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Abstract

The problems of predictive density estimation with Kullback-Leibler loss, optimal universal
data compression for MDL model selection, and the choice of priors for Bayes factors in model
selection are interrelated. Research in recent years has identified procedures which are minimax
for risk in predictive density estimation and for redundancy in universal data compression. Here,
after reviewing some of the general story, we focus on the case of location families. The exact
minimax procedures use an improper uniform prior on the location parameter. We illustrate
use of the minimax optimal procedures with data previously used in a study of robustness of
location estimates. Plus we discuss applications of minimax MDL criteria to variable selection
problems in regression.

1 Introduction

Suppose we are about to transmit a data string y = (y1, . . . , yn) and we assume that the underlying
data generating process is some distribution from a parametric family with probability density
function p(y | θ) depending on a d dimensional parameter vector θ taking values in Θ ⊂ R

d. If the
parameter θ were known to us, by Shannon coding theory, the ideal code length would be equal to
log 1/p(y | θ) where for now we ignore the requirement of integer code length and finite precision
representation of the numbers. Such a code length is optimal in the following two senses: First, it
is the shortest code on average, giving entropy as the shortest expected code length; Second, it is
competitively optimal [5][8]. Without the knowledge of θ, we in fact code the data with some other
distribution, say q(y) with code length log 1/q(y). The corresponding excess average code length
(expected redundancy) is given by the Kullback-Leibler divergence

Ey|θ log
p(y | θ)

q(y)
. (1)

A minimax optimal coding strategy is one that achieves the minimax expected redundancy equal
to

min
q

max
θ

Ey|θ log
p(y | θ)

q(y)
. (2)
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By a result from decision theory [12][9][13][16], the minimax code length (2) agrees with the maximin
value

max
w

min
q

∫
w(θ) Ey|θ log

p(y | θ)
q(y)

dθ

= max
w

∫
w(θ) Ey|θ log

p(y | θ)
pw(y)

dθ,

where w is a prior distribution on Θ and pw is the corresponding Bayes mixture (marginal) density
pw(y) =

∫
w(θ)p(y | θ)dθ which minimizes the Bayes average redundancy Rw(q) =

∫
w(θ)Ey|θ log p(y |

θ)/q(y)dθ. Thus the mixture density pw(y) provides the optimal code length log 1/pw(y) for model
selection by description length criteria. Likewise, the mixture density pw(y) is also the key ingredient
in Bayes factors for model selection.

Previous work has shown that the mixture code pwJ
with Jeffreys’ prior wJ (proportional to

the root of the determinant of the Fisher information matrix) is asymptotically minimax when
the square root of the determinant of the information matrix is integrable [3][4][23]. However, for
some cases including location families, the Jeffreys’ prior is improper (the root determinant of the
information matrix is not integrable) and the minimax redundancy is infinite.

We may express both q(y) and p(y | θ) in the predictive form. For example, the joint density
q(y) = q(y1, . . . , yn) is given by

q(y) =
n−1∏
m=0

q(ym+1 | ym), ym = (y1, . . . , ym).

Then we have the following identity

Ey|θ log
p(y | θ)

q(y)
= Ey|θ log

∏
m p(ym+1 | ym, θ)∏
m q(ym+1 | ym)

=
∑
m

Ey|θ log
p(ym+1 | ym, θ)
q(ym+1 | ym)

. (3)

Each term in the right side of equation (3) is the Kullback-Leibler risk of the predictive density
estimator for the (m+1)th observation based on the previous m observations, q(· | ym). That is, the
expected redundancy (1) is precisely the accumulated Kullback-Leibler risk of the sequence of pre-
dictive density estimators. The connection between optimal coding and statistical estimation is not
a surprise because we know that codes correspond to probability distributions by the fundamental
Kraft inequality [8].

For each m, a minimax strategy can be constructed by specifying the predictive distribution
{q∗m(· | ym)} which is the solution of

min
q

max
θ

Eym+1|θ log
p(ym+1 | ym, θ)
q(ym+1 | ym)

. (4)

Here we summarize some of the recent results of the authors reported in [20] in which we studied
certain transformation families, including location families, scale families and combined location and
scale families. There we showed that when conditioning on sufficiently many initial observations
(m ≥ d), the minimax redundancy is finite and is achieved by a particular generalized Bayes rule.

2



For example, for location families, the minimax procedure is generalized Bayes using the uniform
(Lebesgue) prior. Though the priors are improper, the posterior based on enough initial observations
are proper (i.e.

∫
p(ym | θ)w(θ)dθ is finite for each ym). The product of those sequential minimax

estimators, q∗m(ym+1 | ym)q∗m+1(ym+2 | ym+1) · · · q∗n−1(yn | yn−1), specifies a valid predictive density
for (ym+1, . . . , yn) conditioning on the previous m observations. In general, this product is not the
minimax solution of the total expected redundancy for the future (n − m) observations

min
q

max
θ

Eyn|θ log
p(ym+1, . . . , yn | ym, θ)
q(ym+1, . . . , yn | ym)

, (5)

because the values of θ which maximize the risk in (4) may differ at various m. Thus the sum of
individual minimax risks is an upper bound on the minimax total risk in (5). Nevertheless, for
location and scale problems, we exhibit a constant risk minimax procedure, so it simultaneously
provides a minimax solution for both the individual risk and the total risk (5), and in such cases
the sum of the individual minimax risks is equal to the minimax total.

When we report predictive density estimates, as we shall do in section 3, it is convenient to
do so through the value of the log reciprocal, log2 1/q∗(ym+1 | ym), not only because they add up
nicely to give the total code length, but also because informally it will show, for unusual values of
yi, a degree to which that value is surprising and thereby forces a longer description.

The Minimum Description Length (MDL), as a criterion in model selection, was introduced by
Rissanen [22] (see two review papers by Barron et al. [5], and by Hansen and Yu [14]). The idea of
MDL is to first represent each model by a universal distribution and then choose the one with the
shortest description length for the observed data. In this framework, a good model is the one that
captures most features of the data and hence can describe the data in a short code. Our results
on exact minimaxity of predictive density estimation provide a means to construct the underlying
universal coding scheme for MDL, with the code length achieving the minimax redundancy.

As in other papers in the present collection, and in the above-mentioned review papers, there has
been a trend in recent years to compare universal procedures not to the codelength log 1/p(y|θ) that
would have been the best for a hypothetical distribution governing the data (as in the traditional
definition of redundancy as given in equation (1)), but rather to study the regret log 1/q(y) −
log 1/p(y|θ̂(y)) in which the universal codelength log 1/q(y) is compared to the to the shortest
codelength with hindsight minθ log1/p(y|θ), corresponding to the maximum likelihood estimate
θ̂(y). For any strategy q, if one takes the expected value of this regret it differs from the expected
redundancy by an amount Ey|θ log p(y|θ̂(y))/p(y|θ). Now in general this difference could depend on
θ. However, for location and scale families we find that this difference between expected regret and
expected redundancy is a constant (independent of θ, as well as independent of q), and the same
conclusion of constancy of the expected difference holds in our setting in which one conditions on
an initial set of observations. Thus our procedures for location and scale families, which are exactly
minimax for expected redundancy (Kullback-Leibler risk) are also exactly minimax for expected
regret.

The editors have asked that we also comment further about the nature of asymptotic expres-
sions for regret and Kullback-Leibler risk, and how, if at all, our exact minimax procedures relate
to that asymptotics. For i.i.d. sampling from smooth parametric families, as we have said, the
Bayes procedures with Jeffreys prior provide asymptotically minimax expected regret and expected
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redundancy, provided the square root of the determinant of the Fisher information I(θ) is inte-
grable [3][4][23][5]. In that case, with no need to condition on initial data, the total code length has
expected regret that is asymptotically of the form (d/2) log(n/2π) + log

∫ |I(θ)|1/2 + o(1), where d

is the parameter dimension and o(1) tends to zero as the sample size n tends to infinity as shown
in [3][4]. The same asymptotics hold also for the minimax individual sequence regret, as reviewed
in [5], though as mentioned there it requires substantial modification of Jeffreys prior when outside
exponential families.

Continuing with our focus on expected regret or expected redundancy (Kullback-Leibler risk)
incorporating conditioning on a initial sample of size m, we see that if m as well as n are large,
then taking the difference in the risk expressions at the final size n and the initial size m, many of
the terms cancel away, leaving a conditional redundancy of (d/2) log n/m + o(1) where o(1) tends
to zero as m and n > m tends to infinity. However, unlike the total redundancy, such asymptotic
differences do not reveal much role for the choice of procedure, as the results of the [3][4] show that
(d/2) log n/m+o(1) is the asymptotic conditional redundancy of Bayes procedures for all choices of
smooth prior. A considerably more refined asymptotic analysis is in Hartigan [15] where he shows
that the Kullback-Leibler risk for one-step ahead predictive density estimation with a sample of size
k has asymptotic expression (d/2)(1/k)+c(θ,w)/k2 +o(1/k)2, where c(θ,w) depends in a somewhat
complicated way on the parameter value and the derivate of the log of the prior density w(θ) as well
as the form of the parametric family. Summing Hartigan’s risk expression for k from m to n permits
a refined conditional redundancy expression of the form (d/2) log n/m + 2c(θ,w)/m + o(1/m) that
is sensitive to the choice of procedure (through the choice of the prior w). Thus the asymptotics of
expected conditional redundancy, as well as the Kullback-Leibler risk, motivate Hartigan’s study of
the minimax properties of c(θ,w) initiated in [15] (one may see also [2] Emerson []). For each family
one has a differential inequality to solve to determine if a suggested level C is indeed a minimax
bound (that is, one addresses whether there is a prior w such that c(θ,w) ≤ C for all θ). It is
reassuring that the priors shown in our work to be exact minimax for finite sample sizes in the
special cases of location and scale families do fit in Hartigan’s theory as asymptotically minimax.

The remaining of the paper is arranged as follows: in section 2 we summarize ideas from [20]
showing the minimaxity for the case of location families. In section 3, we show how to use our
result to calculate the MDL criterion value to do model selection on some real data sets, which were
used before in a study of robustness by Stigler [25]. The application of variable selection in linear
regression model is discussed in section 4 and some additional discussion is given in section 5.

2 Exact Minimax Coding Strategy

In this section, we summarize the derivation of the minimax procedure q∗ for location families. It
is the simplest case among the transformation families covered by the authors in [20].

Suppose the observations ym+1 = (y1, . . . , ym+1) are from a location family, that is,

yi = zi + θ,

for i = 1, . . . ,m+1 where θ ∈ R
d is an unknown location parameter and zm+1 = (z1, . . . , zm+1) has

a known distribution with a joint density denoted by p0. Then the density for ym+1 is given by

p(ym+1 | θ) = p0(ym+1 − θ),
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where ym+1 − θ is a shorthand notation for (y1 − θ, . . . , ym+1 − θ). From now on, we will use p0 and
p as generic expressions for their corresponding marginal and conditional densities. For example,
p0(zm+1) denotes the marginal density for zm+1 and p0(zm+1 | zm) denotes the conditional density
for zm+1 given z1 through zm.

Without any knowledge of θ, the predictive distribution we use for coding ym+1 is denoted by
q(· | ym). The expected redundancy ( or the risk for predictive density estimation) is equal to

Eym+1|θ log
p0(ym+1 − θ)
q(ym+1 | ym)

. (6)

Let us first focus on the class of location invariant predictive density estimators. For any number
a ∈ R

d, a location invariant estimator q satisfies the following equality,

q(ym+1 | ym) = q(ym+1 − a | ym − a). (7)

Supposing our estimator q is location invariant, we can apply the invariance property (7) with
a = y1 to equation (6) and obtain

Eym+1|θ log
p0(ym+1 − θ)

q(ym+1 − y1 | 0, y2 − y1, ym − y1)

= E log
p0(ym+1 − θ)

q(um | 0, u1, . . . , um−1)
(8)

where ui = yi+1 − y1, for i = 1, . . . ,m. Notice that ui is also equal to zi+1 − z1 which has a density
not depending on the unknown parameter θ. Let pu(um | um−1) denote the density for um given
um−1 derived from p0. We have the quantity (8) equal to

E log
p0(ym+1 − θ)
p(um | um−1)

+ Eum−1

[
Eum log

pu(um | um−1)
q(um | 0, um−1)

]
.

Notice that the second term in the above quantity is an expected Kullback-Leibler divergence which
is always bigger than or equal to zero and is equal to zero if and only if

q(um | 0, um−1) = pu(um | um−1). (9)

Reexpressing in terms of the yi’s and applying the invariance property of q, we have that equation
(9) is equivalent to

q(ym+1 | ym) = pu(ym+1 − y1 | y2 − y1, . . . , ym − y1).

So the best invariant estimator q∗ is the one equal to the right side of the above equality. This
analysis for the best invariant density estimator with Kullback-Leibler loss is analogous to that
originally given by Pitman [21] (cf. [12], pp. 186–187) for finding the best invariant estimator of θ

with squared error loss.
To get a final expression for q∗, we calculate pu(um | um−1) = p(um)/p(um−1) and replace ui

by yi+1 − y1. Since ui = zi+1 − z1, the joint density for (z1, u1, . . . , um−1) is equal to p0(z1, u1 +
z1, . . . , um−1+z1). Integrating out z1, we obtain the joint density pu(um−1) which, when reexpressed
in terms of yi’s, is ∫

p0(y1 − θ, y2 − θ, . . . , ym − θ)dθ =
∫

p(ym | θ)dθ.
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So the best invariant estimator q∗ is equal to

q∗(ym+1 | ym) =
∫

p(ym+1 | θ)dθ∫
p(ym | θ)dθ

, (10)

which can be interpreted as the generalized Bayes procedure with the uniform (improper) prior
w(θ) constant on R

d (Lebesgue measure) for location families.
To show that the best invariant estimator q∗ is minimax among all the estimators, we use a result

from decision theory (see Ferguson [12]) that constant risk plus extended Bayes implies minimax.
The constant risk is a consequence of the location invariance property of q∗.

For a procedure q to be an extended Bayes means that there exists a sequence of Bayes procedures
{pwk

} with proper priors wk such that their Bayes risk differences Rwk
(q)−Rwk

(pwk
) go to zero, as

k → ∞. Recall that the Bayes procedure pwk
is

pwk
(ym+1 | ym) =

∫
Θ p(ym+1 | θ)wk(θ)dθ∫
Θ p(ym | θ)wk(θ)dθ

,

and the Bayes risk Rwk
(q) is

Rwk
(q) =

∫
wk(θ)Eym+1|θ log

p(ym+1 | ym, θ)
q(ym+1 | ym)

dθ.

The Bayes risk difference for q∗ is

Rwk
(q∗) − Rwk

(pwk
) = E

wk

ym+1 log
pwk

(ym+1 | ym)
q∗(ym+1 | ym)

,

where E
wk

ym+1 means the expectation is taken with respect to the Bayes mixture pwk
(ym+1).

By the chain rule of information theory, the Bayes risk difference is bounded by the total risk
difference conditioning on only one observation, without loss of generality, say y1, and this total
risk difference is

E
wk

ym+1 log
pwk

(y2, . . . , ym+1 | y1)
q∗(y2, . . . , ym+1 | y1)

= E
wk

ym+1[− log

∫
p(ym+1 | θ)wk(θ) 1

wk(θ)dθ∫
p(ym+1)wk(θ)dθ

] + E
wk
y1

[− log
∫

p(y1 | θ)wk(θ)dθ], (11)

where we use the fact that the density for y1 given θ, p(y1 | θ) = p0(y1 − θ), is also a density for θ

by the symmetry between y1 and θ, hence
∫

p(y1 | θ)dθ = 1.
Invoking Jensen’s inequality (g(EX) ≤ Eg(X) for a convex function g) for both terms in (11),

we obtain the Bayes risk difference is less than or equal to∫
wk(θ) log wk(θ)dθ − E

wk
y1

∫
p0(y1 − θ) log wk(θ)dθ. (12)

By choosing the prior wk to be normal with mean zero and variance k and changing variables, we
finally express the bound (12) as C/k where C is a constant, the second moment of the distribution
of z1. So the Bayes risk difference goes to zero when k goes to infinity, provided that the distribution
p0 has finite second moment. The paper [20] goes further to show the extended Bayes property
under a weaker logarithmic moment condition and for other transformation families.
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We close this section by noting that for location families, when conditioning on any one obser-
vation, say the ith, the minimax predictive density for the rest of the observations is∫

p(yn | θ)dθ∫
p(yi | θ)dθ

,

which reduces to
∫

p(yn | θ)dθ since the denominator is equal to 1 for location families. Thus we
obtain the same value no matter which single observation one conditions on.

3 Model Selection in Robust Estimation

We often encounter the problem of estimating the location parameter for some data. The sample
mean is a good estimator when the data satisfies the normality assumption, but it can be a very
bad one when the data is actually from a heavy-tailed distribution like the Cauchy. The predictive
densities are used in formulation of optimal criteria for selection among various shapes of the density
to use in the location problem.

Various robust estimators for the location parameter, such as the sample median, have been
proposed and compared [1][17][25]. The mean, as a location estimator, works well for data from
normal-like distribution because the sample mean is the Maximal Likelihood Estimator (MLE) of
the location. Some other robust estimates also correspond to the MLE of certain distributions. We
use the mean of the minimax predictive density estimator,

∫
ỹq∗(ỹ | ym)dỹ, which arose importantly

in the work of Pitman [21]. It is the mean of the posterior density of θ using the uniform prior
(when z has mean 0), which Pitman showed to be the minimax estimator of location with squared
error loss. It is a nice confluence of decision-theoretic properties that the minimax estimator of
location is the mean of the minimax predictive density estimator.

Next we will pick some data sets which have been used before in comparing performances for
different robust procedures and calculate the exact minimax MDL for various models to see which
one is preferred and to see whether our model selection result is consistent with the results from the
robustness study. Here we focus attention on four families of densities: normal, double exponential,
Huber, uniform and Cauchy. The double exponential density is p(y | θ) = p0(y − θ) with

p0(y) =
1
2
e−|y|.

Its MLE is the sample median. The Huber’s density ([17] page 71) is p(y | θ) = p0(y − θ) with

p0(y) =

{
Ce−y2/2, |y| ≤ k,

Ce−k|y|+k2/2, |y| > k,

where k = 1.5. Its MLE is known as the Huber P15 estimator, which is the solution of

n∑
i=1

min(k,max(−k, yi − θ)) = 0.

The data sets we use in this paper are from Stigler’s study for robust location estimators [25].
They are all taken from famous experiments such as 18th century attempts to determine the distance
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from the earth to the sun and the density of the earth, and 19th century attempts to determine
the speed of light. For all 20 data sets, we calculate the description length under the five different
models: normal, Huber’s density, double exponential, uniform and Cauchy. Combined location and
scale families are considered here. The corresponding minimax predictive density is a generalized
Bayes using a uniform prior on the location and log-scale parameters, as shown in our work [20].
In terms of model selection using MDL, we find that Cauchy is not supported by the data, which
is consistent with what Stigler found “... the data sets considered tend to have slightly heavier
tails than the normal, but that a view of the world through Cauchy-colored glasses may be overly-
pessimistic.”

Table 1 shows more detailed results on model selection for one of Stigler’s data sets (table 4,
data set 5) with n = 21 observations, which are from Short’s 1763 determinations of the parallax of
the sun. We focus your attention first on the columns with header “minimax”. Each entry denotes
the log reciprocal of the minimax predictive density, log2[1/q∗(yi | yi−1)], for the ith observation
conditioning on the previous (i − 1) observations, using the indicated family of density. Since
combined location and scale families are considered here, we have to condition on at least two
observations, that is, i = 3, 4, . . . , 21. The totals used for model selection are log2[1/q∗(y3, . . . , yn |
y1, y2)], which have interpretations both for minimax code length (MDL) and for Bayes factors.
Plug-in type estimators, p(yi | θ̂i−1, σ̂i−1), have also been used, where θ̂i−1 and σ̂i−1 are the MLE
based on the previous i − 1 observations. The product of the plug-in rules arose in the prequential
approach to statistical inference studied by Dawid [10][11]. For comparison purposes, we include
them in Table 1 too. For this data set, the description lengths based on minimax predictive densities
are much shorter than those based on MLE plug-in densities. The two outliers, 10.04 and 10.48,
apparently have larger contributions to the totals than the other observations. Surprisingly, the
description length for the 5th observation 9.71 is pretty long, especially for the coding strategies
using plug-in densities. This is because, without knowing the true parameters, 9.71 does look like an
outlier among the first 5 observations, even though it is not among all the 21 observations. We can
see that all the minimax predictive densities handel this situation much better than plug-in densities,
because they have already taken the unknown location and scale into consideration by averaging.
The extreme case is uniform: using MLE plug-in densities, we will have infinity description length
once the new observation is outside the range of the previous ones. Note that, for the minimax
procedure, the total description length log2[1/q∗(y3, . . . , yn | y1, y2)] does not depend on the order
of which the n − 2 observations y3, . . . , yn are presented, while for plug-in procedure, it does. We
randomly permutate the 21 observation 1000 times and calculate the corresponding description
length based on plug-in and minimax for normal and double exponential. We find the description
lengths based on minimax procedures are much less variant than those based on plug-in procedures.

Further remarks on some practicalities of data compression and prediction may be helpful. The
data were, of course, not given as infinite precisions real numbers, but rather they were given to the
nearest hundredth. These correspond naturally to intervals of width 1/100 for each observation.
The probabilities of these intervals would be the integrals of the densities. Since the densities
here do not change perceptibly over these small intervals, the probability is the computed density
value times the interval width. Correspondingly, one can report log reciprocal probabilities from
Table 1 simply by adding log2 100 to the entries for each observation. These sum to give the
total log2[1/Prob(y2, . . . , yn|y1)], which, when rounded up to an integer, is the length in bits of the
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Table 1. PREDICTIVE DENSITY ESTIMATES
Contributions of each observation to total code lengths

yi Normal Huber’s Density Double Exp Cauchy Uniform

plug-in minimax plug-in minimax plug-in minimax plug-in minimax plug-in minimax
8.43 - - - - - - - - - -
9.09 - - - - - - - - - -
8.5 2.24 1.81 0.17 1.12 0.54 1.06 0.35 0.92 -0.6 0.99

8.44 2.33 1.52 0.02 0.56 -1.60 0.11 2.79 -1.02 -0.6 0.4
9.71 9.13 1.81 10.86 4.06 47.28 4.55 14.92 5.60 ∞ 3.96
8.07 3.49 1.65 2.00 1.89 6.03 1.73 7.45 3.78 ∞ 2.73
8.36 2.27 1.45 0.73 1.00 -0.46 0.51 1.90 1.00 0.71 1.2
8.6 1.99 1.41 0.38 0.64 0.24 0.25 3.38 0.79 0.71 1.13

9.11 3.39 1.47 0.93 1.06 5.64 1.94 6.27 8.79 0.71 1.08
8.66 1.99 1.40 0.26 0.47 -0.19 0.19 2.07 1.97 0.71 1.04
8.58 2.03 1.39 0.23 0.41 -1.41 -0.12 1.05 1.94 0.71 1
9.54 6.41 1.59 2.93 2.52 7.50 3.47 6.43 2.51 0.71 0.98
8.34 2.59 1.42 0.81 0.91 0.49 0.60 1.83 2.02 0.71 0.95
8.55 2.08 1.39 0.34 0.47 -0.99 -0.13 0.86 1.89 0.71 0.94
9.03 2.67 1.41 0.54 0.64 2.39 1.42 4.48 1.98 0.71 0.92

10.04 8.91 1.90 6.30 4.90 8.39 5.03 6.91 11.74 ∞ 4.87
9.04 2.22 1.39 0.55 0.66 1.65 1.17 3.24 2.57 0.98 1.16
8.71 2.02 1.38 0.43 0.53 -0.33 0.16 0.76 2.54 0.98 1.15

10.48 10.03 2.27 8.00 6.21 8.70 5.72 6.45 3.39 ∞ 6.37
8.31 2.89 1.45 1.31 1.36 0.93 1.11 1.41 2.64 1.27 1.42
8.67 2.06 1.38 0.71 0.80 -0.52 0.21 0.44 2.53 1.27 1.41

Total 70.76 29.49 37.50 30.21 84.25 28.97 72.99 57.58 ∞ 33.7

Table 1: Log reciprocal of predictive densities (description lengths) for Short’s 1763 determinations
of the parallax of the sun (in seconds of a degree). Short’s data are listed in the 1st column (from
reference [25] data set 5 in Table 4). The row labelled Total provides total code lengths or log Bayes
factors for model selection. The θ̂ row gives location estimates based on all 21 observations. For
plug-in density estimation, these are the sample mean, Huber’s P15, the sample median, and the
Cauchy MLE, and for minimax estimation, these are the mean of the predictive densities (Pitman
estimators)
.
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Figure 1: Plot of the minimax predictive densities of normal and Huber location families.

Shannon code for y2, . . . , yn given the value of y1.
For model selection, one may inspect which of the five minimax predictive distributions provides

the shortest l(yn) = log2 1/q∗(y2, . . . , yn|y1). Then to convert this to a code length, one add (n −
1) log2 100 to convert it to log reciprocal probabilities as required for the Shannon code, and one
adds two extra bits to communicate which of the four model is used in the final description.

We recommend before committing to a model selection that one should consider instead the use
of model averaging for data compression and prediction. Indeed as we now briefly demonstrate,
model averaging provides a shorter code length. To explain, let π(·) be a distribution on the model
index M , and let log 1/Prob(y | M) + log 1/π(M) be the total code length for the data using a
selected model M = M̂ , where the term log 1/π(M) is to describe which model is used. On the
other hand, if we encode the data with respect to the mixture distribution, it yields code length
log 1/

∑
M Prob(y | M)π(M) which is always shorter, because the sum is always greater than any of

its terms. The relative contribution of an individual term to the sum is given by its posterior weight
π(M | y) = π(M)Prob(y|M)/

∑
M ′ π(M ′)Prob(y|M ′). When this weight for a selected model M̂ is

nearly one, the mixture code and the model selection based code have essentially the same length.
Otherwise it is advantageous to code with the mixture.

For the example problem, we have five models M = 1, 2, . . . , 5, we use π(M) = 1/5, and the
total code lengths are all computed conditional on two observations. For the given data, none of
these five individual models stand out as giving much higher probability (shorter code length) than
the others as seen in the row labelled Totals. Therefor, coding with respect to the mixture will be
better than with model selection.

The corresponding approach for prediction in statistics is called Bayesian model averaging
(BMA) [18]. The model averaging can be implemented in one path through the data via a Bayesian
update. At observation i + 1, the partial product q∗(y2, . . . , yi | y1,M) is updated for each of the
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models. It is used to give posterior weights π(M | yi) for each model in the predictive density:

qave(yi+1 | yi) =
∑
M

π(M | yi)q∗(yi+1 | yi,M).

The final predictive density estimator is qave(y | yn) and the corresponding final location estimator
is then θ̂ave =

∑
M θ̂Mπ(M | yn), where θ̂M is the minimax location estimator (Pitman estimator)

associated with the predictive density q∗(y | yn,M) for the component M . In our case, the weights
π(M | yn) are proportional to 2−l(yn|M) where the values for l(yn | M) are given in the row of totals
in Table 1. For these data the final location estimate is θ̂ave = 8.78.

4 Variable Selection in Linear Regression

Consider a linear regression model where we have observations yi and the corresponding possible
explanatory variables (also called covariates, predictors, or regressors) xi1, . . . , xid. We use γ to
index the possible subsets of the d variables, and xiγ to denote the column vector of the covariates
in γ. Given a subset of variables γ, the observations are modelled by

yi = xt
iγθγ + εi,

where θγ is a vector of unknown parameters with dimension equal to dγ , the size of the subset γ.
We all know that the more variables one includes in the regression model, the better will be the fit
to the data, at the possible expense of generalizability to new cases. Such an phenomenon is called
“overfitting”. To avoid it, statisticians look for an subset of variables to achieve a trade-off between
fitting errors and model complexity.

If we assume the error εi has a density function p0, then the density for yi is given by

p(y | θ, γ) = p0(y − xt
iγθγ).

Such a distribution family is a generalized location family. Similar analysis to what we did for
location families can be applied and it reveals, as shown in [20], that the exact minimax predictive
density estimator q∗ is the Bayes estimator with uniform prior over the parameter space R

dγ ,
conditioning on m ≥ dγ observations.

In ordinary regression models, we often assume that the random error εi’s are normal(0, σ2).
Consider first the case that σ2 is known. The corresponding minimax MDL criterion for variable
selection chooses the subset of variables, γ, such that one minimizes

MDLγ =
1

2σ2
[RSSN (γ) − RSSm(γ)] +

1
2

log
|(SN (γ)|
|Sm(γ)| ,

where Sm(γ) =
∑m

i=1 xiγxt
iγ and RSSm(γ) = ‖y−xt

γ θ̂γ,m‖2, respectively, are the information matrix
and the residual sum of squares using m observations. Similarly for SN (γ) and RSSN (γ). Here
| · | denotes the determinant. For model selection, we evaluate the criterion for various choices
of explanatory variables xγ (provided dγ ≤ m), and pick the one that minimizes this optimal
description length criterion.
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When σ2 is unknown, we found in [20] that the minimax procedure q∗ is generalized Bayes
procedure with a uniform prior on the location and log-scale parameters and the corresponding
MDL criterion is given by

N − dγ

2
log RSSN (γ) − m − dγ

2
log RSSm(γ) +

1
2

log
|SN (γ)|
|Sm(γ)| − log

Γ(N−dγ

2 )

Γ(m−dγ

2 )
.

5 Some Additional Discussion

The priors we showed to provide the exact minimax MDL criterion (uniform on location and log-
scale parameters) were suggested by researchers from other perspective before. For example, it is
related with the Intrinsic Bayes Factor (IBF) introduced by Berger and Pericchi [7] for the Bayesian
model selection. Again, the prior is improper. So they condition on a training sample. The minimal
size of the conditioning data for our minimax MDL result agrees with the minimal size of training
sample in the IBF, which is the smallest number among those which provide proper predictive
densities. Our work provides decision-theoretic optimality (for Kullback risk) of the given choice of
priors for IBF and MDL.

The concept of conditioning arises very naturally in time series analysis and in the framework
of prediction without refitting (see Speed and Yu [24]) where it is of interest to do prediction for
some future data based on an initial data set. But when the data does not come with natural
order, it is not clear how to implement the exact MDL because of its dependency on the initial data
set. A similar problem is encountered in defining intrinsic Bayes factors by Berger and Pericchi [7].
To remove the dependence and increase the stability for the training sample, Berger and Pericchi
proposed different averages (such as arithmetic, geometric and median) over all possible training
samples. Such an approach can be carried over to the exact MDL, but the description length
interpretation may be lost.

The initial observations are used to convert the improper prior to a proper posterior. Therefore
one way to avoid conditioning is to find a minimax Bayes procedure which is based on a proper
prior. A recent result by the authors [19] has shown that there exists a proper Bayes minimax
predictive density estimator with smaller risk than q∗ everywhere provided that the dimension is
bigger than 4, for normal location families.

Under current investigation is the extent to which the proper Bayes minimax density estimation
solution extends to the regression setting. One special case is when the initial design matrix Sm

and the total design matrix SN are proportional to each other. Then a proper prior can be used to
assign a description length for the whole data with the property that after the description of the first
m observations, the description of the rest is minimax optimal (as well as proper Bayes). Moreover,
compared to the minimax code with uniform prior, it provides everywhere smaller (conditional)
description length. It is under current investigation whether this result can be extended to more
general design matrices.
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