YALE: STATISTICS 542 Some Practice Problems

Problems 1-10 below refer to the following situation. Let X_1, \ldots, X_n be a random sample on X, where X has probability density function

$$f(x;\theta) = kx^3 e^{-x^2/\theta}, \qquad x \ge 0,$$

where k is a constant and θ is an unknown parameter.

1. Show that $k = 2/\theta^2$.

2. Let $Y = 2X^2/\theta$. Prove that $Y \sim \chi_4^2$, and use this result to give the mean and variance of X^2 . (Remember that the χ_4^2 distribution is the same as a gamma distribution with r = 2 and $\lambda = 1/2$.)

3. Write down the likelihood function based on the sample of size n, and identify a sufficient statistic.

4. Show that the MLE of θ is $\hat{\theta} = \frac{1}{2n} \sum_{i=1}^{n} X_i^2$. Give its mean and variance, and show that $\hat{\theta}$ is a consistent estimator of θ .

5. Determine whether or not the MLE $\hat{\theta}$ is an efficient estimator of θ .

6. Show that the probability that X takes a value greater than two is $P(X > 2) = g(\theta)$, where

$$g(\theta) \equiv (\frac{4}{\theta} + 1)e^{-4/\theta}$$

7. Give the MLE of $g(\theta) = P(X > 2)$, and prove that it is a consistent estimator of P(X > 2). (Justify your answer.)

8. Find the mean of X. Using this, give the method of moments estimator $\tilde{\theta}$ of θ based on the sample X_1, \ldots, X_n , and show that $\tilde{\theta}$ is a consistent estimator of θ . Is $\tilde{\theta}$ a function of a sufficient statistic?

9. Let $T = \sum_{i=1}^{n} X_i^2$. Prove that

$$\frac{2T}{\theta} \sim \chi_{4n}^2$$

10. Show that the most powerful test with significance level α of the null hypothesis $H_0: \theta = \theta_0$ against the alternative hypothesis $H_1: \theta = \theta_1$, where $\theta_0 > \theta_1$, rejects H_0 if $t \leq k$, where t is the observed value of the statistic T given in Problem 9 above. Explain how the constant k can be found using a table of quantiles of the χ^2 distribution. Is this test a uniformly most powerful test of H_0 against the composite alternative hypothesis $H_A: \theta < \theta_0$? Why, or why not?

11. An instant lottery ticket has three numbers printed on it, and none, one, two, or all three of these may be "lucky" numbers. A sample of 2,012 tickets gave the following frequency table:

Number of lucky numbers	0	1	2	4
Frequency	1049	775	178	10

Let the random variable X denote the number of lucky numbers on a ticket. Suggest a probability distribution for X (one of the "standard" distributions). Test whether the data above are consistent with your suggested distribution.

12. Let X_1, \ldots, X_n be a random sample on X, where X has an exponential distribution with parameter λ . Suppose you want to estimate the mean $\theta = 1/\lambda$.

- (a) Find the MLE $\hat{\theta}$ of θ , and find its MSE.
- (b) Find the MSE of the estimator $a\hat{\theta}$, where a is a constant. Find the value a_0 of A which minimizes this MSE. Does the estimator $a_0\hat{\theta}$ beat (dominate) the MLE $\hat{\theta}$?
- (c) Find the bias in the estimator $a_0\hat{\theta}$ you found in (b). Is this estimator a consistent estimator of θ ?

13. Let X_1 and X_2 be a random sample of size 2 on a random variable X having an exponential distribution with mean $1/\lambda$. Let $\theta = P(X \ge 12) = e^{-12\lambda}$. (Think of X as measuring the lifetime in months of a certain type of lightbulb; then θ is the proportion of these bulbs which last as least a year.)

- (a) Give an unbiased estimator of θ based on the first observation X_1 .
- (b) Clearly $T = X_1 + X_2$ is a sufficient statistic. Find the conditional distribution of X_1 given T.
- (c) The Rao-Blackwell Theorem says that an unbiased estimator of θ with smaller variance than the estimator $\hat{\theta}$ you found in (a) is $\tilde{\theta} = E(\hat{\theta} \mid T)$, Find $\tilde{\theta}$, and verify that it has smaller variance than $\hat{\theta}$.
- **14.** Let X_1, \ldots, X_n be a random sample on X, where X has pdf

$$f_X(x) = \theta x^{\theta - 1}, \qquad 0 < x < 1, \qquad (\theta > 0).$$

- (a) Give a sufficient statistic.
- (b) Find the Cramér-Rao lower bound for the variance of an unbiased estimator of θ .
- (c) Find the MLE of θ , and show that it is consistent and asymptotically efficient.
- (d) What is the asymptotic distribution of the MLE?
- (d) Give the form of an approximate $100(1-\alpha)\%$ confidence interval for θ .

15. Let X_1, \ldots, X_n be a random sample on X, where X has pdf

$$f_X(x) = \theta x^{\theta - 1}, \qquad 0 < x < 1, \qquad (\theta > 0).$$

(This is the same setup as in Problem 14.)

- (a) Show that the MP test with significance level α of H_0 : $\theta = \theta_0$ against H_1 : $\theta = \theta_1$, where $\theta_1 > \theta_0$, rejects H_0 if $\hat{\theta} \le k$, where $\hat{\theta}$ is the MLE. Explain how the constant k can be found using tables of the χ^2 distribution. Is this test a UMP test of H_0 against H_A : $\theta > \theta_0$?
- (b) Find, and sketch, the power function of the test in (a).
- (c) Determine (as completely as possible) the likelihood ratio (LR) test with significance level α of $H_0: \theta = \theta_0$ against $H_A^*: \theta \neq \theta_0$.