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Properties of Jeffreys Mixture for Markov Sources

Jun’ichi Takeuchi, Tsutomu Kawabatslembers, IEEEand Andrew R. BarronSenior Member, IEEE

Abstract—We discuss the properties of Jeffreys mixture for a and our asymptotically minimax regret mixture distribution are
Markov model. First, we show that a modified Jeffreys mixture close to each other in total relative entropy. We are extending a
asymptotically achieves the minmax coding regret for universal ‘jine of work in [6], [7], [27], [28] which were for i.i.d. models,
sgqi:r?(r::gfel\s/lf;?;c;vvevr, i(,i \gﬁe gnngpgr%x?nqgtifr? frcl)crrlm?l:]lao?or ?hg [21] w.hich was for exponential familigs, and Atteson [1] which
prediction probability of Jeffreys mixture for a Markov model.  investigated the regret of Jeffreys mixture for Markov sources
By this formula, it is revealed that the prediction probability by ~ for sequences for which the maximum likelihood estimates
Jeffreys mixture for the Markov model with alphabet {0,1} is (the relative frequencies of transition) are located away from
not of the form (n,; +a)/(ns + ), where ny, is the number of ;o5 The present work extends his conclusions to obtain

occurences of the symbok following the context s € {0,1} and Its f t that if | lid I
n. = nojs + n1). Moreover, we propose a method to compute results for regret that are uniformly valid over all sequences.

our minimax strategy, which is a combination of a Monte Carlo ~ Whereas in the i.i.d. case, the Jeffreys mixture corre-
method and the approximation formula, where the former is sponds to the Dirichlet(1/2,...,1/2) prior which pro-

used for ealier stages in the data, while the latter is used for dquces a Laplace-like Jeffreys prediction rule (also called
later stages. the Krichevsky-Trofimov estimator), in the Markov case the
Index Terms—Bayes code, Jeffreys prior, minimax regret, Jeffreys prior does not correspond to independent Dirichlet
stochastic complexity, universal source coding priors on the transition probabilities for each context, so the
corresponding rule is more complex.
The secondary motivation of our investigation is the cal-
culation of the predictive probabilities needed for sequential
We discuss the properties of Jeffreys mixture for a Markgytediction and universal coding algorithms. We propose an
model (a class of fixed ordered Markov chains) in the problegpproximation formula in the form of a corrected Laplace es-
of sequential prediction and universal coding. We emplaynator. The error of the correction is of ordefn,, wheren,
logarithmic regret (which has other names, e.g. coding regigtthe number of past occurences of the current context (state)
and pointwise redundancy) as a performance measure @n@jloreover, we propose a method to compute approximately
show that a modified Jeffreys mixture asymptotically achievesir minimax strategy, which is a combination of a Monte Carlo
the minimax regret up to constant order. This provides a senfiethod and the approximation formula, where the former is
in which the modified Jeffreys mixture is one of the besised as long as, is not large for ealier stages in the data,
prediction strategies. Moreover, it implies that the modifieghile the latter is used once, becomes large.
Jeffreys mixture achieves thetochastic complexityl7] for  Coding regret is defined as the difference of the loss incurred
_the class _of Markov models, which has various statisticghd the loss of an ideal coding or prediction strategy for
Interpretations. each sequence. A coding scheme for sequences of length
The primary motivation for this investigation is to pro-s equivalent to a probability mass functigfiz”) on X" (the
vide a stochastic model that achieves the universal codingold direct product of an alphabet). We can use; also
and predictive objectives, including the determination of @r prediction, that is, its conditionalg(z;1|z‘) provide a
sequence of priors for which the corresponding mixtures (f@fstribution for the coding or prediction of the next symbol
coding) and posterior (for prediction) achieve the approximaggven the past. The minimax regret with respect to a family of

minimax regret. This improves understanding of the exagtobability mass function$§ = {p(:|n) : n € H} is defined
minimax regret procedure (normalized maximum likelihoodys

as identified by Shtar’kov[18], which seemingly lacks such in-

I. INTRODUCTION

terpretation. The normalized maximum likelihood distribution min max max(log ——~ —log ——)
g armeK neH q(z™) p(z™|n)
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log(1/p(z™|n)) is the sum of the incremental regrets ofc_j...xzo) their evaluation coincides with the form (1) in

predictionlog(1/q(z;+1]2")) — log(1/p(xis1|2%,n)). For our terms of Fisher information as explained in [20].

Markov setting, the regret is defined conditionally on an initial Rissanen’s stochastic complexity [17] is the codelength

state. having the minimax coding regret. It is used as the main
When S is the class of discrete memoryless sources, Xjgart of model selection criteria by the minimum description

and Barron [28] proved that the minimax regret asymptoticallgngth principle. A consequence of the present work is that

equals this criterion is approximately a Bayes criterion with modified
d n Jeffreys prior.
5 log o+ log/ v det J(n)dn + o(1), To summarize, 1) we show that our modified Jeffreys
H

mixture is asymptotically minimax, 2) consequently the di-
whered equals the size of the alphabet miriuand.J(n) is the vergence between this mixture and the normalized maximum
Fisher information matrix with respect t This evaluation likelihood tends to) asn goes to infinity, 3) it provides the
is not for a subset of sequence$ but for the whole set of expression for the stochastic complexity exhibiting the role of
sequences. To obtain this asymptotically minimax regret, théhe Fisher information, and moreover, 4) the expression (1)
use sequences of Bayes mixtures with prior distributions thaf the minimax regret holds, even though we do not put any
weakly converge to the Jeffreys prior. The reason why omestriction on the sequences.
needs such variants of the Jeffreys prior is as follows: If we The Jeffreys mixture for the Bernoulli model induces the
use the Jeffreys prior, the risk is asymptotically higher thamplace-like estimator(k + 1/2)/(n + 1) where n is the
the minimax value, forz™ such thatj is near the boundary data size and is the number of occurrences of the symbol
of H. They use priors which have higher density near the While the Laplace estimator is in a very simple form,
boundaries than the Jeffreys prior, to give more prior attentigiie Jeffreys mixture for a Markov model is not, even when
to these boundary regions and thereby pull the risk down tige model is the first order Markov chain. Hence, we give
the asymptotically minimax level. an approximation formula for the prediction probability of

In this paper, we generalize the results of [28] to the cageffreys mixture for Markov models. This is an extension of
where S is a class of thekth order Markov chains with the approximation formulas of the Bayes estimator for (i.i.d.)
alphabet sizel + 1. In particular, we give an upper boundexponential families, shown in [19]. We can see the behavior
on the minimax regret, using variants of the Jeffreys mixturef Jeffreys mixture by this formula. In particular, the prediction
as probability by Jeffreys mixture for the first order Markov chain

d+ 1)kd with alphabet{0, 1} is not of the Laplace-like form.
%log% —Hog/H vdet J(n)dn + o(1). 1)
[l. PRELIMINARIES

Note that(d+1)*d equals the number of the parameters of the

classS. In [21] we showed that similar mixtures are minimax Define an alphabet a& def {0,1,..,d}, and letx’ denote
for (i.i.d.) exponential families and certain near exponentidl, 2, ...,d}. In this paper, we employ the class &th order
families that permit dependence, but in general those bourddarkov chains on the alphabét as a parametric model. Let
are for the restricted set of sequences for which the MLE denoteX* and let¢ = |L|. Listing the elements of. by
(Maximum  Likelihood Estimate) locates in a compact satictionary order, denotd = {s1, s2,...,5(g11)x} (€.9.51 =
interior to the parameter space. Our result is a generalizatiah..0). We refer tos € L as a context. For each context
of [28] to Markov models and that of [21] to the set of alls € L, letn, |, denote the probability thaf € X' occurs after
sequences. (Strictly speaking, the first order Markov chain withe L. So it is assumed thaY_ ., 7, = 1 andn,, > 0.
alphabet size 2 is treated in [26]). Concerning Markov modelset 7, denote the vectofr, s, ....,n4,)" and n the vector
Atteson [1] obtained both pointwise regret and expected redum ,n% ,...,n’,), where? = (d + 1)*. Here &' denotes the
dancy bound for Jeffreys mixtures with parameter values awagnsposition of a vectof. Define the range ofy, as

from the boundary. Also, Gotoh et al. [8] gave an asymptotic

def !
upper bound on the regret, which holds almost surely. H, S {n, Vo € X', 1y, >0 and Z Najs < 1}
It should be noted thahe normalized maximum likelihood zeEX’
p(a™n)/ > .. p(x™|7), proposed by Shtar’kov [18], provides def

h_ikewise, the range ofy is H = [],., H,. Letx};, denote a

the precise minimax procedure for pointwise regret. In [18
quences,, Ty +1...2, (m < mn)andz™ a sequence?. Note

Shtar’kov introduced the pointwise regret and gave upp%?
bounds on the code length of normalized maximum IikeIiho&EIat Mojs = 1= 2 gcar Tals- o o _

for classes of discrete memoryless sources and finite staté'SSUMe that we have an initial contex§ = z_, ., in
machines (FSMX model [24], which is an extension of Marko@dvance. Letn,|, denote the number of occurrences :of
chains). His bound for the FSMX model yields a bound fdiS @ direct successo(rjefof the contexin the sequencery
Markov chain as((d 4+ 1)¥d/2)logn + C, where C is a givenso, and definer, =3 n,)s. Denote the probability
constant depending only ahandk. More recently, Jacquet & mass function for the sequence’, determined byn, by
Szpankowski [11] evaluated it more precisely and determing@z"[so.m). Let S denote the family of probability mass
the constant term of the minimax regret for the Markov chainfinctions S oot {p(:|,m) : n € H}. We usually omit

Modified to condition on the initial state (or initial stringsy = x(lk_H from p(2™|so,m) and simply denote ip(z"|n).
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Then, we have where we letp, = ps (2", ) def ns/n and letd,, andd,; be
_— Kronecker’s delta. The Fisher information is defined as
logp(x"|17) = Z log 77;t¢+1|‘r(;cik,+1) (2) Jsx,ty ("7) = nlggo Enjsm,ty(xna "7) (4)
t=0 5uy 1
= Z Ny|s IOg Nx|s» = 55tl’[’S ( + )7
| ‘ Nzx|s No|s
seL,zeX o )

, _ where us = ps(n) denotes the stationary probability of
where we letlog’ denote the natural logarithm anddenotes o ciata < determined byp(:|n), and the symbolF, the

the context functionr(x?) def xi_,., (the lastk symbols of expectation with respect to(:|n).

alpq)fort=0,1,....n—1. Letn =f(a”; ) denote the  Define the Jeffreys prior density with respect to the
MLE (maximum likelihood estimate) ofj givenz™, . ;. We | ehesgue measuréy — [ser dmjsdng)s - - - dnajs as
have
def
fafs = fals (@2 1) = % ps(m) & /det T(m)/Cy,

def . . .
. . . . whereC; = [,, y/det J(n)dn is the normalization constant.
Here we introduce the minimax and maximin regret in the 1= Iy (m)dn

cLef —(l—« H™ H
Markov setting, where we fix the initial statg = 2, _ ;. Let L‘;t D(fa>(775) = Hlﬁx(”rls) (1= pe the Dirichlet function.
P(W,|X*) denote the set of all conditional probability masd Nen from (4) we have

furjl_ck;[ions m:jl{lt/.n QIX" given %, . - f o) = 1 ik TLes 182Dy 2y ()
e conditional maximum regret givem, of ¢ € =C T C :
P(X™|X*) with respect to a family of conditional probability 7 iér V1aeaots ’
mass functionsS = {p(2"|2°,,,.,m) : n € H} and )
W, C & is defined as Let m; denote the mixture by, (Jeffreys mixture) which
7o (g, Wals0) |s_mJ(x [s0) = pr(m_ [s0,m)ps(n)dn. We also define the
o 1 Dirichlet(«) prior density as
= 8 log—— —1lo —_— ).
A0, 08 s 8 b)) oo [, Dia (1)

p(a>(n) W7
The conditional minimax regret giver, with respect to a
family of probability mass functionsS and a set of the whereC(,, &' [ D(4)(n,)dn,. This is a product of Dirichlet

sequencesV,, is defined as prior densities, one for each context, reflecting independance
B def _ B priori between the contexts. In contrast(n) is not of product
Tn(Whalso) = inf 7 (g, Walso) form because:,(n) depends on all of) for eachs. Note that
aeP(WnlXH) e P(a)(n)/ps(n) — oo holds asn approaches the boundaries
= inf sup log w of H,if 0<a< 1/2 holds.
GEP(Wn|XF) gnew,  q(x™]s0)
The conditional maximin regret givem, for a set of lll. RESULTS
sequencedV,, is defined as A. Minimax Regret
We establish a tignth upper bound on the minimax regret
L3 (Walso) R for Markov model by the following theorem.
E s inf  Eyjenlog p(z"[s0,7M) Theorem 1:Let S = {p(-|s,n)|n € H,s € L} be a class of
GEP (W |X%) TEP(Wy |XF) 0 r(2"]so) kth order Markov chains with alphabg®, 1,...,d}. Define
p(x™|s0,7) a modified Jeffreys prior density fdd as
= sup Eqy(1s0) log —————, def
9€P(Wn| k) a(a"|so) pr = (1= En)ps + Knpla),

where we letE, (. s,) denote the conditional expectation withwhere0 < o < 1/2 is assumed and,, = ((£ — 1)/n)". Let
respect tog given sg = x(ik_H. As the consequence of the;,,, be a mixture of Markov sources as
definitions, 7, (W, |so) > r,,(Wx|so) holds. For logarithmic de
regret, it can be shown that,(W,|so) = z,,(Wy|so) holds in mp(z"]s0) = / p(z"|s0, M) pn(n)dn.
the same manner as in [18], [28]. H

Now we introduce the Fisher information and empiriJhen, for an arbitrany : 0 < b < (1/2 — ) /(k(2¢ — 1)),
cal Fisher information. Empirical Fisher information is thdhe following bound onr,,(m,) = 7 (mn,, X"|so) on the
Hessian of —(1/n)logp(z"|n). We denote its componentMinimax regret holds for any, € L.

with respect ton,. and ny, (v,y € A7), bY Jo1y(n) () ©6)
= Jsz.1y (2™, m). Then, one can derive from (2) that ’d n
< 5 log o + log/ v det J(n)dn + o(1),
H

whereo(1) converges td) asn goes to infinity.

2 o (6ryﬁx|s+ f]0|5 >

Tsaa (@, 1) = st 7 )2 (mojs)? )
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The complete proof is given in Section IV, but we give ther near the boundary, we can obtain smaller regret than the

intuition here. minimax value. For the proof, we use Lemma 4 of [28].
The main tool for the proof is the Laplace approximation, The need to consider the difference betwdéf)) and.J (7))
by which we have the following asymptotics: as in (8) makes the proof about the interior region harder (this

problem does not exist for the memoryless case [28] and one-

I p("[m)ps(m)dn ~ det(J(1)) (277)(%/2, (7) dimensional exponential family [21]).

p(z" 1) cfaes( i) ™

This is obtained by writingp(z™|n) as the exponential of B. Lower Bound

log p(z"|n), and taking a second order Taylor expansiorrfor It is possible to directly obtain a lower bound on the

nears. In this way, one approximategz"|n) with a Gaussian maximin regret which asymptotically matches the upper bound

density function forn. in the previous subsection. Here, we will give an outline of
When the model is an exponential family(7) = J(7) the proof. LetK be an arbitrary compact subset &, and

holds. Then ifS were an exponential family, our task would belefine for eachsy = 2%, _ ,,

to control the accuracy of approximation (7) only. Though the def [ . e

stationary Markov model is not exponential type, it converges Kn,so = {z" 1 s02™ € X%, 7 € K}.

to an exponential family, when the sample size goes g a fashion similar to the upper bound, by Laplace approxi-

infinity (see [29] for example). Moreover, for the MarkOVmation, it is possible to show that

model the empirical Fisher information converges to the Fisher . .

information: log p(z"[s0,7) )

N X my(z"s0)
| J (2", 1) = J(n)] = 0. (8)

dl n
= —log— +log/ Vdet J(n)dn + o(1),
This convergence holds uniformly far* with 7 in a set in 2 2m H
the interior of H. As a consequence, it is possible to makﬁniformly for all s, € X* and for allz” € K, .., Letm, is
m,801

the regret of the modified Jeffreys mixture converge to thge Jeffreys mixture of(z"|n) for H. Define the restriction

minimax one. . of my 10 Ky, @s
This task is accomplished by a case argument concerning

whether the maximum likelihood estimate is near the boundary

of the parameter space or not. When we restrict the sequence
x" so that the MLE# (2", ) belongs to a compact sé{ here
included in the interior ofH,_ theq we can prove that the M(Ky s, |50) def Z m.y(z"]s0).
convergence of (7) and (8) is uniform for those sequences,
since neighbourhoods ¢f are guaranteed to be included/ih

The Laplace approximation is valid as long as neighborhooBY¥ the definition ofr,, = r,, (K, 5,|s0), it is at least

Koomp o def 0 (z"s0) 1k, (2")
my (z"]sg) =
S T (S

wne’Cn,so

of 7 of radius of larger order thai/./n are included inH. nje. &
e . . . p(z"[s0, M)
Consequently it is possible to prove the uniform convergence Plglclﬁ o Bt (o) log W
of the regret, even if we moderate the restriction on the replrian) Lo
sequences. Instead of sequences being restricted to have MLE = By (o) 108 w
in a fixed setK we allow more generally for segences with ! myy (z[so)
the MLE in H(»), where we let which by the approximation (9) is of the form
(e) def . drl
HY = {n,eHs: Vo € X, nys > e}, 710g£ —Hog/ /det J(n)dn
7O & J[H 2 "2 H
o 57 +log M (K, s 150) + 0(1),
and %f P uniformly in C,, 5,. Consequently
wherea is any fixed positive number smaller thap2. L (Kn,sol50)
For the sequences witi within order1/./n of the bound- ST /
. : - — +1 v/det J(n)d
ary of H, we cannot use the Laplace approximation. The = 0B T8 I et J(m)dn
shape ofp(z"|n) becomes that of a truncated Gaussian, with +1log M (K, s |50) + 0(1).

reduced value of the integral in (7). A similar reduction to
the integral occurs ify is on the boundary. Hence, the regre't\low’ let {X;} be aosequencg of Compa"‘ Subsets HA
would be larger by some amount. Indeed, it has been shcﬁgch that K; < K7, and limiseo [ dn = 1 hglds
for the memoryless case that the regret of Jeffreys mixture? convergflf EOH)‘ Let Kin.so.i _de_note th_e sefz

is larger than the asymptotic minimax value by the amoufit?” € X"""»% € Ki}. Then, it is possible to prove
(d/2)log 2, when is located at a vertex off (Lemma 3, [1Mi—ooliMnos M(Kp,so.ils0) = 1. This implies

[28]). Hence, we need the contribution from the second term n dl n
of pn, which isn="p(,)(n). With the help from it, fori; on L (X"]s0) 2 5 log o + log/H Vdet J(m)dn + o(1).
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The right hand side matches our upper bound on the minimasobabilities and Jeffreys mixture, define the unnormalized

regret. Another way is to utilize Rissanen’s result (Theorem éstimates

[17]) for a compactK interior to H. o /2 7
Remark 1:Theorem 1 is a generalization of the result about ~ "lz[s = /%s(H pus(1) )D(1/2+n) (n)dn (10)

the first order Markov chain with alphabet size 2 in [26], but sel

the proof is not its straightforward extension. Then the Jeffreys predictive probability for possible next sym-
Remark 2:A similar bound for Markov chains is obtainedbols x € X’ given dataz™ with 7(2™) = s are proportional

in [1], but it is not demonstrated to be uniformly valid over alto theseﬁ;j‘s. That is,pj(zyp+1 = z|2z™) = [ nysp5(n|z™)dn

X™. In [17], [21], [31] also, upper bounds of the same forns equal to

on the minimax regret are obtained for more general models, 77;]|5

but they hold under the restriction on the sequences that MLE m

is located in a compact set included in the interior of the '

parameter space (an exception is one-dimensional exponentf3 successive predictive probabilitipg(z;1|+") are com-

family in [21]). Under that condition, Jeffreys mixture (we ddPuted in the same way, where in placerofve use the vector

not need modification) is asymptotically minimax. t of countst,, for z € {0,...,d} ands € L, based on the
Remark 3:It is possible to apply our minimax proceduredata segment’ for eacht > 0.

to the universal prediction problem, using the condition- The Jeffreys mixturen;(z") is computed from successive

als my, (zi41]2t) = my (2t s0)/mn(2t]s0), which equals Products of such predictive probabilities.

Jp(@elet mpnmlat)dn = [ 1,100, yon(nlat)dn,  AlSO, without the T[, us(n)?/? factor, one has the

where p,(n|z!) denotes the posterior density of given Dirichlet(a) mixturerm ,)(z"). Our modified Jeffreys mixture

def b .
', (recallr(z") & z!_, ). The conditionals are essential® thus

alsq for universal coding, since it is needed for arithmetic M (2") = (1 = Kp)my (&) + fpme) (™).
coding. ] ] . .

Remark 4:The m,, (z,.1|t) depends om because of the The assotc|ated marginals ane, (") = (1 — &n)my(2') +
modification of Jeffreys prior. Thus we have to know th&n(«)(2") for ¢ < n. The posterior weight it gives to the
length of the sequence in advance, in order tomsefor the Jeffreys mixture is
prediction, while the Laplace estimator doesn’t depend on the T(J]zt) = (1 — rp)my(at) Jmn (at).
total length of the sequence. However, it is possible to calculate _ o .
M (2141|2t) even fort > n, and use it for prediction, though The associated predictive probabilities,, (z;1[z") =
the minimax property is lost. mp (z) /my, (2*) are

_ _ 7 (J|2") pr(zepala’) + (1 = 7(J|2")p(ay (zeq1]2”).
C. Computation of Posterior Updates ] ) )
. . . . This method of computing the mixture needs the computa-

Whereas for a product of Dirichlet priors, posterior predlc:[-i n
tive densities and mixture densities are easy to compute (using
the fact that th_e_ posterior densitit_as is also Dir_ichlet), in contrast f]ils = /Um\s(H /ts(ﬂ)d/2)D(1/2+t) (n)dn,
there are additional challenges in computation of the Jeffreys scl
mixture and its modified forms.

. ... Wheret = (¢, L) is the vector of context counts for each
The general forms of the product of Dirichlet densitie (ts,5 € L)

_ _ thitial segment of lengtht < n.

. d Agls—1 =

is Da(m) = IlerlTTozomzs ; )/C;)\S},_lvvhere the nor- 1 acks the explicit form ofﬁil‘s/” = [ Najs D1 /21ty (m)dn.
malizing factors areCx, = []],_, nl‘:‘ dn, which are Nevertheless, comparison of these integrals, leads to advocacy
known Dirichlet integrals (given as a ratio of products off a Monte Carlo evaluation. To compuiglsfrom dataz! one
Gamma functions). For a Dirichlgt) prior it is known that the way is to averagey,, HSGL(Ns(W))d/Q with a large number
pesterior distributions given date" is Dirichlet Da14n(1),  (a million) of independent; each drawn according to the
where 1 denotes the(d + 1)/-dimensional vector with all pirichlet D454 distribution. A refinement to this Monte

entries arel andn is the (d + 1)¢-dimensional vector with carlo evaluation is given in Section VI for the two-states first-
entries(ng, s € L). Its predictive distribution follows Laplace gyder Markov case.

update rules for evaluation of An alternative to Monte Carlo evaluation is an approxi-
() _ L Myt mation formula appropriate for long strings withe K, as
e = [ MejsDarin(n) = metadt1) developed next.

In particular witha = 1/2 this provides what is also called o
the Krichevsky-Trofimov estimator. D. Approximation Formula

In contrast, the Jeffreys posterior is more involved becauseAs stated in the preceding section, the Jeffreys mixture
of the [, p2s(n)®¥? factor in the prior as in (5) wherg,(n) for the Markov model is nearly a best strategy, but it is
depends on alh,, (s’ € L). The posterior density;(n|z™) hard to calculate it in general, because it is a multi integral
is proportional to( [T, 15(1)%?) D1 /21n(n) as described in with respect to the parameter The following theorem pro-
Appendix A. For the computation of the Jeffreys predictiveides its approximation formula, which is easier to calculate
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than the original form. Here note thdtp(z|z™)p(n|z™)dn tion of the Jeffreys mixture for this case is given by
= f%|sPJ(77‘In)d77 Wlth § = T(£Z—k+1)'

Theorem 2:Let S = {p(:|s,n)|n € H,s € L} be a class /771|0PJ(77\xn)d77 12)
of kth order Markov cha_ms with t_he alp_habgm, 1,...,d}. nyjo + 0.5
Let K be a compact set included in the interior df and ng R
. ng+1
be an arbitrary natural number. Then, for alle X and for R . .
1 L—ijo o — o)
allse L, + ( - — - )
no + 1 2 M1j0 + Toj1
n 7’L1|0+0.5+(1 7ﬁ1|0)(0.5*ﬂ1)
[ netepatia™)an (1) - - ,
_ ”w\s+0-5 where the error term iD(y/logn/n+/n) and i; denotes
+(d+ )/2 M0/ (fojr + M1jo)-
dily|s(Ozy — Tz|s) Olog e Note that this depends not only amn, but onsj; and that
+ Z 2ns + d+ 1 Mmys |, _. the difference between this and the Laplace-like estimator is
vex’, tek o of orderQ(1/ny) (where Q(z)’ denotes negation ofo{z)").
+O( vlog ”') It is known that the Jeffreys mixture for the i.i.d. case induces
ny/n the Laplace-like estimator (Krichevsky-Trofimov estimator),

which is widely used in many data compression or prediction
holds, uniformly for all infinite sequences_j.i...z172... methods, e.g. in the CONTEXT [16] and the CTW [25]
such thatn € K holds for alln > ng for somengy > 1. method, even though these methods are for non-i.i.d. sources.
This represents the approximation formula as an additiféne reason is that it is in a very simple form and is believed
modification to the estimatafn,, 4+ 0.5)/(ns + (d +1)/2). to have good coding performance. Theorem 2 shows that
Note that the following multiplicative form is equally valid. for Markov sources the Laplace estimator is different from
the minimax strategy in terms of second order efficiency.

n Moreover, the theorem suggests that we may have to calculate
/m\sm(mﬂ“ )dn the derivative of stationary probabilities every time a datum is
Ng|s + 0.5 input, to achieve the minimax regret in sequential prediction
T e+ (d+1)/2 or _datal cor_anJressionlwifh Me;]rkov n;odels. If we err|1ploy a
p naive algorithm to calculate them, the computational cost is
-exp(;l Z s Oy 077;|s) 8(;og fe of orderO(¢3), since it includes the eigenvalue problem. Note
yexr terL el +0 Myls ly=q that it can be reduced 10(¢?) by making use of the Sherman-
Viogn Morrisson formula (see [15] for example).
+O( nyn )> We can show a more general approximation formula (The-

orem 3), from which Theorem 2 is obtained as a corollary.
To state it, we need some preliminaries. First, we introduce

This theorem is proved from Theorem 3 given later. . :
another paramete? thann. Note thatp(z™|n) is rewritten as

Theorem 2 shows how we should correct the Laplace- I"fgllows
estimator (the first factor of the right hand side) in order
to decrease the worst case logarithmic regret. The correction p(z"|n) = H (N)s) e (13)
(second term) contains the derivative of the stationary prob- sEL,wEX
abilities, which are rational functions of the parameteas _ H ((nmls)nw‘s/ns)ns
shown in Appendix B. scloeX
The following example is the simplest case. _ H exp(n. Z 0,147 0.)))

Example 1:Let X = {0,1} andd = 1 (L = {0,1}). We
have s, = 110/ (M0 +10j1) andpg = 770|1/(771\0 +noj1)- Let
s=0andz = 1, then the sum in exponent in the third lineVNere we Ietﬁﬂst: 0215(ns) = log(n.)s/nojs), s = Os(m,)
of (11) equa|s = (el\sam'aadb) , and 7/1(95) = 710g770|s = log(]- +

Y sex €xplys). Recall thatn, , = ngs/ns, whereng,

denotes the number of ocg:lfjrences sofat the states in
[$]

seL reX’

Z Nyls(Ozy — Mz|s) Olog pue

A na 2 ony th(:\ setquenc?r" andny, = > .» n(gf Define' 0 =
(6;,,6,,...,0,,)" similarly asn. Let ©, = {0,(n,) : n, €
-y Mjo(l = M) Olog e H}, then®, = R’ holds. Lete ' [],_, ©, = R1¥'I,
o Mt 1/20 9mpo It is known that the map), — 6,(n,) on H? is one to one
(I —mipe) /1 9 and' analytic'(see [3]). Note th&d/90,,,)¢(0,) = ny|s holds.
= 7711‘0 112 (nTm - 7771‘0 T 770|1)' Define functionsy,,, as

det 0%1p(0)

1 es = —, 14

Let z,, = 0 (r(z™) = 0), then by Theorem 2, the approxima-
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then we havedn,|s/90,, = g.4(0,). Let g(8,) denote the all infinite sequences . ;...7122... such thaty € K holds
matrix whose(z, y) component igy,,, (85). Note thatg(0,) is  for all n > m,.
positive definite for any, € O,. Let I(n,) denote the inverse

matrix of g(6,). Then, the following holds /nz\sw(n\zn)dn 17
) 1 . 1 Ologw(0) Viogn
U(n ) Nzx|s No|s ( ) | Ns 891‘5 0=0 n\/ﬁ

That is, I,,(n,) equals the Fisher information matrix forAlternatively, the following holds uniformly for all sequences
1 Py S ~(1/2
the multinomial Bernoulli model. Note thafi,l,,(n,) *-k+1--2122...SUCh that)"'/?) € K holds for alln > i,

= Joz,sy(n) holds. Sinceew\s = IOg(nasls/WO\s)v Nxls = where we recalh§31\£2) = (nﬂs +0.5)/(ns + (d+1)/2).
eP1s /(1 + 3,1 €%1+) holds. Hence we have
/m\sw(n\r")dn (18)
Oyls  _ __ ylsMals Oayy|s
00, (L Y car ®19)2 7 143 cqr el _ 40/ 1 Dlog(w(0) /w2 (6))
= —ajallyls + OuyTlyls = Majs(Bay — TTyls)- o ng+ (d+1)/2 002 i’
V1
Therefore we have +0O( Ogn).
ny/n
9 _ Z Nofs Oy — ny‘s)i. (16)  The proof is given in Section V.
Wais OMlyls Noting | — 7(1/?| = O(1/n), Theorem 2 is easily derived

. . _ . from (18) and (16).
Given the prior measure(n)dn, denote the prior density

function with respect telf as ] )
E. Simulation

w(0) = p(n)’det(%)’ Congerning_ the simplest case (E_xarr_]ple _1), where the target
model is the first order Markov chain with binary alphabet, we
=p(m) [ det(9(8)) =p(m) ] myis- evaluate the coding regret of the strategy using the algorithm
s€L s€Lyex described in Subsections IlI-C and IlI-D.

In the following experiments, we used the Monte Carlo

For the Jeffreys prior and the Dirichlet prior, let
method whenn, < 20 holds for the current state, and

[Le: Mgﬂpw)(nsmyex Myl otherwise we used thg approximation formula (12), when
wy(0) = C cumputing the succsesive factorsqf; (™) and g(z™).
/2 / We generated data sequences of length= 107, which
_ [Lier 15" Dsy2)(ns) was according to Markov sources with various parameter
Cy ’ settings. The parameter settings are= 0.019 andb = 0.16
[Licr Dioy(ms) [yex mys (rin, = n~9-16), which satisfies the assumption of Theorem 1.
W) (9) = (Ca)’ Note thatb must be smaller thari0.5 — «)/3 < 0.5/3 =
[Lecs, Diasn) () 0.16 - - -, hence the setting= 0.16 is nearly optimal for rapid
Clo)’ . convle(;ge\r;\;:e O/fetnl.vlln fflctc weI havm—:’-16 = Olgggé) .().()'()W?En
n = 107. We set Monte Carlo sample size ,000. The
The fo”owing is our assumption for a prior dens'ﬁy fOIlOWing tables show the results of our eXperiment. In each

Assumption 1:For a compact sek included in H°, there line we list the MLE for (roj1,71)0) and the computed values
exists a certain integen.,.., such that for ally’ € K, for all  Of the regret of the procedures basedrop andg. The regret

z €X', and for alls € L, of ¢ is 7(q) = 7(q,2”,) defined by
1 1 n
dlogw(0) Manintl); (q,z" %o —1lo — log —.
00,5 H (1y1¢) Tuit - w(8) (7% 541) & q(x"|as(lk+1) & p(z™|n) & on

teL,yeX
TABLE | lists regret for the cases of sequences with frequency

is integrable ove®. of transitions between 0.1 and 0.9, where the columns of

Suppose that Assumption 1 holds for a prier Then, 7(m ;) lists the regrets by the genuine Jeffreys mixture and
dlogw(0)/00,s-w(0) [11cp, yer (ye)" ™" vit is integrable the columns of(q) list the regret by the modified Jeffreys
for anyn such that for alk € L, ns > mpq,. This assumption mixture computed by the proposed method. Hererthéz")

holds for Jeffreys prior (see Lemma 5 in Appendix). and ¢(z") are computed by as product of succsesive factors
The following theorem provides an approximation formuleequired for prediction and for arithmetic coding. We also
for a general prior density. provide columns with sharp lower bounds on these regrets,

Theorem 3:Let K be a compact set included in the interiobased onm ;(z™) given in TABLE Il in Section VI. If ¢ is
of H. Suppose that the prior density satisfies Assumption 1 the minimax strategy;(q, =", , ;) converges tdog C';, which
for a certainm,,;,. Then the following holds, uniformly for approximately equald.2985 (see Appendix D). The regrets
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by ¢ in TABLE | are approximately0.08 nat larger than this Lete, = n~%, where we assume
value. It coincides with the fact thatlog(1—k,,) ~ — log(1—

0.0759) = 0.078---. For the ordinary (non-extremal) cases, 0<ax<
we see that the regrets of the genuine Jeffreys mixture (the case

of k, = 0) are betweenl.297 and 1.303. For each line, the Then, we havene/t% > p!=(r+k)/(2r+k) . o asn goes

to infinity. Hence by Lemma 1, we havg,/us(n) — 1
uniformly for all 2™, , such that) € H(»). Hence, Lemma 1
implies that empirical Fisher information converges to Fisher

o +k°

TABLE |
REGRET(ORDINARY CASES)

Tlo|1 M1)o F(my) | 7(q) ; ; ; n S (€n)

50855 50088 11367 T 1575 information, urpformly for allz™ .such thatn € H .

0.0999 | 0.3002 | 1.300 | 1.378 In the remainder of this subsection, we describe the proof
0.0999 | 0.5004 || 1.300 | 1.378 of Lemma 1.

0.1000 | 0.6997 1.298 | 1.377

00999 | 08998 | 1300 | 1.376 The sequence of states of, , , are the succesive overlap-

030001 0.3000 | 1.303 | 1.382 ping segments of length shifting by justl. Thus there is a
0.3002 | 0.4999 || 1.301 | 1.379 lengthn sequence of states arising frant after the initial
0.3002 | 0.7001 || 1.299 | 1.377 state

0.3000 | 0.9000 || 1.298 | 1.376 " ) ,

04998 | 0.5004 || 1.299 | 1.378 Definen,,, for every pair of stringg, v € L as the number
0.5000 | 0.7001 || 1.297 | 1.376 of transitions from the state € L to the stateu € L in the
8'?382 8'3882 i'ggg 12;(7) sequencer”, . Likewise fors € L, we letn,, denote the
0.7001 | 0.9001 || 1.303 | 1.382 number of occurences of an individual symhole X after
0.9000 | 0.9000 || 1.300 | 1.378 the states in the sequence”, ;. Thenn,, equalsn,(s.)|s-

Similarly, we are to define the parametgy, for everyu,t

. . L. First, define
datazy are generated according to a Markov source wigh <

and, o equal to the two digit values which the reportg, D, d:ef{T(sx) Lz € X).

and)|o clearly estimate. While the expected regret depends

only on therj; and 7, based on the whole sample, ourThe setD, consists of the states which are reached by one
approximation uses the(z;.|z*) based on partial samplestransition from the state. Note that foru € D, there exists

of sizest < n. Consequently, different realizations«jf of the @ uniquexz € X' such thatu = 7(sz). Let{(s, u) denote such
same Markov typesj; and 7|y will have slightly different « for eveys € L andu € D,. Then for everyu,t € L, define
computed regret.

Here we used a Monte Carlo sample sizel g§00, 000 for ()]s Whenu € D,

. ; otherwise
near three digit accuracy. A Monte Carlo sizel6f 000 would 0,
be sufficient for two digit accuracy. Then letll be a matrix whosgt, u) component idlz, = 7).,
then it is the state transition probability matrix, and IEt be

IV. PROOF OFTHEOREM 1 its kth power.

In this section we give the proof of Theorem 1. As described FiI'St: we will show the following.
in Subsection I1I-A, a key of the proof is the convergence rate ProPosition 1:Let ¢ be a non-}:\egatwe real number. If
of the determinant of empirical Fisher information to that ofzIt >k€ holds for eachi € L = X" and eachw € X, then
Fisher information. Comparing (3) with (4), we realize that ouft = € holds.

main task is to evaluate the ratjn/p(f) for s € L where Proof: Note that the stationary probabilitigs; (¢t € L)

Ds def ns/n. Hence, we first give a lemma about this item iﬁansfy the following linear equations:

the next subsection. After that we will prove Theorem 1. [y = Z ey . (1)
t'eL

A. Convergence of State Frequency to Stationary Probability £ a5chy € L andz € X, we haven,, > ¢ by the

We can show the following Lemma. assumption. Nowr(¢'t) = ¢ holds for each pai(t,t') € L?.

Lemma 1:Letr = k(¢ — 1). For alle € (0,1], if #(z™) € This implies that it is possible to get to any state from any state
H' is satisfied, then the following two inequalities hold. by  transitions. Furthery,; > ¢ holds for all(t,z) € L x X,
This implies that each element &f* is larger thane”,

k
M 2 n(e/2)", (19) e, eachy is larger thane®. This completes theroof of
log —2=_| @ o (20) Proposition 1
(1) nert Proposition 2: There exists a certain positive numb@y,
whereC is a certain positive constant independentafnd such that
n. 0log s Ch
Remark:When the model is the first order Markov chain ‘W < -

with alphabet{0, 1}, the proposition which corresponds to
Lemma 1 is easy to show, since the explicit formsugfare holds for alls € L, for all t € L, for all z € X", for all ¢ > 0,
very simple. and for allpn € H(), wherer = k(¢ — 1).



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. X, NO. X, XXX XXXX 9

Proof: Renumber the states ds = {si,s2,...5¢}. Define = ng,/n, < £/n, which is smaller thare for sufficiently
def

a matrix A as A;; £ (II*), ., and a vectoru as pu largen. This contradicts the assumptigr{z") € H').
def . 7 . By 17jys(z""*) > ¢/2 and Proposition 1, we have
= (tsy,---, its,)". By Lemma 4 in Appendix B, we have Po(@) = py(R(2)) > (¢/2)%, that is (ny + bs)/(n +

Ay 22) a) > €. Thereforen, > n(e/2)* — 1 holds, which means
o PITAE ns > n(e/2)*. This is (19).
Hence, we have
n+a) > ﬁt|5(xn) > f]t|s<xn)
T 141/ng = 14 2F/(nek)’

andA,; > *=D for all n € H©) and for alls € L, where
A;; denotes the(i, j)th cofactor of I — A, where[ is the Te)s (@
identity matrix. Hence, we have

Hence,
3logus 1 8A,»7; 1 8Z] Ajj N 2k
= — . ~ n A n+o
0|t Aj; Oy Zj Ajj O nt‘S(x ) < it (7 A+ ﬁ>
Note that the derivative of\;; is bounded from above when < (2™t + ﬁ
n € H©. Therefore, we have for all € L, for all =z € A”, - nek’
and for allp € H®©, Also, we havei, (") < (nys +1)/ns = fys(x™) +1/n.
Therefore, we have
’810g s C 9
Onpe |~ = Fn 7)o (2"7) = fjyo(a™)] < ooy
This completes the proof of Proposition 2. By Taylor's theorem, we have
Remark:By using Lemma 4 in Appendix B, which gives ntayy i
an explicit form of the stationary probabilities(n), we can log s (1(2"%)) allog Hs(A(z"))
write down the Jeffreys prior as = Y OB Bl (e (@) = e (™)),
B d/2 teL, xeX’ anx\t n=h
ps(n) = LH (fﬂ) D12y (ns), where h is a point betweeni(z"**) and 7(z™). Since
> =1 Au ! A(z"t*), f(z") € HE, h € H® holds. Hence by Proposi-

. , tion 2, we have
where A;; denotes thg(, j)th cofactor of the matrix whose

entries are);; — I, andC; is the normalization constant. 0log s < c2r
Now, we can prove Lemma 1. M) n=h| €
Proof of Lemma 1: Let, d:Efr(kaH) be the initial state, Hence, we have
and s, & 7(z") be the final state. First, we treat a special _ 2FCke ps(f(z"*)) _ 2*Cke
case in whichsy = s. holds. In this case, we have —rr = log e (25)
¢ ’ ne ps(f(a™))  ~ ne
VseL, Y nl=>) nj (23)  Sincep,(z"t*) = (ns + ¢5)/(n + a), we have
teL teL ~ ( 7,+a) > s ps(z"™) ﬁs(xn)
. L. s\T ) =2 = =
since the number of all transition from the statequals the P n+a l4+a/n = 1+k/n
number of all transition to the state Hence, we have and
~ ~ Ng|t g Nt Ng ~ ~ n+ao Ns + 1 ~ n 1
Zns\tPtZZH‘ZZZT‘Zn =ps.  (24) ps(l"Jr)ST:ps(x)‘Fﬁ
tel teL = * teL 1 1
This implies, = s (7). =P+ T5) = hele) 1+ 7).
When sy # s, let /1 be a minimum path from the Hence, )
states. to so (o does not exceed). By adding a sequence 1 Ps(z") <14 k
z'7¢ to the sequence”, we haver(z""*) = s,. Then, we 1+1/ng = ps(ante) = n’
have p (2" ") = us(n(z"*)). Let ¢y, denote the number 4t js.
of transition from the state to the statet in the sequence 1 <1 ps(x™) k
Tpelnia, and letg, = 3, ¢y,. Here, ¢ = 0 or 1, e ngs(xn+a) =4
since zj,,; is the minimum pass frons. to so. We have h : nita o
SHLE Ty e olds. Together with (25) anfl, (z" ) = ps(7(z"*)), we
Tt ("TY) = (g5 + P41s)/ (ns + ¢5). Hence have
Ng|s o1 (2™ e (2™ C! 2kCL k0 1
s (2"7Y) > ! :77t|( ) Znt‘( )>E, - 2k - lk .
ns+1 1+4+1/ng 2 2 nert nert N
N n k
where we use the fact that, = 3=, nys > 1 for sufficiently < log ps(a”) _ 2°Cikt i k < Co

large n. This can be shown as follows. if;; = 0 holds for ps(@(xn)) = nerthn T perth?
allt € L, thenny, < 1 for all t € L. Since there exists where we use (19) and lety = 2max{2FC k¢, k}. This
oneu € L at least such that, > n/f¢, we haver,,(z") complets the Proof of Lemma 1.
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B. Proof of Theorem 1
Now, we can prove Theorem 1.

10

Hence the minimum eigenvalue ¢f1(7),) is larger thanp,
which by Lemma 1 satisfies.

Proof of Theorem 1L et a denote a ceartain constant which R R C
satisfies ) Ps > ps(i)exp(— ootk )
1/2 —« "
b<a(l/2—-a)< . . C
1/ ) 2r +k = ps(n) eXp(*m)
n
There exists such, sinceb is smaller than . (%) exp 4 )
s exXpl————=)-
1/2-a 1/2—« aa nr/ (k)
k20 —1)  2r+k The second inequality here follows from

by the assumption of the theorem (reca¥ k(¢ —1)). Define

en = n~% Suppose thaty € H(¢») holds. Then by Lemma 1,

we have
nl—k,/(r—i—k) -1

ns > nlen/2)F > o — 00,
whenn goes to infinity.
Sincer = k(¢ — 1), we haver > 1 and
11
2r+k  k(20-1)
Sincer > 1, it follows thata < 1/(2+ k) holds. This implies

(1—ak)/2 > a.
In this proof, letx,, denote((¢ —1)/n)°.
Part | (interior points):
First, we treat sequences withe H(¢+). Note the inequal-

ity

my (2") > (1 = Kn) [ p(2"|n)p.(n)dn
p(z™(n) — p(z™|n)
We evaluate the ratig p(z"|n)p.s(n)dn/p(z™|7).
We can write

p(z"n) = H exp(ny(s 10g 1z)s) (26)
seL,xeX
n I S
= H exp(n l IOg 77:6\5)
seL,xeX
= H eXp(nﬁs Z ﬁ’L|S log 77.’,8‘9)
seL TEX
Therefore, we have
S p("|n)ps(n)dn
p(z"(n)
enﬁs zweX ﬁl\s log 7]3:\3)
- /(H e"ﬁs ZJ:eX Nz|s 10g Nz s )p‘](n)dn
Here, recall
pJ 77 C]HMS 1/2)( )

We evaluate this integration (denoted ©3$ by Laplace ap-
proximation. We define a neighbourhod, ; of 7, as

R 4dlogn
—f.) <
) < —

Bns ={n, : ps(ny —n,)' I(n,)(n, 3,

where I(7) is the same one as (15). We show that for

sufficiently largen, B, s is included inH{). Note that all
eigenvalues of (1, ) are larger than for arbitraryn, € H,S(,O)

l—a(r+k)>1—-(r+k)/2r+k)=r/2r+k)

(recalla < 1/(2r +k)). Then, by Proposition 1, the minimum
eigenvalue ofp,I(7),) is larger thane® /e for all n such that
n'/(2rtk) 5 (. Therefore with Lemma 1, the diameter of
B, s is smaller than

4del
VIERER _ G 0-e02 fiogm, (2)

ner

Its ratio toe, = n~* converges td) asn goes to infinity,
since(l — ak)/2 > a. Hence,B,, def 1, By, is included in
H() for sufficiently largen. Hence, we have

/B p(n) H eMPs 2 pex Nals 108z s
enPs 2
/ 115

B, s

eMPs 2 pex Na)s 108zl s

%4

v

dn

cex Nz|s 108Nz |s

v

inf p;(n)

neBy TEX Nz |s 108 Nz s

s Dzex Na|s 108Nz s

’er
/BnH/ nps TEX ﬁz\legﬁﬂs
_ Tn —_ AV TI(H _A
BnH/ L DRICRIC R RIE
S B s

where we have used Taylor’s theorem in the manipulation from
the third line to the forth line, and we let

dn,

v

def
Bn of pa(m), (28)
2 def 5xy"7z|s 7?0|s
Iﬂl?’l (TI@) = )
Y (nz|s)2 (n0|5)2
def (ny — 1) () (ns — Ay)
e"/n e Sup S As Ab S As . 29
(s — 1) () (M, — 7,) (29)
In (29), the supremum is taken for a#f, | : 9 € H(en),

for all n, € B, \ {n,}, and for alln, € B, . The

quantitiesfl.y(ns) provide the empirical Fisher information
for the Bernoulli sources. Note thét, (7,) = I,.,(7,) holds.
We are to show that the following two inequalities uniformly

hold for all 2™, : fj € H(*).

Bn = (1 —o0(1))ps (1) (30)
/ e PeeT (0, =7 1(0,) (0, =) /2 (31)
By,s
(2m)4/2
> 1 — 0 1 . ~ 9
= 1=l )>nd/2us(n)d/2D<1/z>(ns)

where o(1) converges to0 as n goes to infinity. These
inequalities implyV > (1 — o(1))(2r/n)%/2/C;.
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As for (30), note that we have which is
Dyja(n,) e~dm (2m)d
inf  inf 32 ——— — I, 35
feH(n) neBn Dy jo(N) ) (32) n? det(psI(n,)) ? (35)
—  inf mlg where
WEH“")"E v Vals 1, % / = npe (=) A1) 2q (36)
B;‘.L,S
H 2€n + d n €)7 AbbreViateQ(ns) = ﬁS(ns_ﬁs)tl(ﬁs)(ns_ﬁs)/2' In Bri,s
we haveQ(n,) > 4dlogn/n and hence the exponent in
+ (n—

where we letd(B, ;) denote the diameter oB,, ;. Slncg the integral (36) satisfies™ nQ(n.) > e Q(n.)
)e™4dlogn, where we have reserved thé&Q(n,) part to

d(Bn.s)/€n converjés tad (recall (27)), the last expression i
converges ta asn goes to infinity. We can also show preserve integrability. Accordingly, we have
C —(1—ak)/2 n
570 _ Csnf(lfak72ra)/2 L < exp(few (n71)2dlogn)
n

sup [log pa(m)|
neB, ,us(TI) €n
in the same way as we obtain (25). (Recall thign,~(1—2k)/2 / e~ P (M=) A (M=) 2y
is an upper bound on the diameter Bf, ;.) Hence,
(n) Bound it further by enlarging the last factor, integrating over
g Fe() S exp(—Cyn~(1m0k=2a1/2) 1 (5 5 o0) R, to yields
neBn fus(M) p p
Yn (1 — —dvn
. I < exp(—e (n—1)2dlogn e i (27}') .
n det(ps1(,))

sincea < 1/(2r + k). Together with (32), we have (30)
As for (31), first we are to showy,, — 0 asn goes to

infinity. Note that

Since~y,, = o(1), the inequalitye™ (n—1)2d/n > d holds for
- sufficiently largen, and hence
o 2
1 e=dm (27r)d

(n, =) ), —0) =3 %ms — s)
N 2= Jam\ a det(ps1(7.,))

reX

def
andb, = 1/7n,,. Then, we can - .
)y /e holds for sufficiently large:. Therefore, (34) yields

holds. Leta, %' 7,5/ (1 4
/ e s XD () (1, 7,) 1) (=) /2 gy

write
(e =71 T (M) My = 7)) _ X 0alfs = Tajs)
(773 - ﬁs)tj(ﬁs)(ns - ’f]s) Zmex bm(n;\s - ﬁx\s)2 e ( )( )d
; _ _asoy |exp(—dyn)(2m
o », =
EIEX am(nﬂs — n$|5) < max il n Pst(M;
Yven be(Na)s — Ma)s)? ~ 2€X by This is (33) as desired.
holds. we have Since /det(psI(1,)) = pS D(1/2 (1), (33) yields
- —npse’™ (n,—0,) 1(A,)(n,—h,)/2
Tlals \ 2 e~ s (M —7,) 1(f1,) (s — 7, dn,
e < sup sup max . /Bn . s
IGX( Wals ) ’ —d d/2 —d/2
¢ T (2m)%/2(1 — n~%2)

AEH(en) N, EBy 5
In a manner similar to the evaluation of (32), we have - N
(32) nd/2572D 1 1) (71,
Yn < 2log (1 + Oz ) < 26;3 ) By Lemma 1 and since,, — 0, this implies (31)
Vaens'  y/dens Since (30) and (31) hold, we have

This converges t® asn goes to infinity. Next we will show V> 1—o0(1) (21)61@/2
jell CJ n 9

(33) whereo(1) converges td asn goes to infinity. Therefore, we

/ e (1, =) T3, (0, =) /2 gy
B, s h
efd’yn(gﬂ-)dﬂ(l nfd/Q) ave
nd/2,/det(p.I(n,)) su ACalu) < Cs e
v et (@) — (1= o(D) (L = ) (2m) 072
The integral overB,, ; is equal to the integral over the whole Thi i
space minus the comphmenB s Thus the integral on the is implies
sup log pl ‘Z) (37)
e H (en) mn(x )

left side is equal to

\/ (2m) — L, (34)

drl n
< — — .
5 log2 —|—logC’J—|—0(1)

det(np,er 1(0,))
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Part Il (near boundaries): Hence we have
Now, we consider the case in whigh¢ H(<»). We use the ) (a"n) Z(—l L)
second term in the mixture,, as o8 My @) < 08 Lis
s€
my, (z") RnMM(a) (z") Kn fp(xn|77) Hs D(a) (ns)dn ( d 1 1 )
— > ~ = - . < — — (= —a)a)logns + Kglog —
pleln) —  p(z"|f) p(a"n)  Cf, Sezb;l (2 (3= ) s 408
i i i d
Wlth the prior of product form this becomes a product of n Z @ ogn. + Cy ) .
integrals. Use — 2
s€E>
p("n) I exp(ns D e x Ne|s 108 Nafs) which is not more than
p(x"(n) o1 P18 D e x flafs log nm) 3 (d ) logns + Z logns + Cho, (40)
Nzx|s s€Ey 56E2
= s x sl .
HeXp< " 277 | Og ) where
seL zeX
Then we have Cio & fmax{K, log ,Co},
J o) [T, Dy (n,)dn, Iz T 12— e
n N Z B s . .
p(amln) oy We claim that (40) is less than
where e log —— 41
(2 L) 08 G g, 7q T o (41)

def 771: s D @ (ne)
L, = /BXP< N Z Tl)s 1 2l )(C)?dns Since (40) is maximized whejE, | = 1 for any configuration

nmls of {n,}, it is the worst case. Then the maximum of (40) is
Jexp(32,c v a)s 108 701s) Doy (115)dn achieved whem, = n(d/2 —1)/(|E|d/2 — ) for s € E; and
exp(Y_ e x Nals 108721s)  Clay ’ ns = (nd/2)/(|E|d/2—.) for s € E5. This provides an upper

. bound which is no more than
and E is the set of states such thaf > 0.

Split the states iy into subsetdy; = {s|7), & HS(E")}QE (ﬂ — L) log n(d/2 = 1) + dI5| log nd/? + Cho,
andE, = {s|f, € H)}nE. Forf ¢ H(), we are assured 2 |Eld/2 —t 2 |Eld/2 =
that F, is not empty. whose dependency diZ| is of the form

Note that—log L is in a form of regret of the mixture by d 1 d(|E| - 1) dn/2
the Dirichlet prior witha < 1/2 for the memoryless case. (5 ~ 1) log Eldz—: " 2 “®lEld2—.
Since the Dirichlet prior withh < 1/2 has higher value than dlE| — 2 1 d(|E| - 1) dn
the Jeffreys prior near boundaries &f the quantity— log L, = 9 log Eld/2 . + 9 log 5

for s € E; is smaller than(d/2)logn. Ideed ifs € Ej,
then there is a symbat such thati,, < 1/n* < 1/ng,
SO Ngps < nl=. Consequently, adapting Xie and Barron’s n>elE| - @.
Lemma (Lemma 4 of [28]) for the present case, fof F1,
d 1 1 Whence forn > ef, the largestE| = /¢ is the worst case,
—logL, < (5 _ (5 — a)a) log n, + K,4log - (38) which provides the following upper bound on (40),

_ _ d n(d/2—1) d(f—1) nd/2
holds, whereK, is a constant depending on onty (5 - L) log + lo

g
/2 — 2 de/2 —
As for s € E5, we use the following bound, which holds =~ | / ‘ / ‘
which is less than (41) byd¢/2 — ) -log(d/(d — 2¢)).

Its derivative with respect toF| is positive when

+ Cle?

for all s € E,
J Therefore we have
~log L, < 3 logn, + Co. (39) sup  log p(z"|R)
- . . ) erigHen) M (T7)
This inequality (39) is derived by Lemma 1 of [28]. The lemma dr n
is a uniform bound on the regret of the Jeffreys mixture for < (5 - L) log =274 + log + Cio
memoryless case, and can be applied to our case by noting a0
Doy(n,)dn, > D s)dn, and then <|—=—-t+b)1
(o) (1)1 (1/2)(ms)dn —(2 Lt )Oge—zL/d+
feXP(Z cx Nz|s 1Og na:|s)D(1/2)(779)d77s dl
L, z - : : <|{—=—-t+b)logn+C (42)
exp(zxex Ng|s IOg nx\s)C(a) ( 2 ) 1
= Cjz) J exP(Lper naislog %‘S)D(l/z)(m)dns- theirnecgll)ljbcilo(l_/éd—gf)c:i; ;—sl;)ul%ge(dg _th2eb/ezc>l<)r;ression (42) is
Cla exp(Y, e Mals 108 Txs)C1/2) = !

smaller than the right hand side of (37), when-b) log n ex-
Here, D1 /2)(n,)/C(1/2) is the Jeffreys prior for the multino- ceeds the constait//2) log m—log C;+C11. This completes
mial Bernoulli model. the proof of Theorem 1.
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V. PROOF OF THEAPPROXIMATION FORMULA Proof: In this proof, we leti’” denoteW (), omitting (w).

In this section, we give the proof of Theorem 2. For thBartial differentiatingG:(m, 6,7')w(8) with respect tof,s,
purpose of abbreviation, we define two functiciisand G as We have

follows. Define F on R} x O, x H, as 0[G(m, 0,7 )w(6)] (47)
00
F(m7 Bsa 77\/9) d:ef exp(m( 91\377/:5 s w(es))) (43) zls
z;\z/ | = ms(ﬁlm\s - nxl(e)G(mv 0, U/)w(e)
=TT )™=, +2180O) o 6,57 )(0),
zEX aez|s

where and 6, are the same ones as in (13). In particulawhere we have used (44). The second term of the right hand
recall 0, = log(n,|s/10s). Note that the following holds: side is integrable because of Assumption 1 and the first term
For eachs € L, let m; denote a real number ane denote of the right hand side is integrable becaygg,| is bounded.

a vector(ms, , ..., ms, ). DefineG on Rf x © x H as Therefore, the left hand side is also integrable. Integrating the

’ both sides ove®, and doing some manipulation, we have
def m
G(maa’nl) :e HF(ms,057T,;) = H (nm‘s) sN z|s

s selpex / No(s G (m, 8,1 )w(0)dO (48)

Then, definingn def (Nsyy -y s, ), We have

= nlfc\s / G(ma 07 T]/)U}(g)da
pla"2yiy,m) = G(n,0,7).

1 0logw(O)
Smce(a/aea:\s)w(as) = Nz|s and +m7€ 80w|s G(ma 0>nl)w(6)d0
DlogG(n,68.4) _ dlog F(ms,8.1}) o /aG<m,0,n’>w<9> 0
8935‘8 o 80$|S ’ mg 80$|S '
we have We can show the third term of the right hand side is zero.

Indeed by the Fubini’s theorem, we have

0(w(8)G(m. 8,m))
/ 0,15 de

dlog G(n,0,7)
801‘\5

Also, recalling the definition ofy (14), we have

= ms(n/;ﬂs - 77$|3)' (44)

2 / A
ok G(m. 0. 1) = ~mag,(0.).  (45) = [w@cm.0.m) =0 =0,
00,5005

Then sinceg(6;) is positive definite,log G(m,0,7’) is
strictly concave with respect t@, whenever eachn, is
positive.

Finally we let

where@ is ¢ - (d — 1) dimensional vector which is obtained by
removing the elemertt,|, from the vector§. Hence, dividing
the both sides of (48) by w(0)G(m,0,7n’')d6, we have

nx\sW(m, 0, n/)de
det  w(0)G(m,0,n) /

(w) 7y €
W m O = recm, . mas @0 et — [ 28Oy g ).
Then we have s 01
Therefore, it suffices for obtaining the claim of the Lemma to

q(x|z") = /nml‘r(m")W(w)(nvav'f’)dO' show that
Note thatw need not be normalized in the this expression, MW(m,B,n’)d@ (49)
since it remains unchanged when we multiphby a positive 905
constant. Hence, we assume thatdoes not have to be a ~ Ologw(0) 0 logm
probability density hereafter. - als  |o_gr +0( vm )

First, we prove the following lemma. ] , ] )
Lemma 2:Let K be a compact set included in the interiof©lds uniformly forn’ € K. We use Laplace integration to
of H. Let W) be the function defined as (46). Suppose th&fove this. Let

w in W®) be a positive valued function, which is integrable O dlogw(8)
over ©. We assume thaty satisfies Assumption 1 and that 90y
minse/L ms > Mmin holds. Then, for alls /6 L and for all - sjncew(@) > 0 for @ € © and sincew(d) is of classC? in
x € A, the following holds, uniformly fom' € K. 0, logw(0) is of classC? in ©. Therefore,h(6) is of class
W(w) 0.1')do Clin @. o
Ne|s (m. 6,m') Define a neighbourhood d, (¢, < log(n’,,/n,)) in
1 01 I e as
S 0logw(6) Lo ogm

).
ms s lg_g  msvm N5 (0]s) €' {0, : (6. — 6,)'g(0])(0. — 0,) < 62},
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Further define

Nj = N5(8') € T] No(0}]5).
seL
where we assume
52— d-llogm
—

From (46), we have

W(m,6,n')
_ w(8)G(m,0,7)
~ Jw(6)G(m,8,7)d6
where we let

G(m.,0.7') =

w(G)G(mﬂm’)

[w(0)G(m,6,n')do’

G(m,0,n)/G(m, 0 7).

Then, we will evaluate [ h(8)G(m,0,n')w(8)d0 and
J G(m.8,m/)w(6)db.
Let v(6) denote a function:(6)w(@) or w(@). Assume

v(6") > 0 without loss of generality, then we have

/v(@)@(m,O,n/)dO (50)
= v(0)G(m,0,m')do
N;
+/ v(0)G(m,0,n')do.
O\N
Using Taylor's theorem, we have
log G(m, 0 77’)
m%‘a 97”7 )
= log -
Z 850377]5)
_ 723 mS(es —6 S) ( 3)(08 — 0/8)

2 )
whereq, = €0,+(1—€)0, with e € [0,1] (s = 51, ..., S(g41)%)-
Hence, we have

(0, -0 0,0,
G(m,@,n/):exp(—zsm‘( E 2) g(qs)( ))
Since{0(n) : n € K} is compact,
(0, —80,)tg(0,)(0, -0,
g e Zama(0:—0)'9(0)(0: 0 _ o

T ms(0s —0'5)1g(0,))(0, — ') ~

holds for sufficiently largen (small 6), for all 8’ € {8(n) :
n € K}, and for all@ € Ns(8'), where C; is a certain
constant. (Hereafter, le€; (i = 1,2,...) denote a certain
positive constant.) Hence, we have

G(m,0,n)
< exp(~ L= G0 Ty ma (6 —20 )'0(0.)(0: = 0's))
G(mvoan/) (51)
> exp(— (14 C16) 3, ms(0s —20 )g(0.)(6, — 6 S)).

Using these inequalities, we evaluate the second term of (50).

Let 1 denote thel-dimensional vector(1,..,1) and m gef

m—muyin1. Noting thatlog G(m, 0, 7') = log G(m,0,7') —

14

log G(m, 0',7n') is strictly concave with respect ® < ©, we
have

sup G(m,0,7')

0cO\N!
= sup G(m,0,n)
OCON
S sup e~ Es ﬁls(17015)(0579/5)tg(93/)(9570/5)/2
OCON!
Mg — Mamin ) (1 — C18)62
< eXP(—(m - mminz)(l - 016)62/2)
< Cyexp(—md?/2).

Hence, we have

P
’ \/(_)\N/

Cy exp( m52/2)

‘/;\NI

C3 - exp(—md?/2).

G(m, 0,1 )w( )d0’

G(mminl, 0,7')G(17, 0,7 Yw( )de‘

IN

G(Mminl, 6,17 )w( )dO’

< (52)

Next, we evaluate the first term of (50). We have

e

sup |v(0) —v(8")|
0eN;

0(9)

N

0'))G(m. 0,7 de‘

IA

G(m,6,7n')do
N;

G(m,0,n')d6.

Hence, we have

/ v(0)G(m,0,n')do (53)

8

(v(8") + O(9)) G(m,0,n')d6.

N

For the upper bound oy‘iN/ (m,0,7n')do, from (1) we have

G(m,0,n')do
Nj

<

/ o3 M (1-C16)(6.—8'.)g(8'.)(6.-6".)/2 g
;

g/e S, ma(1-C16)(0.-6'.)g(6:)(8.~6"2)/2 4
C]

1
B H V(@2rm, (1 — C16))? det(g(67,))
1+ 0(9)
V(2rmy)d det(g(07))

(54)
HSGL
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For the lower bound orf,,, G(m, 8,7')d6, from (51) we have The last equality is obtained sinee®‘/2¢=™9"/2 = jp=44/2
’ < § holds for largem. Recall that this has been proved for
G(m,0,n')do v(0) = h(0)w(0) andv(0) = w(H). Hence, we have
N
2/ o~ (+C10) 5, m.(0.-0,)'9(68'.)(0.-0".) /24
N

/
)

B Nt e Jo M(0)w(8)G(m,0,n')d0
_ (14C10) 52, . (0,-6".)"9(61)(6.~0".) /2 nde = e £
7/@6 d6 /@h(O)W(mﬂm)d@ T w(@)G(m, 6,170
_/ o—(1+C16) 5, m. (8.~6'.)"9(01)(6.—6.)/2 4 _ h(8)w(8') +0(9)

o\N; w(0') + 0(3)
“11 1 = K@)+ 0(0).

seL \/(27rms(1 + C10))? det(g(6’,))
7/ o~ (14C18) 30, m.(0,—6'.)"9(6.)(8.—6'.)/2 49
O\N; o This completes the proof of Lemma 2.
In the same manner as obtaining (52), we have
Proof of Theorem 3First, we will prove (17). In Lemma 2,
plug in and7 into m andn’, respectively. Then, sincg €

/ o~ (14C10) 5, m.(0.-6'.)"9(6,)(8.—0".) /2 g
O\N; K holds for largen by the assumption, we haw@(1/n,) =

< Cyexp(—md?/2). O(1/n) for all s € L. Hence, we obtain (17).
Hence we have Next, we prove (18). Leti(0) dZEfU)(e)/IU(l/Q) (6). We can
G(m,0,n')do prove that the densityy satisfies Assumption 1, provided
N satisfies it. In fact,

> 1 o C4e—m62/2

[T, V(2mms(1+ C18))4 det(g(6.))

14+ 0(9) 2 N

= — C4 - exp(—md~/2) 0log w(O ' -

[T, v/ (2mm,)? det(g(8y)) (%)l() [T ™o - ao)

1+ O(8) — O(exp(—md?/2)) - T] Vmgd teL,yeXx
- : d(log w(8) — log w2 (0
T, /@) det (@)) - el o)

1+ O0(0) + O(m®*/2 . exp(—mé?/2))

- . (55) 'y, w(0)
IL. /@) det(9(0L) AL e
1 'Y
Hence, with (54), we have _ d(logw(8) — log w1 2 (6))
/ G(m,0,7')do 00,
N‘g . mn/y\t_1/2 . (7]
_ 1406) + O™ exp(-md?/2)) AL "o
[1, v/ (27m,)? det(g(6})) _ dlogw(8) I (™o ()
From this and (53), we have S O o Myt
/ , U(6>G(m,0>"7/)d0 B 8log wW(1/2) (0) H (nylt)mn/y‘t71/2 w(e)
’ 00z teLyex

(W(8') + 0(8)) - (1 + O(8) + O(m»t/2e=md"/2)
[T, V/(2mm,)? det(g(8y))
_ v(0") + O(m4t/? . exp(—md?/2)) + O(6)
[T, /(2mm, )1 det(9(67)) '

By this equation and (52), we have

/ v(0)G(m,0,n')do . ,
° M > Mpin + 5 Max  ——.
~ 0(0") + O(m®*/? - exp(—md?/2)) + O(6) 2 sELyeX 1)y

[eer v/ (2mms) det(g(67))
v(0") + 0(9)
[ V(2mmy)? det(g(6%)) (For the second term, see the proof of Lemma 5 in Appendix.)

and both terms in the last line are integrable when
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Note that wherea = 7, andb = 7|, which yields the Jeffreys factor
log( [[ (myge)" ™ (6)) Vab
s€eL,yeXx a+b
= > naiyslogny, +logw(6) Accordingly, the Jeffreys mixture probabilityn;(z") =
s€ELyeX my(z™|zo) takes the form
. w(8)
= Z (”sﬁy|s + 1/2) log My|s + 1Og o\ i / 1 noj1 g1 =0-5pn110 pna1=0.5 7, 7p
seL,yeX w(1/2)(0) CJ [071]2 a+ “ “ “
= > ns(iys +1/2n,)logny, + log@(0) wherea = 1 —a = 5y, andb = 1 — b = ng)o. The factor
sELyeX R 1/(a + b) prevents the integral from decoupling as a product
=Y (et d+ 1) fly|s +1/2n log of integrals fora and forb.
- s y|s
weiaen 2 714 (d+1)/2n,
+log w(8) A. Refined approximation tou;(x™)
B d+1, nys+1/2 1 The following lemma obtains tight upper and lower bounds
- Z (”S + 9 )ns +(d+1) 08 "yl onm(z™) for this two state first order Markov case. The idea
SGL"}’GX of the lemma is to obtain approximate decouplingzcdnd b
+log w(6) . in the integral. A
=log [ ()t /2 0e0p(0), Lemma 3:For (a,b) and (a, b) in (0,1)2
sehwel 1 a—a b—b
where we have defined Laplace estimator as PO (1 Taid ax 13) (58)
ﬁL d:ef ny\s+]—/2 o 1 < 1 (&)Mo(l})[ﬂ
vs T g+ (d+1) Ta+b T a+bl\a b

This implies wherejig = a/(a +b) and iy = b/(a + b).

G(n,0,7)w@) =Gn+(d+1)/2-1, g,ﬁL)w(g), (56) Consequently, we have the upper boundren(z") of

Hence, we have a"’”{?‘“ /ano\1—/20an1\1—0.5bn1\0—/11Bno\o—Oﬁdadb
o (@+b)C,
i = ————B(nop +1— fio,n1)1 +0.5)
- /nx‘SW(w)(n (4 1)/2-1,0,7")d6. (a+5)Cy
‘B(nyjo +1 — fi1,ngpo + 0.5)

: ~ L
By assumptionn” € K holds for all largen. Hence, EJy where B(mi,ms) = I'(m1)T(ms)/T(m; + ms) is the Beta
Lemma 2 and (57), we have for allc L and for allz € X", fynction. This upper bound is valid for arfy, b) in (0,1)2.

/77 w(6]2)d0 Moreover, we have the lower bound an;(z") of
—pl 4 1 Ologw(0) n O(\/@) /(1 _ ?7? _ ljf Zz)a””‘1(_znl‘170'51)"1‘05"0‘070'5dadb,
I L 00ss | nyn /)’ a+b a+b

With the choiced = (ng); +1)/(n1+1.5) andb = (n1jo+1)/
(np + 1.5), thea — a andb — b contributions to the integral
vanish, yielding the lower bound om ;(z™) of

This completes the proof of Theorem 3.

VI. REFINEMENT FOR THE TWGSTATE FIRSFORDER

1
MARKOV CASE B(noj1+ 1,n1)14 0.5) B(nqj0+ 1,190+ 0.5).

As we have seen, the Jeffreys prior differs from a produé@ +5)C,y

of Dirichlet(1/2,...,1/2) priors by the factor These upper and lower bounds hold for all non-negative counts
H /2 no|1, M1, Nojo, P10 and the ratio of the upper and lower
Hs bounds tends to 1 when these four counts get large.

sk Proof of Lemma 3The function1/(a +b) is convex onk?

where . is the stationary probability of the stateassociated and so it is greater than or equal to the left side of (58) which
with p(:|n). In the two-state first-order Markov chain casgs its first order Taylor expansion, tangent to the function at

these stationary probabilities are (a,b). Likewise, interpretl /(a + b) = e9(@8) with g(a, ) =
a b —log(e® + ¢?) anda = e, b = €. The functiong(a, 3)
(ko, p1s) = (a+b’ a+b> is concave orik? and so it is less than or equal to its first
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order Taylor expansion, tangent to it @t, 3), which yields where we have useti— i = ji;.

the right side of (58). To interpret this expression th@; + fi1)/(n1 +0.54 1)
From Sterling’s formula the Gamma function has the projis the approximation to the predictive probability, which is

erty that the ratioR,,(z) = T'(n + 1 + 2)/(n*T'(n + 1)) asymptotically equivalent to the approximation formula (12)

converges tol for eachz asn — oo (see e.g. [10] p. 80 given by Lemma 3. It is accurate when the counts are very

or [9] p. 886). The ratio of the upper bound wf;(z™) to the large, and then Numand Denr, are nearl. When the counts

lower bound at the choseh b is seen to equal are small or to improve the precision when the counts are
" . moderate, evaluation of Nuymand Der, is appropriate.
Rnﬂ\l(_uo)Rﬂuo(_lJ’l) A . i
7 R — We suggest Monte Carlo evaluation in which the exact
ny (= fi0) Bong (= fi1) integrals Num and Den, are replaced by sample averages
which accordingly approaches 1@g:, n1o, n1, no getlarge. of the quantity in brackets (see the first line of (60) for
This completes the proof of of Lemma 3. Num,) using independent draws from the respective Beta

Remark: The variance of a Befan,m,) distribution is distributions. The expressidfti+b) (a+b)~* (a/a)" (b/b)™]
mom1 /((mo+m1+1)(mg+m1)?) nearmoms /(mo+m1)®  in brackets is always less than or equalltand it is near to
which is typically of orderl/(mo + m1). However, if either 1 when the Beta distribution have sufficient counts to make
mo or m; stays bounded and the sumy + m; gets large the distribution peaked nearandb. This expressior[l(&JrlS)
then the variance is of the smaller ordef(mg + m4)?. (a 4+ b)~* (a/a)™ (b/b)] arises as the exponential of the

In the integral (59) the remainder of the Taylor expansiamainder of a first order Taylor expansion used in the proof of
1—(a—a)/(a+b)—(b—b)/(a+b) is of order(a—a)?/(a+b)> Lemma 3, so its drop front is of the ordera—a)? + (b—b)2.
+(b—b)?/(a+b)>. The crux is it has considerably reduced variance compared to

Neglecting effects fronu andb far from a, b which do not the previously suggested Monte Carlo. As a result one does
contribute substantially unless, andn, are large, it reveals not use as large a Monte Carlo sample size to produce accurate
thatm ; (™) matches its lower bound approximation to withirromputations.

a factor of order Table Il here shows computation results for the regrets using
1 1 1 my(z™) andg(z™) including cases with sequences with very
1+ O(TTO + n71> atie small numbers of transitions. We report valuesi¢fn) =
_ o . TABLE I
B. Improved Monte-Carlo Calculation of predictive probabil- REGRET (BOUNDARY CASES
ities 770]1 ﬁ1|0 Tlow Tup 7(my) 7(q)

i —alan) 0.00001 | 0.00001 || 1.2996 | 1.3133| 1.292 | -0.068
The Jeffreys predictive probabilities ;(x,+1 = 0|z™) in 0.0001 | 00001 | 12986 | 13001 | 1300 | 1.056

the s = x,, = 1 case arises as the ratio of integrals. As we 0.0010 | 00010 || 1.2985| 1.2987 | 1.298 | 1.337
have seen the numerator integral is 0.0099 | 0.0100 || 1.2985| 1.2986 | 1.299 | 1.374
) 0.0001 | 1.0000 || 1.6448 | 1.6449| 1.657 | -3.510
et —m 1 —0.5 0.5 0.0010 | 0.9990 || 1.3054 | 1.3055| 1.307 | 0.763

/ 2(a)ia +ba”°“a"1“ briop™ o0 dadb 00100 | 0.9900 | 1.2985| 1.2986 | 1.297 | 1.353
[0,1] 0.0001 | 05175 || 1.2988 | 1.2994 | 1.297 | 1.092
and the denominator integral is the same but without the factor | 0-0010 | 0.5037 1 1.2985 1.2987 1.303 | 1.349
. 2 . ; 0.0100 | 0.5005 || 1.2985| 1.2986| 1.300 | 1.375

(a). If we multiply and divide in the integral by the expression 0.9900 | 0.9900 | 12985 | 12986 | 1302 | 1377
(a+0b)(a/a)* (b/b), then these integrals can be expressed | 0.9990 | 0.9990 || 1.2985| 1.2986 | 1.299 | 1.336

via expectation forms of appropriate Beta densities. For the | 0:9999 | 0.9999 || 1.2986 | 1.2987 | 1.299 | 1.058
0.9901 | 0.4999 || 1.2985| 1.2986 | 1.298 | 1.376

numerator we use 0.9990 | 0.5000 || 1.2985 | 1.2986| 1.299 | 1.375
At b ras o b i 0.9999 | 0.4999 | 1.2986 | 1.2987 | 1.300 | 1.369
Num, = / [ (E) 7) } (60) 0.99999 | 0.4997 || 1.3000 | 1.3001 | 1.304 | 1.353

a+b\a b

’ Bno\1+2—ﬂ07n1|1+0~5(a)
(

 Brasyy +1- i moyo 0.5(b)dadb, 7(m,z™) given, as before, by

where B,, ., denotes a Betany,m;) probability density log - —log _ _log —
function. For the denominator Dgnwe use the same ex- m(z"|zo) p(x™|zo,7) 27

pression but with the 2 replaced by 1. Here we have ifging either the Jeffreys rule or its modificatigriThe column

corporated the normalizing constants of these Beta denSitiﬁéadingﬁow refers to lower bounds on regret of the procedural
Accordingly, when we compute the predictive probabilities, W§ytained from the upper bound en;(z") in Lemma 3; the

compensate for the ratio of the normalizing constants whi ading7,,, refers to upper bounds on regret obtained from

is B(noj1 +2 — fio, naj1 +0.5)/B(nop + 1 — fio, 7111 + 0.5)  he lower bound onn s (z™).

equal to(no1 +1 — fio)/(n1 + 1.5 — fig). Consequently, With 0 a1 sample size as beforeris— 107. Each Monte

zn = s =1, the Jefireys predictive probability is Carlo calculation is performed by the improved-precision
noj1 + 1 Num, version developed here. The objective is to render these digit

ny + 0.5 + fi; Den, accuracy on these regrets. For initial sequence of length less

my(Tpy1 = 0)z") =
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than 100 the Beta distributions are not so peaked and we use8ee [5] for the proof. Here, aarborescencéds a graph in
Monte Carlo size of 100,000. which every vertex other than roots has in-degree one, there
Once all four countsug;, n1j9, n1j1, andngy reach at are no cycles, and the roots have in-degree zero. The matrix
least 100 we switches to the approximation formulas (12). Fvee theorem is well known in circuit theory and graph theory
moderates size counts (not all at least 100) the Monte Cadod several variations exist ([4], [12], [14] etc). Theorem 4is
refinement to the A.F. with Monte Carlo size of 10,000. a fairly general one.
This scheme allowed sensible precision of computation overWe have the following.

a broader range of cases than before. Lemma 4:Let A be a state transition matrix of a first order
Markov chain with alphabef{1,2,...,~}, that is, 4;; is a
VIl. CONCLUDING REMARK conditional probability of’s generation aftej’s. Let 11; be the

stationary probability of the symbaldefined by the Markov

We have shown that the modified Jeffreys mixtures asymp- in. Lete % min. - A.. and let A.: denote the(i, j)th
. = 1,J “igs ij ’

totically achieve the minimax regret for Markov models with- ! g
out any restriction on the sequences. The obtained regret isCBEaC'[Or of the matrid — A. Then, we have the following.
the same form as that for the multinomial Bernoulli models. 1) For eachj, Ay; = Ay =--- = A,; holds.

Then, we consider the computational aspects of the minimax2) EachA;; is a sum of products of — 1 certain compo-

strategies, and we have obtained an approximation formula of ~nents ofA, in particular, not less thae .

Jeffreys mixture for Markov models. 3) Whene > 0, the following equalities hold.
_ Ay _—r
APPENDIX A Wi = m (1=1,2,....,7).

JEFFREYSPOSTERIORUPDATING ( ) s
. : . Proof: Let B;; = (I — A);;. Since) /| A;; = 1, we have
Here, we derive (10) and explain the Jeffreys posterior agy By =0( =12 7). Hence, adding theth line

its relationship to the Dirichlet posterior. Note that the Jeffre i]E:?lto the first line fori — 3.4. .. the first line of the
posterior givern™ is proportional to S

resultant matrix is equal to minus the second linezofThis
27w o plz™ /2 ) implies Ag; = Ay (j = 1,2,---,7). Since this argument
pla i) () oc p(a"|m) H s /() holds for any pair of lines by symmetry, we have the item 1.
. n I . In order to show the item 2, we use Theorem 4, assuming
Sincep(z"|n) = [ 1, 1, (na1s)"'*, it is proportial to x; = 1for j = 1,....,7. Then, B;; satisfies the property of
(H ud/2) H H(” | Yralot1/2 M({z,}) in Theorem 4, where we hawk/,;; = A;; (i # j)
s e andA;; = f(i). Hence the following holds.

seL

seL sel =

wheren = (ny)scyr, is a collection of counts from™. Since Ay =f) = Z W
the posterior for the Dirichletl/2, ..., 1/2) prior, denoted by a€s

Di1/24n) (1), is proportional tof ¢, T, (nas)" 172, we g implies thatA,; is a sum of products of —1 certain non-
have 42\ 7 diagonal elements ofl. Hence,A;; > ¢7~1. By the item 1,
wy(nlz") o (H Hs )D(1/2+n)(’7)' this holds for everyA;;.
sel Now, we will show the item 3. Let Adp denote the matrix

with (i,7) entries areAj;. Then, we have(I — A)AdjB
= BAdjB = (det B)I = 0. This implies that the vectors
(Aj1,Ajo, Ay )t (5 = 1,...,7) are the eigenvector afl
with eigenvalue 1. Here note that;; > 0 whene > 0. Then,

Here we will prove Lemma 4, which gives an explicitwe have obtained
formula of the stationary probabilities for Markov chains and A A
describe a certain properties of it. Li = == NA = == ”A .

For its proof, we utilise the following theorem given by DB i Bu
Chaiken and Kleitman [5]. This completes the proof of Lemma 4.

Theorem 4 (Matrix Tree Theorem)et M ({z,}) denote a
squared matrix of ordey, whose entries are

APPENDIXB
EXPRESSION OFSTATIONARY PROBABILITIES OF A
MARKOV MODEL

APPENDIXC
Mz, i=7,1<7j<n, A LEMMA FOR JEFFREYS PRIOR
M({xqm—{%ﬁmk ’ Z-J-KZ 2 . o
ij %5 J1=%] =7 Lemma 5: There exists a certain intege,,;,, such that
Let f(j1,....jx) (k < n) be the determinant of the matrixfor all n’ € K, for all 2* € X*, for all 2 € A, and for all
obtained by omitting thej;th row and column ofM ({z,}) s € L.
forall i : 1 <i < k. LetS be the set of all arborescences on
. alOg U)J(@) I

vertexesvy, va, ..., v, rooted atv;, , ..., v;, . For eachs in S let ————"G(Mpin-1,0,1") -w;(0)

il J1 Jk ) C 39x|s
w, be the product of\/;;x; over all directed arc§j — ¢) in
a. Then the identityf (ji, ..., jx) = >_,cg W holds. is integrable ove®.
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Proof: Recall thatw,(8) = (1/C) [T, 1Y > D12 ()

We have

d
logw;(6) = 3 > (log s +log D(1/2)(m,,)) — log C,.
seL
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APPENDIXE
APPROXIMATION FORMULA FOR SOME BOUDARY CASES

Here we replace our approximation formula (12) with a
different one for the case that at lesat onewgfor n; is small
(less than 100). This is because precision of (12) is garanteed

Therefore, recalling (16), it is sufficient to show that thenly when alln, are large and we found that (12) did not

following two are integrable for alf’ € K and for ally € A”.

Olog D(1/2) (ms)

a’r]y|s
0log g
o G - 1,6,m )y (), (62)
Tyt
Now let x be min, ¢, minger mingex 7'y, As for (48),
note that
Olog Diayo)(ns) 103 e 1087ns _ _1(L_L>
a77y|s 2 a'r]y|s 2 Myls  To|s

Recall thatG(mmm -1,0,7n') = ]‘[SeLnyX(ny‘s)mmm" uls
Hence if my, > 1/k, we have G(mmn1,0,n') <
[lscr zex 125 for all @ € ©. Hence, for alld € ©, we have

dlog D
og (1/2)(nS)G(mmin 1,0,7)] < 1.
5771/\3
Hence whenn,,;,, > 1/k, (48) is integrable.
Now, we examine (62). Let,in def minger yex My|s, then
by Proposition 3, we have
Cy

B nminr

‘fﬂog s
any\t

)

wherer = k(¢ — 1). Hence, ifmy,;, > r/k, we have

Cl nminr

‘c’ﬂog Ps |

< (.
a7’y|t !

Mmin * 1a0577/) S

nminT

work well, in particular when eitheny or ny is small. The
formula is given as

ngjp + 1

n0|i|— 1.5 (z=0),
/m|1PJ(17|93n)d17 ~ niu +1/2 (63)

— (z=1),

which is the one for the case of, ~ 0. Whenn; ~ 0,
the counterpart is given by exchanging the symhbnd 1
in the formula. The derivation of these formulas is given in
Appendix E.

Here we will derive the approximation formula (63), which
is for the case thak’ = {0,1} andk = 1.

Recall
pJ($n+1 = LC‘.’L‘”) = /Um|sﬂ](7l\$")d71 = 274

TEX 77.;9\5

where7, is defined by (10) and = .
We will derive the formula for ther,, = 1 case, for which
(20) is reduced to

— J\5+0.5—1d d )
|1 Mo + o Tlo[1¢M10

II «

(,8)€{0, 1}2

The furmula fors = 1 is used whem/n << 1, which
implies n; ~ n andijy; = ng;1/n1 ~ 0. Since we use the
Monte Carlo method when is small K 100), we can assume
n ~ ny is large. Hence, the fath?Iye{o,l}(77y|1)”?/'1+0'5’1
has a sharp peak around the Mig;. Further, sincejy, ~

Hence whenmn,,;, > r/k, (62) is integrable. This completes0, the factor . /751771j0/ (101 + 71,) in the integrant can be

the proof of Lemma 5.

APPENDIXD
THEORETICAL VALUE OF THE MINIMAX REGRET FOR THE
SIMPLEST CASE

For the simplest case (Example 1), singe= 1o/1/(noj1 +
noj1) and gy = n1j0/ (o1 + 7Moj1), We have

| Vi

C; =

Vs
/H Sel{_()[’l}(\/ 770|s(1 - 770|s))dn

/ dnijodnop:
0,12 (o1 + 7)1\0)\/(1 = 1oj1)(1 = 10j1)

The last expression equals 4 times the Catalan constant (see [2]

for example), which equal$- 0.915965594... ~ 3.66386237.
(See [9] p. 1036 for example.) Hence we hadwgC; =~
1.2985.

approximated as

Tol171jo V1o /Mo —~ [Toj
Nojr + Mo Mop /Mo +1 M1)0

for almost allz, . Hence we have

. To|1 ; _
77xJ|1 ~ /77 1 —oR (1y |s)”y‘5+0'5 1d770\1df]1|o
oy, s>e{o 1)2
= B. TLy‘1+O.5—1d
Nz|14/Mo)1 (77y\1) 70|15
ye{0,1}

where B denotes the factor obtained as the integration with
respect ton; o, which is dnoted by the Beta function &=
B(ng|o + 0.5,n1)9 — 0.5). Hence we have

(f](')]‘la ﬁil‘l)

~ B-(B(ng + 2,111 +0.5),B(no;1 + 1,211 + 1.5)),

which yields (63).
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