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Abstract

A variety of network models for empirical inference have
been introduced in rudimentary form as models for neurological
computation. Motivated in part by these brain models and to a
greater extent motivated by the need for general purpose
capabilities for empirical estimation and classification,
learning network models have been developed and successfully
applied to complex engineering problems for at least 25 years.
In the statistics community, there is considerable interest in
similar models for the inference of high-dimensional
relationships. In these methods, functions of many variables
are estimated by composing functions of more tractable lower-
dimensional forms. In this presentation, we describe the
commonality as well as the diversity of the network models
introduced in these different settings and point toward some
new developments.

1. Introduction

In the context of empirical inference of functions of many
variables, a network is a function represented by the
composition of many basic functions. The basic functions
(which are also called elements, units, building blocks,
network nodes, or sometimes artificial neurons) are constrained
in form: typically nonlinear functions of a few variables or
linear functions of many variables. By definition, a learning
network estimates its function from representative
observations of the relevant variables.

Several composition schemes for network functions and
corresponding estimation algorithms are reviewed in this
paper. Consideration is given to certain networks popular in
the neurocomputing field such as perceptrons, madelines, and
backpropagation networks. (For a collection of some of the key
papers in this field see the volume edited by Anderson and
Rosenfeld 1988.) Unfortunately many learning networks are
inflexible in the form of the basic functions, inflexible in the
connectivity of the network, and lack global optimization of
the network function. More consideration is given here to
globally optimized networks, networks with adaptively
synthesized structure, and networks with nonparametrically
estimated units. Particular attention is given to polynomial
networks (R.L. Barron et al. 1964, 1975, 1984, Ivakhnenko
1971), projection pursuit (Friedman et al. 1974, 1981, Huber
1985) and transformations of additive models (Stone 1985,
Tibshirani 1988). New composition schemes are suggested
which combine the positive benefits of the above methods.

Although there are interesting analogies of statistically
estimated network functions with the activity of networks of
living neurons, we shall not constrain our network functions to
be biologically viable models. Instead the focus is on the
development of empirical modeling capabilities for network
function so as to represent the input/output behavior of a wide
range of complex systems for scientific and engineering
applications.

Mathematical limitations of high-dimensional
cstimation are discussed. Bounds from nonparametric
statistical theory show that reasonably accurate estimation
uniform for all smooth functions {e.g. functions with bounded
first partial derivatives) is not possible in high dimensions
with practical sample sizes. Network strategies avoid some
of the pitfalls of high-dimensionality by searching for
structurcs parameterized by lower dimensional forms. The
advantage is that for high-dimensional problems the
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variance (estimation error) associated with such networks can
be much smaller than associated with more traditional
approaches. As for the bias (approximation error), the
evidence is that for many practically occurring functions
accurate network approximations exist, in spite of the
theoretical fact that high-dimensional functions can possess
sufficiently irregular structure so as to preclude accurate
estimation.

Some dynamic network models (such as the Hopfield
network 1981) are differential equations (or difference
equations) resulting from cycles present in the interconnected
network. In this paper we restrict attention to static network
models which have no loops in the network. Thus the network
is a tree of interconnected functions which implements a single
input/output function, which may be adjusted by the empirical
estimation process, but otherwise is static.

2. Block Diagrams

We present a hypothetical network to get oriented to some
terminology and notation. A function which is defined as a
composition, such as

floxg, 2y, 23, 20 = 84(81(85(x7, x,), 84027, x5, 2,)),
8(8,(xq, X3, x0), 5(x ),

may also be written in terms of intermediate variables
f=80 (2, 2)
71=81 (232, 2y = 8)(24, 29
23=83 (0, xy), 2y =84 (%, %3 ), 25= 85(xy),

or it may be drawn as a network diagram (Fig.1):
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Fig.1. Example Network

The layers of a network are the sets of functions which occupy
the same depth in the tree.

For a general notation for network functions, in which the
indices on a basic function specify the position of the function
in the tree relative to the root node, see Lorentz (1966). He
called network functions superposition schemes. Lorentz made
fundamental contributions to the theory of representing
functions by compositions which are discussed later in this
paper.

Representations for network functions are not unique. For
instance, if some of the basic functions are absorbed into the
functions to which they are input, then fewer elements are
obtained, but the new elements have possibly greater input
dimension.

Motivated by the application to modeling human vision,
Rosenblatt (1962, ch. 4) called networks with arbitrary



clemental functions perceptrons (although subsequently the
term has been used to refer to just one type of network with
thresholded linear elements that Rosenblatt extensively
studied). Our definition differs slightly from Rosenblatt's in
that he allowed transformations to occur on the branches
{interconnections) of the nctwork. Such networks are
represented in our form either by defining additional single
input nodes or by absorbing each such transformation into the
nodc to which the branch is directed.

3. The Building Blocks

For lecarning networks it is important to choose elements
of the nctwork with sufficiently general form that the
resulting networks can approximate nearly any function of
interest. It is also important to choose these clements with
sufficiently small dimension or complexity that they can be
accurately cstimated. Different approaches to resolving the
tension between these two seemingly conflicting objectives
result in a variety of different learning network schemes.

Let the function g(z) denote an element of the network,
where z is the vector of intermediate variables (outputs from
preceding clements or sometimes original input variables)
which are input to the given node. The most common forms of
clements roughly can be categorized as parametric or
nonparametric.

Parametric elements: These are basic functions g(z, 8) which
depend on a vector of unknown parameters. The parametric
clements which have been proposed for learning networks
usually take one of the following forms:

8(z, )= h (X Bk + 6, 1

g(z, 8) = 2 6y (2) (2)
or, more generally,
2z, 6) = h(X O, p(z)) (3)

where ¢, k=1,...,m, and h are fixed functions. The two most

common choices for the ¢x are linear terms (coordinate
functions), so that the sum simply implements a lincar
combination of the inputs as in (1), or polynomial terms of
moderate degree. The nonlinear function 4 is typically chosen
to be a nondecreasing function bounded by one (such as a unit
step function) -- this is frequently incorporated in networks
intended for binary classification. The parameters of each
clement are estimated from observed data, typically by a
least squares or likelihood based criterion. The specific
mcthod used to estimate the parameters depends on the
probabilistic structure of the data, the network synthesis
strategy, and the intended use of the network (see section 4
below).

Nonparametric elements: Some of the element functions g(z)
may be regarded as unknown and constrained only in terms of
basic smoothness properties (e.g. bounded derivative), or in
some cases g is modeled as a stochastic process indexed by z (a
Paves formulation).  Such functions are estimated by a
smoothing technique such as local linear fits, smoothing
splines, variable kernel estimation, truncated trigonometric
series, variable degree polynomials, or stochastic process
cstimation.  Typically parameters of the smoothing technique
are sclected by a criterion such as cross-validation, predicted
squared crror, or penalized likelihood. With nonparametric
clements it is important that the dimension of the z variables
be kept to a minimum.  (Otherwise the statistical theory
indicates that it would be difficult to estimate these element
functions.)

Mixed parametri¢/nonparametric: In this case both types of
clements appear in the network. A particularly interesting
approach is to combine nonparametric elements, each of which

_depends only on one variable, with elements which implement

linear combinations of many variables. It will be seen that
networks of this mixed structure have the potential to
approximate any function.

We usc the notation f(x, 8) to refer to the complete
network function where x is the vector of all original input
variables and 8 is the vector of all parameters which appear
in the network.

4. The Structure of the Data and Objective of Network
Estimation

In practice, networks are estimated from a training
sample of observations of relevant variables. The sample is
tpically a sequence of input/output pairs ( X1, Y1), ..., { X, Yy)
where each X is a d-dimensional vector. We focus on the case
in which the observations are independent, each with the
same probability distribution Py {(Certain problems
involving data with stationary serial dependencies can also
be treated, in which case the relevant distribution is the
conditional distribution given the past.) This probability
distribution is assumed to depend on an unknown function f(x):
it is this function which neural networks seek to approximate.
The assumed nature of this function depends on the objective of
the problem (e.g. regression, prediction, classification, density
estimation) and the criterion by which performance is
measured.

Perhaps the most common use of learning networks is to
seck a function f(x) to minimize the mean squared error
E(Y - f(X))%: that is, the function we wish to estimate is the
conditional mean f(x)=E [Y|X =x]. For problems of curve
fitting, regression, or prediction this conditional mean function
has traditionally been the principle object of interest for
learning networks. (For certain time-series prediction
problems the desired function takes on the specific form
flx) = EIY:1 Y41 = x1,..., Yr.a = x4]). In particular, this
framework (associated with a squared error measure of loss) is
appropriate when a function f(x) is measured subject to (mean
zero) Gaussian error at randomly distributed design points.

For classification problems, an optimal discriminant
function is one for which the overall probability of error is
minimized. Most often, learning networks have been utilized
to seek an indirect solution to the classification problem by
using the mean squared error as the criterion. For two-class
classification with Y € {0,1} the conditional mean function
reduces to the optimal discriminant flx)=P[Y =11X=2x].
Nevertheless, it may be more appropriate to seck to estimate
the logistic regression function f(x) = log(P [Y = 11x}/(1 -
P[Y =11x])) using likelihood-based criteria. In principle,
probability density estimation can also be handled using
learning networks and a likelihood criterion, in which case f
is taken to be the logarithm of the joint density function of the
random vector.

The intended use of estimated network functions? may
dictate probability models and performance objectives other
than those indicated above. For instance the object may be to
search for the extreme points of a function f by using the
extreme Points of;’ . For problems in vehicle guidance, the

function f might estimate parameters of an optimum (two-
point boundary-value) guidance law as a function of current
and desired final vehicle states (in situations where the
optimum f can only be obtained by extensive off-line

iteration), in which case the ultimate performance objective is,

to minimize the final miss distance, rather than to minimize
the mean squared crror of the parameter estimates.
Nevertheless, learning network methodologies have proven
successful in some of these contexts (see R. L. Barron and Abbott
1988).




Most network algorithms have been designed for
regression or classification with minimum mean squared error
as the performance objective, and our attention will be focused
primarily on this case.

5. Criteria for Network Estimation and Selection

Here we discuss model selection criteria needed for the
cstimation of network functions. Without the use of an
appropriately penalized performance criterion, an gver]y
complex network may be estimated which accurately fits the
training data but will not prove to be accurate on new data.

Predicted squared error: If a network structure f(x, ) is fixed
and if the total number of parameters k is small compared to
the sample size »n, then the minimum mean squared error

ming E (Y - f(X, 02 is approximately achieved by seeking

A .
parameter estimates 6 that produce the minimum averagze
squared error on the training set, TSE = 130 (Y- f(X,, 6%

However, if k is large compared to 7, then the model may
have small error on the given data, but it is likely to have
large crror on future data from the same distribution. Th.is
phenomenon is partly explained by noting that, under certain
conditions (namely that the network depends linearly on the
parameters and the true function f(x) happens to be a me.mber
of the given k-dimensional family with error variance
o2=E (Y- f(X)%), the mean squared error of an estimated
network of fixed dimension k is not equal to the error variance

o? but rather is equal to E (Y ~f (X, 6)) = 62+ (k/n)o ?: see
Mallows (1973), A.R. Barron (1984). This leads, in view of the
fact that under the same conditions E (TSE) = 02~ (kjn)o?, to
the predicted squared error PSE criterion as an unbiased
cstimator of the futurc performance:

psz~:=7'sz~:+2~:02. (4)

This criterion is very similar to (and in some cases equivalent
to) the Cp statistic proposed by Mallows (1973), the
generalized cross-validation criterion of Craven and Wahba
(1979), the final prediction error of Akaike (1970), and a
specialization of the AIC proposed by Akaike (1973). For a
recent treatment of these various criteria with emphasis on
generalized cross-validation see Eubanks (1988, ch. 2).
Calculations similar to those in Akaike (1973) show that PSE
continucs to be an asymptotically unbiased estimator of the

A
mean squared error  E (Y~ f(X, 6))? even if f(x, §) is not a
lincar function of 6, provided this function is sufficiently
smooth.

Unfortunately, if the network function is selected so as to
minimize PSE among a collection of functions of various
parameter dimensions, then there is no general guarantee that
the resulting minimum PSE will be an accurate estimate of the
mean squarcd error of the estimated function. Indeed, if the
truc function f is a member of one of the finite-dimensional
network families, then the PSE criterion has a tendency to
overestimate the dimension (sce Atkinson 1980, 1981). On the
other hand, the work by Shibata (1984, 1986) shows in related
contexts that if the true function f(x) is not cxactly
representable by any of the finite dimensional models in a
scquence f (x, 8,) for k=12,... (but can nevertheless be

approximated by such models), then selection ofﬁby a
criterion of the form given above is optimal in the sense that
A
the resulting expected squared error E (f(X) - f(X))? is asymp-
A
totically equivalent to min E (f(X) - f(X, Bk))zas n—ee. Itis
nat known if the results of Shibata carry over to the
cstimation of network functions. Nevertheless, in our
experience with numerous practical cases (see Barron et al.
1984), nctworks sclected by minimizing PSE have
approximately minimal average squared error on independent

scts of test data (in the sense that if the growth of adaptively
synthesized networks is halted on an earlier layer or allowed
to extend to a larger number of layers, then a significant
increase in the average squared error on the test set does not
usually occur).

If the error variance o2 is not known, an estimate &?
can be used in its place in the PSE criterion; however, to avoid
overfit care must be taken to avoid having §2 much less than
% in particular, &2 should not be varied during the process of
sclecting k (A, R. Barron 1984). We suggest that nearest
neighbor regression be used prior to network synthesis to
determine a rough estimate of the error variance with the
desired properties. To permit consistent estimation of f in the
case that it can be exactly represented by a finite dimensional
network (as well s in the case that it can be arbitrarily well
approximated by networks of sufficient dimensionality) other
criteria should be used which place a greater penalty on the
dimensionality of the model (e.g. ,E.-log n instead of z:k- ).
Criteria significantly different from PSE will not possess the
optimum rate property of Shibata in the context that he
considers; however, it is not known to what extent the
convergence rate is slowed.

Likelihood based eriteria: Suppose the random vectors (X,Y)
have a conditional probability density function plylz f)
which depends in a known way on the value of f (whereas the
true function f(x) may be unknown). Let f(2,6) be a given
network structure with a k-dimensional parameter 6. Assume
that §is estimated so as to maximize the likelikhood
pY"1 X", f(.6)) = H:_,p(Y,.I X;, f(X.6)). Define the Akaike
information criterion (Akaike 1973) by

AIC = - log p(Y" 1 X", ((-8)) + k (5)

and define the minimum description length criterion (Rissanen
1978, 1983) by

MDL =~ log p(Y"1 X", f(,8)) + fz‘-log n 6)

These criteria are used to choose between models of various
dimensions. Akaike derived the AIC as an asymptotic bias
correction for the estimation of expected entropy loss, in much
the same manner that PSE is an asymptotic bias correction for
the estimation of expected squared error. Rissanen derived the
MDL criterion as the length of a uniquely decodable code for
guantizations of the data Y™ given the data X" (ignoring terms
which are asymptotically constant for k bounded). Unlike the
optional Shannon code, Rissanen's code does not require
knowledge of the function f- Instead, the MDL code uses
quantized maximum likelihood estimates of the parameters of
the function as a preamble of the code {using {log n bits per
parameter). The criterion can also be derived as an
asymptotic approximation for the Bayesian test statistics
which minimize average probability of error in the selection
oéstsh)e model (sce Schwarz, 1978, Clarke and A.R. Barron,
1 .

The validity of the derivations of AIC, MDL, and Bayes
criteria require smoothness conditions. In particular the

sample Fisher information matrix T of second partial
derivatives with respect to 8 of — Llog p(Y"1 X", f(.,6))
(evaluated at 6=6) should be positive definite. A more
precise form of the MDL or Baycs criterion uses tog de(l)
instead of})ilog n.

For regression with a Gaussian crror distribution and

known error variance, the AIC reduces to the PSE criterion and
MDL reduces to a criterion equivalent to




TSE + (:—log nio?. (7)

For classification problems with Y & {0,1), likelihood based
criteria are defined by using the Bernoulli model
pryla, ) = (L) - f(x))17¥ (in which case care must be
taken to use networks with 0 < f(x) <1). The equally general
logistic model p(ylzf) = VD)1 + /@) may be preferred for
classification problems, since it forces satisfaction of the
probability constraints 0 <p <1 without constraining the
function f. For logistic regression the minus log-likelihood

takes the form Ylog(1 + ef& 9)) 2Y;f(X, 6), which is
minimized (c.g. by Newton's method in the context of various
synthesis strategies) and then penalized by k or ;log n as

appropriate for the desired criterion.

Complexity regularization: In AR. Barron (1985) the
minimum description length criterion is extended to
nonparametric contexts in which the description length need
not reduce to the form of (6). Consistency results are obtained
in A.R. Barron (1985, 1987) which show convergence (as n — =)
of distributions estimated by the complexity regularization.
The specialization of the convergence results to the case of
cstimation of network functions is given in the Appendix.

6. Main Strategies for Network Synthesis

There are two main strategies for the synthesis of
networks depending on whether the structure of the network is
fixed or allowed to evolve during the synthesis process.

Fixed networks: In this approach a fixed composition structure
(often relatively large) is preselected with the hope that the
desired function can be accurately approximated by networks
of the selected form. The problem of choosing parameters of
the network so as to optimize a performance criterion may be
regarded as a global search of a highly multimodal surface. In
general, global convergence is difficult to guarantee;
nevertheless, by choosing a network function which depends
smoothly on the parameters it is often feasible to estimate
sufficiently accurate network functions by certain global
scarch techniques (e.g. techniques which alternate global
random and local gradient search). Other methods for
estimating network functions attempt to Jocalize the search
within cach unit of the network by defining target values for
cach clemental function. More specifics are given in section 7
below.

The advantage of the fixed network approach is that
certain structures are known to have the ability to
approximate any continuous function (see section 13).
However, for moderate sample sizes, these fixed structures
may have too large a parameter dimension for the least
squares or maximum likelihood estimators to be accurate. In
this case, to prevent irregularity of the estimated function, it
is useful to constrain the parameters so that the resulting
network function is smooth or to penalize the performance
criterion by incorporating a term for the lack of smoothness
{c.g. the sums of squares of first partial derivatives of the
network functions at the observations). Of course the criteria
mentioned in section 5 above are not adequate when the
dimension of the network is fixed in advance.

Adaptive networks: In this approach, the attempt is to
cstimate networks of the right size with a structure evolved
during the estimation process to provide a parsimonious model
for the particular desired function. Typically, the network is
cstimated one layer at a time, with the elements on each
given layer sclected to minimize the predicted squared error or
complexity regularization criterion. The basic idea is that
once the clements on a lower level are estimated, and the
corresponding intermediate outputs z are computed, then the

parameters in a given element g(z, 6) may be estimated by
usual least squares or likelihood maximization techniques. 1t
is most common for the elements on each layer to be greedily
trained to attempt to best estimate the desired final output,
even though the outputs of these elements are combined on
succeeding layers. On the other hand, some methods
developed in statistics select the element functions so as to
work best in linear combination with the previously selected
elements on a given layer.

Practical experience shows clear advantages of the
adaptively synthesized networks over some of the globally
optimized fixed network structures. (However, certain
theoretically appropriate fixed structures have yet to be tried
in practice; also, the smoothness penalty criteria have yet to
be utilized with the larger fixed networks.) In most instances
the adaptively synthesized networks are more parsimonious.
Parts of the network which are inappropriate or extraneous
for statistically modeling the given data are automatically
not included in the final network. The drawback of the
adaptive strategies is that they cannot be guaranteed to work.
It is possible to find counterexamples of data corresponding to
functions which are exactly modeled by a two-layer network,
but no non-trivial first layer elements are selected by a given
adaptive synthesis strategy.

Mixed adaptive/global strategies: After the best elements on
each layer arc computed, a numeric search can be used to
update the estimates of parameters for ancestral nodes on
earlier layers. An iterative scheme that alternates between
estimation of the parameters of the given element and the
cstimation of the parameters of the ancestral nodes is
suggested by the projection pursuit algorithm and its
generalizations (see sections 10 and 12).

7. Some Early Network Developments

While linear models for regression and thresholded
linear models for classification (e.g. of the form (1), (2), or (3))
have been long used in statistical practice (with the
beginnings of the modern understanding due in large part to
R.A. Fisher (1922, 1934, 1936) who introduced measures of
statistical efficiency, explained the efficiency of maximum
likelihood estimation, and derived the linear discriminant
function for multivariate Gaussian classification), these same
linear models were reintroduced (unfortunately with
comparatively inefficient estimators) in the 1950's and 1960's
as a basic ingredient in learning network models. The new and
interesting twist was that more general classes of functions
were modeled by combining these simpler models into a
network. Here we mention some of the development which
occurred in this period.

The forerunners in the network modeling field were
McCulloch and Pitts (1943), who introduced the thresholded
lincar function as a model for the behavior of a neuron and, in
that paper, analyzed the model not so much for its biclogical
viability, which was discussed only briefly, but rather (in the
language of theoretical computer science) as a basic
computational unit with the property that any predicate
with finite domain could be implemented by a network of such
units.

There was a surge of interest in methods for the inference
of networks (Hebb 1949, Ashby 1952, Farley and Clark 1954,
Minsky 1954, von Neumann 1956, Rosenblatt 1957, Lee and
Gilstrap 1960) culminating in some interesting and successful
multiple layer estimation methods in the early 1960's due to
Rosenblatt (1962), Widrow et al. (1960, 1962, see also 1987),
and R.L. Barron et al. (1964, see Moddes et al. 1965, Gilstrap
1971, Barron et al. 1984). Although some of the networks due
to Rosenblatt and Barron et al. used more general elemental
functions than the original thresholded linear function, they
did share the form (3) (transformed variables were combined
linearly using free parameters). These heuristic multi-layer




methods were not well understood theoretically and (with the
exception of Roscenblatt's book) they were not widcly
disseminated at that time. We emphasize that contrary to
the popularly held current belief (initiated in the book by
Minsky and Papert 1969 and perpetuated by statements as in
Rumelhart et al. 1986, p.321), powerful rules were found for
the estimation of multiple layer networks.

The methods of Widrow et al. and Rosenblatt for binary
classification possessed many similarities. In particular, both
authors exclusively utilized recursive estimation strategies in
which the parameter estimates are updated with each new
obscrvation by an error correction procedure analogous to the
Robbins-Monroe (1951) stochastic approximation (but without
the full statistical efficiency known to hold for recursive least
squares or recursive implementations of maximum Jlikelihood).
Moreover, both approaches were amenable to clear
theoretical proofs of convergence properties in the case of
single element networks (these results are well-explained in
Nilsson (1965) and Duda and Hart (1973)). Widrow used a
stochastic gradient method which he called the least mean
squares (LMS) algotithm. Rosenblatt used a method (related
to relaxation procedures for solving linear inequalities, Agmon
1954), which he called the perceptron algorithm: it finds a
hyperplane which perfectly separates the two classes
whenever the classes are linearly separable. The non-
convergent behavior in the non-separable case was analyzed
by Efron (1964).

For multiple layer networks the method of Widrow et al.
(1960, 1962) was only explained in the case that first layer
clements are adjustable and the succeeding layers are
preselected. Widrow used iterations of his strategy to handle
also the more general estimation problem, but this approach
was not published until Widrow 1987, to which we refer the
reader for a description.

For two and three layer networks of thresholded linear
clements, Rosenblatt (1962, ch. 13) developed an algorithm
which he called back-propagating error correction
(unfortunately, this namce recently has been reused for another
algorithm for network estimation, as mentioned below). The
objective of his method is recursively to estimate desired
outputs for cvery element as well as to estimate the
parameters. Naturally, given a desired output of an element
Rosenblatt updates the parameter estimates in the element by
his perceptron algorithm (here a parameter update occurs only
if the actual output differs from the desired output). On the
other hand, if the output of an element does match the desired
value, then depending on whether the resulting final output of
the network is in error, the desired intermediate variable is
adjusted to reduce this error (again as in the perceptron
algorithm but with the role of parameters and variables
reversed).  (Randomization is used to avoid certain
degeneracies. In particular, with each step no update action is
taken with probability 0<p<1.) Rosenblatt advocated cycling
through the data and the elements of the network in such a
way that cach combination (of datum and network element)
potentially would be considered infinitely often. He
presented a thecorem (Rosenblatt, p. 294) to the effect that if
the data arc scparable by the network (i.e. there exist
parameter values for which the network function correctly
classifies every point), then his estimation strategy will find
such an crror-free solution in a finite number of steps (with
probability one).

The approach developed by R.L. Barron et al. (1964) and
further explained in Moddes et al. (1965), Gilstrap (1971), and
Barron et al. (1984) solved the multilayer network estimation
problem by global search to minimize the sum of squared errors
20Y;- fiX;, 6))2. Barron et al. introduced an algorithm called
guided accclerated random search (GARS) which alternated
between global random search (using a spherical normal
distribution centered at the current best point) and local
gradient scarch (for which convergence was accelerated by a

halving/doubling algorithm for the step size and by adjusting
a variable subset of the parameters at the different steps).
The particular elemental functions originally used by R.L.
Barron et al. were quadratic functions in two variables
8(2,0) = 8y + 612, + 0,2, + 6;2,2,. A spirally-connected
network with 24 input variables and seven layers was
constructed (sce fig. 2). Using 25-50 observations of simulated
reentry vehicle positions during a given time frame

(t, t~ 4t,..., £— 7At), networks were constructed to predict the
final position and impact time of the vehicle. The parameters
of the networks were constrained to values in the interval
between -1 and +1. The GARS search routine converged to
essentially the same extremum of performance for each of
many randomly selected initial parameter vectors, suggesting
that a non-unique global optimum was reached. Performance
on an independent test set of observations suggested that
despite the complexity of the network, and the small sample
size, the estimated function was not overfit to training data.
(However, overfit problems were later experienced with these
large fixed networks on some industrial process modeling
problems -- these experiences led in the early 1970s to the
adoption of adaptive synthesis strategies discussed below.)
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Fig. 2. Uniform Spiral 72-Element Network

ol

The network of fig. 2, which consists of quadratic two-
input elements, represents a family of sixth-degree
polynomials. Since the network contains a total of 288
parameters, this family is a relatively low-dimensional
manifold in the complete (593,775 dimensional!) family of
sixth-degree polynomials in 24 variables. Nevertheless, the
network had more than enough flexibility to yield accurate
approximations for the specific application to re-entry
vehicle trajectory predictions.

8. The Current Fashion

In recent work Rumelhart, Hinton, and Williams (in
Rumclhart ct al. 1986, ch. 8) propose that an implementation
of the gradient descent algorithm be used to attempt to



minmiize the sum of squared error for mulliple layer
feedforward networks. They use element functions of the form
(1) with  equal to a logistic function: this choice is viewed as
a smoolhing of the step function to obtain a differentiable
function of the parameters. Since the network is a composition
of functions, the derivatives required for the gradient method
arc determined by the chain rule of calculus (starting at the
final node and propagating back to the parameters in the first
layer). Although it is recognized that the gradient method
may be inappropriate in general for highly multi-modal
surfaces, Rumelhart et al. found that it worked adequately on
the simple examples that they considered. Hinton and
Scjnowski (in Rumelhart et al. 1986, ch. 7) propose that a
scquential random search algorithm (simulated annealing) be
used to estimate the parameters of a Hopfield style network;
they call their learning network a Boltzmann machine. These
papers (see Rumelhart et al. p. 321) give the impression that
multilayer search strategies for networks are novel to the
1980s. Clearly this is false in view of the methods we have
discusscd. In our experience (beginning in the 1960s) a
combination of random and derivative-based search
strategics, as in the GARS algorithm, is an effective technique
for globally optimizing networks. In any event, much of the
recent work (as in Rumelhart et al) has ignored the
developments in the 1970s and 1980s of the adaptive network
strategics and the nonparametric statistical methodologies
for specific network structures.

9. Networks with Adaptively Synthesized Structure

With the propensity of large fixed networks to result in
overfit estimates, attention was turned in the 1970s to
networks for which the structure is adaptively determined
from the data. Such network strategies were introduced by
Ivakhnenko (1971) and their development in the U.S. is traced
in Barron et al. (1974, 1975, 1984, 1987).

The elements extensively utilized in these adaptively
synthesized networks are second- and third-order polynomial
functions in two variables. (One and three variable elements
are also uscd in recent implementations.) For the method to
work , the number of inputs of each element must be restricted
50 as to avoid a combinatorial explosion in the number of
possibilities that the algorithm must check.

In brief, the basic strategy (using elements involving two
variables) is depicted in fig. 3. On the first layer, all possible
pairs of the inputs are considered and the best k; are
temporarily saved. On the succeeding layers, all possible
pairs of the intermediate variables z from the preceeding
Jayer(s) are considered and the best k, (k;, etc.) are saved.
Finally, when additional layers provide no more
improvement, the network synthesis stops. The final network
consists only of the ancestors of the final clement.

sl mcia
Xy — Pick 2z, — Pick

Fig. 3. An Adaptive Network Synthesis Strategy

In the original Ivakhnenko algorithm, the parameters
within each element were estimated so as to minimize on a
training set of observations the sum of squared errors of the fit
of the clement to the final desired output. Cross-validation on

a stparale tesling set was used Lo rank and select the best
clements on cach layer and to select the number of layers.
(Ivakhnenko called this division of the data into sets with
different purposes in network estimation the group method of
data handling, GMDH.) The need to construct complete
quadratic polynomials for every pair of variables forced early
implementations of the algorithm to restrict the number k of
temporarily saved intermediate variables to be typically not
more than 16.

Later algorithms developed by A.R. Barron (1979-1982,
Polynomial Network Training Routine, PNETTR III and IV,
Adaptronics, Inc.) incorporated a predicted squared error PSE
criterion (related to the criteria of Akaike and Mallows as
discussed above) at every phase of element selection in the
network. Moreover, a method was developed whereby
candidate pairs are prescreened before each layer (according
to their predicted error in linear combination) thereby
permitting more elements to be considered on each layer
(typically k is between 30 and 60). This also permitted more
complicated element calculations, i.e. third-degree
polynomials with subset selection by the PSE criterion. Also
the saved elements from all precceding layers are candidate
inputs to a given layer. Morcover, some one- and three-input
clements are considered on each layer. The PNETTR
algorithm was extensively applied to problems in
nondestructive evaluation of materials, modeling of material
characteristics, flight guidance and control, target recognition,
intrusion detection systems, and scene classification; see
Barron ct al. (1984) and the references cited there. For an
application of an earlier version of the algorithm to weather
forecasting sce A.R. Barron et al. (1977).

The more recently developed algorithm by J.F. Elder IV
(1985-present, Algorithm for Synthesis of Polynomial
Networks, ASPN, Barron Associates, Inc.) permits a choice of
a minimum complexity or predicted squared error criterion.
This algorithm has more user flexibility in the choice of one-,
two-, or thrce-input elements and in the form of the
polynomial elements (e.g. the degree may be adjusted within
certain limits). Moreover, at ecach layer a new element is
considered which is a linear combination of all elements on
the preceeding layer.

Currently, a major applications thrust is use of
adaptively-synthesized polynomial networks to initialize
and/or re-initialize (in real time) two-point boundary-value
guidance solutions for flight vehicles (R.L. Barron and Abbott
1988). Polynomial networks are trained off-line on a library of
simulated optimum trajectories and interrogated on-line with
information about existing and desired vehicle states.
Interrogation yiclds numerical values of six initializing
adjoint variables (Lagrange multipliers) in a calculus of
variations formulation of the trajectory optimization solution.
Because each new interrogation answers the optimum-path-
to-go question, a guided trajectory nced not be restored, when
disturbed, to a preconceived nominal path, and optimality of
trajectory energy management and accuracy of guidance are not
compromised by disturbances within maneuvering limits of the
vehicle. In the two-point-boundary-value guidance
application, the role of the polynomial network is to compress
a large library of multivariate trajectory information and
render it in a form (the network) suitable for virtually
instantaneous look-up and interpolation.

Fig. 4 is a diagram for networks trained to estimate two of
the initializing adjoint variables for a specific flight vehicle
guidance application. These networks were synthesized from
a data base of 435 observations of the candidate variables.
Ten variables were selected by ASPN for inclusion in the final
modcl. The information presented in each box refers
respectively to the index of the element (in the list of
elements saved by ASPN during synthesis), the type of
element (in terms of number of inputs), and the number of terms
in each cubic expression after pruning according to a PSE




criterion. The "white" element computes a lincar combination
of its inputs.
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Fig. 4 An Adapltively Synthesized Polynomial Network

10. Projection Pursuit

The projection pursuit algorithm of Friedman et al.
(1974,1981,1984) which is so popular in statistical circles has
not previously been discussed in the context of learning
networks. This algorithm adaptively synthesizes a three-
layer network in the form of fig.5. The first-layer functions
implement lincar combinations 291.,;1- for ordinary projection

pursuit (or L9, ¢, (x) for a generalization of projection pursuit
to be discussed below). The second-layer functions g,(2) are

nonparametrically estimated functions of one variable.
Finally, the third layer simply takes a linear combination
B8y Thus the function implemented is

f(x, 8,ﬁ)=§ﬁkgk(:£8}-kxk) .
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Fig. 5. Network Diagram for Projection Pursuit

The estimation strategy of projection pursuit proceeds
vertically through the levels indicated in fig.5. On each
level, an iterative Gauss-Newton algorithm is employed
which alternates between estimation of the parameters 6 from
the first layer and the function g, from the second layer so
that in lincar combination with the preceeding levels the fit
is optimized (using the sum of squared errors or a likelihood
criterion). Here the use of the optimized linear combination
I, 8 is a relaxation method suggested by Lee Jones (1986) as
an improvement over the original method (which estimates 8
to fit the error y — ( g; +..+ 8.1

To estimate the functions g(z), Friedman et al. utilize a
nonparametric smoothing technique involving locally linear
functions (the linear fit at an arbitrary point zis estimated
using the data in a neighborhood of that point).
Nevertheless, the methodology also works with other one-
dimensional nonparametric estimation techniques such as
smoothing splines or variable degree polynomials.

Projection pursuit provides an excellent example of a
learning network with both parametrically and
nonparametrically estimated elements, Also, it demonstrates
an effective iterative strategy for estimating the elements of a
layer of a network to work well in combination with each
other rather than in isolation.

An advantage of projection pursuit networks is that they
have been amenable to theoretical examination of some of
their approximation properties (Huber 1985, Donoho and
Johnstone 1985, Jones 1987), although much work remains to be
dope in this direction. In particular it is known that any
square integrable function can be approximated by ‘a
theoretical analog of projection pursuit, provided sufficiently
many (vertical) levels of the network are utilized; however,
the analogous result for data-driven estimation has yet to be
established.

11. Additive Models and Transformations

Additive models represent functions of the form Xg,(x),
where in general the one-dimensional functions g, are
unconstrained and in practice usually are estimated non-
parametrically. (In contrast, linear models estimate only the
coefficients of linear combinations of fixed functions.) The
theory for the estimation of additive functions is developed in
Stone (1985). In particular, Stone demonstrates the surprising
result that, unlike general functions of d variables, additive
functions can be estimated with a convergence rate for the
expected squared error which is as good as the rate which can
be obtained for the estimation of one-dimensional functions
(r2ri2r+1) instead of n"22+4) where n is the sample size, 7 is
the assumed order of smoothness, and d is the dimension; see
section 14 below), Moreover, Stone showed that although not
every function is additive, a best additive approximation to a
function exists and can be estimated at the indicated rate.
Stone’s approach to estimating the additive functions is to use
finite dimensional linear spaces of functions (such as splines,
polynomials, or truncated trigonometric series ~ in particular
Stone uses splines), so that the resulting additive
approximation is then written in terms of a linear function of
many fixed basis functions, in which case traditional least
squares projection becomes applicable.

Winsberg and Ramsay (1980) and Tibshirani (1988)
generalize additive approximation by permitting monotone
transformations h(y) of the dependent variable. By inverting
this transformation, an approximation to the dependent
variable is obtained in the form depicted in fig. 6 with g=h".
A related model is in Breiman and Friedman (1985) where
noninvertible transformations 4 are permitted.

f(xl, ...x‘)

x g,

Fig. 6. Network for Transformations of Additive Models

Networks as in fig. 6 can be estimated by alternating
between estimates of the transformation g and the first layer




functions g, using methods similar to projection pursuit. In
particular, suppose finite series approximations are used for
cach of the functions g,. Glven a current estimate of g (which
is assumed to be a differentiable function), a Gauss-Newton
type algorithm can be used for the estimation of the
cocfficients in a finite series approximation of the g,. Then,
given the current g,, the new cstimate of g can be obtained by
any of scveral nonparametric methods (e.g. least squares
projection onto a linear space of approximating functions, local
linear smoothing, etc.). These steps are then iterated until
only negligible improvement in the optimization criterion is
obscrved.

Our purpose for mentioning additive models in the context
of networks is that this structure is the one which is best
understood theoretically (except perhaps for linear
discriminate functions and linear regressions which have even
less approximation capabilities) and, moreover, the additive
structure is a basic building block for more claborate networks
which show some promise, Although additive models cannot
represent interactions between variables, interactions can be
obtained by taking sums of transformations of additive models
as scen below.

12. Generalizations

It appears to us that certain extensions to the network
forms of projection pursuit or transformations of additive
functions lcad naturally to a particular network structure
which is known to have powerful approximation capabilities.
The statistical estimation strategies associated with
projection pursuit and additive models then lead to estimation
strategics for these more complex network forms.

In particular, consider networks of the form given in fig. 7.
This form may be regarded as a projection pursuit network,
generalized to allow transformations of the original variables
on the first layer. Using series approximations (e.g.
polynomials) for these transformations, the projection pursuit
estimation algorithm becomes applicable to this network as
discussed in section 10. Alternatively, the network of fig. 7
may be thought of as a composition of additive functions.
Specifically, the network consists of 2d+1 additive functions
with outputs 24, Z3pees 294,71, SAY, Which become the inputs to a
final additive function with output f. Whereas none of the
lower layer additive portions of the network can approximate
every function, the composition of these functions can
approximate any continuous function as discussed in section 13
below. In principle, any of the methods for estimating
transformations of additive models can be used to estimate the
k’th such function by fitting the model to the error resulting
from the sum of the previous k-1 models. However, such
iterative approximations may require more than the 2d+1
levels indicated by the theory.

A specific implementation of a generalized projection
pursuit algorithm which incorporates some of the features
mentioned above is being developed by A.R. Barron and Gayle
Nygaard. It will permit the use of polynomial, spline, or
trigonometric series approximations for any of the
transformations of the network. A new feature of this
algorithm is that, when estimating gy in fig. 7, the
transformations gy, g,,..., g, ; are backfitted to provide the
best additive combination by projecting to sums of basis
functions in the manner of Stone (1985). Moreover, after each
transformation is estimated, a backward stepwise rule (using a
penalized squared error or complexity criterion) is used to
prune unnccessary terms from cach element. In view of the
relatively large (but fixed) size of the network structure, this
pruning of the number of coefficients is essential to avoid
overfit with moderate sample sizes. The most important
generalization is to permit nonparametrically estimated
transformations of the variables so as to achieve “"projections”
to surfaces more general than the hyperplanes utilized in

traditional projection pursuit. It is then expected that fewer
numbers of projections are required (perhaps as few as 24+1).

13. Mathematical Foundations .
Consider continuous functions f(x;,..., x,) of d variables on
a bounded set such as the unit cube [0,1}%. Upon reflection it
appears that all familiar functions of three or more variables
are built up from the composition of various functions of one or
two variables. (For instance a sum of d varlables is a
composition of d-1 bivariate sums.) Accustomed to the traps of
mathematical analysis, one might speculate that there exist
truly d-dimensional functions that cannot be represented in
this way. On th¢ contrary, Kolmogorov (1957), see also
Lorentz (1966), proved the surprising result that every
continuous function on [0,1)¢ can be exactly represented as a
composition of sums and continuous one-dimensional functions.
Lorentz (1966) identified a particular composition scheme

(dcpieted in fig. 2) which works for all functions of a given

dimension. For any continuous function f on [0,1)¢, there exist
continuous one-dimensional functions 8 and hjk for

j=1, 2,0, 2d+1 and k=1,2,...,d such that
foxgmn 2g) =;gjk2h JREN) (8)

Moreover, Lorentz demonstrated the existence of universal
functions h,, which do not depend on the function f (whereas
the g; do écpcnd on f). In his proof, Lorentz constructs

piecewise linear functionsgw with the property that for
every x in the cube the majority (i.e. at least d+1) of the
values gf® (Zhj(x)) (for j=1,..., 2d+1) are within & of f(x).
(This proof suggests that it might be more natural to use the
median of g; (L by )y ey 94,1 (Z By 1 k) instead of the sum
to approximate f.) The proof of the existence of an exact
representation involves a careful limiting argument with
e—0.
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Fig. 7. Kolmogorov-Lorentz Network

In general the functions g; for which the representation is
valid may be rather irregular (e.g. nondifferentiable). It is
reasonable to expect, that for sufficiently regular functions f
relatively smooth elements g.and h, can be used in the re-
presentation, especially if the i are allowed to depend on f.

One way to quantify the smoothness of a function is the
characteristic s. A function of 4 variables has characteristic
s = p/d, where p=r + « if all derivatives of order r are
Lipshitz continuous of order a where 0 < @ <1 (this is the case
with @ =1, r=p-1 if the derivatives of order p are bounded).
(This smoothness characteristic is used by Stone (1982) to
obtain minimax rates of convergence of nonparametric
estimators, see below.) Kolmogorov (1959), see also Lorentz
(1966), proved that not every function with a Siven smoothness
characteristic can be represented as a composition of functions




having a larger smoothness characteristic. This means, for
instance, that there exist functions of ten variables which are
differentiable up to order ten that cannot be represented by
compositions using one-dimensional functions having more
than one derivative.

The limitations expressed by these theoretical results do
not preclude the possibility that many of the practically
occurring functions which one might wish to estimate are
representable in terms of low-dimensional functions of large
smoothness characteristic. For instance, it might be true that
infinitely differentiable functions can be represented in terms
of compositions of infinitely differentiable functions of low
dimensionality.

The appeal of the Kolmogorov-Lorentz representation
compared to other familiar network structures is the economy
of network nodes. A fixed number of one-dimensional
continuous functions (namely (d+1)(2d+1)) suffices to give an
approximation or even an exact representation.

Other network structures are known to possess
approximation capabilities, but generally the number of
network nodes depends on the function being approximated and
the desired accuracy. Subsequent to our Inferface presentation,
George Cybenko informed us of some of his recent results
(Cybenko 1988). Consider three-layer networks in which the
clement in the final layer takes a linear combination of its
inputs and the first two layers are restricted to elements in the
form of equation (1), each of which uses the same nonlincar
transformation k. This function h is permitted to be any fixed
continuous strictly increasing function with bounded range.
Cybenko proved that for any continuous function f on a d-
dimensional cube and any €> 0, there exists a three-layer
network with elements of the form (1) that approximates f
with error uniformly less than €. His proof is to show that the
first two layers of the network may be used to implement
kernel functions ("approximations to the identity") of
appropriate bandwidths having arbitrary centers, from
which the result follows by taking an appropriate lincar
combination. Cybenko also points out that two-layer networks
are sufficient if quadratic ¢ functions are used in first layer
clements of the form (3), for then certain kernel functions may
be constructed by taking linear combinations of these elements.
Although Cybenko does not refer to the rich collection of
statistical litcrature on kernel approximation (see the books
by Prakasa Rao 1983, Devroye 1987, or Eubanks 1988), it is
apparent that results in this area could be utilized to bound
the number of kernels (and hence the number of nodes in
Cybenko's networks) required to achieve a given accuracy.

Some basic results in mathematical analysis which have
impact on the approximation capabilities of network forms
should not be overlooked. The Weierstrass theorem and its
generalization to multivariate functions asserts that any
continuous function on [0,1)? can be uniformly approximated by
a sufficiently large degree polynomial. The polynomial
approximations need not be restricted to the canonical sum of
products form T6,x,*1...x *d(which is itself a large network of
simple structure), indced, the multivariate generalization of
Weicrstrass's theorem is scen to be an immediate corollary to
the Kolmogorov-Lorentz representation theorem.

Other multivariate forms are known to approximate
arbitrary continuous functions. For instance, finite
trigonometric sums I, (@ cos(nk-x) + f,sin(zk-x)) can
uniformly approximate any continuous function on [0,1)¢,
provided the function is continously extended to satisfy
boundary conditions on [-1,1}4 (see Lorentz 1966, p.87), Here
k=(ky,., ky)and kx= Zl-k ;X 7 We remark that the sin and
cos functions have bound/ed variation, so they can be
represented as the difference of monotone functions .
Consequently, the trigonometric sum is a two-layer network
with first layer elements having the form (1). This gives a
simple proof of Cybenko's theorem specialized to such h.

The Jackson theorems express bounds on the accuracy of a
polynomial or trigonometric approximation in terms of the
assumed smoothness of the function being approximated. (See
Jackson 1930 for a lucid treatment of the univarjate case and
Lorentz 1966, espccially pp. 87-90, for multivariate
extensions.) For instance, if a function f has partial
derivatives 9'f/dx] of order r 20 which are Lipshitz of order
0 <a s, then there is a constant ¢ such that forevery N21 a
polynomial approximation of degree N (in each coordinate)
exists with error uniformly less than cN7, wherep=r + a.
Unfortunately, Jackson type theorems are not known for
polynomial approximations which take a network form other
than a sum of products.

14. Some Limitations on the Statistical Accuracy of Learning
Networks '

In practice, learning network approximations are not
obtaintd from completely known functions, but rather they are
estimated from a training sample of observations of relevant
variables. The sample is typically a sequence of input/output
pairs X;, Yy, ..., X,,, Y, which is assumed to possess one of
several possible probabilistic structures as discussed
previously. There is a fundamental question which is
addressed for this class of problems: What is the relationship
between the achievable accuracy and the size n of the sample?
Typically it is found that the answer depends on the class of
possible functions. Especially critical are the dimension 4 and
the regularity of the function. Results from approximation
theory play a key role in these statistical considerations. The
presently known answers, which we discuss below, are
somewhat discouraging, especially with regard to practical
contraints imposed on the dimensionality. To understand
better and to avoid the pitfalls of high dimensionality, it is
suggested that new approximation theory and estimation
results are needed for specific network composition strategies.

Stone (1982) has fundamental results concerning a class of
nonparametric estimation problems which includes curve or
surface fitting with normally distributed errors and binary
classification with unknown conditional class probability
functions. Attention is restricted to functions on a bounded set
with a given smoothness characteristic s = p/d (in the sense
that all cross partial derivatives of total order r are Lipshitz
of order wand p = r + & as above). Stone establishes that the

optimal rate of convergence is ¢, = n*/?*1) for the LY norms
(0<q<w) and €, = ("1 log n)@+1 for the L norm. This means
that there exist estimators ?n (depending only on the sample)
such that the ratio | l?n 11]e, is bounded in probability for all
functions f of the givcrl smoothness class. Conversely, for any
sequence of estimators f, there exist sequences of functions fof
the given smoothness class for which the ratio |1 f~ ?n /e, is

bounded away from zero in probability, as 1 — e. To achieve
the optimal rate of convergence, Stone (1982) uses local
polynomial regression. The value of the estimator ?l (x)ata
point x is obtained by a weighted least squares polynomial fit
using all data points for which the distance from x is less than
8,. Stone chooses the sequence §, to converge to zero at rate
nw1/2P+4) and he chooses the local polynomials to have total
degreer.

For convergence of the mean integrated squared error
(MISE) uniformly over all functions which have a bound on
the L? norm of derivatives of order 7. the optimal convergence
rate is of the form n"?P%P+4), Indeed, a consequence of Stone's
result is that this asymptotic rate cannot be improved. This
rate is achieved in regression contexts by multivariate
smoothing splines (Cox 1984) and in some cases by least squares
polynomial regression and trigonometric series regression, see
Cox (1988). A.R. Barron (1988) has analogous results for the

~



estimation of a log-density function. For the special case d=1,
asymptotic (and in some cases exact) minimax estimators are
found in Efroimovich and Pinsker (1983) for density
estimation, and Nussbaum (1985) and Speckman (1985) for
regression. In these univariate cases the constant c(;) is
determined in the asymptotic minimax error c(p)n"2P/(P+1),
For d>1, it appears that the corresponding constant c(p,d) for
exact asymptotics ¢(p,d)n2P2P+4) js not yet explicitly
determined. Determination of the behavior of this constant
for large 4 would be useful, since it would help determine
whether practical minimax estimation is possible in high
dimensions.

Observe that unless the degree of smoothness p is large
compared to the dimension 4, the optimum rate of convergence
n'Pl@r+d) s disappointingly slow. For instance, with
dimension d = 8 and smoothness p = 2, a sample of size n 2 106
(one million!) would be required to make n'P/@P*4) be not
greater than 1/10.

The slow rates for-optimal estimation of smooth functions
in high dimensions suggest that to understand the practical
success of certain high-dimensional estimation strategies it
may be necessary to use notions of the regularity of a function
other than differentiability to gquantify the limits on
statistical accuracy. One possibility is to assume proximity of
the desired function to functions of low Kolmogorov
complexity. It may then be possible to obtain rate of
convergence results as well as the consistency results referred
to in section 5 (for networks selected by complexity
regularization). This is a topic of further investigation.

In recent work by Baum and Haussler, the Vapnik-
Chervonkis dimension of families of network functions is
characterized and used to quantify the statistical reliability
of estimated networks for binary classification. Using results
of Cover (1965, 1967) on the number of possible dichotomies of
a sample by networks of thresholded linear elements, Baum
(1988) has bounded the Vapnik-Chervonkis dimension in
terms of the total number of coefficients in the network. Let
(O<g;<e,<1 be given. Suppose it is observed that the fraction of

errors of an estimated network is less than ¢, on a training
sample of size n. Then it is of interest to bound the conditional
probability that a fraction of at least &, errors will be incurred
by this network on an independent test sample. Baum and
Haussler (1988) have some results in this direction, assuming
that the total number of coefficients is sufficiently small
compared to the sample size.

The advantage of the Baum and Haussler approach is its
uesfulness in retrospective analysis: i.e., given that an
accurate estimate has been found on training data, what is the
probability of error likely to be on new data? This approach
avoids questions concerning the approximation capabilities of
a network: in particular, the probability that an estimated
network will achieve a certain accuracy is not determined.

15. Conclusions

Historically, neural networks, adaptive polynomial
learning, and nonparametric statistical inference are fields of
inquiry with distinct perspectives and separate lines of
development which have crossed paths only on occasion.
However, Dby examining the purpose, scope, and
methodologies in these fields, considerable commonality is
revealed. In each case, network functions are used to
approximate possibly complex multivariate relationships by
composition of many simpler relationships. Moreover,
strategies for the synthesis of these networks from observable
data are developed. To understand the performance of these
strategies and to suggest improved methodologies, practical
experience is supplemented by an understanding of the basic
disciplines of mathematical approximation theory and
statistical decision theory. Conversely, it behooves the
practitioner in multivariate nonparametric statistical

inference to become aware of the benefits and experiences in
the use of multiple-layered networks for classification,
regression, and related problems.

In our experience the most successful learning network
methodologies adaptively grow the network structure, using
all the observational data (in batch rather than recursively)
and using an appropriate model selection criterion to ensure a
parsimonious network. Moreover, the best strategies employ
network structures which are not limited in their
approximational capabilities. The principle examples of
these successful methodologies are adaptively synthesized
polynomial networks and projection pursuit.

It appears to us that several different approaches lead
inevitably to one network structure and similar synthesis
strategies: namely the network of fig. 7 (introduced by
Kolmogorov and Lorentz) estimated by a generalization of
projection pursuit which incorporates additive projections or
estimated by polynomial network strategies specialized to
this structure. This network considerably extends the
capabilities of existing projection pursuit and additive
regression models, yet retains enough of the regularity of these
models that it may be amenable to further theoretical and
practical examinations of its properties. Nevertheless, we
should not restrict all attention to just one network structure.
Hopefully, by consideration of a variety of different
compositions, empirically selecting the best (say by
complexity regularization), discovery of the true
relationships can occur.

Appendix: Convergence of networks estimated by complexity
regularization

In this appendix we specialize some resulls from A.R.
Barron (1985,1987) 10 show convergence of estimates of nel-
work functions. In general the theory is concerned with the
selection of a probability distribution using random dala
Wr= (W, W,...,W,). It is assumed that T is a countable col-
lection of probability distributions which are candidates for the
estimate of the distribution of the process W ,,W,,... and that
L(P), P €T are positive numbers which satisfy the Krafl-
McMillap inequality 3,275 < 1. (Here L (P) may be
regarded as the length of a uniguely decodable code or 271 (P
may be regarded as a discrete prior probability.) Short lengths
L(P) arc desired for as large as possible a set of distributions
thal can be compuled, so ideally, we would let L (P) be the
Kolmogorov complexity (relative 10 a fixed universal computer)
and I' would be the set of all computable distributions; how-
ever, the determination of such an ideal complexity is practi-
cally infeasible. Nevertheless, the complexity principle provides
a useful guide in selecting reasonable sets of distributions and
assigning priors geared 1oward parsimonious distributions.
When the distibution is known excepl for a funciion f of
variables on which the distribution P, depends, then families of
network functions and corresponding description lengths can be
used 1o yield an effective criterion for sclecting an appropriate
network.

In general the complexiry regularizaiion estimator P, is
defined to achieve

i U
min{- log p" (W,...W,) + L (P)) 9

Here the density funciions p” are taken with respect 1o a fixed
dominating measure. Logarithms are taken base 2. When
Wi, W, are discretized random variables, then
—log p(W,,...,W,) (upon rounding up 10 the nearest integer) is
the Jength of a Shannon code for thesc variables based on the
distribution P and the 1erm L (P) is the length of a preamble
required 10 specify which distribution. A morc gencral form of
complexity regularization is 10 minimize

CR = - Jogp"(W") + AL(P) (10)




where A may be regarded as a Lagrange muliiplier. Unless
A= 1, CR does not have the same 1o1al description length
interpretation. Nevertheless, the solutions P, which minimize
CR for 4> 0 do have the valid interpreiation as maximum
likelihood estimators subject 10 complexily constrainis. Such
estimators were first proposed by Cover (1972). Our conver-
gence resulls require that A 2 1 be fixed, although in one case
% > 1isrequired.

We mention several general convergence results. First
suppose that the distributions P in T are stationary and ergodic.
Let P denote the true probability law which governs the pro-
cess. The first result is that if P7 € T then the estimated distribu-
tion is exactly correct, }5,, = P°, for all large n, with probabiliry
one. For the remaining results suppose that the variables W;
are independent and identically distributed with respect 10 P,
and likewise that independence holds for the distributions in T,
whence p(Wi,...,W,) = TIp(W;). Moreover, it is assumed
that the true density function p” can be approximated by densi-
ties in T in an information theorelic sense: that is, there exist
densities in T for which the relative eniropy _[ p logpTip is
arbitrarily small. This lcads 10 the second result that B, => P°
(in the scnse of weak convergence) with probability one;
moreover, if the densivies in I are uniformly equicontinuous
then p, = p~ in L}, Since the uniform equicontinuily is not
easy 10 guarantee in general, we mention a third result which
makes no such requirement. If & > 1 and if densities in T can
approximate p~ in the relative entropy sense, then P> p inLll,
that islim [ 1 p,=p° | = O, with probability one. The second and
third resulls continue to be valid (with convergence in probabil-
ity statements replacing convergence with probability one)
when the set T, and the numbers L, (P) are allowed 10 depend
on the sample size n, provided that there exists a sequences of
densities p, in T, for which lim J p logpip, =0 and
lim L, (P,)/n = 0.

For the estimation of nciwork {functions we take
W, = (X,.Y;) which is assumed to have a distribution P, which
depend on the funclion we desire 10 estimate. A denumerable
(possibly finite) coliection S, of parameterized families of net-
work functions f(x.6) is considcred. We assume that the
sequence of collections is increasing $,c S, - - - and that
L(f), /€S are lengths of codes which specify the structure,
but not the parameter values. of networks in § = {_y ,S,. For
each neiwork family /', the parameter vector (which has dimen-
sion denoted by k), is assumed for convenience 10 take values
in the unit cube [0,1]"’. (Families with larger rectangular
parameler spaces can be reduced 10 this case by scaling and
appropriately modifying the definition of /). We restrict atlen-
tion to the lattice Q,, of points with coordinates of the form
iNn for integers 0< i< ¥'n and we use (1/2) log n bils per
parameter 1o describe these points.

For each parameirized network f(x.8) in S,, let 8, be
estimated by the method of maximum likclihood restricied 10
the parameter values of the given precision. Thus 8, achieves

POVTIL(8,)) = max POW™1f(-8)). an
r.,k/

The complexity regularization estimator is the network f,,
defined to achieve

. k
mines, (~log p(W 11 (8,0) + A == logn + A L)) (12)

We remark that other precisions than (1/2) Jog n bits could be
used in the definition, provided the maximum likclihood esti-
mator is suilably resiricted. (For smooth families, a second
order Taylor series argument shows thal the present choice
achieves roughly the best iradeoff betwcen complexity and
likelihood. In some cases an improved tradeoff is obtained
using Jocal reparametrizations as dictated by the Fisher informa-
tion matrix, as in A.R. Barron (1985. p. 74). With 4 = 1, the
specialization of the complexily regularization criterion given in
(12) is very much the same as Rissanen’s MDL criterion.

However, the L (f) term (omitled by Rissanen) can be impor-
lant, especially when there is a large variety of families under
consideration.

As a special case of inlerest consider function fiiting prob-
lems with Gausssian errors. In this case, for given X, the con-
ditional distribution of the error Y- (X) is normal with mean
zcro and variance o2 The X; are assumed 1o be randomly
selecied, independently, from a distribution which does not
depend on f. Then the complexily regularization criterion
reduces 10

_ 1

k
CR = -

S (Y- (X802 + % Liogn+aLy). (3
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Let f° be the true function which we desire 1o estimate.
Assuming the the network in S are continuous functions of
their parameters, the information theoretic closure condition
reduces (in the Gaussian case) 1o the condition that
infyesinfeE (f T (X)-7(X,6))% i.e. the true function must be
approximable in the L2 sense by members of network families
under consideration. In which case, networks f,, (X) which are
selectcd to minimize (13) (with A> 1) are guaranteed to con-
verge 10 /(X)) in probability.
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