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Abstract—We discuss the properties of Jeffreys mixture for a
Markov model. First, we show that a modified Jeffreys mixture
asymptotically achieves the minimax coding regret for universal
data compression, where we do not put any restriction on data
sequences. Moreover, we give an approximation formula for the
prediction probability of Jeffreys mixture for a Markov model.
By this formula, it is revealed that the prediction probability by
Jeffreys mixture for the Markov model with alphabet {0, 1} is
not of the form (nx|s+α)/(ns+β), wherenx|s is the number of
occurences of the symbolx following the context s ∈ {0, 1} and
ns = n0|s + n1|s. Moreover, we propose a method to compute
our minimax strategy, which is a combination of a Monte Carlo
method and the approximation formula, where the former is
used for ealier stages in the data, while the latter is used for
later stages.

Index Terms—Bayes code, Jeffreys prior, minimax regret,
stochastic complexity, universal source coding

I. I NTRODUCTION

We discuss the properties of Jeffreys mixture for a Markov
model (a class of fixed ordered Markov chains) in the problem
of sequential prediction and universal coding. We employ
logarithmic regret (which has other names, e.g. coding regret
and pointwise redundancy) as a performance measure and
show that a modified Jeffreys mixture asymptotically achieves
the minimax regret up to constant order. This provides a sense
in which the modified Jeffreys mixture is one of the best
prediction strategies. Moreover, it implies that the modified
Jeffreys mixture achieves thestochastic complexity[17] for
the class of Markov models, which has various statistical
interpretations.

The primary motivation for this investigation is to pro-
vide a stochastic model that achieves the universal coding
and predictive objectives, including the determination of a
sequence of priors for which the corresponding mixtures (for
coding) and posterior (for prediction) achieve the approximate
minimax regret. This improves understanding of the exact
minimax regret procedure (normalized maximum likelihood)
as identified by Shtar’kov[18], which seemingly lacks such in-
terpretation. The normalized maximum likelihood distribution
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and our asymptotically minimax regret mixture distribution are
close to each other in total relative entropy. We are extending a
line of work in [6], [7], [27], [28] which were for i.i.d. models,
[21] which was for exponential families, and Atteson [1] which
investigated the regret of Jeffreys mixture for Markov sources
for sequences for which the maximum likelihood estimates
(the relative frequencies of transition) are located away from
zero. The present work extends his conclusions to obtain
results for regret that are uniformly valid over all sequences.

Whereas in the i.i.d. case, the Jeffreys mixture corre-
sponds to the Dirichlet(1/2, . . . , 1/2) prior which pro-
duces a Laplace-like Jeffreys prediction rule (also called
the Krichevsky-Trofimov estimator), in the Markov case the
Jeffreys prior does not correspond to independent Dirichlet
priors on the transition probabilities for each context, so the
corresponding rule is more complex.

The secondary motivation of our investigation is the cal-
culation of the predictive probabilities needed for sequential
prediction and universal coding algorithms. We propose an
approximation formula in the form of a corrected Laplace es-
timator. The error of the correction is of order1/ns, wherens
is the number of past occurences of the current context (state)
s. Moreover, we propose a method to compute approximately
our minimax strategy, which is a combination of a Monte Carlo
method and the approximation formula, where the former is
used as long asns is not large for ealier stages in the data,
while the latter is used oncens becomes large.

Coding regret is defined as the difference of the loss incurred
and the loss of an ideal coding or prediction strategy for
each sequence. A coding scheme for sequences of lengthn
is equivalent to a probability mass functionq(xn) on Xn (the
n-fold direct product of an alphabetX ). We can useq also
for prediction, that is, its conditionalsq(xi+1|xi) provide a
distribution for the coding or prediction of the next symbol
given the past. The minimax regret with respect to a family of
probability mass functionsS = {p(·|η) : η ∈ H} is defined
as

min
q

max
xn:η̂∈K

max
η∈H

(log
1

q(xn)
− log

1

p(xn|η)
)

= min
q

max
xn:η̂∈K

(log
1

q(xn)
− log

1

p(xn|η̂)
),

where η̂ is the maximum likelihood estimate ofη given xn.
Restriction to a subsetK ⊂ H is used in some developments.
Our main results are for the case that the maximum is taken
over all stringsxn, that isK = H.

Here, the regretlog(1/q(xn)) − log(1/p(xn|η̂)) in the
data compression context is also called the pointwise re-
dundancy: the difference between the code length based
on q and the minimum of the codelengthlog(1/p(xn|η))
achieved by distributions in the family. Also,log(1/q(xn))−
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log(1/p(xn|η)) is the sum of the incremental regrets of
predictionlog(1/q(xi+1|xi))− log(1/p(xi+1|xi, η)). For our
Markov setting, the regret is defined conditionally on an initial
state.

When S is the class of discrete memoryless sources, Xie
and Barron [28] proved that the minimax regret asymptotically
equals

d

2
log

n

2π
+ log

∫
H

√
det J(η)dη + o(1),

whered equals the size of the alphabet minus1 andJ(η) is the
Fisher information matrix with respect toη. This evaluation
is not for a subset of sequencesxn but for the whole set of
sequences. To obtain this asymptotically minimax regret, they
use sequences of Bayes mixtures with prior distributions that
weakly converge to the Jeffreys prior. The reason why one
needs such variants of the Jeffreys prior is as follows: If we
use the Jeffreys prior, the risk is asymptotically higher than
the minimax value, forxn such thatη̂ is near the boundary
of H. They use priors which have higher density near the
boundaries than the Jeffreys prior, to give more prior attention
to these boundary regions and thereby pull the risk down to
the asymptotically minimax level.

In this paper, we generalize the results of [28] to the case
where S is a class of thekth order Markov chains with
alphabet sized + 1. In particular, we give an upper bound
on the minimax regret, using variants of the Jeffreys mixture,
as

(d+ 1)kd

2
log

n

2π
+ log

∫
H

√
detJ(η)dη + o(1). (1)

Note that(d+1)kd equals the number of the parameters of the
classS. In [21] we showed that similar mixtures are minimax
for (i.i.d.) exponential families and certain near exponential
families that permit dependence, but in general those bounds
are for the restricted set of sequences for which the MLE
(Maximum Likelihood Estimate) locates in a compact set
interior to the parameter space. Our result is a generalization
of [28] to Markov models and that of [21] to the set of all
sequences. (Strictly speaking, the first order Markov chain with
alphabet size 2 is treated in [26]). Concerning Markov models,
Atteson [1] obtained both pointwise regret and expected redun-
dancy bound for Jeffreys mixtures with parameter values away
from the boundary. Also, Gotoh et al. [8] gave an asymptotic
upper bound on the regret, which holds almost surely.

It should be noted thatthe normalized maximum likelihood
p(xn|η̂)/

∑
xn p(xn|η̂), proposed by Shtar’kov [18], provides

the precise minimax procedure for pointwise regret. In [18],
Shtar’kov introduced the pointwise regret and gave upper
bounds on the code length of normalized maximum likelihood
for classes of discrete memoryless sources and finite state
machines (FSMX model [24], which is an extension of Markov
chains). His bound for the FSMX model yields a bound for
Markov chain as((d + 1)kd/2) log n + C, where C is a
constant depending only ond andk. More recently, Jacquet &
Szpankowski [11] evaluated it more precisely and determined
the constant term of the minimax regret for the Markov chains.
Modified to condition on the initial state (or initial string

x−k . . . x0) their evaluation coincides with the form (1) in
terms of Fisher information as explained in [20].

Rissanen’s stochastic complexity [17] is the codelength
having the minimax coding regret. It is used as the main
part of model selection criteria by the minimum description
length principle. A consequence of the present work is that
this criterion is approximately a Bayes criterion with modified
Jeffreys prior.

To summarize, 1) we show that our modified Jeffreys
mixture is asymptotically minimax, 2) consequently the di-
vergence between this mixture and the normalized maximum
likelihood tends to0 asn goes to infinity, 3) it provides the
expression for the stochastic complexity exhibiting the role of
the Fisher information, and moreover, 4) the expression (1)
for the minimax regret holds, even though we do not put any
restriction on the sequences.

The Jeffreys mixture for the Bernoulli model induces the
Laplace-like estimator(k + 1/2)/(n + 1) where n is the
data size andk is the number of occurrences of the symbol
1. While the Laplace estimator is in a very simple form,
the Jeffreys mixture for a Markov model is not, even when
the model is the first order Markov chain. Hence, we give
an approximation formula for the prediction probability of
Jeffreys mixture for Markov models. This is an extension of
the approximation formulas of the Bayes estimator for (i.i.d.)
exponential families, shown in [19]. We can see the behavior
of Jeffreys mixture by this formula. In particular, the prediction
probability by Jeffreys mixture for the first order Markov chain
with alphabet{0, 1} is not of the Laplace-like form.

II. PRELIMINARIES

Define an alphabet asX def
= {0, 1, .., d}, and letX ′ denote

{1, 2, ..., d}. In this paper, we employ the class ofkth order
Markov chains on the alphabetX as a parametric model. Let
L denoteX k and let ℓ = |L|. Listing the elements ofL by
dictionary order, denoteL = {s1, s2, ..., s(d+1)k} (e.g. s1 =
00...0). We refer tos ∈ L as a context. For each context
s ∈ L, let ηy|s denote the probability thaty ∈ X occurs after
s ∈ L. So it is assumed that

∑
x∈X ηx|s = 1 and ηx|s ≥ 0.

Let ηs denote the vector(η1|s, ...., ηd|s)t and η the vector
(ηt

s1 ,η
t
s2 , ...,η

t
sℓ
), whereℓ = (d + 1)k. Hereξt denotes the

transposition of a vectorξ. Define the range ofηs as

Hs
def
= {ηs : ∀x ∈ X ′, ηx|s ≥ 0 and

∑
x∈X ′

ηx|s ≤ 1}.

Likewise, the range ofη is H
def
=
∏

s∈LHs. Let xnm denote a
sequencexmxm+1...xn (m ≤ n) andxn a sequencexn1 . Note
that η0|s = 1−

∑
x∈X ′ ηx|s.

Assume that we have an initial contexts0 = x0−k+1 in
advance. Letnx|s denote the number of occurrences ofx
as a direct successor of the contexts in the sequencexn1
givens0, and definens

def
=
∑

x∈X nx|s. Denote the probability
mass function for the sequencexn, determined byη, by
p(xn|s0,η). Let S denote the family of probability mass
functions S

def
= {p(·|·,η) : η ∈ H}. We usually omit

s0 = x0−k+1 from p(xn|s0,η) and simply denote itp(xn|η).



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. X, NO. X, XXX XXXX 3

Then, we have

log p(xn|η) =
n−1∑
t=0

log ηxt+1|τ(xt
−k+1)

(2)

=
∑

s∈L, x∈X
nx|s log ηx|s,

where we let ‘log’ denote the natural logarithm andτ denotes
the context functionτ(xt)

def
= xtt−k+1 (the lastk symbols of

xt−k+1) for t = 0, 1, . . . , n− 1. Let η̂ = η̂(xn−k+1) denote the
MLE (maximum likelihood estimate) ofη given xn−k+1. We
have

η̂x|s = η̂x|s(x
n
−k+1) =

nx|s

ns
.

Here we introduce the minimax and maximin regret in the
Markov setting, where we fix the initial states0 = x0−k+1. Let
P(Wn|X k) denote the set of all conditional probability mass
functions onWn ⊆ Xn given x0−k+1.

The conditional maximum regret givens0 of q ∈
P(Xn|X k) with respect to a family of conditional probability
mass functionsS = {p(xn|x0−k+1,η) : η ∈ H} and
Wn ⊆ Xn is defined as

r̄n(q,Wn|s0)
def
= sup

xn∈Wn

(log
1

q(xn|s0)
− log

1

p(xn|s0, η̂)
).

The conditional minimax regret givens0 with respect to a
family of probability mass functionsS and a set of the
sequencesWn is defined as

r̄n(Wn|s0)
def
= inf

q∈P(Wn|Xk)
r̄n(q,Wn|s0)

= inf
q∈P(Wn|Xk)

sup
xn∈Wn

log
p(xn|s0, η̂)
q(xn|s0)

.

The conditional maximin regret givens0 for a set of
sequencesWn is defined as

r
¯n
(Wn|s0)

def
= sup

q∈P(Wn|Xk)

inf
r∈P(Wn|Xk)

Eq(·|s0) log
p(xn|s0, η̂)
r(xn|s0)

= sup
q∈P(Wn|Xk)

Eq(·|s0) log
p(xn|s0, η̂)
q(xn|s0)

,

where we letEq(·|s0) denote the conditional expectation with
respect toq given s0 = x0−k+1. As the consequence of the
definitions, r̄n(Wn|s0) ≥ r

¯n
(Wn|s0) holds. For logarithmic

regret, it can be shown thatr̄n(Wn|s0) = r
¯n
(Wn|s0) holds in

the same manner as in [18], [28].
Now we introduce the Fisher information and empiri-

cal Fisher information. Empirical Fisher information is the
Hessian of−(1/n) log p(xn|η). We denote its component
with respect toηx|s and ηy|t (x, y ∈ X ′), by Ĵsx,ty(η)

= Ĵsx,ty(x
n,η). Then, one can derive from (2) that

Ĵsx,ty(x
n,η) = δstp̂s

(δxy η̂x|s
(ηx|s)2

+
η̂0|s

(η0|s)2

)
, (3)

where we let̂ps = p̂s(x
n
−k+1)

def
= ns/n and letδxy andδst be

Kronecker’s delta. The Fisher information is defined as

Jsx,ty(η) = lim
n→∞

EηĴsx,ty(x
n,η) (4)

= δstµs

( δxy
ηx|s

+
1

η0|s

)
,

where µs = µs(η) denotes the stationary probability of
the states determined byp(·|η), and the symbolEη the
expectation with respect top(·|η).

Define the Jeffreys prior density with respect to the
Lebesgue measuredη =

∏
s∈L dη1|sdη2|s · · · dηd|s as

ρJ (η)
def
=
√
det J(η)/CJ ,

whereCJ
def
=
∫
H

√
detJ(η)dη is the normalization constant.

LetD(α)(ηs)
def
=
∏

x∈X (ηx|s)
−(1−α) be the Dirichlet function.

Then from (4) we have

ρJ (η) =
1

CJ

∏
s∈L

µ
d/2
s√∏

x∈X ηx|s
=

∏
s∈L µ

d/2
s D(1/2)(ηs)

CJ
.

(5)

Let mJ denote the mixture byρJ (Jeffreys mixture) which
is mJ (x

n|s0)
def
=
∫
H
p(xn|s0,η)ρJ (η)dη. We also define the

Dirichlet(α) prior density as

ρ(α)(η)
def
=

∏
s∈LD(α)(ηs)

(C(α))ℓ
,

whereC(α)
def
=
∫
D(α)(ηs)dηs. This is a product of Dirichlet

prior densities, one for each context, reflecting independenceà
priori between the contexts. In contrastρJ(η) is not of product
form becauseµs(η) depends on all ofη for eachs. Note that
ρ(α)(η)/ρJ(η) → ∞ holds asη approaches the boundaries
of H, if 0 < α < 1/2 holds.

III. R ESULTS

A. Minimax Regret

We establish a tignth upper bound on the minimax regret
for Markov model by the following theorem.

Theorem 1:Let S = {p(·|s,η)|η ∈ H, s ∈ L} be a class of
kth order Markov chains with alphabet{0, 1, . . . , d}. Define
a modified Jeffreys prior density forH as

ρn
def
= (1− κn)ρJ + κnρ(α),

where0 < α < 1/2 is assumed andκn = ((ℓ − 1)/n)b. Let
mn be a mixture of Markov sources as

mn(x
n|s0)

def
=

∫
H

p(xn|s0,η)ρn(η)dη.

Then, for an arbitraryb : 0 < b < (1/2 − α)/(k(2ℓ − 1)),
the following bound onr̄n(mn) = r̄n(mn,Xn|s0) on the
minimax regret holds for anyso ∈ L.

r̄n(mn) (6)

≤ ℓd

2
log

n

2π
+ log

∫
H

√
det J(η)dη + o(1),

whereo(1) converges to0 asn goes to infinity.
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The complete proof is given in Section IV, but we give the
intuition here.

The main tool for the proof is the Laplace approximation,
by which we have the following asymptotics:∫

p(xn|η)ρJ (η)dη
p(xn|η̂)

∼
√
det(J(η̂))

CJ

√
det(Ĵ(η̂))

(2π)dℓ/2

ndℓ/2
. (7)

This is obtained by writingp(xn|η) as the exponential of
log p(xn|η), and taking a second order Taylor expansion forη
nearη̂. In this way, one approximatesp(xn|η) with a Gaussian
density function forη.

When the model is an exponential family,̂J(η̂) = J(η̂)
holds. Then ifS were an exponential family, our task would be
to control the accuracy of approximation (7) only. Though the
stationary Markov model is not exponential type, it converges
to an exponential family, when the sample size goes to
infinity (see [29] for example). Moreover, for the Markov
model the empirical Fisher information converges to the Fisher
information:

|Ĵ(xn, η̂)− J(η̂)| → 0. (8)

This convergence holds uniformly forxn with η̂ in a set in
the interior ofH. As a consequence, it is possible to make
the regret of the modified Jeffreys mixture converge to the
minimax one.

This task is accomplished by a case argument concerning
whether the maximum likelihood estimate is near the boundary
of the parameter space or not. When we restrict the sequence
xn so that the MLEη̂(xn−k+1) belongs to a compact setK
included in the interior ofH, then we can prove that the
convergence of (7) and (8) is uniform for those sequences,
since neighbourhoods of̂η are guaranteed to be included inH.
The Laplace approximation is valid as long as neighborhoods
of η̂ of radius of larger order than1/

√
n are included inH.

Consequently it is possible to prove the uniform convergence
of the regret, even if we moderate the restriction on the
sequences. Instead of sequences being restricted to have MLE
in a fixed setK we allow more generally for seqences with
the MLE in H(ϵn), where we let

H(ϵ)
s

def
= {ηs ∈ Hs : ∀x ∈ X , ηx|s ≥ ϵ},

H(ϵ) def
=

∏
s∈L

H(ϵ)
s ,

and
def
= ϵn = n−a

wherea is any fixed positive number smaller than1/2.
For the sequences witĥη within order1/

√
n of the bound-

ary of H, we cannot use the Laplace approximation. The
shape ofp(xn|η) becomes that of a truncated Gaussian, with
reduced value of the integral in (7). A similar reduction to
the integral occurs if̂η is on the boundary. Hence, the regret
would be larger by some amount. Indeed, it has been shown
for the memoryless case that the regret of Jeffreys mixture
is larger than the asymptotic minimax value by the amount
(d/2) log 2, when η̂ is located at a vertex ofH (Lemma 3,
[28]). Hence, we need the contribution from the second term
of ρn, which isn−bρ(α)(η). With the help from it, forη̂ on

or near the boundary, we can obtain smaller regret than the
minimax value. For the proof, we use Lemma 4 of [28].

The need to consider the difference betweenĴ(η̂) andJ(η̂)
as in (8) makes the proof about the interior region harder (this
problem does not exist for the memoryless case [28] and one-
dimensional exponential family [21]).

B. Lower Bound

It is possible to directly obtain a lower bound on the
maximin regret which asymptotically matches the upper bound
in the previous subsection. Here, we will give an outline of
the proof. LetK be an arbitrary compact subset ofH◦, and
define for eachs0 = x0−k+1,

Kn,s0
def
= {xn : s0x

n ∈ Xn+k, η̂ ∈ K}.

In a fashion similar to the upper bound, by Laplace approxi-
mation, it is possible to show that

log
p(xn|s0, η̂)
mJ (xn|s0)

(9)

=
dℓ

2
log

n

2π
+ log

∫
H

√
detJ(η)dη + o(1),

uniformly for all s0 ∈ X k and for allxn ∈ Kn,s0 , Let mJ is
the Jeffreys mixture ofp(xn|η) for H. Define the restriction
of mJ to Kn,s0 as

mK
J (xn|s0)

def
=
mJ(x

n|s0)1Kn,s0
(xn)

M(Kn,s0 |s0)
,

where
M(Kn,s0 |s0)

def
=

∑
xn∈Kn,s0

mJ(x
n|s0).

By the definition ofr
¯n

= r
¯n
(Kn,s0 |s0), it is at least

inf
r∈P(Xn|Xk)

EmK
J (·|s0) log

p(xn|s0, η̂)
r(xn|s0)

= EmK
J (·|s0) log

p(xn|s0, η̂)
mK

J (xn|s0)
which by the approximation (9) is of the form

dℓ

2
log

n

2π
+ log

∫
H

√
det J(η)dη

+ logM(Kn,s0 |s0) + o(1),

uniformly in Kn,s0 . Consequently

r
¯n
(Kn,s0 |s0)

≥ dℓ

2
log

n

2π
+ log

∫
H

√
det J(η)dη

+ logM(Kn,s0 |s0) + o(1).

Now, let {Ki} be a sequence of compact subsets ofH◦

such thatKi ⊂ K◦
i+1 and limi→∞

∫
Ki
dη = 1 holds

(Ki converges toH). Let Kn,s0,i denote the set{xn :
s0x

n ∈ Xn+k, η̂ ∈ Ki}. Then, it is possible to prove
limi→∞ limn→∞M(Kn,s0,i|s0) = 1. This implies

r
¯n
(Xn|s0) ≥

dℓ

2
log

n

2π
+ log

∫
H

√
det J(η)dη + o(1).
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The right hand side matches our upper bound on the minimax
regret. Another way is to utilize Rissanen’s result (Theorem 1,
[17]) for a compactK interior toH.

Remark 1:Theorem 1 is a generalization of the result about
the first order Markov chain with alphabet size 2 in [26], but
the proof is not its straightforward extension.

Remark 2:A similar bound for Markov chains is obtained
in [1], but it is not demonstrated to be uniformly valid over all
Xn. In [17], [21], [31] also, upper bounds of the same form
on the minimax regret are obtained for more general models,
but they hold under the restriction on the sequences that MLE
is located in a compact set included in the interior of the
parameter space (an exception is one-dimensional exponential
family in [21]). Under that condition, Jeffreys mixture (we do
not need modification) is asymptotically minimax.

Remark 3:It is possible to apply our minimax procedure
to the universal prediction problem, using the condition-
als mn(xt+1|xt) = mn(x

t+1|s0)/mn(x
t|s0), which equals∫

p(xt+1|xt,η)ρn(η|xt)dη =
∫
ηxt+1|τ(xt

−k+1)
ρn(η|xt)dη,

where ρn(η|xt) denotes the posterior density ofη given
xt−k+1 (recallτ(xt)

def
= xtt−k+1). The conditionals are essential

also for universal coding, since it is needed for arithmetic
coding.

Remark 4:Themn(xt+1|xt) depends onn because of the
modification of Jeffreys prior. Thus we have to know the
length of the sequence in advance, in order to usemn for the
prediction, while the Laplace estimator doesn’t depend on the
total length of the sequence. However, it is possible to calculate
mn(xt+1|xt) even fort > n, and use it for prediction, though
the minimax property is lost.

C. Computation of Posterior Updates

Whereas for a product of Dirichlet priors, posterior predic-
tive densities and mixture densities are easy to compute (using
the fact that the posterior densities is also Dirichlet), in contrast
there are additional challenges in computation of the Jeffreys
mixture and its modified forms.

The general forms of the product of Dirichlet densities
is D̄λ(η) =

∏
s∈L[(

∏d
x=0 η

λx|s−1

x|s )/Cλs
], where the nor-

malizing factors areCλs
=
∫ ∏d

x=0 η
λx|s−1

x|s dηs which are
known Dirichlet integrals (given as a ratio of products of
Gamma functions). For a Dirichlet(α) prior it is known that the
pesterior distributions given dataxn is Dirichlet D̄α1+n(η),
where 1 denotes the(d + 1)ℓ-dimensional vector with all
entries are1 andn is the (d + 1)ℓ-dimensional vector with
entries(ns, s ∈ L). Its predictive distribution follows Laplace
update rules for evaluation of

η̂
(α)
x|s =

∫
ηx|sD̄α1+n(η) =

nx|s + α

ns + α(d+ 1)
.

In particular withα = 1/2 this provides what is also called
the Krichevsky-Trofimov estimator.

In contrast, the Jeffreys posterior is more involved because
of the

∏
s µs(η)

d/2 factor in the prior as in (5) whereµs(η)
depends on allηs′ (s′ ∈ L). The posterior densityρJ (η|xn)
is proportional to

(∏
s µs(η)

d/2
)
D̄1/2+n(η) as described in

Appendix A. For the computation of the Jeffreys predictive

probabilities and Jeffreys mixture, define the unnormalized
estimates

η̂Jx|s =

∫
ηx|s

(∏
s∈L

µs(η)
d/2
)
D̄(1/2+n)(η)dη (10)

Then the Jeffreys predictive probability for possible next sym-
bols x ∈ X ′ given dataxn with τ(xn) = s are proportional
to theseη̂Jx|s. That is,pJ (xn+1 = x|xn) =

∫
ηx|sρJ(η|xn)dη

is equal to
η̂Jx|s∑

x∈X η̂
J
x|s
.

The successive predictive probabilitiespJ (xt+1|xt) are com-
puted in the same way, where in place ofn we use the vector
t of countstx|s for x ∈ {0, . . . , d} and s ∈ L, based on the
data segmentxt for eacht ≥ 0.

The Jeffreys mixturemJ(x
n) is computed from successive

products of such predictive probabilities.
Also, without the

∏
s µs(η)

d/2 factor, one has the
Dirichlet(α) mixturem(α)(x

n). Our modified Jeffreys mixture
is thus

mn(x
n) = (1− κn)mJ (x

n) + κnm(α)(x
n).

The associated marginals aremn(x
t) = (1 − κn)mJ(x

t) +
κnm(α)(x

t) for t ≤ n. The posterior weight it gives to the
Jeffreys mixture is

π(J |xt) = (1− κn)mJ(x
t)/mn(x

t).

The associated predictive probabilitiespn(xt+1|xt) =
mn(x

t+1)/mn(x
t) are

π(J |xt) pJ(xt+1|xt) + (1− π(J |xt))p(α)(xt+1|xt).

This method of computing the mixture needs the computa-
tion of

η̂Jx|s =

∫
ηx|s

(∏
s∈L

µs(η)
d/2
)
D̄(1/2+t)(η)dη,

wheret = (ts, s ∈ L) is the vector of context counts for each
initial segment of lengtht ≤ n.

It lacks the explicit form of̂η(1/2)x|s =
∫
ηx|sD̄(1/2+t)(η)dη.

Nevertheless, comparison of these integrals, leads to advocacy
of a Monte Carlo evaluation. To computeη̂Jx|s from dataxt one
way is to averageηx|s

∏
s∈L(µs(η))

d/2 with a large number
(a million) of independentη each drawn according to the
Dirichlet D̄(1/2+t) distribution. A refinement to this Monte
Carlo evaluation is given in Section VI for the two-states first-
order Markov case.

An alternative to Monte Carlo evaluation is an approxi-
mation formula appropriate for long strings witĥη ∈ K, as
developed next.

D. Approximation Formula

As stated in the preceding section, the Jeffreys mixture
for the Markov model is nearly a best strategy, but it is
hard to calculate it in general, because it is a multi integral
with respect to the parameterη. The following theorem pro-
vides its approximation formula, which is easier to calculate
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than the original form. Here note that
∫
p(x|xn)ρJ (η|xn)dη

=
∫
ηx|sρJ(η|xn)dη with s = τ(xnn−k+1).

Theorem 2:Let S = {p(·|s,η)|η ∈ H, s ∈ L} be a class
of kth order Markov chains with the alphabet{0, 1, . . . , d}.
Let K be a compact set included in the interior ofH andn0
be an arbitrary natural number. Then, for allx ∈ X and for
all s ∈ L,∫

ηx|sρJ (η|xn)dη (11)

=
nx|s + 0.5

ns + (d+ 1)/2

+
∑

y∈X ′, t∈L

dη̂y|s(δxy − η̂x|s)

2ns + d+ 1

∂ logµt

∂ηy|s

∣∣∣∣
η=η̂

+O(

√
log n

n
√
n

)

holds, uniformly for all infinite sequencesx−k+1...x1x2...
such thatη̂ ∈ K holds for alln ≥ n0 for somen0 ≥ 1.

This represents the approximation formula as an additive
modification to the estimator(nx|s + 0.5)/(ns + (d + 1)/2).
Note that the following multiplicative form is equally valid.∫

ηx|sρJ(η|xn)dη

=
nx|s + 0.5

ns + (d+ 1)/2

· exp
(
d

2

∑
y∈X ′, t∈L

η̂y|s(δxy − η̂x|s)

nx|s + 0.5

∂ logµt

∂ηy|s

∣∣∣∣
η=η̂

+O
(√log n

n
√
n

))
.

This theorem is proved from Theorem 3 given later.
Theorem 2 shows how we should correct the Laplace-like

estimator (the first factor of the right hand side) in order
to decrease the worst case logarithmic regret. The correction
(second term) contains the derivative of the stationary prob-
abilities, which are rational functions of the parameterη as
shown in Appendix B.

The following example is the simplest case.
Example 1:Let X = {0, 1} and d = 1 (L = {0, 1}). We

haveµ1 = η1|0/(η1|0 + η0|1) andµ0 = η0|1/(η1|0 + η0|1). Let
s = 0 andx = 1, then the sum in exponent in the third line
of (11) equals

∑
y∈X ′, t∈L

ηy|s(δxy − ηx|s)

nx|s + 1/2

∂ logµt

∂ηy|s

=
∑
t∈L

η1|0(1− η1|0)

n1|0 + 1/2

∂ logµt

∂η1|0

=
η1|0(1− η1|0)

n1|0 + 1/2

( 1

η1|0
− 2

η1|0 + η0|1

)
.

Let xn = 0 (τ(xn) = 0), then by Theorem 2, the approxima-

tion of the Jeffreys mixture for this case is given by∫
η1|0ρJ(η|xn)dη (12)

≈
n1|0 + 0.5

n0 + 1

+
1

n0 + 1

(1− η̂1|0

2
−
η̂1|0(1− η̂1|0)

η̂1|0 + η̂0|1

)
=

n1|0 + 0.5 + (1− η̂1|0)(0.5− µ̂1)

n0 + 1
,

where the error term isO(
√
log n/n

√
n) and µ̂1 denotes

η̂1|0/(η̂0|1 + η̂1|0).
Note that this depends not only on̂η1|0 but on η̂0|1 and that

the difference between this and the Laplace-like estimator is
of orderΩ(1/n0) (where ‘Ω(x)’ denotes negation of ‘o(x)’).
It is known that the Jeffreys mixture for the i.i.d. case induces
the Laplace-like estimator (Krichevsky-Trofimov estimator),
which is widely used in many data compression or prediction
methods, e.g. in the CONTEXT [16] and the CTW [25]
method, even though these methods are for non-i.i.d. sources.
The reason is that it is in a very simple form and is believed
to have good coding performance. Theorem 2 shows that
for Markov sources the Laplace estimator is different from
the minimax strategy in terms of second order efficiency.
Moreover, the theorem suggests that we may have to calculate
the derivative of stationary probabilities every time a datum is
input, to achieve the minimax regret in sequential prediction
or data compression with Markov models. If we employ a
naive algorithm to calculate them, the computational cost is
of orderO(ℓ3), since it includes the eigenvalue problem. Note
that it can be reduced toO(ℓ2) by making use of the Sherman-
Morrisson formula (see [15] for example).

We can show a more general approximation formula (The-
orem 3), from which Theorem 2 is obtained as a corollary.
To state it, we need some preliminaries. First, we introduce
another parameterθ thanη. Note thatp(xn|η) is rewritten as
follows:

p(xn|η) =
∏

s∈L,x∈X
(ηx|s)

nx|s (13)

=
∏

s∈L,x∈X
((ηx|s)

nx|s/ns)ns

=
∏
s∈L

exp(ns(
∑
x∈X ′

θx|sη̂x|s − ψ(θs))),

where we letθx|s = θx|s(ηs) = log(ηx|s/η0|s), θs = θs(ηs)
= (θ1|s, ...., θd|s)

t, and ψ(θs) = − log η0|s = log(1 +∑
x∈X ′ exp θx|s). Recall that η̂x|s = nx|s/ns, where nx|s

denotes the number of occurences ofx at the states in
the sequencexn, and ns

def
=

∑
x∈X nx|s. Define θ =

(θt
s1 ,θ

t
s2 , ...,θ

t
sℓ
)t similarly asη. Let Θs

def
= {θs(ηs) : ηs ∈

H◦
s }, thenΘs = ℜ|X ′| holds. LetΘ

def
=
∏

s∈L Θs = ℜℓ·|X ′|.
It is known that the mapηs 7→ θs(ηs) on H◦

s is one to one
and analytic (see [3]). Note that(∂/∂θx|s)ψ(θs) = ηx|s holds.
Define functionsgxy as

gxy(θs)
def
=

∂2ψ(θs)

∂θy|s∂θx|s
, (14)
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then we have∂ηx|s/∂θy|s = gxy(θs). Let g(θs) denote the
matrix whose(x, y) component isgxy(θs). Note thatg(θs) is
positive definite for anyθs ∈ Θs. Let I(ηs) denote the inverse
matrix of g(θs). Then, the following holds

Ixy(ηs) =
δxy
ηx|s

+
1

η0|s
. (15)

That is, Ixy(ηs) equals the Fisher information matrix for
the multinomial Bernoulli model. Note thatµsIx,y(ηs)
= Jsx,sy(η) holds. Sinceθx|s = log(ηx|s/η0|s), ηx|s =
eθx|s/(1 +

∑
z∈X ′ eθx|s) holds. Hence we have

∂ηy|s

∂θx|s
= −

ηy|sηx|s

(1 +
∑

z∈X ′ eθz|s)2
+

δxyηy|s

1 +
∑

z∈X ′ eθz|s

= −ηx|sηy|s + δxyηy|s = ηx|s(δxy − ηy|s).

Therefore we have

∂

∂θx|s
=
∑
y∈X ′

ηx|s(δxy − ηy|s)
∂

∂ηy|s
. (16)

Given the prior measureρ(η)dη, denote the prior density
function with respect todθ as

w(θ) = ρ(η)
∣∣∣det(dη

dθ

)∣∣∣
= ρ(η)

∏
s∈L

det(g(θs)) = ρ(η)
∏

s∈L,y∈X
ηy|s.

For the Jeffreys prior and the Dirichlet prior, let

wJ(θ) =

∏
s∈L µ

d/2
s D(1/2)(ηs)

∏
y∈X ηy|s

CJ

=

∏
s∈L µ

d/2
s D(3/2)(ηs)

CJ
,

w(α)(θ) =

∏
s∈LD(α)(ηs)

∏
y∈X ηy|s

(C(α))ℓ

=

∏
s∈LD(α+1)(ηs)

(C(α))ℓ
.

The following is our assumption for a prior densityw.
Assumption 1:For a compact setK included inH◦, there

exists a certain integermmin, such that for allη′ ∈ K, for all
x ∈ X ′, and for alls ∈ L,

∂ logw(θ)

∂θx|s

∏
t∈L,y∈X

(ηy|t)
mminη

′
y|t · w(θ)

is integrable overΘ.
Suppose that Assumption 1 holds for a priorw. Then,

∂ logw(θ)/∂θx|s ·w(θ)
∏

t∈L,y∈X (ηy|t)
mminη

′
y|t is integrable

for anyn such that for alls ∈ L, ns ≥ mmin. This assumption
holds for Jeffreys prior (see Lemma 5 in Appendix).

The following theorem provides an approximation formula
for a general prior density.

Theorem 3:LetK be a compact set included in the interior
of H. Suppose that the prior densityw satisfies Assumption 1
for a certainmmin. Then the following holds, uniformly for

all infinite sequencesx−k+1...x1x2... such thatη̂ ∈ K holds
for all n ≥ mmin.∫

ηx|sw(η|xn)dη (17)

= η̂x|s +
1

ns

∂ logw(θ)

∂θx|s

∣∣∣∣
θ=θ̂

+O(

√
log n

n
√
n

).

Alternatively, the following holds uniformly for all sequences
x−k+1...x1x2... such that̂η(1/2) ∈ K holds for alln ≥ mmin,
where we recall̂η(1/2)

x|s
def
= (nx|s + 0.5)/(ns + (d+ 1)/2).∫

ηx|sw(η|xn)dη (18)

= η̂
(1/2)
x|s +

1

ns + (d+ 1)/2

∂ log(w(θ)/w(1/2)(θ))

∂θx|s

∣∣∣∣
η=η̂L

+O(

√
logn

n
√
n

).

The proof is given in Section V.
Noting |η̂− η̂(1/2)| = O(1/n), Theorem 2 is easily derived

from (18) and (16).

E. Simulation

Concerning the simplest case (Example 1), where the target
model is the first order Markov chain with binary alphabet, we
evaluate the coding regret of the strategy using the algorithm
described in Subsections III-C and III-D.

In the following experiments, we used the Monte Carlo
method whenns ≤ 20 holds for the current states, and
otherwise we used the approximation formula (12), when
cumputing the succsesive factors ofmJ(x

n) andq(xn).
We generated data sequences of lengthn = 107, which

was according to Markov sources with various parameter
settings. The parameter settings areα = 0.019 and b = 0.16
(κn = n−0.16), which satisfies the assumption of Theorem 1.
Note that b must be smaller than(0.5 − α)/3 ≤ 0.5/3 =
0.16 · · · , hence the settingb = 0.16 is nearly optimal for rapid
convergence ofκn. In fact we haven−0.16 = 0.0759 · · · when
n = 107. We set Monte Carlo sample size to1, 000, 000. The
following tables show the results of our experiment. In each
line we list the MLE for(η0|1, η1|0) and the computed values
of the regret of the procedures based onmJ andq. The regret
of q is r̃(q) = r̃(q, xn−k+1) defined by

r̃(q, xn−k+1)
def
= log

1

q(xn|x0−k+1)
− log

1

p(xn|η̂)
− log

n

2π
.

TABLE I lists regret for the cases of sequences with frequency
of transitions between 0.1 and 0.9, where the columns of
r̃(mJ) lists the regrets by the genuine Jeffreys mixture and
the columns ofr̃(q) list the regret by the modified Jeffreys
mixture computed by the proposed method. Here themJ (x

n)
and q(xn) are computed by as product of succsesive factors
required for prediction and for arithmetic coding. We also
provide columns with sharp lower bounds on these regrets,
based onmJ(x

n) given in TABLE III in Section VI. If q is
the minimax strategy,̃r(q, xn−k+1) converges tologCJ , which
approximately equals1.2985 (see Appendix D). The regrets
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by q in TABLE I are approximately0.08 nat larger than this
value. It coincides with the fact that− log(1−κn) ≈ − log(1−
0.0759) = 0.078 · · · . For the ordinary (non-extremal) cases,
we see that the regrets of the genuine Jeffreys mixture (the case
of κn = 0) are between1.297 and 1.303. For each line, the

TABLE I
REGRET (ORDINARY CASES)

η̂0|1 η̂1|0 r̃(mJ ) r̃(q)
0.0999 0.0998 1.297 1.376
0.0999 0.3002 1.300 1.378
0.0999 0.5004 1.300 1.378
0.1000 0.6997 1.298 1.377
0.0999 0.8998 1.300 1.376
0.3000 0.3000 1.303 1.382
0.3002 0.4999 1.301 1.379
0.3002 0.7001 1.299 1.377
0.3000 0.9000 1.298 1.376
0.4998 0.5004 1.299 1.378
0.5000 0.7001 1.297 1.376
0.5000 0.8998 1.299 1.377
0.7001 0.7003 1.302 1.380
0.7001 0.9001 1.303 1.382
0.9000 0.9000 1.300 1.378

dataxn0 are generated according to a Markov source withη0|1
andη1|0 equal to the two digit values which the reportedη̂0|1
and η̂1|0 clearly estimate. While the expected regret depends
only on the η̂0|1 and η̂1|0 based on the whole sample, our
approximation uses theq(xt+1|xt) based on partial samples
of sizest ≤ n. Consequently, different realizations ofxn0 of the
same Markov typeŝη0|1 and η̂1|0 will have slightly different
computed regret.

Here we used a Monte Carlo sample size of1, 000, 000 for
near three digit accuracy. A Monte Carlo size of10, 000 would
be sufficient for two digit accuracy.

IV. PROOF OFTHEOREM 1

In this section we give the proof of Theorem 1. As described
in Subsection III-A, a key of the proof is the convergence rate
of the determinant of empirical Fisher information to that of
Fisher information. Comparing (3) with (4), we realize that our
main task is to evaluate the ratiôps/µs(η̂) for s ∈ L where
p̂s

def
= ns/n. Hence, we first give a lemma about this item in

the next subsection. After that we will prove Theorem 1.

A. Convergence of State Frequency to Stationary Probability

We can show the following Lemma.
Lemma 1:Let r = k(ℓ− 1). For all ϵ ∈ (0, 1], if η̂(xn) ∈

H(ϵ) is satisfied, then the following two inequalities hold.

ns ≥ n(ϵ/2)k, (19)

| log p̂s
µs(η̂)

| <
C1

nϵr+k
, (20)

whereC1 is a certain positive constant independent ofϵ and
n.

Remark:When the model is the first order Markov chain
with alphabet{0, 1}, the proposition which corresponds to
Lemma 1 is easy to show, since the explicit forms ofµs are
very simple.

Let ϵn = n−a, where we assume

0 < a <
1

2r + k
.

Then, we havenϵr+k
n > n1−(r+k)/(2r+k) → ∞ as n goes

to infinity. Hence by Lemma 1, we havêps/µs(η̂) → 1
uniformly for all xn−k+1 such that̂η ∈ H(ϵn). Hence, Lemma 1
implies that empirical Fisher information converges to Fisher
information, uniformly for allxn−k+1 such thatη̂ ∈ H(ϵn).

In the remainder of this subsection, we describe the proof
of Lemma 1.

The sequence of states ofxn−k+1 are the succesive overlap-
ping segments of lengthk shifting by just1. Thus there is a
length n sequence of states arising fromxn after the initial
state.

Definenu|t for every pair of stringst, u ∈ L as the number
of transitions from the statet ∈ L to the stateu ∈ L in the
sequencexn−k+1. Likewise for s ∈ L, we letnx|s denote the
number of occurences of an individual symbolx ∈ X after
the states in the sequencexn−k+1. Thennx|s equalsnτ(sx)|s.

Similarly, we are to define the parameterηu|t for everyu, t
∈ L. First, define

Ds
def
= {τ(sx) : x ∈ X}.

The setDs consists of the states which are reached by one
transition from the states. Note that foru ∈ Ds, there exists
a uniquex ∈ X such thatu = τ(sx). Let ξ(s, u) denote such
x for eveys ∈ L andu ∈ Ds. Then for everyu, t ∈ L, define

ηu|s =

{
ηξ(u)|s, whenu ∈ Ds,
0, otherwise.

Then letΠ be a matrix whose(t, u) component isΠtu = ηt|u,
then it is the state transition probability matrix, and letΠk be
its kth power.

First, we will show the following.
Proposition 1: Let ϵ be a non-negative real number. If

ηx|t > ϵ holds for eacht ∈ L = X k and eachx ∈ X , then
µt > ϵk holds.

Proof: Note that the stationary probabilitiesµt (t ∈ L)
satisfy the following linear equations:

µt =
∑
t′∈L

Πtt′µt′ . (21)

For eacht ∈ L and x ∈ X , we haveηx|t > ϵ by the
assumption. Nowτ(t′t) = t holds for each pair(t, t′) ∈ L2.
This implies that it is possible to get to any state from any state
by k transitions. Further,ηx|t > ϵ holds for all(t, x) ∈ L×X ,

This implies that each element ofΠk is larger thanϵk,
i.e. eachµt is larger thanϵk. This completes theproof of
Proposition 1.

Proposition 2: There exists a certain positive numberC1,
such that ∣∣∣∂ logµs

∂ηx|t

∣∣∣ ≤ C1

ϵr

holds for alls ∈ L, for all t ∈ L, for all x ∈ X ′, for all ϵ > 0,
and for allη ∈ H(ϵ), wherer = k(ℓ− 1).
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Proof: Renumber the states asL = {s1, s2, ...sℓ}. Define
a matrix A as Aij

def
= (Πk)sisj and a vectorµ as µ

def
= (µs1 , ..., µsℓ)

t. By Lemma 4 in Appendix B, we have

µi =
∆ii∑
j ∆jj

. (22)

and∆ii ≥ ϵk(ℓ−1) for all η ∈ H(ϵ) and for alls ∈ L, where
∆ij denotes the(i, j)th cofactor of I − A, where I is the
identity matrix. Hence, we have

∂ logµs

∂ηx|t
=

1

∆ii

∂∆ii

∂ηx|t
− 1∑

j ∆jj

∂
∑

j ∆jj

∂ηx|t
.

Note that the derivative of∆jj is bounded from above when
η ∈ H(ϵ). Therefore, we have for allt ∈ L, for all x ∈ X ′,
and for allη ∈ H(ϵ),∣∣∣∂ logµs

∂ηx|t

∣∣∣ ≤ C

ϵk(ℓ−1)
.

This completes the proof of Proposition 2.
Remark:By using Lemma 4 in Appendix B, which gives

an explicit form of the stationary probabilitiesµs(η), we can
write down the Jeffreys prior as

ρJ (η) =
1

CJ

∏
j

(
∆̄jj∑ℓ
l=1 ∆̄ll

)d/2

D(1/2)(ηsj ),

where∆̄ij denotes the(i, j)th cofactor of the matrix whose
entries areδij −Πsisj , andCJ is the normalization constant.

Now, we can prove Lemma 1.
Proof of Lemma 1: Lets0

def
= τ(x0−k+1) be the initial state,

and se
def
= τ(xn) be the final state. First, we treat a special

case in whichs0 = se holds. In this case, we have

∀s ∈ L,
∑
t∈L

nts =
∑
t∈L

nst , (23)

since the number of all transition from the states equals the
number of all transition to the states. Hence, we have∑

t∈L

η̂s|t p̂t =
∑
t∈L

ns|t

nt

nt
n

=
∑
t∈L

ns|t

n
=
ns
n

= p̂s. (24)

This impliesp̂s = µs(η̂).
When s0 ̸= se, let xn+α

n+1 be a minimum path from the
statese to s0 (α does not exceedk). By adding a sequence
xn+α
n+1 to the sequencexn, we haveτ(xn+α) = s0. Then, we

have p̂s(xn+α) = µs(η(x
n+α)). Let ϕt|s denote the number

of transition from the states to the statet in the sequence
xn....xn+α, and let ϕs =

∑
t ϕt|s. Here, ϕs = 0 or 1,

since xαn+1 is the minimum pass fromse to s0. We have
η̂t|s(x

n+α) = (nt|s + ϕt|s)/(ns + ϕs). Hence

η̂t|s(x
n+α) ≥

nt|s

ns + 1
=

η̂t|s(x
n)

1 + 1/ns
≥
η̂t|s(x

n)

2
>
ϵ

2
,

where we use the fact thatns =
∑

t nt|s ≥ 1 for sufficiently
largen. This can be shown as follows. Ifnt|s = 0 holds for
all t ∈ L, then ns|t ≤ 1 for all t ∈ L. Since there exists
one u ∈ L at least such thatnu ≥ n/ℓ, we haveη̂s|u(xn)

= ns|u/nu ≤ ℓ/n, which is smaller thanϵ for sufficiently
largen. This contradicts the assumption̂η(xn) ∈ H(ϵ).

By η̂t|s(x
n+α) > ϵ/2 and Proposition 1, we have

p̂s(x
n+α) = µs(η̂(x

n+α)) > (ϵ/2)k, that is (ns + ϕs)/(n +
α) > ϵk. Thereforens > n(ϵ/2)k − 1 holds, which means
ns ≥ n(ϵ/2)k. This is (19).

Hence, we have

η̂t|s(x
n+α) ≥

η̂t|s(x
n)

1 + 1/ns
>

η̂t|s(x
n)

1 + 2k/(nϵk)
.

Hence,

η̂t|s(x
n) < η̂t|s(x

n+α)(1 +
2k

nϵk
)

≤ η̂t|s(x
n+α) +

2k

nϵk
.

Also, we haveη̂t|s(xn+α) < (nt|s +1)/ns = η̂t|s(x
n)+ 1/n.

Therefore, we have

|η̂t|s(xn+α)− η̂t|s(x
n)| < 2

nϵk
.

By Taylor’s theorem, we have

logµs(η̂(x
n+α))− logµs(η̂(x

n))

=
∑

t∈L, x∈X ′

∂ logµs

∂ηx|t

∣∣∣∣
η=h

(η̂x|t(x
n+α)− η̂x|t(x

n)),

where h is a point betweenη̂(xn+α) and η̂(xn). Since
η̂(xn+α), η̂(xn) ∈ H(ϵ), h ∈ H(ϵ) holds. Hence by Proposi-
tion 2, we have ∣∣∣∣∣ ∂ logµs

∂ηx|t

∣∣∣∣
η=h

∣∣∣∣∣ ≤ C2r

ϵr
.

Hence, we have

− 2kCkℓ

nϵ2r+k
≤ log

µs(η̂(x
n+α))

µs(η̂(xn))
≤ 2kCkℓ

nϵ2r+k
. (25)

Sincep̂s(xn+α) = (ns + ϕs)/(n+ α), we have

p̂s(x
n+α) ≥ ns

n+ α
=

p̂s(x
n)

1 + α/n
≥ p̂s(x

n)

1 + k/n

and

p̂s(x
n+α) ≤ ns + 1

n
= p̂s(x

n) +
1

n

= p̂s(x
n)(1 +

1

np̂s
) = p̂s(x

n)(1 +
1

ns
).

Hence,
1

1 + 1/ns
≤ p̂s(x

n)

p̂s(xn+α)
≤ 1 +

k

n
,

that is,

− 1

ns
≤ log

p̂s(x
n)

p̂s(xn+α)
≤ k

n

holds. Together with (25) and̂ps(xn+α) = µs(η̂(x
n+α)), we

have

− C2

nϵr+k
< −2kC1kℓ

nϵr+k
− 1

ns

< log
p̂s(x

n)

µs(η̂(xn))
≤ 2kC1kℓ

nϵr+k
+
k

n
<

C2

nϵr+k
,

where we use (19) and letC2 = 2max{2kC1kℓ, k}. This
complets the Proof of Lemma 1.
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B. Proof of Theorem 1

Now, we can prove Theorem 1.
Proof of Theorem 1:Let a denote a ceartain constant which

satisfies

b < a(1/2− α) <
1/2− α

2r + k
.

There exists sucha, sinceb is smaller than

1/2− α

k(2ℓ− 1)
=

1/2− α

2r + k

by the assumption of the theorem (recallr = k(ℓ−1)). Define
ϵn = n−a. Suppose that̂η ∈ H(ϵn) holds. Then by Lemma 1,
we have

ns ≥ n(ϵn/2)
k ≥ n1−k/(r+k) − 1

2k
→ ∞,

whenn goes to infinity.
Sincer = k(ℓ− 1), we haver ≥ 1 and

1

2r + k
=

1

k(2ℓ− 1)
.

Sincer ≥ 1, it follows thata < 1/(2+k) holds. This implies
(1− ak)/2 > a.

In this proof, letκn denote((ℓ− 1)/n)b.
Part I (interior points):

First, we treat sequences witĥη ∈ H(ϵn). Note the inequal-
ity

mn(x
n)

p(xn|η̂)
≥

(1− κn)
∫
p(xn|η)ρJ (η)dη
p(xn|η̂)

.

We evaluate the ratio
∫
p(xn|η)ρJ(η)dη/p(xn|η̂).

We can write

p(xn|η) =
∏

s∈L, x∈X

exp(nx|s log ηx|s) (26)

=
∏

s∈L, x∈X
exp(n

ns
n

nx|s

ns
log ηx|s)

=
∏
s∈L

exp(np̂s
∑
x∈X

η̂x|s log ηx|s).

Therefore, we have∫
p(xn|η)ρJ(η)dη

p(xn|η̂)

=

∫ (∏
s

enp̂s
∑

x∈X η̂x|s log ηx|s)

enp̂s
∑

x∈X η̂x|s log η̂x|s

)
ρJ (η)dη.

Here, recall

ρJ (η) =
1

CJ

∏
s

µs(η)
d/2D(1/2)(ηs).

We evaluate this integration (denoted asV ) by Laplace ap-
proximation. We define a neighbourhoodBn,s of η̂s as

Bn,s = {ηs : p̂s(ηs − η̂s)
tI(η̂s)(ηs − η̂s) ≤

4d logn

n
},

where I(η̂) is the same one as (15). We show that for
sufficiently largen, Bn,s is included inH(ϵn)

s . Note that all
eigenvalues ofI(ηs) are larger than1 for arbitraryηs ∈ H

(0)
s .

Hence the minimum eigenvalue of̂psI(η̂s) is larger thanp̂s,
which by Lemma 1 satisfies.

p̂s > µs(η̂) exp(−
C1

nϵr+k
n

)

= µs(η̂) exp(−
C1

n1−a(r+k)
)

> µs(η̂) exp(−
C1

nr/(2r+k)
).

The second inequality here follows from

1− a(r + k) > 1− (r + k)/(2r + k) = r/(2r + k)

(recalla < 1/(2r+k)). Then, by Proposition 1, the minimum
eigenvalue of̂psI(η̂s) is larger thanϵkn/e for all n such that
nr/(2r+k) > C1. Therefore with Lemma 1, the diameter of
Bn,s is smaller than

√
4de log n√
nϵkn

= C4n
−(1−ak)/2

√
log n. (27)

Its ratio to ϵn = n−a converges to0 as n goes to infinity,
since(1 − ak)/2 > a. Hence,Bn

def
=
∏

sBn,s is included in
H(ϵn) for sufficiently largen. Hence, we have

V ≥
∫
Bn

ρJ(η)
∏
s

enp̂s
∑

x∈X η̂x|s log ηx|s

enp̂s

∑
x∈X η̂x|s log η̂x|s

dη

≥ inf
η∈Bn

ρJ(η)

∫
Bn

∏
s

enp̂s
∑

x∈X η̂x|s log ηx|s

enp̂s

∑
x∈X η̂x|s log η̂x|s

dη

= βn
∏
s

∫
Bn,s

enp̂s
∑

x∈X η̂x|s log ηx|s

enp̂s
∑

x∈X η̂x|s log η̂x|s
dηs

≥ βn
∏
s

∫
Bn,s

e−np̂se
γn (ηs−η̂s)

tI(η̂s)(ηs−η̂s)/2dηs.

where we have used Taylor’s theorem in the manipulation from
the third line to the forth line, and we let

βn
def
= inf

η∈Bn

ρJ(η), (28)

Îxy(ηs)
def
=

δxyη̂x|s

(ηx|s)2
+

η̂0|s

(η0|s)2
,

eγn
def
= sup

(ηs − η̂s)
tÎ(η′

s)(ηs − η̂s)

(ηs − η̂s)
tI(η̂s)(ηs − η̂s)

. (29)

In (29), the supremum is taken for allxn−k+1 : η̂ ∈ H(ϵn),
for all ηs ∈ Bn,s \ {η̂s}, and for all η′

s ∈ Bn,s. The
quantities Îxy(ηs) provide the empirical Fisher information
for the Bernoulli sources. Note that̂Ixy(η̂s) = Ixy(η̂s) holds.

We are to show that the following two inequalities uniformly
hold for all xn−k+1 : η̂ ∈ H(ϵn).

βn ≥ (1− o(1))ρJ(η̂) (30)∫
Bn,s

e−np̂se
γn (ηs−η̂s)

tI(η̂s)(ηs−η̂s)/2dηs (31)

≥ (1− o(1))
(2π)d/2

nd/2µs(η̂)d/2D(1/2)(η̂s)
,

where o(1) converges to0 as n goes to infinity. These
inequalities implyV ≥ (1− o(1))(2π/n)dℓ/2/CJ .



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. X, NO. X, XXX XXXX 11

As for (30), note that we have

inf
η̂∈H(ϵn)

inf
η∈Bn

D1/2(ηs)

D1/2(η̂s)
(32)

= inf
η̂∈H(ϵn)

inf
η∈Bn

∏
x

√
η̂x|s

√
ηx|s

≥
∏
x

√
2ϵn√

2ϵn + d(Bn,s)
,

where we letd(Bn,s) denote the diameter ofBn,s. Since
d(Bn,s)/ϵn converges to0 (recall (27)), the last expression
converges to1 asn goes to infinity. We can also show

sup
η∈Bn

∣∣∣∣log µs(η)

µs(η̂)

∣∣∣∣ ≤ C5n
−(1−ak)/2

ϵrn
= C5n

−(1−ak−2ra)/2

in the same way as we obtain (25). (Recall thatC4n
−(1−ak)/2

is an upper bound on the diameter ofBn,s.) Hence,

inf
η∈Bn

µs(η)

µs(η̂)
≥ exp(−C5n

−(1−ak−2ar)/2) → 1 (n→ ∞)

sincea < 1/(2r + k). Together with (32), we have (30).
As for (31), first we are to showγn → 0 as n goes to

infinity. Note that

(ηs − η̂s)
tÎ(η′

s)(ηs − η̂s) =
∑
x∈X

η̂x|s

(η′x|s)
2
(ηx|s − η̂x|s)

2

holds. Letax
def
= η̂x|s/(η

′
x|s)

2 andbx
def
= 1/η̂x|s. Then, we can

write

(ηs − η̂s)
tÎ(η′

s)(ηs − η̂s)

(ηs − η̂s)
tI(η̂s)(ηs − η̂s)

=

∑
x∈X ax(ηx|s − η̂x|s)

2∑
x∈X bx(ηx|s − η̂x|s)2

.

Since ∑
x∈X ax(ηx|s − η̂x|s)

2∑
x∈X bx(ηx|s − η̂x|s)2

≤ max
x∈X

ax
bx

holds, we have

eγn ≤ sup
η̂∈H(ϵn)

sup
η′

s∈Bn,s

max
x∈X

( η̂x|s
η′x|s

)2
.

In a manner similar to the evaluation of (32), we have

γn ≤ 2 log
(
1 +

C3√
4ϵ2nns

)
≤ 2C3√

4ϵ2nns
.

This converges to0 asn goes to infinity. Next we will show∫
Bn,s

e−np̂se
γn (ηs−η̂s)

tI(η̂s)(ηs−η̂s)/2dηs (33)

≥ e−dγn(2π)d/2(1− n−d/2)

nd/2
√
det(p̂sI(η̂s))

.

The integral overBn,s is equal to the integral over the whole
space minus the complimentBc

n,s. Thus the integral on the
left side is equal to√

(2π)d

det(np̂seγnI(η̂s))
− I2, (34)

which is √
e−dγn(2π)d

nd det(p̂sI(η̂s))
− I2, (35)

where

I2
def
=

∫
Bc

n,s

e−eγnnp̂s(ηs−η̂s)
tI(η̂s)(ηs−η̂s)/2dηs. (36)

AbbreviateQ(ηs) = p̂s(ηs− η̂s)
tI(η̂s)(ηs− η̂s)/2. In Bc

n,s

we haveQ(ηs) > 4d log n/n and hence the exponent in
the integral (36) satisfieseγnnQ(ηs) ≥ eγnQ(ηs) + (n−
1)eγn4d log n, where we have reserved theeγnQ(ηs) part to
preserve integrability. Accordingly, we have

I2 ≤ exp(−e
γn(n−1)2d log n

n
)

·
∫
Bc

n,s

e−eγn p̂s(ηs−η̂s)
tI(η̂s)(ηs−η̂s)/2dηs

Bound it further by enlarging the last factor, integrating over
ℜd, to yields

I2 ≤ exp(−e
γn(n−1)2d log n

n
)

√
e−dγn(2π)d

det(p̂sI(η̂s))
.

Sinceγn = o(1), the inequalityeγn(n−1)2d/n ≥ d holds for
sufficiently largen, and hence

I2 ≤ 1

nd/2

√
e−dγn(2π)d

nd det(p̂sI(η̂s))

holds for sufficiently largen. Therefore, (34) yields∫
Bn,s

e−np̂s exp(γn)(ηs−η̂s)
tI(η̂s)(ηs−η̂s)/2dηs

= (1− n−d/2)

√
exp(−dγn)(2π)d
nd det(p̂sI(η̂s))

.

This is (33) as desired.
Since

√
det(p̂sI(η̂s)) = p̂

d/2
s D(1/2)(η̂s), (33) yields∫

Bn,s

e−np̂se
γn (ηs−η̂s)

tI(η̂s)(ηs−η̂s)/2dηs

≥ e−dγn(2π)d/2(1− n−d/2)

nd/2p̂
d/2
s D(1/2)(η̂s)

.

By Lemma 1 and sinceγn → 0, this implies (31).
Since (30) and (31) hold, we have

V ≥ 1− o(1)

CJ

(2π
n

)dℓ/2
,

whereo(1) converges to0 asn goes to infinity. Therefore, we
have

sup
xn:η̂∈H(ϵn)

p(xn|η̂)
mn(xn)

≤ CJ

(1− o(1))((1− κn))

ndℓ/2

(2π)ℓd/2
.

This implies

sup
xn:η̂∈H(ϵn)

log
p(xn|η̂)
mn(xn)

(37)

≤ dℓ

2
log

n

2π
+ logCJ + o(1).
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Part II (near boundaries):
Now, we consider the case in whicĥη ̸∈ H(ϵn). We use the

second term in the mixturemn as

mn(x
n)

p(xn|η̂)
≥
κnm(α)(x

n)

p(xn|η̂)
=
κn
∫
p(xn|η)

∏
sD(α)(ηs)dηs

p(xn|η̂) Cℓ
(α)

.

With the prior of product form this becomes a product of
integrals. Use

p(xn|η)
p(xn|η̂)

=
∏
s∈L

exp(ns
∑

x∈X η̂x|s log ηx|s)

exp(ns
∑

x∈X η̂x|s log η̂x|s)

=
∏
s∈L

exp
(
−ns

∑
x∈X

η̂x|s log
η̂x|s

ηx|s

)
.

Then we have∫
p(xn|η)

∏
sD(α)(ηs)dηs

p(xn|η̂) Cℓ
(α)

=
∏
s∈E

Ls,

where

Ls
def
=

∫
exp
(
−ns

∑
x∈X

η̂x|s log
η̂x|s

ηx|s

)D(α)(ηs)

C(α)
dηs

=

∫
exp(

∑
x∈X nx|s log ηx|s)D(α)(ηs)dηs

exp(
∑

x∈X nx|s log η̂x|s) C(α)
,

andE is the set of states such thatns > 0.
Split the states inE into subsetsE1 = {s|η̂s ̸∈ H

(ϵn)
s }∩E

andE2 = {s|η̂s ∈ H
(ϵn)
s }∩E. For η̂ ̸∈ H(ϵn), we are assured

thatE1 is not empty.
Note that− logLs is in a form of regret of the mixture by

the Dirichlet prior withα < 1/2 for the memoryless case.
Since the Dirichlet prior withα < 1/2 has higher value than
the Jeffreys prior near boundaries ofH, the quantity− logLs

for s ∈ E1 is smaller than(d/2) log n. Ideed if s ∈ E1,
then there is a symbolx such thatη̂x|s ≤ 1/na ≤ 1/nas ,
so nx|s ≤ n1−a

s . Consequently, adapting Xie and Barron’s
Lemma (Lemma 4 of [28]) for the present case, fors ∈ E1,

− logLs ≤
(d
2
−
(1
2
− α

)
a
)
log ns +Kd log

1

α
(38)

holds, whereKd is a constant depending on onlyd.
As for s ∈ E2, we use the following bound, which holds

for all s ∈ E,

− logLs ≤
d

2
log ns + C9. (39)

This inequality (39) is derived by Lemma 1 of [28]. The lemma
is a uniform bound on the regret of the Jeffreys mixture for
memoryless case, and can be applied to our case by noting
D(α)(ηs)dηs ≥ D(1/2)(ηs)dηs and then

Ls >

∫
exp(

∑
x∈X nx|s log ηx|s)D(1/2)(ηs)dηs

exp(
∑

x∈X nx|s log η̂x|s)C(α)

=
C(1/2)

C(α)

∫
exp(

∑
x∈X nx|s log ηx|s)D(1/2)(ηs)dηs

exp(
∑

x∈X nx|s log η̂x|s)C(1/2)
.

Here,D(1/2)(ηs)/C(1/2) is the Jeffreys prior for the multino-
mial Bernoulli model.

Hence we have

log
p(xn|η̂)
m(α)(xn)

=
∑
s∈E

(− logLs)

≤
∑
s∈E1

((d
2
−
(1
2
− α

)
a
)
log ns +Kd log

1

α

)
+

∑
s∈E2

(
d

2
log ns + C9

)
,

which is not more than∑
s∈E1

(d
2
− ι
)
log ns +

∑
s∈E2

d

2
log ns + C10, (40)

where

C10
def
= ℓmax{Kd log

1

α
,C9},

ι
def
= (1/2− α)a.

We claim that (40) is less than(dℓ
2

− ι
)
log

n

ℓ− 2ι/d
+ C10. (41)

Since (40) is maximized when|E1| = 1 for any configuration
of {ns}, it is the worst case. Then the maximum of (40) is
achieved whenns = n(d/2− ι)/(|E|d/2− ι) for s ∈ E1 and
ns = (nd/2)/(|E|d/2− ι) for s ∈ E2. This provides an upper
bound which is no more than(d

2
− ι
)
log

n(d/2− ι)

|E|d/2− ι
+
d|E2|
2

log
nd/2

|E|d/2− ι
+ C10,

whose dependency on|E| is of the form(d
2
− ι
)
log

1

|E|d/2− ι
+
d(|E| − 1)

2
log

dn/2

|E|d/2− ι

=
d|E| − 2ι

2
log

1

|E|d/2− ι
+
d(|E| − 1)

2
log

dn

2
.

Its derivative with respect to|E| is positive when

n ≥ e|E| − 2eι

d
.

Whence forn ≥ eℓ, the largest|E| = ℓ is the worst case,
which provides the following upper bound on (40),(d

2
− ι
)
log

n(d/2− ι)

dℓ/2− ι
+
d(ℓ− 1)

2
log

nd/2

dℓ/2− ι
+ C10,

which is less than (41) by(dℓ/2 − ι) · log(d/(d − 2ι)).
Therefore we have

sup
xn:η̂ ̸∈H(ϵn)

log
p(xn|η̂)
mn(xn)

≤
(dℓ
2

− ι
)
log

n

ℓ− 2ι/d
+ log

1

κn
+ C10

≤
(dℓ
2

− ι+ b
)
log

n

ℓ− 2ι/d
+ C10

≤
(dℓ
2

− ι+ b
)
log n+ C11 (42)

whereC11 = C10 − (dℓ/2− ι+ b) log(ℓ− 2ι/d).
Sinceb < ι = (1/2−α)a is assumed, the expression (42) is

smaller than the right hand side of (37), when(ι−b) log n ex-
ceeds the constant(dℓ/2) log π−logCJ+C11. This completes
the proof of Theorem 1.
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V. PROOF OF THEAPPROXIMATION FORMULA

In this section, we give the proof of Theorem 2. For the
purpose of abbreviation, we define two functionsF andG as
follows. DefineF on ℜ×Θs ×Hs as

F (m,θs,η
′
s)

def
= exp(m(

∑
x∈X ′

θx|sη
′
x|s − ψ(θs))) (43)

=
∏
x∈X

(ηx|s)
mη′

x|s ,

whereψ and θs are the same ones as in (13). In particular,
recall θx|s = log(ηx|s/η0|s). Note that the following holds:
For eachs ∈ L, let ms denote a real number andm denote
a vector(ms1 , ...,msℓ). DefineG on ℜℓ ×Θ×H as

G(m,θ,η′)
def
=
∏
s∈L

F (ms,θs,η
′
s) =

∏
s∈L,x∈X

(ηx|s)
msη

′
x|s .

Then, definingn
def
= (ns1 , ..., nsℓ), we have

p(xn|x0−k+1,η) = G(n,θ, η̂).

Since(∂/∂θx|s)ψ(θs) = ηx|s and

∂ logG(n,θ, η̂)

∂θx|s
=
∂ logF (ms,θs,η

′
s)

∂θx|s
,

we have

∂ logG(n,θ, η̂)

∂θx|s
= ms(η

′
x|s − ηx|s). (44)

Also, recalling the definition ofg (14), we have

∂2

∂θy|s∂θx|s
logG(m,θ,η′) = −msgxy(θs). (45)

Then since g(θs) is positive definite, logG(m,θ,η′) is
strictly concave with respect toθ, whenever eachms is
positive.

Finally we let

W (w)(m,θ,η′)
def
=

w(θ)G(m,θ,η′)∫
w(θ)G(m,θ,η′)dθ

. (46)

Then we have

q(x|xn) =
∫
ηx|τ(xn)W

(w)(n,θ, η̂)dθ.

Note thatw need not be normalized in the this expression,
since it remains unchanged when we multiplyw by a positive
constant. Hence, we assume thatw does not have to be a
probability density hereafter.

First, we prove the following lemma.
Lemma 2:Let K be a compact set included in the interior

of H. LetW (w) be the function defined as (46). Suppose that
w in W (w) be a positive valued function, which is integrable
over Θ. We assume thatw satisfies Assumption 1 and that
mins∈Lms ≥ mmin holds. Then, for alls ∈ L and for all
x ∈ X ′, the following holds, uniformly forη′ ∈ K.∫

ηx|sW
(w)(m,θ,η′)dθ

= η′x|s +
1

ms

∂ logw(θ)

∂θx|s

∣∣∣∣
θ=θ′

+O(

√
logm

ms
√
m

).

Proof: In this proof, we letW denoteW (w), omitting (w).
Partial differentiatingG(m,θ,η′)w(θ) with respect toθx|s,
we have

∂[G(m,θ,η′)w(θ)]

∂θx|s
(47)

= ms(η
′
x|s − ηx|s)G(m,θ,η′)w(θ)

+
∂ logw(θ)

∂θx|s
G(m,θ,η′)w(θ),

where we have used (44). The second term of the right hand
side is integrable because of Assumption 1 and the first term
of the right hand side is integrable because|ηx|s| is bounded.
Therefore, the left hand side is also integrable. Integrating the
both sides overΘ, and doing some manipulation, we have∫

ηx|sG(m,θ,η′)w(θ)dθ (48)

= η′x|s

∫
G(m,θ,η′)w(θ)dθ

+
1

ms

∫
∂ logw(θ)

∂θx|s
G(m,θ,η′)w(θ)dθ

− 1

ms

∫
∂G(m,θ,η′)w(θ)

∂θx|s
dθ.

We can show the third term of the right hand side is zero.
Indeed by the Fubini’s theorem, we have∫

∂(w(θ)G(m,θ,η′))

∂θx|s
dθ

=

∫
[w(θ)G(m,θ,η′)]

θx|s=∞
θx|s=−∞dθ̄ = 0,

whereθ̄ is ℓ · (d−1) dimensional vector which is obtained by
removing the elementθx|s from the vectorθ. Hence, dividing
the both sides of (48) by

∫
w(θ)G(m,θ,η′)dθ, we have∫

ηx|sW (m,θ,η′)dθ

= η′x|s +
1

ms

∫
∂ logw(θ)

∂θx|s
W (m,θ,η′)dθ.

Therefore, it suffices for obtaining the claim of the Lemma to
show that ∫

∂ logw(θ)

∂θx|s
W (m,θ,η′)dθ (49)

=
∂ logw(θ)

∂θx|s

∣∣∣∣
θ=θ′

+O(

√
logm√
m

)

holds uniformly forη′ ∈ K. We use Laplace integration to
prove this. Let

h(θ)
def
=
∂ logw(θ)

∂θx|s
.

Sincew(θ) > 0 for θ ∈ Θ and sincew(θ) is of classC2 in
Θ, logw(θ) is of classC2 in Θ. Therefore,h(θ) is of class
C1 in Θ.

Define a neighbourhood ofθ′
s (θ′x|s

def
= log(η′x|s/η

′
0|s)) in

ℜd as

Nδ(θ
′
s|s)

def
= {θs : (θs − θ′

s)
tg(θ′s)(θs − θ′

s) ≤ δ2}.
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Further define

N ′
δ = Nδ(θ

′)
def
=
∏
s∈L

Nδ(θ
′
s|s),

where we assume

δ2 =
d · ℓ logm

m
.

From (46), we have

W (m,θ,η′)

=
w(θ)G(m,θ,η′)∫
w(θ)G(m,θ,η′)dθ

=
w(θ)Ḡ(m,θ,η′)∫
w(θ)Ḡ(m,θ,η′)dθ

,

where we let

Ḡ(m,θ,η′)
def
= G(m,θ,η′)/G(m,θ′,η′).

Then, we will evaluate
∫
h(θ)Ḡ(m,θ,η′)w(θ)dθ and∫

Ḡ(m,θ,η′)w(θ)dθ.
Let v(θ) denote a functionh(θ)w(θ) or w(θ). Assume

v(θ′) ≥ 0 without loss of generality, then we have∫
v(θ)Ḡ(m,θ,η′)dθ (50)

=

∫
N ′

δ

v(θ)Ḡ(m,θ,η′)dθ

+

∫
Θ\N ′

δ

v(θ)Ḡ(m,θ,η′)dθ.

Using Taylor’s theorem, we have

log Ḡ(m,θ,η′)

=
∑
s

log
F (ms,θs,η

′
s)

F (ms,θ
′
s,η

′
s)

= −
∑

sms(θs − θ′
s)

tg(qs)(θs − θ′
s)

2
,

whereqs = ϵθs+(1−ϵ)θ′
s with ϵ ∈ [0, 1] (s = s1, ..., s(d+1)k ).

Hence, we have

G(m,θ,η′) = exp
(
−
∑

sms(θs − θ′
s)

tg(qs)(θs − θ′
s)

2

)
.

Since{θ(η) : η ∈ K} is compact,

1− C1δ ≤
∑

sms(θs − θ′
s)

tg(θs)(θs − θ′
s)∑

sms(θs − θ′
s)tg(θs

′)(θs − θ′
s)

≤ 1 + C1δ

holds for sufficiently largem (small δ), for all θ′ ∈ {θ(η) :
η ∈ K}, and for all θ ∈ Nδ(θ

′), whereC1 is a certain
constant. (Hereafter, letCi (i = 1, 2, ...) denote a certain
positive constant.) Hence, we have

Ḡ(m,θ,η′)

≤ exp
(
−
(1− C1δ)

∑
sms(θs − θ′

s)
tg(θs

′)(θs − θ′
s)

2

)
,

Ḡ(m,θ,η′) (51)

≥ exp
(
−
(1 + C1δ)

∑
sms(θs − θ′

s)
tg(θs

′)(θs − θ′
s)

2

)
.

Using these inequalities, we evaluate the second term of (50).
Let 1 denote theℓ-dimensional vector(1, .., 1) and m̃

def
=

m−mmin1. Noting thatlog Ḡ(m̃,θ,η′) = logG(m̃,θ,η′)−

logG(m̃,θ′,η′) is strictly concave with respect toθ ∈ Θ, we
have

sup
θ∈Θ\N ′

δ

Ḡ(m̃,θ,η′)

= sup
θ∈∂N ′

δ

Ḡ(m̃,θ,η′)

≤ sup
θ∈∂N ′

δ

e−
∑

s m̃s(1−C1δ)(θs−θ′
s)

tg(θs
′)(θs−θ′

s)/2

= exp
(
−
∑

s(ms −mmin)(1− C1δ)δ
2

2

)
≤ exp(−(m−mminℓ)(1− C1δ)δ

2/2)

≤ C2 exp(−mδ2/2).

Hence, we have∣∣∣∫
Θ\N ′

δ

v(θ)Ḡ(m,θ,η′)w(θ)dθ
∣∣∣

=
∣∣∣∫

Θ\N ′
δ

v(θ)Ḡ(mmin1,θ,η
′)Ḡ(m̃,θ,η′)w(θ)dθ

∣∣∣
≤ C2 exp(−mδ2/2)

·
∣∣∣∫

Θ\N ′
δ

v(θ)Ḡ(mmin1,θ,η
′)w(θ)dθ

∣∣∣
≤ C3 · exp(−mδ2/2). (52)

Next, we evaluate the first term of (50). We have∣∣∣∫
N ′

δ

(v(θ)− v(θ′))Ḡ(m,θ,η′)dθ
∣∣∣

≤ sup
θ∈N ′

δ

|v(θ)− v(θ′)|
∫
N ′

δ

Ḡ(m,θ,η′)dθ

= O(δ)

∫
N ′

δ

Ḡ(m,θ,η′)dθ.

Hence, we have∫
N ′

δ

v(θ)Ḡ(m,θ,η′)dθ (53)

= (v(θ′) +O(δ))

∫
N ′

δ

Ḡ(m,θ,η′)dθ.

For the upper bound on
∫
N ′

δ
Ḡ(m,θ,η′)dθ, from (1) we have

∫
N ′

δ

Ḡ(m,θ,η′)dθ

≤
∫
N ′

δ

e−
∑

s ms(1−C1δ)(θs−θ′
s)g(θ

′
s)(θs−θ′

s)/2dθ

≤
∫
Θ

e−
∑

s ms(1−C1δ)(θs−θ′
s)g(θ

′
s)(θs−θ′

s)/2dθ

=
∏
s∈L

1√
(2πms(1− C1δ))d det(g(θ

′
s))

=
1 +O(δ)∏

s∈L

√
(2πms)d det(g(θ

′
s))

. (54)
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For the lower bound on
∫
N ′

δ
Ḡ(m,θ,η′)dθ, from (51) we have∫

N ′
δ

Ḡ(m,θ,η′)dθ

≥
∫
N ′

δ

e−(1+C1δ)
∑

s ms(θs−θ′
s)

tg(θ′
s)(θs−θ′

s)/2dθ

=

∫
Θ

e−(1+C1δ)
∑

s ms(θs−θ′
s)

tg(θ′
s)(θs−θ′

s)/2dθ

−
∫
Θ\N ′

δ

e−(1+C1δ)
∑

s ms(θs−θ′
s)

tg(θ′
s)(θs−θ′

s)/2dθ

=
∏
s∈L

1√
(2πms(1 + C1δ))d det(g(θ

′
s))

−
∫
Θ\N ′

δ

e−(1+C1δ)
∑

s ms(θs−θ′
s)

tg(θ′
s)(θs−θ′

s)/2dθ.

In the same manner as obtaining (52), we have∫
Θ\N ′

δ

e−(1+C1δ)
∑

s ms(θs−θ′
s)

tg(θ′
s)(θs−θ′

s)/2dθ

≤ C4 exp(−mδ2/2).

Hence we have∫
N ′

δ

Ḡ(m,θ,η′)dθ

≥ 1∏
s

√
(2πms(1 + C1δ))d det(g(θ

′
s))

− C4e
−mδ2/2

=
1 +O(δ)∏

s

√
(2πms)d det(g(θ

′
s))

− C4 · exp(−mδ2/2)

=
1 +O(δ)−O(exp(−mδ2/2)) ·

∏
s

√
ms

d∏
s

√
(2πms)d det(g(θ

′
s))

=
1 +O(δ) +O(md·ℓ/2 · exp(−mδ2/2))∏

s

√
(2πms)d det(g(θ

′
s))

. (55)

Hence, with (54), we have∫
N ′

δ

Ḡ(m,θ,η′)dθ

=
1 +O(δ) +O(md·ℓ/2 · exp(−mδ2/2))∏

s

√
(2πms)d det(g(θ

′
s))

.

From this and (53), we have∫
N ′

δ

v(θ)Ḡ(m,θ,η′)dθ

=
(v(θ′) +O(δ)) · (1 +O(δ) +O(md·ℓ/2e−mδ2/2)∏

s

√
(2πms)d det(g(θ

′
s))

=
v(θ′) +O(md·ℓ/2 · exp(−mδ2/2)) +O(δ)∏

s

√
(2πms)q det(g(θ

′
s))

.

By this equation and (52), we have∫
Θ

v(θ)Ḡ(m,θ,η′)dθ

=
v(θ′) +O(md·ℓ/2 · exp(−mδ2/2)) +O(δ)∏

s∈L

√
(2πms)d det(g(θ

′
s))

=
v(θ′) +O(δ)∏

s∈L

√
(2πms)d det(g(θ

′
s))

.

The last equality is obtained sincemd·ℓ/2e−mδ2/2 = m−d·ℓ/2

≤ δ holds for largem. Recall that this has been proved for
v(θ) = h(θ)w(θ) andv(θ) = w(θ). Hence, we have

∫
Θ

h(θ)W (m,θ,η′)dθ =

∫
Θ
h(θ)w(θ)Ḡ(m,θ,η′)dθ∫
Θ
w(θ)Ḡ(m,θ,η′)dθ

=
h(θ′)w(θ′) +O(δ)

w(θ′) +O(δ)

= h(θ′) +O(δ).

This completes the proof of Lemma 2.

Proof of Theorem 3:First, we will prove (17). In Lemma 2,
plug in n andη̂ into m andη′, respectively. Then, sincêη ∈
K holds for largen by the assumption, we haveO(1/ns) =
O(1/n) for all s ∈ L. Hence, we obtain (17).

Next, we prove (18). Let̃w(θ)
def
= w(θ)/w(1/2)(θ). We can

prove that the densitỹw satisfies Assumption 1, providedw
satisfies it. In fact,

∂ log w̃(θ)

∂θx|s

∏
t∈L,y∈X

(ηy|t)
mη′

y|t · w̃(θ)

=
∂(logw(θ)− logw(1/2)(θ))

∂θx|s

·
∏

t∈L,y∈X

(ηy|t)
mη′

y|t · w(θ)

w(1/2)(θ)

=
∂(logw(θ)− logw(1/2)(θ))

∂θx|s

·
∏

t∈L,y∈X

(ηy|t)
mη′

y|t−1/2 · w(θ)

=
∂ logw(θ)

∂θx|s

∏
t∈L,y∈X

(ηy|t)
mη′

y|t−1/2 · w(θ)

−
∂ logw(1/2)(θ)

∂θx|s

∏
t∈L,y∈X

(ηy|t)
mη′

y|t−1/2 · w(θ)

and both terms in the last line are integrable when

m ≥ mmin +
1

2
max

s∈L,y∈X

1

η′y|s
.

(For the second term, see the proof of Lemma 5 in Appendix.)
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Note that

log(
∏

s∈L,y∈X
(ηy|s)

nsη̂y|sw(θ))

=
∑

s∈L,y∈X

nsη̂y|s log ηy|s + logw(θ)

=
∑

s∈L,y∈X

(nsη̂y|s + 1/2) log ηy|s + log
w(θ)

w(1/2)(θ)

=
∑

s∈L,y∈X

ns(η̂y|s + 1/2ns) log ηy|s + log w̃(θ)

=
∑

s∈L,y∈X

(
ns +

d+ 1

2

) η̂y|s + 1/2ns

1 + (d+ 1)/2ns
log ηy|s

+ log w̃(θ)

=
∑

s∈L,y∈X

(
ns +

d+ 1

2

) ny|s + 1/2

ns + (d+ 1)
log ηy|s

+ log w̃(θ)

= log
∏

s∈L,y∈X

(ηy|s)
(ns+(1+d)/2)η̂L

y|sw̃(θ),

where we have defined Laplace estimator as

η̂Ly|s
def
=

ny|s + 1/2

ns + (d+ 1)
.

This implies

G(n,θ, η̂))w(θ) = G(n+ (d+ 1)/2 · 1,θ, η̂L)w̃(θ). (56)

Hence, we have∫
ηx|sW

(w)(n,θ, η̂)dθ (57)

=

∫
ηx|sW

(w̃)(n+ (d+ 1)/2 · 1,θ, η̂L)dθ.

By assumption,̂ηL ∈ K holds for all largen. Hence, by
Lemma 2 and (57), we have for alls ∈ L and for allx ∈ X ′,∫

ηx|sw(θ|xn)dθ

=

∫
ηx|sW

(w̃)(n+ (d+ 1)/2 · 1,θ, η̂L)dθ

= η̂Lx|s +
1

ns +
d+1
2

∂ log w̃(θ)

∂θx|s

∣∣∣∣
η=η̂L

+O
(√log n

n
√
n

)
.

This completes the proof of Theorem 3.

VI. REFINEMENT FOR THE TWO-STATE FIRST-ORDER

MARKOV CASE

As we have seen, the Jeffreys prior differs from a product
of Dirichlet(1/2, . . . , 1/2) priors by the factor∏

s∈L

µd/2
s

whereµs is the stationary probability of the states associated
with p(·|η). In the two-state first-order Markov chain case
these stationary probabilities are

(µ0, µs) =
( a

a+ b
,

b

a+ b

)

wherea = η0|1 andb = η1|0, which yields the Jeffreys factor
√
ab

a+ b
.

Accordingly, the Jeffreys mixture probabilitymJ(x
n) =

mJ(x
n|x0) takes the form

1

CJ

∫
[0,1]2

1

a+ b
an0|1 ān1|1−0.5bn1|0 b̄n1|1−0.5dadb

where ā = 1 − a = η1|1 and b̄ = 1 − b = η0|0. The factor
1/(a+ b) prevents the integral from decoupling as a product
of integrals fora and forb.

A. Refined approximation tomJ(x
n)

The following lemma obtains tight upper and lower bounds
onmJ (x

n) for this two state first order Markov case. The idea
of the lemma is to obtain approximate decoupling ofa andb
in the integral.

Lemma 3:For (a, b) and (â, b̂) in (0, 1)2

1

â+ b̂

(
1− a− â

â+ b̂
− b− b̂

â+ b̂

)
(58)

≤ 1

a+ b
≤ 1

â+ b̂

( â
a

)µ̂0
( b̂
b

)µ̂1

whereµ̂0 = â/(â+ b̂) and µ̂1 = b̂/(â+ b̂).
Consequently, we have the upper bound onmJ (x

n) of

âµ̂0 b̂µ̂1

(â+ b̂)CJ

∫
an0|1−µ̂0 ān1|1−0.5bn1|0−µ̂1 b̄n0|0−0.5dadb

=
âµ̂0 b̂µ̂1

(â+ b̂)CJ

B(n0|1 + 1− µ̂0, n1|1 + 0.5)

·B(n1|0 + 1− µ̂1, n0|0 + 0.5)

whereB(m1,m2) = Γ(m1)Γ(m2)/Γ(m1 +m2) is the Beta
function. This upper bound is valid for any(â, b̂) in (0, 1)2.
Moreover, we have the lower bound onmJ (x

n) of

1

(â+ b̂)CJ

(59)

·
∫ (

1− a− â

â+ b̂
− b− b̂

â+ b̂

)
an0|1 ān1|1−0.5bn1|0 b̄n0|0−0.5dadb.

With the choicêa = (n0|1+1)/(n1+1.5) andb̂ = (n1|0+1)/

(n0 + 1.5), the a − â and b − b̂ contributions to the integral
vanish, yielding the lower bound onmJ (x

n) of

1

(â+ b̂)CJ

B(n0|1+ 1, n1|1+ 0.5)B(n1|0+ 1, n0|0+ 0.5).

These upper and lower bounds hold for all non-negative counts
n0|1, n1|1, n0|0, n1|0 and the ratio of the upper and lower
bounds tends to 1 when these four counts get large.

Proof of Lemma 3:The function1/(a+ b) is convex onℜ2

and so it is greater than or equal to the left side of (58) which
is its first order Taylor expansion, tangent to the function at
(â, b̂). Likewise, interpret1/(a+ b) = eg(α,β) with g(α, β) =
− log(eα + eβ) and a = eα, b = eβ . The functiong(α, β)
is concave onℜ2 and so it is less than or equal to its first
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order Taylor expansion, tangent to it at(α̂, β̂), which yields
the right side of (58).

From Sterling’s formula the Gamma function has the prop-
erty that the ratioRn(x) = Γ(n + 1 + x)/(nxΓ(n + 1))
converges to1 for eachx as n → ∞ (see e.g. [10] p. 80
or [9] p. 886). The ratio of the upper bound ofmJ(x

n) to the
lower bound at the chosen̂a, b̂ is seen to equal

Rn0|1(−µ̂0)Rn1|0(−µ̂1)

Rn1(−µ̂0)Rn0(−µ̂1)

which accordingly approaches 1 asn0|1, n1|0, n1, n0 get large.
This completes the proof of of Lemma 3.

Remark: The variance of a Beta(m0,m1) distribution is
m0m1/((m0+m1+1)(m0+m1)

2) nearm0m1/(m0+m1)
3

which is typically of order1/(m0 +m1). However, if either
m0 or m1 stays bounded and the summ0 + m1 gets large
then the variance is of the smaller order1/(m0 +m1)

2.
In the integral (59) the remainder of the Taylor expansion

1−(a−â)/(â+b̂)−(b−b̂)/(â+b̂) is of order(a−â)2/(â+b̂)2
+(b− b̂)2/(â+ b̂)2.

Neglecting effects froma andb far from â, b̂ which do not
contribute substantially unlessn0 andn1 are large, it reveals
thatmJ(x

n) matches its lower bound approximation to within
a factor of order

1 +O
( 1

n0
+

1

n1

) 1

(â+ b̂)2
.

B. Improved Monte-Carlo Calculation of predictive probabil-
ities

The Jeffreys predictive probabilitiesmJ(xn+1 = 0|xn) in
the s = xn = 1 case arises as the ratio of integrals. As we
have seen the numerator integral is∫

[0,1]2
(a)

1

a+ b
an0|1 ān1|1−0.5bn1|0 b̄n0|0−0.5dadb

and the denominator integral is the same but without the factor
(a). If we multiply and divide in the integral by the expression
(â+ b̂)(a/â)µ̂0(b/b̂)µ̂1 , then these integrals can be expressed
via expectation forms of appropriate Beta densities. For the
numerator we use

Numn =

∫ [ â+ b̂

a+ b

(a
â

)µ̂0
(b
b̂

)µ̂1
]

(60)

· Bn0|1+2−µ̂0,n1|1+0.5(a)

· Bn1|0+1−µ̂1,n0|0+0.5(b)dadb,

where Bm0,m1 denotes a Beta(m0,m1) probability density
function. For the denominator Denn we use the same ex-
pression but with the 2 replaced by 1. Here we have in-
corporated the normalizing constants of these Beta densities.
Accordingly, when we compute the predictive probabilities, we
compensate for the ratio of the normalizing constants which
is B(n0|1 + 2 − µ̂0, n1|1 + 0.5)/B(n0|1 + 1 − µ̂0, n1|1 + 0.5)
equal to(n0|1 +1− µ̂0)/(n1 +1.5− µ̂0). Consequently, with
xn = s = 1, the Jeffreys predictive probability is

mJ(xn+1 = 0|xn) =
n0|1 + µ̂1

n1 + 0.5 + µ̂1

Numn

Denn

where we have used1− µ̂0 = µ̂1.
To interpret this expression the(n0|1+ µ̂1)/(n1+0.5+ µ̂1)

is the approximation to the predictive probability, which is
asymptotically equivalent to the approximation formula (12)
given by Lemma 3. It is accurate when the counts are very
large, and then Numn and Denn are near1. When the counts
are small or to improve the precision when the counts are
moderate, evaluation of Numn and Denn is appropriate.

We suggest Monte Carlo evaluation in which the exact
integrals Numn and Denn are replaced by sample averages
of the quantity in brackets (see the first line of (60) for
Numn) using independent draws from the respective Beta
distributions. The expression[(â+b̂) (a+b)−1 (a/â)µ̂0(b/b̂)µ̂1 ]
in brackets is always less than or equal to1 and it is near to
1 when the Beta distribution have sufficient counts to make
the distribution peaked near̂a and b̂. This expression[(â+ b̂)
(a + b)−1 (a/â)µ̂0(b/b̂)µ̂1 ] arises as the exponential of the
remainder of a first order Taylor expansion used in the proof of
Lemma 3, so its drop from1 is of the order(a− â)2+(b− b̂)2.
The crux is it has considerably reduced variance compared to
the previously suggested Monte Carlo. As a result one does
not use as large a Monte Carlo sample size to produce accurate
computations.

Table II here shows computation results for the regrets using
mJ(x

n) andq(xn) including cases with sequences with very
small numbers of transitions. We report values ofr̃(m) =

TABLE II
REGRET (BOUNDARY CASES)

η̂0|1 η̂1|0 r̃low r̃up r̃(mJ ) r̃(q)
0.00001 0.00001 1.2996 1.3133 1.292 -0.068
0.0001 0.0001 1.2986 1.3001 1.300 1.059
0.0010 0.0010 1.2985 1.2987 1.298 1.337
0.0099 0.0100 1.2985 1.2986 1.299 1.374
0.0001 1.0000 1.6448 1.6449 1.657 -3.510
0.0010 0.9990 1.3054 1.3055 1.307 0.763
0.0100 0.9900 1.2985 1.2986 1.297 1.353
0.0001 0.5175 1.2988 1.2994 1.297 1.092
0.0010 0.5037 1.2985 1.2987 1.303 1.349
0.0100 0.5005 1.2985 1.2986 1.300 1.375
0.9900 0.9900 1.2985 1.2986 1.302 1.377
0.9990 0.9990 1.2985 1.2986 1.299 1.336
0.9999 0.9999 1.2986 1.2987 1.299 1.058
0.9901 0.4999 1.2985 1.2986 1.298 1.376
0.9990 0.5000 1.2985 1.2986 1.299 1.375
0.9999 0.4999 1.2986 1.2987 1.300 1.369
0.99999 0.4997 1.3000 1.3001 1.304 1.353

r̃(m,xn) given, as before, by

log
1

m(xn|x0)
− log

1

p(xn|x0, η̂)
− log

n

2π

using either the Jeffreys rule or its modificationq. The column
heading̃rlow refers to lower bounds on regret of the procedural
obtained from the upper bound onmJ(x

n) in Lemma 3; the
headingr̃up refers to upper bounds on regret obtained from
the lower bound onmJ(x

n).
The total sample size as before isn = 107. Each Monte

Carlo calculation is performed by the improved-precision
version developed here. The objective is to render these digit
accuracy on these regrets. For initial sequence of length less
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than 100 the Beta distributions are not so peaked and we used
Monte Carlo size of 100,000.

Once all four countsn0|1, n1|0, n1|1, and n0|0 reach at
least 100 we switches to the approximation formulas (12). For
moderates size counts (not all at least 100) the Monte Carlo
refinement to the A.F. with Monte Carlo size of 10,000.

This scheme allowed sensible precision of computation over
a broader range of cases than before.

VII. C ONCLUDING REMARK

We have shown that the modified Jeffreys mixtures asymp-
totically achieve the minimax regret for Markov models with-
out any restriction on the sequences. The obtained regret is of
the same form as that for the multinomial Bernoulli models.
Then, we consider the computational aspects of the minimax
strategies, and we have obtained an approximation formula of
Jeffreys mixture for Markov models.

APPENDIX A
JEFFREYSPOSTERIORUPDATING

Here, we derive (10) and explain the Jeffreys posterior and
its relationship to the Dirichlet posterior. Note that the Jeffreys
posterior givenxn is proportional to

p(xn|η)wJ (η) ∝ p(xn|η)
∏
s∈L

µd/2
s D(1/2)(ηs).

Sincep(xn|η) =
∏

s

∏
x(ηx|s)

nx|s , it is proportial to(∏
s∈L

µd/2
s

)∏
s∈L

∏
x

(ηx|s)
nx|s+1/2

wheren = (ns)s∈L is a collection of counts fromxn. Since
the posterior for the Dirichlet(1/2, . . . , 1/2) prior, denoted by
D̄(1/2+n)(η), is proportional to

∏
s∈L

∏
x(ηx|s)

nx|s+1/2, we
have

wJ(η|xn) ∝
(∏
s∈L

µd/2
s

)
D̄(1/2+n)(η).

APPENDIX B
EXPRESSION OFSTATIONARY PROBABILITIES OF A

MARKOV MODEL

Here we will prove Lemma 4, which gives an explicit
formula of the stationary probabilities for Markov chains and
describe a certain properties of it.

For its proof, we utilise the following theorem given by
Chaiken and Kleitman [5].

Theorem 4 (Matrix Tree Theorem):Let M({xq}) denote a
squared matrix of orderγ, whose entries are

M({xq})ij =
{ ∑

k ̸=iMikxk, i = j, 1 ≤ j ≤ γ,

−Mijxj , i ̸= j, 1 ≤ i, j ≤ γ.

Let f(j1, ..., jk) (k ≤ n) be the determinant of the matrix
obtained by omitting thejith row and column ofM({xq})
for all i : 1 ≤ i ≤ k. Let S be the set of all arborescences on
vertexesv1, v2, ..., vγ rooted atvj1 , ..., vjk . For eacha in S let
wa be the product ofMijxj over all directed arcs(j → i) in
a. Then the identityf(j1, ..., jk) =

∑
a∈S wa holds.

See [5] for the proof. Here, anarborescenceis a graph in
which every vertex other than roots has in-degree one, there
are no cycles, and the roots have in-degree zero. The matrix
tree theorem is well known in circuit theory and graph theory
and several variations exist ([4], [12], [14] etc). Theorem 4is
a fairly general one.

We have the following.
Lemma 4:Let A be a state transition matrix of a first order

Markov chain with alphabet{1, 2, ..., γ}, that is, Aij is a
conditional probability ofi’s generation afterj’s. Letµi be the
stationary probability of the symboli defined by the Markov
chain. Let ϵ

def
= mini,j Aij , and let∆ij denote the(i, j)th

cofactor of the matrixI −A. Then, we have the following.

1) For eachj, ∆1j = ∆2j = · · · = ∆γj holds.
2) Each∆ij is a sum of products ofγ − 1 certain compo-

nents ofA, in particular, not less thanϵγ−1.
3) Whenϵ > 0, the following equalities hold.

µi =
∆ii∑γ
l=1 ∆ll

(i = 1, 2, ..., γ).

Proof: Let Bij = (I −A)ij . Since
∑γ

i=1Aij = 1, we have∑γ
i=1Bij = 0 (j = 1, 2, · · · , γ). Hence, adding theith line

of B to the first line fori = 3, 4, · · · , γ, the first line of the
resultant matrix is equal to minus the second line ofB. This
implies ∆2j = ∆1j (j = 1, 2, · · · , γ). Since this argument
holds for any pair of lines by symmetry, we have the item 1.

In order to show the item 2, we use Theorem 4, assuming
xj = 1 for j = 1, ..., γ. Then,Bij satisfies the property of
M({xq}) in Theorem 4, where we haveMij = Aij (i ̸= j)
and∆ii = f(i). Hence the following holds.

∆ii = f(i) =
∑
a∈S

wa.

This implies that∆ii is a sum of products ofγ−1 certain non-
diagonal elements ofA. Hence,∆ii ≥ ϵγ−1. By the item 1,
this holds for every∆ij .

Now, we will show the item 3. Let AdjB denote the matrix
with (i, j) entries are∆ji. Then, we have(I − A)AdjB
= BAdjB = (detB)I = 0. This implies that the vectors
(∆j1,∆j2, ...∆jγ , )

t (j = 1, ..., γ) are the eigenvector ofA
with eigenvalue 1. Here note that∆ij > 0 whenϵ > 0. Then,
we have obtained

µi =
∆ji∑γ
l=1 ∆jl

=
∆ii∑γ
l=1 ∆ll

.

This completes the proof of Lemma 4.

APPENDIX C
A L EMMA FOR JEFFREYS PRIOR

Lemma 5:There exists a certain integermmin, such that
for all η′ ∈ K, for all xk ∈ X k, for all x ∈ X ′, and for all
s ∈ L,

∂ logwJ (θ)

∂θx|s
G(mmin · 1,θ,η′) · wJ (θ)

is integrable overΘ.
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Proof: Recall thatwJ(θ) = (1/CJ )
∏

s∈L µ
d/2
s D(1/2)(ηs).

We have

logwJ (θ) =
d

2

∑
s∈L

(log µs + logD(1/2)(ηs))− logCJ .

Therefore, recalling (16), it is sufficient to show that the
following two are integrable for allη′ ∈ K and for ally ∈ X ′.

∂ logD(1/2)(ηs)

∂ηy|s
G(mmin · 1,θ,η′)wJ(θ) (61)

∂ logµs

∂ηy|t
G(mmin · 1,θ,η′)wJ(θ). (62)

Now let κ be minη′∈K, mins∈L miny∈X η
′
y|s. As for (48),

note that

∂ logD(1/2)(ηs)

∂ηy|s
= −1

2

∂
∑

x∈X log ηx|s

∂ηy|s
= −1

2

( 1

ηy|s
− 1

η0|s

)
.

Recall thatG(mmin · 1,θ,η′) =
∏

s∈L,y∈X (ηy|s)
mminη

′
y|s .

Hence if mmin ≥ 1/κ, we have G(mmin1,θ,η
′) ≤∏

s∈L,x∈X ηx|s for all θ ∈ Θ. Hence, for allθ ∈ Θ, we have∣∣∣∂ logD(1/2)(ηs)

∂ηy|s
G(mmin · 1, θ, η′)

∣∣∣ ≤ 1.

Hence whenmmin ≥ 1/κ, (48) is integrable.

Now, we examine (62). Letηmin
def
= mins∈L,y∈X ηy|s, then

by Proposition 3, we have∣∣∣∂ logµs

∂ηy|t

∣∣∣ ≤ C1

ηmin
r
,

wherer = k(ℓ− 1). Hence, ifmmin ≥ r/κ, we have∣∣∣∂ logµs

∂ηy|t

∣∣∣G(mmin · 1,θ,η′) ≤ C1ηmin
r

ηmin
r

≤ C1.

Hence whenmmin ≥ r/κ, (62) is integrable. This completes
the proof of Lemma 5.

APPENDIX D
THEORETICAL VALUE OF THE MINIMAX REGRET FOR THE

SIMPLEST CASE

For the simplest case (Example 1), sinceµ0 = η0|1/(η0|1+
η0|1) andµ1 = η1|0/(η0|1 + η0|1), we have

CJ =

∫
H

√
det(I(η))dη

=

∫
H

∏
s∈{0,1}

( √
µs√

η0|s(1− η0|s)

)
dη

=

∫
[0,1]2

dη1|0dη0|1

(η0|1 + η1|0)
√
(1− η0|1)(1− η0|1)

.

The last expression equals 4 times the Catalan constant (see [2]
for example), which equals4 · 0.915965594... ≈ 3.66386237.
(See [9] p. 1036 for example.) Hence we havelogCJ ≈
1.2985.

APPENDIX E
APPROXIMATION FORMULA FOR SOME BOUDARY CASES

Here we replace our approximation formula (12) with a
different one for the case that at lesat one ofn0 or n1 is small
(less than 100). This is because precision of (12) is garanteed
only when allnx are large and we found that (12) did not
work well, in particular when eithern0 or n1 is small. The
formula is given as

∫
ηx|1ρJ (η|xn)dη ≈


n0|1 + 1

n1 + 1.5
(x = 0),

n1|1 + 1/2

n1 + 1.5
(x = 1),

(63)

which is the one for the case ofn0 ≈ 0. When n1 ≈ 0,
the counterpart is given by exchanging the symbols0 and 1
in the formula. The derivation of these formulas is given in
Appendix E.

Here we will derive the approximation formula (63), which
is for the case thatX = {0, 1} andk = 1.

Recall

pJ(xn+1 = x|xn) =
∫
ηx|sρJ (η|xn)dη =

η̂Jx|s∑
x∈X η̂

J
x|s
.

whereη̂Jx|s is defined by (10) ands = xn.
We will derive the formula for thexn = 1 case, for which

(10) is reduced to

η̂Jx|1=

∫
ηx|1

√
η0|1η1|0

η0|1 + η1|0

∏
(y,s)∈{0,1}2

(ηy|s)
ny|s+0.5−1dη0|1dη1|0.

The furmula fors = 1 is used whenn0/n << 1, which
implies n1 ≈ n and η̂0|1 = n0|1/n1 ≈ 0. Since we use the
Monte Carlo method whenn is small (≤ 100), we can assume
n ≈ n1 is large. Hence, the factor

∏
y∈{0,1}(ηy|1)

ny|1+0.5−1

has a sharp peak around the MLÊη0|1. Further, sincêη0|1 ≈
0, the factor√η0|1η1|0/(η0|1 + η10) in the integrant can be
approximated as

√
η0|1η1|0

η0|1 + η1|0
=

√
η0|1/η1|0

η0|1/η1|0 + 1
≈
√
η0|1

η1|0

for almost allη1|0. Hence we have

η̂Jx|1 ≈
∫
ηx|1

√
η0|1

η1|0

∏
(y,s)∈{0,1}2

(ηy|s)
ny|s+0.5−1dη0|1dη1|0

= B ·
∫
ηx|1

√
η0|1

∏
y∈{0,1}

(ηy|1)
ny|1+0.5−1dη0|1,

whereB denotes the factor obtained as the integration with
respect toη1|0, which is dnoted by the Beta function asB =
B(n0|0 + 0.5, n1|0 − 0.5). Hence we have

(η̂J0|1, η̂
J
1|1)

≈ B · (B(n0|1 + 2, n1|1 + 0.5),B(n0|1 + 1, n1|1 + 1.5)),

which yields (63).
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wird,” Ann. Phys. Chem.72, pp. 497-508, 1847. (English transl.IRE
Trans. Circuit Theory, CT-5, pp. 4-7, 1958.)

[13] T. Kawabata & F. Willems, “A context tree weighting algorithm with an
incremental context set,”IEICE Trans. on Fundamentals, vol. E83-A,
No. 10, pp. 1898–1903, 2000.

[14] J. C. Maxwell,A treatise on electricity and magnetism I,3rd ed. Oxford
Univ. Press (Clarendon, London, Part II, Chap. 6, 1892. (Reprinted by
Dover Publications.)

[15] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling,
Numerical Recipes in C: The Art of Scientific Computing.(2nd edition),
Cambridge, U.K.: Cambridge Univ. Press, 1993.

[16] J. Rissanen, “A universal data compression system,”IEEE trans. Inform.
Theory,Vol. 29, No. 5, pp. 656-664, Sep. 1983.

[17] J. Rissanen, “Fisher information and stochastic complexity,”IEEE trans.
Inform. Theory,Vol. 42, No. 1, pp. 40-47, Jan. 1996.

[18] Yu M. Shtarkov, “Universal sequential coding of single messages,”
Probl. Inf. Transm.,Vol. 23, No. 3, pp. 3-17, July 1987.

[19] J. Takeuchi, “Characterization of the Bayes estimator and the MDL
estimator for exponential families,”IEEE trans. Inform. Theory, Vol.
43, No. 4, pp. 1165-1174, Jul. 1997.

[20] J. Takeuchi, “Fisher information determinant and stochastic complexity
for Markov models,” inProc. IEEE. Int. Symp. Inf. Theory,Seoul, Korea,
Jun. 2009, pp. 1894-1898.

[21] J. Takeuchi & A. R. Barron, “Asymptotically minimax regret by Bayes
mixtures,” in Proc. IEEE. Int. Symp. Inf. Theory,Boston, MA, USA,
Aug. 1998, p. 318.

[22] J. Takeuchi & T. Kawabata, “Approximation of Bayes code for Markov
sources,” in Proc. IEEE. Int. Symp. Inf. Theory,Whistler, British
Columbia, Canada, Sept 1995, p. 391.

[23] J. Takeuchi, T. Kawabata, and A. R. Barron, “Properties of Jeffreys
mixture for Markov sources,” inProc. of the 4th Workshop on Informa-
tion Based Induction Sciences(IBIS2001), Tokyo, Japan, Jul. 2001, pp.
327-332.

[24] M. J. Weinberger, J. Rissanen and M. Feder, “A universal finite memory
source,”IEEE trans. Inform. Theory,Vol. 41. No. 3, pp. 643-652, May
1995.

[25] F. Willems, Y. Shtar’kov and T. Tjalkens, “The context-tree weighting
method: basic properties,”IEEE trans. Inform. Theory,Vol. 41. No. 3,
pp. 653-664, May 1995.

[26] Qun Xie, Minimax coding and prediction,Doctoral Dissertation, Dept.
of Statistics, Yale University, 1997.

[27] Qun Xie & A. R. Barron, “Minimax redundancy for the class of
memoryless sources,”IEEE trans. Inform. Theory,vol. 43, no. 2, pp.
646-657, Mar. 1997.

[28] Qun Xie & A. R. Barron, “Asymptotic minimax regret for data com-
pression, gambling, and prediction,”IEEE trans. Inform. Theory,vol.
46, no. 2, pp. 431-445, Mar. 2000.

[29] H. Itoh & S. Amari, “Geometry of information sources (in Japanese),” in
Proc. of the 11th Symposium on Information Theory and its Applications
(SITA88), Ooita, Japan, Dec. 1988, pp. 57–60.

[30] T. Kawabata, “Bayes codes and context tree weighting method (in
Japanese),”Technical Report of IEICE, IT93-121. 1994-03. pp. 7-12,
1994.

[31] J. Takeuchi, “On minimax regret with respect to families of stationary
stochastic processes (in Japanese),” inProc. of the 3rd Workshop on
Information Based Induction Sciences(IBIS2000), Shizuoka, Japan, Jul.
2000, pp. 63–68.

[32] J. Takeuchi & T. Kawabata, “On data compression algorithms by Bayes
coding for Markov sources (in Japanese),” inProc. of the 17th Sympo-
sium on Information Theory and its Applications(SITA94), Hiroshima,
Japan, Dec. 1994, pp. 513–516.

Jun’ichi Takeuchi (M’05) was born in Tokyo, Japan in 1964. He graduated
from the University of Tokyo in majoring physics in 1989. He received the
Dr. Eng. degree in mathematical engineering from the University of Tokyo in
1996. From 1989 to 2006, he worked for NEC Corporation, Japan. In 2006,
he joined Kyushu University, Fukuoka, Japan, where he is a Professor of
Mathematical Engineering. From 1996 to 1997 he was a Visiting Research
Scholar at Department of Statistics, Yale University, New Haven, CT, USA.
His research interest includes mathematical statistics, information geometry,
information theory, and machine learning. He is a member of IEEE, IEICE,
IPSJ, and JSIAM.

Tsutomu Kawabata (M’93) was born in Toyama, Japan, in 1955. He received
BE, ME, and DE degrees in mathematical engineering from the the University
of Tokyo, in 1978, 1980, and 1993 respectively. He joined the University of
Electro-Communications in 1982 and is currently a Professor at the Depart-
ment of Communication Engineering and Informatics. He was a visitor at
Stanford University during 1987-89 and 1996-97, and at Eindhoven University
of Technology in 1995, and at INRIA in 1996. His research interests lie
in information and communication theory, and include quantizations, rate-
distortions, and lossless data compressions.

Andrew R. Barron (S’84–M’85–SM’00) was born in Trenton, NJ, on
September 28, 1959. He received the B.S. degree in electrical engineering
and mathematical sciences from Rice University, Houston, TX, in 1981, and
the M.S. and Ph.D. degrees in electrical engineering from Stanford University,
Stanford, CA, in 1982 and 1985, respectively.

From 1977 to 1982, he was a consultant and summer employee of Adap-
tronics, Inc., McLean, VA. From 1985 until 1992, he was a faculty member of
the University of Illinois at Urbana-Champaign in the Department of Statistics
and the Department of Electrical and Computer Engineering. He was a Visiting
Research Scholar at the Berkeley Mathematical Sciences Research Institute
in the Fall of 1991 and Barron Associates, Inc., Standardsville, VA, in the
Spring of 1992.

In 1992, he joined Yale University, New Haven, CT, as a Professor of
Statistics, where he has served as Chair of Statistics from 1999-2006. His
research interests include the study of information-theoretic properties in the
topics of probability limit theory, statistical inference, high-dimensional func-
tion estimation, neural networks, model selection, communication, universal
data compression, prediction, and investment theory.



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. X, NO. X, XXX XXXX 21

Dr. Barron received (jointly with Bertrand S. Clarke) the 1991 Browder
J. Thompson Prize (best paper in all IEEE TRANSACTIONS in 1990 by
authors age 30 or under) for the paper “Information-Theoretic Asymptotics
of Bayes Methods.” Dr. Barron was an Institute of Mathematical Statistics
Medallion Award recipient in 2005. He served on the Board of Governors of
the IEEE Information Theory Society from 1995 to 1999, and was Secretary
of the Board of Governors during 1989.1990. He has served as an Associate
Editor for the IEEE TRANSACTIONS ON INFORMATION THEORY from
1993 to 1995, and the Annals of Statistics for 1995-1997.


