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Abstract
Fundamental limit properties hold for conditional entropy

liml H (Xl X4,....X,,) = H(Xol X 1.X5...),
mutual information
IimTI(Xg; X1,...X,) = I (X3 X 1,X 2...),
and informational divergence (relative entropy)
limTD (P, 11 Q,) = D(PIIQ),

where P and Q are probability measures on a measurable space (Q2,F) and P,
and Q, are the restrictions to sigma-fields F, satisfying F, TF. Early contribu-
tors to results of this type include Dobrushin and Pinsker (who used a charac-
terization of information quantities as a supremum of informations for discrete
random variables) and Perez, J. Hajek, and Moy (who used martingale conver-
gence theorems). Alternative proofs have been developed in recent years by S.
Kullback and his colleagues (using a chain rule for informational divergence)
and by Barron (using the dominated convergence theorem). In this talk we
present a simplified proof based on the chain rule,

D(P,11Q,) = D(P,11Q,) = [ p,(log p,/p,)d0.

for n > m, where p, = dP,/Q,. The convergence of p, in L{(Q) and of
log p, in L {(P) (when D (Pl Q) < =) are established as consequences of this
chain rule, without invoking the martingale convergence theorem.

A new proof of the martingale convergence theorem for positive mar-
tingales is an unexpected byproduct of the information-theoretic analysis.




Information Theory and Martingales

Andrew R. Barron
University of Illinois

November 1990

Summary

Fundamental limit properties hold for conditional entropy
imd H (Xl X1,....X,) = H(X o} X1,X2,...)s (1)
mutual information
EmTIXgs X150 X,) = I (X g3 X 1.X 5,...), (2)
and informational divergence (relative entropy)
imTD P, 1 Q,) =DPIQ), (3)

where P and Q are probability measures on a measurable space (£2,F) and P,
and Q, are the restrictions to sigma-fields F, satisfying F,TF. We focus our
attention on the conclusion (3), since the first two conclusions can be derived
as consequences of it. Proofs of result of this type are in [1-3] (based on a
representation of the informational divergence as a supremum of discrete diver-
gences for finite partitions of the measurable space), in [4-6] (based on the
martingale convergence theorems), and in [7,8] (based on the dominated con-
vergence theorem). An alternative proof technique has recently been
developed by Kullback et. al. [9] using a chain rule for informational diver-
gence. In this talk we present a simplified proof of (3) based on the chain rule
and discuss the implications for the convergence of densities and information
densities. The information-theoretic techniques also provide a new proof of the
martingale convergence theorem for positive martingales.

The informational divergence is defined by D(P Il Q) = Ep log dP/dQ if
P<< Q and D(P Il Q) = « otherwise. A basic inequality that we use states
that if P<< Q then

E llogdP/dQ 1< D(PIQ)+ (2D (Pl Q)2 (4)

where the expectation is with respect to P, see [3],[10,p.339].

Conclusion (3) may be proved as follows. It is trivially true if D, is an
unbounded sequence, so suppose this sequence is bounded. Let
p, = dP,/dQ, . Taking the expected value (with respect to P,) on both sides of
the identity log p,, — logp,, = log p,/p,, for n > m yields the chain rule

D, - D,, = [ p,(log p,/p,)d0. (5)
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We have that D, is increasing and hence convergent, so by the Cauchy
sequence property, D, — D, tends to zero as n—3ec and then m-—dee. This
yields the convergence to zero of the relative entropy on the right side of equa-
tion (5). Analogous to (4), we have the inequality

[ Pnl1ogp,/pyldQ < [ po(logp,/p,)dQ + (2] p,(log p,/p,)d2)" 2 (6)

Thus log p,, is a Cauchy sequence in L ;(P) and hence convergent in L {(P), so
it remains to identify the limit to be log dP/dQ. We use the inequality

| 1Pu=pm1dQ < (2f pu(logp,/py,)d0)Y? (7)

to conclude that p, is convergent in L (@) and we let p denote the limit. It
follows that lim jA p,d0 = | pdQ for all measurable sets A. Now for each A
in \J ,F,, we have that lim | p,dQ = P(A), so P(A) and jAde agree on a

ns
generating collection of sets and hence are the same measures. Thus P<< Q,
p = dP/dQ, and lim p, = p in probability with respect to P. It follows that the
L {(P) limit of log p,, must equal log dP/dQ. This completes the proof of con-
clusion (3).

Almost sure convergence of the densities p, follows from the L; conver-
gence by application of the maximal inequality, for €> 0,

O {sup ) p,=p, | >e )< (Me)] 1 p=p,!dQ. (8)

A new proof of martingale convergence properties is an unexpected bypro-
duct of the information-theoretic analysis. Let Y, be a positive martingale with
respect to a probability measure Q, adapted to a sequence of sigma-fields
F,TF. Suppose Y, is L logL-bounded, that is, sup,[ Y,log¥,dQ < .
Then p, = Y, /c (where ¢ = EY,) defines a sequencé of probability density
functions for which the chain rule (5) is satisfied. It then follows from inequal-
ity (7) and the Cauchy sequence criterion that p, and hence also Y, are con-
vergent in L1(Q) and we let ¥ denote the martingale limit. (Note that this
proof works without presuming the existence of a probability measure P, the
restriction of which gives rise to the measures P,(A) = jA p,dQ for AeF,,
but such a measure may be defined as P(A) = jA YdQ/c.) Almost sure con-
vergence of the martingale follows from L ; convergence, by application of the
maximal inequality.

Next we show that an information-theoretic convergence proof can also be
given for positive martingales which are L i-bounded but not necessarily
L log L-bounded. Let X, be a positive martingale with respect to P, and let
¢ = E X,. Then E log (1+X,,) is a positive decreasing sequence, bounded by
log (1+c), and hence it converges to a finite constant. Thus by the Cauchy
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sequence property, as n— and then m —oo,
1+X,,
1+X,

E log - 0. 9
For n 2 m, let Q,, , be the measure defined to have the following density with
respect to P,

AQ, » _ 1+X, (10)
aP 1+X,,

m

By the martingale property E(1+X,)/(1+X,,) = 1 forn 2 m, so Q,, , is a pro-
bability measure. Since the density in (10) is strictly positive, it follows that
P<< Q,, , with density dP/dQ,, , = (1+X,,)/(1+X,). Consequently,
1+X,,

1+X, °

DPIQ,,)=Elog (11)
which tends to zero as n —eo and then m —eo by (9). Applying inequality (4), it
follows that log (14+X,) is a Cauchy sequence in L(P) and hence this
sequence is convergent. By the continuity of the logarithm, it follows that X,
converges in probability to a random variable X. If the martingale sequence is
uniformly integrable, this implies the L ; convergence and hence the almost
sure convergence in the same way as above. Even if it is not uniformly integr-
able (such that L { convergence is not possible), almost sure convergence of X,
follows since it is equivalent to the almost sure convergence for every » > 0 of
the uniformly integrable martingales X, , where T = inf{k :X, > r} and

T, = min{n,T}.

We conclude by pointing out that the argument provides an information-
theoretic proof of the convergence of the conditional densities
pXgl X1.X,,....X,,) that arise in an examination of the conditional entropy
sequence (1). These are the density sequences which arise most naturally in
traditional information theory. One application of these results is to the
sandwich proof of the Shannon-McMillan-Breiman theorem and its generaliza-
tions [11]. The proof of (1) gives a direct information-theoretic argument that
the sandwich gap in [11] tends to zero. Thus the Shannon-McMillan-Breiman
theorem can be proven using only the ergodic theorem and elementary
information-theoretic considerations.
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