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ABSTRACT

Recent results on the accuracy of neural net approximations of
functions are discussed and refined. The nets considered are
feedforward artificial neural networks with one hidden layer of
sigmoidal activation functions. Bounds on the maximum ap-
proximation error as well as the integrated squared error are
given. Lower bounds on the approximation rate are developed
that closely match the upper bounds when the dimension of the
input vector is large. The surprising fact is that the limiting ap-
proximation rate is independent of the dimension. The functions
approximated are assumed to satisfy a bound on their variation
with respect to half-spaces, or, more restrictively, a bound on a
spectral norm. Fourier analysis, empirical process theory, and
the thecry of nonparametric regression are used in the proofs of
the approximation bounds.

INTRODUCTICN

1t is known from [1-2] that arbitrarily accurate approximations to
continuous functions on bounded subsets of d variables is possi-
ble by the use of linear combinations of sigmoidal functions. Un-
der additional restrictions on the functions to be approximated,
bounds on the number of terms sufficient to obtain an accurate
approximation are established by the author in [3]. There it is
shown that if C; is the first moment of the Fourier magnitude
distribution of a function f(z), then the L, norm of the ap-
proximation error by a T term sigmoidal network is bounded by
2Cf/T1/2. The surprising aspect of this approximation bound

is that the rate 1/T%/? is independent of the dimension d of
the input vector. In the sigmoidal approximations, the location
and orientation parameters internal to the nodes are adjusted
in the approximation. This has the effect of nonlinear adjust-
ment of the basis functions. In contrast, no linear combination
of T fixed basis functions, as in traditional series expansions,
can achieve approximation error uniformly smaller than order
C/T%. Consequently, for the class of functions studied, the
nonlinear sigmoidal net approximations are considerably better
for all dimensions d > 2.

Implications for the estimation of functions from a sample of N
independent observations are given in [4]. In addition to the as-
sumption of a spectral norm C; that is not exponentially large in
the dimension d, assumptions are also made regarding the sam-
pling distributions of the observations of X,Y, with the target
function given by E[Y|X] = f(X). The function is assumed to
be estimated by minimization of the sum of squares of errors of
fit by a T term sigmoidal net, with a constraint imposed on the
domains of the parameters (allowances are also made to incorpo-
rate Bayesian-type penalties on the parameters in the optimized
criterion). The result is that the total mean squared error be-

tween the estimated function f(z) and the true function f(z)
is bounded by order C}/T + (T'd/N)log N. This mean squared
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error quantifies the ability of the network to “generalize” to new
data not observed in the data base (since the average in the defi-
nition of the mean squared error is taken over the distribution of
possible values of z, and not just over the observed values). The
two terms in this bound express the tradeoff between the accu-
racy of the best approximation (which requires T large) and the
accuracy of the empirical fit to this theoretical approximation
(which requires 7'/N small). Then either by setting the number
of terms T to be of order N1/2 or by estimating a number of
terms T from the data by a complexity-based model selection
criterion (related to Rissanen’s MDL), it is shown in [4] that
the mean squared error between f and f is bounded by order
1/N'/? times a polynomial factor in d and a logarithmic factor
in N. Thus exponentially large sample sizes are not required to
get accurate estimates for the class of functions considered.

In this workshop paper several extensions to the approximation
bounds are given that might be of some interest. Bounds of order
1/T/? are given for the maximum of the error of approximation,
that is, the L_, norm, extending the results developed previously
for the L, norm. The general condition for this approximation
bound is stated in terms of a notion of bounded variation with re-
spect to indicators of haif-spaces. Functions with finite spectral
norm then serve as a special case. An expression for functions
with finite spectral norm is given that provides a integral repre-
sentation as an infinite mixture of indicators of half-spaces, with
a probability density function determined by the Fourier repre-
sentation. The approximation bounds then follow from empirical
process theory associated with samples from this density. Also
lower bounds on the approximation rate for sigmoidal nets are
given that closely match the upper bounds when the dimension
d is large.

STATEMENT OF THE BOUNDS

First we introduce a convenient class of functions for studying
network approximation. The context involves real-valued func-
tions f(z) of d variables. The input vector ¢ takes values in a
bounded set B in R, assumed for convenience to include the
point 0. For instance B may be the cube [~1,1]%. Let S be a
class of subsets of R%. A function f is said to have bounded
variation with respect to § if it is in the closure of the set of
linear combinations of indicator functions 15(z) for § € S, with
the sum of the absolute values of the coefficients of linear combi-
nation not greater than some finite number V. The infimum of
such V is called the variation of the function f with respect to
S and is denoted V; =V, s p- The closure is taken with respect
to uniform convergence on B. Particular interest is given to the
case that § = &, is the class of half-spaces {z :a-z + b > 0}
or {z :a-cr+b> 0}, When d = 1 and the value 0 is in the
range of the function f, the above notion agrees with the classic
definition of bounded variation. [Recall that if a function if f(=z)
1s continuously differentiable except at a discrete set of jump




points, then V; equals fg |f/(z)|dz plus the sum of the jump
heights.] For d > 1, V; 5, p is one of the possible extensions of
the notion of bounded variation (another extension would be to
use the regions {z : z, < q¢;,...,2; < a4}, @ € R? in place of
the half-spaces). Unlike the one-dimensional case, V; s, 5 does
not equate to the L, norm of the gradient for continously diffe-
rientable functions. Nevertheless, it can be bounded in terms of
the Z; norm of the Fourier transform of the gradient as will be
seen below.

For parameterized classes of subsets, a role is to be played by
the sets of parameters that provide coverage of each z in B. Let
S be a class of subsets S, of R, parameterized by a vector u
of dimension, say d’. Then we have a dual class S’ of subsets of
R¥ given by S’ = {u € R?: z € S,}, which is parameterized
by = in RY. Thus u € S, if and only if ¢ € S,. Note that
for the half-spaces S, = {¢ : -z + b > 0}, parameterized by
u = (a,b), the dual sets are half-spaces. The same is true for
elipsoidal and hyperbolic regions in which the linear functions
a -z + b are replaced by quadratic polynomials: the dual sets
are half-spaces but with a larger dimension d’. The Vapnik-
Chervonenkis condition for a dual class S’ (restricted to = € B)
is the requirement that for all u, u,, ... u; the number of subsets
of {u,,u,,...up} obtained by intersecting with S, for z € B
is strictly less than 27 for some T. The first 7 for which the
condition holds is the V-C dimension D. For half-spaces, D = d'.

A desired approximation property for functions with bounded
variation with respect classes of subsets S is this: given a func-
tion f, there exists parameter values u;,...,up and ¢;,...,cp

such that the approximation fp(x) = ST e Ig,, (z) has ap-

proximation error |f(z) — fr(z)| bounded by order V/T? uni-
formly on B. This deterministic approximation property can
be proven by a probabilistic argument for classes of subsets for
which the dual S’ satsifies the V-C condition.

The idea of the proof is as follows. Given any é > 0, there is a
linear combination of indicators of sets in &, with the sum of the
absolute values of the coefficients not more than V, such that the
maximum of the approximation error is less than 6. We take such
a linear combination with § = vV /T/2, where v is an arbitrary
positive constant. (The assumption of bounded variation with
respect to § guarentees that this can be done, but it does not as
vet place a restriction on the number of terms in this sum.) We
partition this approximation into two sets of terms depending
on whether the sign of the coeflicients is positive or negative.
Let V1t and V'~ be the sum of the coefficient values for the two
sets, repectively. With 77 = T/2, we draw u, u,, ..., up, at ran-
dom (with replacement) from the set of positive terms in the
linear combination with probabilities proportional to the coefli-
cients in this combination. If the class S’ satisfies the Vapnik-
Chervonenkis condition, then by the central limit theorem for
empirical processes (due to Dudley [5]), the probability that the
maximum for ¢ € B of the difference between the sample av-

erage fi(z) = (1/T") Zf;l(vﬂlsuk (z) and its expected value
is greater than the amount (yV+)/T/? converges as T— > o

to a probability that is strictly between 0 and 1. This implies
that there exists choices for u,,u,,...,up, for each large T for

which the maximum difference between the sample average and
its expectation is less than (yV+)/T!/2. Doing the same for the
negative part and setting fr(z) = ff (z)— f7 (), we find by the
triangle inequality that sup ¢ 5 |fr(z)—f(z)| < 2yV/TY2. Since
in particular, the class of half-spaces is a Vapnik-Chervonenkis
class, this provides an approximation theorem for artificial neural
networks with unit step activation functions. For completeness
we state also an L, bound proved by the method of [3] that does
not require that S’ be a V-C class, and which holds for all T'.

Theorem 1 (Upper bound on the approximation rate). For
each function f with bounded variation on B with respect to a
class of sets S, there is an approximation fp which is a linear
combination of T indicators of sets in S, such that for aill 7 > 1.

v .
I1f = rll < <F7 (1)

where || f ~ frll, is the L, approximation error with respect to
any given probability measure p on B (that is, ||f — fp||2
[5(f(2) = fr(2))?u(de)) and V, s g is the variation of f on
with respect to the class of sets S.

o i

If also S is a parameterized class of sets for which the dual is a V-

C class (such as the class of half-spaces) of dimension [, then for

every v > 0, there exists T(y, D) such that for all 7" > T'(v, D),

, Vis.8 o\

:lelg |f(z) — fr(z)I 577;72—- (2)

Consequently, ||f — fpll., = o(1/T*?) where || f — fr]l., denotes

the L., norm on B. Moreover, there exists a constant v, such
that (2) holds for all 7> 1, with v = vp.

Calculations using empirical process bounds from Pollard [6] for
the nonasymptotic case, show that we can take yp not larger
than 600. More refined bounds on the constant for the L
bound are being sought.

The degree of generality of the assumption of bounded variation
with respect to half-spaces is revealed in part by the following
Theorem. Here it is shown that for functions with an integrable
Fourier representation, the variation with respect to S, is re-
lated to a spectral norm.

Theorem 2: If a function f(z) has a Fourier representation
f(z) = [ € f(w)dw valid for = € B, and if wf(w) is integrable,
then the following integral representation holds,

f(:l:) = f(0)+
1
[ ] Qe = Losilola sintlols + 017w ldd
(3)
where o = w/|w|p denotes the orientation of the frequency

vector, f(w) = e'®|f(w)] denotes the Fourier magnitude and
phase decomposition, and |w|g = sup,¢ g jw - | (which equals
the £, norm |w|, when B = [-1,1]4). It follows from (3) that
f(z) = f(z)— £(0) is expressed as an infinite convex combination
of signed indicators of half-spaces times a constant,

o N 1
f\:l:) = v[{d/o (1{a~r<—t} - 1{a-1‘>t})s(w)t)p(wvt)dwdtv (4)




where s = s(w,t) is +1 and —1, respectively, for positive and
negative values of the function sin(t|w|g + 6,,). Here the proba-
bility density function is given by
1 . z
p(w,1) = ~w|plsin(tlw]s +0,)I1f ()],
where the constant is

v = /Rd</0 |wlgl|sin(tlw|g +n9w)”f(w)|dwdt. (5)

Consequently, f has bounded variation with respect to half-
spaces and

Vf—,Sh.,B S 2U S 2Cf,B (6)
where C; g is the spectral norm defined by
Crp = [ lololF@)lde. ©
It follows that artificial neural networks of the form
T
fr(=) = ch¢(ak ‘T +b)+ ¢ (8)
k=0

satisfy the following approximation bounds for all T > 1

2C
If = frlle < i 9

and o
I1f = Frlleo < Yazdm (10)

for some constant ;.

The nodes of the network (or terms of the network function) in
(8) are assumed to be of the form ¢(a-z+b) where ¢(z) is a fixed
bounded function with limits equal to 0 and 1 as z — —o0 and
z — 00, respectively (taken to be the definition of a sigmoidal
function in [1] and [3]). Of particular interest is the choice of a
unit step function ¢(z) = 1y, ; for which ¢(a - £ + ) becomes
the indicator of a half-space. Using the fact that the functions f
in Theorem 2 are uniformly continuous, the bounds in (9) and
(10) are proven first for the unit step function and then extended
to arbitrary sigmoids by taking the magnitudes of @ and b to be
large.
The proof of Theorem 2 proceeds from the Fourier representation
by noting that f(z)— f(0) = f(e“" z - l)f(w)dw and that (&7 —
1) = i f; e™du which equals zfo 1{,54}€"“du when 0 < 2z < ¢
and equals —i fo Lo }e Ydu when —c < z < 0. Note that
only one of these two express1ons is pos1t1ve depending on the
sign of z, so it follows that €' ~1 = f; Lizsuy— 1{z<_u})c du.
Plugging in z = w -z and ¢ = supg |w - 2| = |w{p and integrating
yields

|wls . -
5 = SO =i [ ([ Uenay = Lm0 Fw)a
(1)

Taking the real part of both sides, changing variables with u =
lw|gt for 0 < t < 1, and applying Fubini’s theorem to exchange
the order of the integrals completes the proof of the integral
representation (3).

The integral representation shows that the function is in an infi-
nite convex combination of signed indicators of half-spaces times
the constant v as given in (4) and (5). A sampling argument as
in the proof of Theorem 1, but now drawmg the parameters
from the density p(w,?), shows that f is in the closure of the
set of finite linear combinations with a sum of absolute values
of coefficients not greaterdv. This shows that the function is of
bounded variation with respect to half-spaces with V; s 5 <.
The remaining conclusions of Theorem 2 follow by application
of Theorem 1.

We conclude this paper by stating a lower bound on the ap-
proximation rate of sigmoidal networks, in the worst case for
the classes of functions considered here. As the proof shows,
the bounds hold even for functions of a high order of smooth-
ness that are contained among the functions with a bound on
the spectral norm C; g. For simplicity we now take B to be
the unit ball in R%. The function ¢ is taken to be any contin-
uously differentiable sigmoid activation function for which the
difference between ¢(z) and its limits 0 and 1 is bounded by a
polynomial function of 1/|z| as z— > —oo and z— > oo, respec-
tively. (This includes all the commonly used cases.) Given any
C >0, let BVs ¢ be the class of functions with variation with
respect to half-spaces bounded by C. For each f in this class.
let fr be a best T term sigmoidal network approximation of the
form (8) in the sense that the norm ||f — f7||, is minimized. The
following bound shows that no approximation rate better that

1/T)(1/2)+(1/9) is possible uniformly over the class of functions.
Note that for large d this lower bound rate closely matches the

upper bound which is
1\ /2
- <cl=) .
1= sl < (7)

Theorem 3 (Lower bound on the sigmoidal network approxi-
mation rate.) For each positive ¢, there is a positive constant
¥ = ¥(¢,d) such that

L\ (/241 d)e
1= frlly 290 (1) .

The proof of Theorem 3 is outlined as follows. Once again the
deterministic conclusion is established by using probabilistic rea-
soning. Let p > 0 be an achievable approximation rate, that is
l|f = frlls < ¥C(1/T)? for some positive v, uniformly over the
class of functions. Then by results in [4] the mean squared error
of statistical estimates of the function can be bounded. Indeed,
let Py y be a probability distribution with PX = 4 concen-
trated on B, with conditional mean EQ’|X) = f(X), and with
the range of Y bounded. Let (X;,Y;);L, be a random sample
indepezdently drawn from Pyy. Then : a sigmoidal net estima-

sup (12)

€BVs,c

(13)

sup
fEBVs,c

tor fT'N is defined in [4] such that, uniformly over the class of



\\
functions,
; Td
E\f - fT,N”2 <2lf - 2P+ Cva—logN
s (1N? . Td (14)
<2y°C (51—) +C-_,~]vlogN,
for some constant C,, where || - || denotes the L,(u, B) norm.

Setting T = C(N/(dlog N))*/(*+1) to achieve the best order in
the bound yields, for some constant v, depending on 4,

log N

BT = gl <70 (%

2p/(2p+1)
) T

uniformly over the class of functions BVs . Now as shown
in Theorem 2, included among these functions are those with
Fourier transform satisfying [ |w|| f(w)ldw < 2C. Furthermore,
using the reasoning in [3], property (15) (based on the Cauchy-
Schwarz inequality), this includes the functions in the Sobolev
space W of functions with [ |Ff(w)|*(lw|? + |w[*)dw < 7,C?,
where s = d/2+ 1+ ¢, and 75 is a positive constant depending
on ¢ and d. But lower bounds on the maximum of the mean
squared error for arbitrary estimators in such a Sobolev space
are known from the theory of nonparametric regression (bounds
of the desired type were first obtained by Pinsker [7] and Stone
[8], see also, Eubank [9] and Wahba {10]). It follows that, for
some positive v, (depending on s and d),

F - 2r/(2r+1)
sup Ef - I 2 sup Ellf - fIF 2 7,C* (7\7)
feEBVs,c few
(16)

where r = s/d. Comparing (15) and (16) we conclude that p
cannot exceed r, which in the present case equals 1/2+1/d+¢/d.
This completes the proof of Theorem 3.

Thus the best sigmoidal net approximation bound for the class of
functions has rate between (1/7)'/2 and (1/T)(}/2+(1/4). This
rate, which is quite reasonable in high dimensions, is to be con-
trasted with the disasterous rate (1/7)%/¢ that is best possible
for linear subspace (traditional series type) approximations (see

(31)-

We conclude that when d is large, (1/7)'/? characterizes the best
approximation rate bound in L, and L_, for sigmoidal networks
with T terms, for the class of functions with bounded variation
with respect to half-spaces and for the class of functions with a
bound on the spectral norm.
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