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Predicted Squared Error: A Criterion
for Automatic Model Selection

ANDREW R. BARRON* / Adaptronics, Inc., Subsidiary of Flow General, Inc.,
McLean, Virginia

I. INTRODUCTION

Whereas conventional empirical modeling techniques require an assumed
model structure, new procedures have been developed which generate the
model structure as well as the model coefficients from a data base. These
procedures include the GMDH and PNETTR algorithms for creating poly-
nomial networks. Key to any automatic procedure for generating models is
the criterion for ranking different model structures and selecting the best.

The objective of empirical modeling is to identify and train a model
that will perform with low error on as yet unseen data. Experience has
shown that this objective is met by selecting that model which minimizes
an estimate of future performance that we call the predicted squared error
(PSE). This criterion is incorporated in the PNETTR 4 algorithm developed
by the author at Adaptronics, Inc. (see Chap. 2). This chapter presents a
statistical analysis of PSE that explains why it is a good estimate of future
performance.

First an intuitive understanding of PSE is helpful. PSE is the sum of
two terms: the training squared error and overfit penalty. The training
squared error (TSE) is given by the (empirical) average squared error of
o model on n training observations. Let k be the number of coefficients in
the model that are estimated so as to minimize TSE. The overfit penalty is
given by 20;2(k/n), where ¢,2 is a prior estimate of the true error variance
that does not depend on the particular model being considered. Thus the
proedicted squared orror 18 glven by
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PSE = TSE + 20-;

B

@

The PSE is used at all stages of network construction to rank and select the
better model structures. The network that achieves the least PSE is the
final product of network synthesis. A minimum will always be attained be-
cause TSE decreases with each additional coefficient but always remains
nonnegative, whereas the overfit penalty linearly increases in the number
of coefficients.

The TSE term favors models that perform well on the training data;
however, by itself it can be a poor estimate of future performance. Factors
that make TSE underestimate future error (this condition is often called
Yoverfitting' the training data) include overly complicated model structure
and many coefficients each adjusted to lower TSE. The overfit penalty term
penalizes complex models. It will be shown that this penalty term accounts
for the expected squared difference between the estimated model and the
true model on future data and aceounts for the bias of TSE below the true
error variance. The presence of both TSE and penalty terms ensures that
PSE favors simple models with low error.

Central to the derivation of PSE and also of independent interest is an
understanding of the expected squared error on unseen data (data not yet
available to train the model). Section II delves into this topic with some
interesting and useful results. Section III discusses PSE as an estimate of
this expected squared (future) error. Section IV relates PSE to hypothesis-
testing procedures. Section V compares the PSE to other criteria for model
selection: including those proposed by Akaike (1970, 1972), Mallows (1973),
and Schwarz (1977).

II. EXPECTED PERFORMANCE ON FUTURE DATA

In general, data used to train a model will differ from data the model will
encounter in the future. If future data are vastly different, we expect that
the model will not perform as well. This is especially true if the model is
required to extrapolate far beyond the range of the training data. On the
other hand, if the training data are representative of future observations,
we expect reasonable performance. This intuitive reasoning is substantiated
by the results of this section. A simple expression is derived which pro-
vides an exact description of expected squared error when the model is
linear in its coefficients and an approximate description when the model is
nonlinear in its coefficients.

Consider for now models that are linear in their cocfficicnts. For
example, elements (the building blocks of polynominl notworks) are lincar
in the coefficients even If quadratic or cuble torms In the inputd ave included.
Furthormore, polynomial notworks aro equlvalont Lo modaoly thal aro Tinoar
in tho cooffletonts IT thoy nro composod of olonmonts with nonlinonr tormm
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in original input variables only (i.e-, without nonlinear terms i.n intermedi-
ate inputs). Let z denote a row vector of transformed input var:1ab1e§ that
correspond to the terms in the model. For n training observ.?tlons (input
vectors xj and dependent variables y;, i=1, 2, ..., n) consider the k by k
symmet;ic matrix R composed of normalized (by 1/n) sums <‘)f cross-
products of the transformed inputs. In matrix notati?n .BT = T'T/n, where
T = (21,22, Zp)' is the training data matrix consisting of tl}e n tra_ns—.
formed vectors. Now suppose that after training, the model will be applied
to ny "future" observations (xqy and yjF, i=1, 2, ..., 0F; ?ere ViF I_leed
not be observable) with data matrix F = (z; ¢, Zops - - - ’EnFF) and BF =

F'F/np. Note that Rt and Ry can be thought of as the "covariance" struc-
ture of the training and future data, respectively (B and Ry would be
sample covariance matrices if the input data were regarded as random;
however, here the input data are regarded as fixed). Now suppose that for
some unknown value of the coefficient vector, the difference (errors) be-
tween the model output and the dependent variable are independent randoTn
variables with mean zero, and common variance o2 (no further assumptions
regarding the error distribution are necessarys; in particular, the errors
need not be Gaussian). The expected squared error on the F data (of the
model trained on the T data) is given by

-1
, trace (BF_RT )

)

+ 0
g n

This result is derived, using standard matrix manipulation, in the Appenqix.
[See also (Bibby and Toutenburg, 1977); the result above follows from their
equations 1.5.5 and 1.5.13.] - o

The two terms in formula (2) correspond to two factors contributing to
error on future data. The first term, o2, is the expected squared error of
the ideal (but unknown) model. The second term is the expected squared
difference (on the F data) between the trained model and the ideal model.
This term shows that the expected performance depends on the degree of
similarity between training and future data. )

Although (2) is derived to motivate the PSE criterion for model se_lect1on,
the result may be equally important for the areas of experimental d.es1g‘n
and model adaptation. Experimental design is concerned with locating
training input data (in the space of possible input variable values), S0 that
2 model can be efficiently trained to perform well in the future. If we have
gome notion of how future input data will be dispersed, in particular, if we
know (or can approximate) Ry, then the training input data can be chosen*

* Clusgtor nnilysly (oo Chiapa 2) 11 nn mvalunblo nid n undorstanding how
Inpul dukn nre diapormed ad In choontng the tendndng dotn.
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or generated to be representative of future data such that RT = Rp. In this
case the expected squared error (2) simplifies to B B

&)

(Iita ;sl ;cs.lglptmg to try"to red\'J'ce the future squared error b}_f designing training

ith R much "larger" than Ry, so that trace (BFRT << k. Then we
expect the future squared error to be less than (3). For fixed n Rt larger
nileans that the training data are more spread out. But unless w’e ‘are con-
i o By e etk

de y due to interpolating between more dis-

tant training observations. Thus if we know that the model structure is
gf:‘:‘;it;evz: (s)igu;;i Ifl};?lose B’I‘ such that. trace @FB’-I-‘]) << k; however, if the
: y possible (as with polynomial network training), it
is better to choose RT = Ry such that trace (RFR'_I-‘I) ~ k.

T}.1e result (2) can be very useful after a model has been trained (on
data with "covariance" Br) and is being applied to new data for which the
true values of the dependent variable ¥y are unknown or unavailable. We
wonder how accurate is the model's estimate of y. Result (2) indicates that
the "covariance' Ry (of the new input data) should be monitored. If Ry is
such that trace (RFRT') is less than or comparable to k, the model should
be satisfactory. However, if Ry is such that trace (RFRT') >> k, the model
is no longer suited for the data. In this case, we are attempting to extrapo-
late the model to data points consistently outside the range of training data.
The model should be adapted or retrained.

Thus both before and after training models the skilled analyst or engi-
neer works to ensure Ry = R so that trace (RpRT) = k. Then the expected
squared error on future data is given by ¢? + ¢ %(k/n). Note that models with
large k (many estimated coefficients and hence high complexity) are not ex-
pected to perform well, unless there are enough training observations that
k/n is adequately small.

The results given above have two shortcomings that must be addressed.
One deficiency is the assumption that the model considered is of the correct
form (i.e., for some unknown coefficient values the errors in the output of
this model are independently distributed with zero mean and common vari-
ance). During the synthesis of polynomial networks, many different model
structures are considered, not all of which can approximate the actual
dependencies in the process. For "wrong" structures, there is an additional
term in the expected squared (future) error, which is the average squared
difference between the unknown correct model and the wrong model (where
the coefficients of the wrong model are such that this average squared dif-
ference is minimum). When the correct structure is not known in advance,
it is difficult to account for this torm.
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If a model selection procedure is successful in weeding out those model
structures that cannot approximate the true relationships in the data, then
results (2) and (3) accurately assess the expected squared (future) error for
the remaining models. The PSE criterion is designed (in Sec. III) to be
effective in both weeding out the clearly incorrect models and in estimating
the future error for the reinaining models.

The other deficiency is the assumption that the model considered is
linear in its coefficients. This is not true for general polynomial networks.
However, the results remain valid to the extent that polynomial networks
can be approximated by some first-order Taylor expansion in the coeffi-
cients. Not all the coefficients of a general network are needed for this
expansion. In particular, the coefficients that correspond to linear combi-
nations of past element outputs can be regarded as fixed (since by varying
the other coefficients we can obtain any linear combination of these element
outputs). Similarly, not all of the coefficients corresponding to constant
terms need to be counted or included in the expansion. Let the model func-
tion be denoted by f(x, 8), where x is the vector of inputs and g is the column
vector of k free coefficients, Let z, be the row vector composed of the
partial derivatives of the model f(x, 8) with respect to the coeificients. A
model is nonlinear in its coefficients whenever z; depends on 3. Let Bbe
the vector of estimated coefficients. The first~order Taylor expansion is
given by

f(x,8) = zg(ﬁ-é) +1(x, §) (4)

Note that this expansion may be highly nonlinear in the input variables x
oven though it is linear in the coefficients . The results summarized in
formulas (2) and (3) will remain valid if the first-order expansion is an
accurate approximation of f(x, 8) for g equal to the ideal coefficient values.
The partial derivatives z3 correspond to z the vector of transformed
inputs and these coincide when zg does not depend on 8. For models that
are nonlinear in coefficients, approximate Ry and Ry matrices can be con-
utructed by evaluating (for each observation) these partial derivatives using
Lthe cstimated coefficient values [e.g., B’I‘ = I’I/n, where T = (513,523,

v, _Z_nf})'] . The partial derivatives can be computed analytically by applying

Lho chain rule of calculus to the layers of polynomial elements (since a net-
work is a composition of element functions). In practice, it is usually best
to leave the derivatives in network form and reapply the chain rule when-
ovor a value is desired.

T'urther rescarch may rogolve the issue of expected performance of
modols which are nonlinonr In the coofficionts. It may be possible to obtain
n moro goenoral oxproasion for tho oxpocted squared (future) error. No such
ropults are known, bul 16 In conjosturod (hat the dominant torms are the
Anmo pi In formudnm () nnd @B, 1 s indorosting Lo noto that somo of tho
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viewpoints (other than expected squared error) advocated for deriving model
selection criteria use no linearity assumptions, yet result in criteria that
are similar to PSE. These other viewpoints are mentioned in Sec. V.

II. ESTIMATING EXPECTED PERFORMANCE

This section demonstrates that PSE is a good estimate of the expected
squared (future) error. When the training data are representative of future
data and when the model considered has a structure that can approximate
the "correct' model, then (from Sec. II) the expected squared error on
future data is given by Eq. (3)

2

B =

cg“tao

To estimate (3) from the training data, it is natural to consider using an
unbiased estimator of ¢? which is given by

~

n
-_n -1 r:
2z~ B mep - n_ki; Iy; - £z, B ®)

This yields the final prediction error FPE estimate of (3) proposed by
Akaike [1970]:

n+k
n-k

FPE = TSE (6)

If, indeed, the model considered has the correct structure, then FPE is an
unbiased estimate of g2 + ¢ ?(k/n). Furthermore, if the errors are Gaussian,
FPE has minimum variance among unbiased estimates. Akaike proposed
FPE as a model selection criterion, and it has proved quite valuable in
selecting subsets models from "complete models in classical linear regres~
sion. This good performance is not surprising, because the classical linear
regression setup restricts consideration to models that are no more com-
plex than an assumed correct model. However, when training polynomial
networks, many wrong (and typically complicated) models are considered
that need to be rejected (the bonus, of course, is that we have more chance
of finding an accurate and simple nonlinear model). Our experience is that
FPE tends to favor some of the complicated overfit models. Why this is so
will be evident from some of the analysis of this scection.

The PSE estimator of 0% + ¢ 2(k/n) 18 givon by Eq. (1),

PSE - TSI 1 2o ?
pn
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where ¢.? is a prior estimate of ¢? that does not depend on the model con-
sidered. A simple motivation for the PSE estimate is that the two sources
of future error should be identified and estimated separately. The squared
error of the ideal model can be estimated by the average squared error on
the training data TSE. However, the expected value of TSE is o2 - ¢2(k/n),
where the subtracted term is the expected squared difference between the
estimated model and ideal tmodel on the training data. This expected squared
difference on the training data plus the expected squared difference on future
data [total of 2¢%(k/n)] is estimated using the penalty term [given by 203(k/n)].
The fixed o2 in the penalty term is used because we do not want PSE to
underestimate future squared error when the particular model considered
is incorrect (e.g., an overly complex network with low TSE).

PSE is a biased estimator of (3): that is, the expected value of PSE
exceeds (3) by the amount

bias (PSE) = 2n—k (0'; -a?) 4]

For simple models with few coefficients (small k relative to n), this bias is
negligible. Only for overly large k (when typically we want to reject the
model) is this bias significant. It is important that our prior o> be at least
as large as g2, so that these models will be rejected [some criteria corre-
spond to using 0.2 = 3?2 log n; see Sec. V]. The bias of PSE is not bad; it

is an important contribution to the ability of PSE to reject overly complicated
(and usually wrong) models. In fact, the bias can help account for the addi-
tional term in the expected squared error when the model considered has

the wrong structure. High TSE (error in the training set) usually rejects

the overly simple models; the 20:%(k/n) penalty term (which includes the bias)
is needed to reject the overly complex models.

In addition to rejecting wrong models, we want PSE to be an accurate
estimate of the expected squared (future) error when the model has correct
gtructure. A natural estimate of the accuracy of PSE is its mean-squared
error: that is, the expected value of the squared difference between PSE
and ¢? + ¢?(k/n). The mean-squared error is the sum of variance and
squared bias of PSE.

mse (PSE) = var (PSE) + bias? (PSE) ®)

In order to compute the variance of PSE, we need an additional assumption
on the distribution of the errors. If the errors were Gaussian, the sum of
aquared errors (SSE = nTSE) would be chi-squared on n - k degrees of free-
dom, which has varlanco 2(n - k)o*. Therefore, as a benchmark for com-
parigon, supposo that

vir (WIHE) 2 - kot

var (PHE) -
(T515) e W

®)
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Then the mean-squared error of PSE is given by

ey
mse (PSE) = 2_(1111_21%_ + 4(%)2(05 - 02)? (10)

Note that the variance term is decreasing with increasing k. The decreasing
variance and increasing bias implies that the probability that PSE under-
estimates ¢ + ¢ 2(k/n) decreases with increasing k. Similarly, the proba-
bility that PSE is less than o2 + ¢2(k/n) - € (for any fixed threshold € > 0)
decreases. (From the frequentist's point of view, the proportion of times
PSE overfits the data decreases as we increase the number of coefficients
considered.)

To see how accurate PSE is, we compare the mean-squared error of
PSE to the mean-squared error of the unbiased estimator FPE. The mean-
squared error of FPE has a variance term only:

+k2 2
n_k) var(TSE) =M 4

n n’n-k) °
(11)

mse (FPE) = var (ﬁ - 11: TSE) = (

Note that the variance of FPE is greater than the variance of PSE by a
factor of (n + k)2/(n - k)2. The variance of FPE is increasing in k. Thus it
is more likely that FPE is less than 0% + o2 (k/n) - ¢ (for any threshold
€ > 0) as k increases. Loosely speaking, PSE has less probability of select-
ing an overfit model than does FPE.

From Egs. (10) and (11), it can be shown that PSE has less mean-
squared error than FPE if and only if

2_ .2 2 an__|?
l(rp ol <o I:k(n-k):\ (12)

Thus from the point of view of mean-squared error, PSE is superior when-
ever our prior o2 is reasonably close to the correct o 2. For example, if
n =32 and k = 8, then PSE is better for 0.42¢% < g:2< 1.58¢2.

The mean-squared errors of PSE and FPE depend on the unknown error
variance ¢?. We can compare the estimators further by computing weighted
a\;eragezs of the mean-squared error. Suppose that the weighted average of
0 is opy and that the weighted average of (02 - ¢,2)2 is y2¢%. This analysis
is equivalent to the Bayesian point of view that the parameter o2 has an
a priori distribution with mean o2 and standard deviation yo:2. The Bayes
risk is the average mean-squared error. To compute the risks for PSE and
FPE, note that the average of o* is the variance of o2 plus the squared
mean of ¢ 2. Thus

:‘I)' l_]_.l.ls)./' My
n“{n - k) i)

2(n 1 Kk)*

rigk (FPE) = L{mso [PER) - ( )
n{n -k

(y* 1),,-'4, (133)
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and similarly,
; - |2k 2 kY 2| 4
risk (PSE) = [ o (ye +1)+ 4(n) b% Up (14)

Under what conditions is the risk of PSE less than the risk of FPE? It is
straightforward to show.that risk (PSE) < risk (FPE) if and only if

v? 2n
15
Y1 kmn-k (15)

For large n, the inequality can be simplified to risk (PSE) < risk (FPE)
provided that the number of coefficients k < 2(1 + y2)/y?. The right-hand
gide of inequality (15) is minimized for k = n/2 and then equals 8/n. Thus
the risk of PSE is less for all k when n < 8(1 +y2)/v2. For example, sup-
pose that it is vaguely known that o2 is about crﬁ with uncertainty (standard
deviation) =3 apz. Then PSE has less risk for all n if k < 10 and for all k if
n < 40.

Clearly, PSE is the better estimator (in terms of mean-squared error)
when the number k of estimated coefficients is small (e.g., k < 10). What
can be said about the performance of PSE for larger k? The risk of PSE
may be greater than the risk of FPE, but the percent difference remains
small for k? < n:

risk (PSE) - risk (FPE) _k*(n -k) 2y> _4kn (16)
risk (FPE) m+k? 2 +1 @m+k?

It should be remembered that these risks have been computed assuming
a correctly specified model. Polynomial network training algorithms build
the more complex models from the simpler models with smaller k. If
incorrect decisions are made on the fewer coefficients, the large k model
is incorrectly specified and the risk comparison is not valid. The impor-
tance of making correct decisions on small models, even if k will be large,
suggests that PSE may be preferred over FPE. The definition of risk as
average mean-squared error is misleading. It fails to account for the bene-
fits of positive bias ;2 > ¢ 2 for discouraging overfit and for helping to
account for error due to incorrect model structure. Instead, mean-squared
orror treats both positive and negative bias as equally bad.

An objection to the PSE estimate is that it requires o2, a prior upper
bound to the error variance ¢? which might be hard to determine. Fortu-
nately, there is a simple estimate which usually upper-bounds ¢? and that
doos not depond on tho model considered: specifically, the variation in the
dependent varlablo y, glvon by

(Y, =) Ly,
R, whisrn  y " (17)
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The variation ¢2 will be greater than the TSE of every model considered
(with the sole exception of the constant model). Thus if o2 is greater than o3,
there is little hope of identifying a model. For reasonable data, o2 will be
less than ¢2. If no prior value is provided, PNETTR 4 uses op = o%/2. [This
choice corresponds to asserting that ¢ ¢ is uniformly distributed or com-
pletely unknown in 0 < 0% < o3 and hence that ¢ has "mean" ¢2/2 and
"standard deviation' (1/2N3)c3.] Since o2 depends indirectly on the ran-
dom errors (of the true model), there is an additional contribution to the
variance of PSE. However, this additional variance can be shown to be
negligible (Barron, 1981).

IV. HYPOTHESIS TESTING

If the PSE criterion is viewed as a sequential hypothesis-testing procedure,
we gain additional understanding of its behavior. Suppose that we have a
nested sequence of linear hypotheses. For example, within a particular ele—
ment of a polynomial network we may have up to eight terms and we wish

to sequentially test whether to include individual terms (given that preceding
terms have or have not been included). Let PSE(k) be the predicted squared
error when a term (corresponding to the kth free coefficient in the entire
network) is included and PSE(k - 1) when only preceding terms are included.
The term is included if and only if

PSE(k - 1) - PSE(k) > 0 (18)

Multiplying by n and then adding ZUPZ to both sides, Eq. (18) can be rewritten
as

ASSE(k) > 205 (19)

where ASSE(k) = SSE(k - 1) - SSE(k) is the reduction of the sum of squared
errors (SSE = nTSE) if the new term is included. The test (19) is recognized
as the sequential chi-squared test assuming Gaussian errors. However, the
test is robust in that regardless of the shape of the error distribution, the
expected reduction in residual error is ¢? (under the null hypothesis that
the term should be excluded) or o2 plus the increase in variation of the
model (under the hypothesis that the term should be included).

What would be the corresponding test if the final prediction error FPE
were used as the criterion? The FPE criterion would include the term if
and only if

ntk-1 n+tk
———=88E(k - 1) - ——SSE 20
——— 1SSE(k 1) N SSE(k) > 0 (20)
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Assuming that SSE(k) > 0 and multiplying (20) by the positive factor
(n-k)m -k + 1)/[(n + k -~ 1) SSE(k)] and then adding 2n/(n + k ~ 1) to both
sides, inequality (2) reduces to

ASSE (k) 2n
SSE() ~n+tk-1

(n - k) (21)

This test is recognized as a sequential F-test assuming Gaussian errors.
Note that the threshold on this test is automatically set (and is usually
near 2). The F-test is not as robust as the chi-square-type test. The disad-
vantage of the F-test for the kth term is the sensgitivity to incorrect deci-
sions on the other k - 1 terms. If other terms have been included when they
should have been omitted, then SSE(k) will be smaller—biasing the F-test
high—so that this term has a greater chance of being included. Thus it is
possible with the F-test to have a ""snowballing" inclusion of terms and
hence large overfit models.

This section has shown that in a restricted framework the PSE criterion
can be viewed as a robust hypothesis-testing procedure. However, it is im-
portant to note that traditional hypothesis-testing procedures are not able
to compare and rank models of entirely different structure as is essential
in synthesizing polynomial networks. A criterion, such as PSE, that can
assess the performance of a model irrespective of the other candidate
models is necessary.

V. OTHER CRITERIA

A natural way to estimate future squared error is to withhold a subset of
observations from the training data and to evaluate the (empirical) average
squared error on this subset. If this evaluation subset is kept independent
of the training process, and if the set is representative of the range of
potential observations, it then provides a reasonable estimate of the per-
formance of the model. When there are ample data for both training and
evaluating, the practice above is strongly recommended. If the error on the
evaluation set is comparable to the PSE, it gives the analyst additional con-
fidence in the model selected. If the evaluation set error is much larger
than PSE, it suggests that one or both of the subsets has not been designed
to be representative of potential data.

Cross-validation, a common criterion for GMDH model selection, in-
volves "withheld" data actively in the synthesis of the model. One subset
of data is used to fit the coefficients of each model structure considered
and a second subset is uscd to select the better structures. However, the
selection subsot doos nol provido an independent measure of the expected
performanco. Both tho litling and scloction subsets are involved in training
tho modael. I onough difforent modoel structures are considered, one can
ofton bo found thal has low crror on tho Flltng and soloction sots, but will
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not generalize well to new data. GMDH algorithms such as PNETTR 2 use
fitting and selection sets but often need additional checks in network growth
to avoid overfit. Additionally, careful attention to the partitioning of the
observations into representative data groups (using a cluster algorithm—
see Chap. 2) is required. If the number of observations is not large, the
accuracy of the trained models is curtailed by the splitting into subsets.
These difficulties led the author to develop PNETTR 3 and PNETTR 4 and
the PSE criterion for model selection. The PSE criterion does not require
data base partitioning. If desired, all the data may be used for training.
Furthermore, PSE automatically restricts the network growth.

The PSE criterion resembles and was partially motivated by model
selection criteria proposed by Mallows and Akaike. The criterion proposed
by Mallows (1973) is to select that model which has minimum Cp, where
he defines

Cp=—S-S(};ﬂzlil+2k—n (22)
[¢]

If og‘ is a prior estimate or upper bound to ¢?, then (setting ¢,2 = oc) it is
simple to show that minimizing C_ is equivalent to minimizing PSE. How-
ever, Mallows suggests using o = SSE(p)/(n - p), where p is the order of
a completely specified model and k < p. In that way, Cp is not a tool for
creating models but rather a tool by which insignificant terms are removed
from a known model. Even when a "'completely specified" model is known,
the G statlstlc may encourage overfit, since SSE(p)/(n - p) is frequently
less than o 2. In the context of polynomial network synthesis, no correct
structure is assumed known a priori (even in traditional linear regression,
the assumption that the linear model in all inputs is "complete" seems
doubtful). Using a fixed aﬁ, which we believe to exceed ¢ 2, is preferred.

Akaike has proposed two criteria for model selection. The first (1970)
is the final prediction error FPE criterion which has been analyzed in
Secs. IIT and IV. The other is the Akaike information criterion AIC (1972).
The AIC is based on a distribution assumed for the vector y of dependent
variables and on the number of parameters adjusted to maximize the likeli-
hood of y.

AIC = -2 log z(x,az,ﬁk) + 2k (23)

where ﬁ(x,o »B) is the likelihood function which is maximized for ¢? = o?

and 3 = Bk (vector with k estimated cocfficionts). If the distribution is
assumed to be independent Gaugsian orrors oy = yp - x4, ), then minkmiz-
ing AIC is oquivalent Lo minlmlzing

2l

togg (1) 125 )
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However, minimizing (24) has a serious flaw. The "minimum' is attained
by having k sufficiently large that TSE = 0 (e.g., k = n linearly independent
terms in a linear model). A more realistic criterion is obtained if ¢? is
assumed known. Then minimizing AIC is equivalent to minimizing

TSE + 2¢2 % (25)

Clearly, this is equivalent to the PSE criterion with o2 known (a g2).

The analysis of this chapter has shown that assuming ¢? known 1s a stronger
restriction than necessary. Possibly, a generalized AIC could be derived
which incorporates vague knowledge of some parameters.

Akaike did not require linear models in his derivation of the AIC, but
derived that asymptotically the log-likelihood is quadratic in the unknown
parameters (i.e., it behaves like a Gaussian log-likelihood for a linear
model with known error variance.

The AIC is one of several proposed criteria that depend explicitly on
the assumed family of distribution. In principle such criteria are applicable
to a wide range of problems. However, for a particular problem it is diffi-
cult to know what is the "true' family of distributions. PSE is a criterion
that does not depend on the particular shape of distributions (e.g., Gaussian).
Instead, PSE is derived from a specific "loss' function and is applicable
whenever minimizing squared error on independent data is a realistic goal.

Schwarz (1977) proposed that if a parametric family of distribution is
assumed, the model should be selected that is a posteriori most probable.
He showed that if the log-likelihood function is of a common form (specifi-
cally, Koopman-Darmois, which includes the Gaussian), then for almost any
prior distribution on the parameters, minimizing

~ k
- log Q(X,Ek) + "2— log n (26)

ig asymptotically equivalent to maximizing the a posteriori probability of

the model. This procedure guarantees consistency (which means that asymp-
totically, i.e., as n — o, the correct model will be selected). For models
with independent Gaussian errors of known variance o %, minimizing (26) is
aquivalent to minimizing

k
T8E A+ ¢2 =log n 27
v n L‘U ( )

This crliterion corroxpondu to tho PSE hat with 4o ? loge n in the penaliy
Lovm In plaeo of qr’,"- Thur Tor nrgo n, Schwairz's eritorion restricts model
1lhnunnlmmll|y (upe, tlzey of n polynominl nolwork) more than does PSE
(With o7 oo o 2y Phe quantily (27) T Dlasod above the oxpectod sgunrod
neror nn now datn hy o fuotor of
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k 2
Y (loge n-2) (28)

which remains negligible provided that the number of estimated coefficients
k remains much less than n/(loge n - 2).

Recently, a new philosophy for model selection has been proposed,
first by Rissanen (1978, 1983) and then independently by this author (Barron,
1982). The goal proposed is to find that model which induces the shortest
description for the data available. If a parametric family of distributions is
assumed, then for each candidate model there is a description of the data
that corresponds to a concatenation of a description of the model (including
the estimated parameters) and a Shannon code for the data (given the param-
eters and input variables). Rissanen and Barron have each shown that
minimizing

k A~
2 log n - log E(X,Ek) (29)

is asymptotically equivalent to finding the shortest description. The first
term amounts to using (1/2) log n bits for each of the coefficients and the
second term corresponds to the length of the Shannon code. Note that this
criterion is equivalent to (26), the criterion proposed by Schwarz. More-
over, the description length criterion (29) does not require the model to

be linear in the coefficients. Furthermore, the notion of minimum descrip-
tion length permits improvements in (29) for finite n (Rissanen, 1983;
Barron, 1982). If the Gaussian distribution is used to Shannon-code the data
[i.e., ¥ = (y1,¥gs -+ »¥p)' is described by describing the errors éi =yi-
f(xi, f)s 1=1, 2, ..., n, according to a zero-mean, covariance o?1
Gaussian distribution], then minimizing (29) is equivalent to minimizing (27)
given above.

Does the shortest description of data available now provide a good
explanation of statistically similar data in the future? This may be a philo-
sophical question. But the similarity of criteria based on minimum descrip-
tion length [such as (27)] and the predicted squared error (1) seems to be a
first step toward a quantitative answer. The goals of good data description
and good prediction are not incompatible; however, there are intriguing
differences [e.g., o2 versus (1/2) o? log n in the penalty term]. Whenever
the primary objective of empirical modeling is to identify a model that will
perform with low error on as yet unseen data, the predicted squared error
criterion is strongly recommended.

APPENDIX
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Let two sets of observation be denoted by

a.’.:1:2,“'9 s . 7.: 9Ly o0 0,
{x,y), 1 n} and {(3<lF Vip)» 1= 1,2 .}

The first set is the training data, and the second can be thought out as
future data. Suppose that ¥; = (x4, 8) + e, where f denotes a candidate
model with k unknown coefficient§ represented by the column vector g. Sim-
ilarly, vir = X X B) * e;. Let § be the coefficients estimated from the
training data. We want to compute the expected squared error on the new
data when using E

n

|

;g - £05p 17 (A-1)

[
o

1

Adding and subtracting the unknown coefficient values, (A-1) becomes

1

n

tj

¥ = X0 B) * 10850 B) ~ (X, BN (A-2)

W [
~
N

This expression can be expanded into three important terms:

=3

n

¥ ¥
1 1 v ~
E|=— ) Wp-8x B0 | + El== )} [f(x.,8) - £(X. ., f)]?
LnF =1 iF iF nF o1 iF’= iF’ =
n
+2E| 2 )y, - f(x MR, B) - x B | (A3)
et e L I A

Substituting the error e; = ¥iF - {(XiF, B), expression (A-3) simplifies to

n
30 h

F
1 1 ~
Elom D el | T E|i ) B - f(x,p. 01
T i=1 F i=1
n Al
1\ ) ) ~
RE ) () \ f 3y -
Tho [ledt torm ol (A1) I the oxpoelad squarod error of the ideal model on

(ulure dato. Under the gusamplion of zoro moenn and common varlanee
ey K KR
|l',(u”|.) o for cneh 1] this been e Juat o7 Sinee (e Inpat voetors K
neo pogardod an (Tked, he (hhsd torme roproanonta Intoeneblon bolwoon random
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errors in training and future data. If we assume independence, this term is
zero. (If the model is linear in the coefficients, then uncorrelated errors
is sufficient for this term to be zero.) The Eq. (A-4) for expected squared
error has now been reduced to

n

F
1 N
e g 121 (8 8) - £, BN (A-5)

Now assume that the model can be approximated as linear in the coeffi-
cients i(xj, ) = zj5, where zj is a (row) vector of k possibly nonlinear
transformations of the input variables. Similarly, #(xjF,8) = z;p8. Define
n by k training data matrix T = (2;, 29, .. -,2,)" and ny by k future data

matrix F = (-Z—lF’EZF’ sz 1;,)'v. Similarly, define column vectors for the

dependent variables y and y§ and for the errors e and ep. Using the notation
of matrix algebra, (A-5) becomes

o? + —1—E[||FB -~ F3lI?] (A-6)
no - ==

From traditional regression analysis, the coefficients that minimize
the (empirical) average squared error on the training set are given by

B=@mTy (A7)

Also, since y = TS + e we can write the difference ¥ - Eéi.n terms of the
data matrices and the error e.

FG-FR=Fg-FA'T)'T"(Tg+e) =Fg - Fg - E(T'T)'T'e = -F(T'T)"'T'o

Now substituting (A-8) into the expected squared error (A-6) yields

o*+ =ENF@DT'el?] = 0%+ ——EleT@ T 'TECD T'e]  (A-9)
¥ F

The quantity in the brackets in (A-9) is a scalar. The trace of a scalar louvan
the scalar untouched. Furthermore, within a trace oporation, matricos
commute. Thus (A-9) becomes

a? '—\L 1ltraee (0"LCPMDY T ECET) 0 |
I

AN ”' W Leneo (Flaa ey i ert iy Ty (A-10)
I
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Now if the errors are uncorrelated and have common variance o2, then
Ii(ce') = o21. So the formula reduces to

0% + oo trace (DTN NEHT'D )
F

=g?+ —nl—oz trace (E'FNT'T)Y (A-11)
¥

Dofining Rt = T'T/n and Ry = F'F/ng, the notation is simplified. The
rosult for the expected average squared error of the trained model when
upplied to new data is

-1
trace (_I_{F_BT)

N (A-12)

n

RIEFERENCES

Aknike, H. (1970). Statistical Predictor Identification. Ann. Inst. Stat.
Math. 22:203-217.

Alnike, H. (1972). Information Theory and an Extension of the Maximum
Likelihood Principle. In Proceedings of the Second International Sym-
posium on Information Theory, B. N. Petrov and F. Csaki (Eds.),
Akadémiai Kiads, Budapest, pp. 267-281.

Inrron, A. R. (1981). Properties of the Predicted Squared Error: A Cri-
terion for Selecting Variables, Ranking Models, and Determining Order.
Adaptronics, Inc., McLean, Va.

Imrron, A. R. (1982). Complexity Approach to Estimating the Order of a
Model. Electrical Engineering 378B Final Report, Information Systems
Laboratory, Stanford University.

Mhby, J., and Toutenburg, H. (1977). Prediction and Improved Estimation
In Linear Models. Wiley, New York.

Mullows, C. L. (1973). Some Comments on Cp. Technometrics 15:661-675.

{tinnanon, J. (1978). Modeling by Shortest Data Description. Automatica 14:
106-471.

fMlasanon, J. (1983). A Universal Prior for Integors and Estimation by
Minimum Description Length. Ann. Stat. 11(2):416-431.

Hohwnrs, G. (1977). Estimating the Dimonslon of & Model. Ann. Stat. 6(2):
A01-104.




