1, S0 it is not realizable. One may ask for the strategy (possibly outside of the family)
g(XN) = ] ¢(Xn41|X™) that minimizes the worst case regret max ,, v p(XNIB(XNY) /q(XN)
(here it does not affect the optimization whether we put in a logarithm or not). The minimum
over all choices of g(X™) that sum to 1 is the normalized maximum likelihood p¥ ML (X V) =
P(XN|O(XN))/Cx where Cy = 3 v (XN |B(X™N)) (Starkov 1988). The minimized worst
case regret is this normalization constant Cy and for-smooth families the asymptotics of the
minimax log regretis log Cy = (k/2) log N/2r+log [ |1(8)[/2+0(1) whichis closely related
to the minimax expected log regret discussed in Section 3. Indeed, as shown in Barron, Rissanen
and Yu (1998), the normalized maximum likelihood p™¥™Z (X V) and the mixture with respect to
Jeffreys prior p/effrevs (X¥) are asymptotically indistinguishable in information, in the sense
that the total divergence D(P;%f Teys, P)](V ML) tends tozeroas N — co. Thus Bayes procedures
retain a key role in the worst case regret asymptotics. To some extent one may think of the choice
of'the prior in the same manner as before. Laplace approximation leads to a pointwise log regret
of (k/2) log N/2x +Tog{|1(8)]"/2 /w(8)} +0(1) where I(6) is the empirical Fisher information
and modifications of the mixture (to deal with sequences with 1(#) much different from I(6))
lead to log regret not larger than (k/2) log N/2x + log |I(8)1/2/w(#) + o(1) (Takeuchi and
Barron 1998, where the remainder term is negligible uniformly over possible data sequences).
Thus to achieve a log regret function of a constant plus a(@), a function of § achieving the best
value with hindsight, we use the (modified) Bayes mixture with prior w(6) = |I(8)[}/2e=%®) /¢
as before.

As Phil Dawid points out computational learning theorists have made substantial contri-
butions to worst case cumulative regret analysis, deriving suitable order bounds (but without
identification of constants) and taking specific advantage of Bayes-like procedures for general
loss functions. See the work by Vladimir Vovk and refinements developed in Haussler, Kivinen,
and Warmuth (1998). Phil also nicely points to developments involving almost sure analysis
of cumulative conditional expected loss that permit quantification of efficient procedures in his
prequential setting.

Steven MacEachern and Mark Berliner contribute discussion of their work on the noniden-
tifiability of initial conditions in certain dynamical systems. Identifiability conditions expressed
through conditions on consistency of tests are essential for consistency of posterior distributions
as we showed. However, identifiability is not critical for time average consistency of Bayes
predictive distributions in information (because it is the predictive distribution of the data we
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I
are after, not the values of parameters which may index nearly indistinguishable distributions).
As we have seen an information support condition is enough. Provided one uses the appropriate
conditional Kullback divergences in the chain rule expansion, this information consistency can
be established for certain types of dependent processes following the pattern in section 4. 1
suspect that it is possible to use this pattern of analysis for the dynamical systems provided
some non-zero noise is included in the model.
I conclude by thanking the discussants for a stimulating exchange.
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